llvm-6502/include/llvm/Value.h
Dan Gohman 58cfa3b137 Rename Instruction::isIdenticalTo to Instruction::isIdenticalToWhenDefined,
and introduce a new Instruction::isIdenticalTo which tests for full
identity, including the SubclassOptionalData flags. Also, fix the
Instruction::clone implementations to preserve the SubclassOptionalData
flags. Finally, teach several optimizations how to handle
SubclassOptionalData correctly, given these changes.

This fixes the counterintuitive behavior of isIdenticalTo not comparing
the full value, and clone not returning an identical clone, as well as
some subtle bugs that could be caused by these.

Thanks to Nick Lewycky for reporting this, and for an initial patch!


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80038 91177308-0d34-0410-b5e6-96231b3b80d8
2009-08-25 22:11:20 +00:00

354 lines
14 KiB
C++

//===-- llvm/Value.h - Definition of the Value class ------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares the Value class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_VALUE_H
#define LLVM_VALUE_H
#include "llvm/AbstractTypeUser.h"
#include "llvm/Use.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/Casting.h"
#include <string>
namespace llvm {
class Constant;
class Argument;
class Instruction;
class BasicBlock;
class GlobalValue;
class Function;
class GlobalVariable;
class GlobalAlias;
class InlineAsm;
class ValueSymbolTable;
class TypeSymbolTable;
template<typename ValueTy> class StringMapEntry;
template <typename ValueTy = Value>
class AssertingVH;
typedef StringMapEntry<Value*> ValueName;
class raw_ostream;
class AssemblyAnnotationWriter;
class ValueHandleBase;
class LLVMContext;
//===----------------------------------------------------------------------===//
// Value Class
//===----------------------------------------------------------------------===//
/// This is a very important LLVM class. It is the base class of all values
/// computed by a program that may be used as operands to other values. Value is
/// the super class of other important classes such as Instruction and Function.
/// All Values have a Type. Type is not a subclass of Value. All types can have
/// a name and they should belong to some Module. Setting the name on the Value
/// automatically updates the module's symbol table.
///
/// Every value has a "use list" that keeps track of which other Values are
/// using this Value. A Value can also have an arbitrary number of ValueHandle
/// objects that watch it and listen to RAUW and Destroy events see
/// llvm/Support/ValueHandle.h for details.
///
/// @brief LLVM Value Representation
class Value {
const unsigned char SubclassID; // Subclass identifier (for isa/dyn_cast)
unsigned char HasValueHandle : 1; // Has a ValueHandle pointing to this?
protected:
/// SubclassOptionalData - This member is similar to SubclassData, however it
/// is for holding information which may be used to aid optimization, but
/// which may be cleared to zero without affecting conservative
/// interpretation.
unsigned char SubclassOptionalData : 7;
/// SubclassData - This member is defined by this class, but is not used for
/// anything. Subclasses can use it to hold whatever state they find useful.
/// This field is initialized to zero by the ctor.
unsigned short SubclassData;
private:
PATypeHolder VTy;
Use *UseList;
friend class ValueSymbolTable; // Allow ValueSymbolTable to directly mod Name.
friend class SymbolTable; // Allow SymbolTable to directly poke Name.
friend class ValueHandleBase;
ValueName *Name;
void operator=(const Value &); // Do not implement
Value(const Value &); // Do not implement
public:
Value(const Type *Ty, unsigned scid);
virtual ~Value();
/// dump - Support for debugging, callable in GDB: V->dump()
//
virtual void dump() const;
/// print - Implement operator<< on Value.
///
void print(raw_ostream &O, AssemblyAnnotationWriter *AAW = 0) const;
/// All values are typed, get the type of this value.
///
inline const Type *getType() const { return VTy; }
/// All values hold a context through their type.
LLVMContext &getContext() const;
// All values can potentially be named...
inline bool hasName() const { return Name != 0; }
ValueName *getValueName() const { return Name; }
/// getName() - Return a constant reference to the value's name. This is cheap
/// and guaranteed to return the same reference as long as the value is not
/// modified.
///
/// This is currently guaranteed to return a StringRef for which data() points
/// to a valid null terminated string. The use of StringRef.data() is
/// deprecated here, however, and clients should not rely on it. If such
/// behavior is needed, clients should use expensive getNameStr(), or switch
/// to an interface that does not depend on null termination.
StringRef getName() const;
/// getNameStr() - Return the name of the specified value, *constructing a
/// string* to hold it. This is guaranteed to construct a string and is very
/// expensive, clients should use getName() unless necessary.
std::string getNameStr() const;
/// setName() - Change the name of the value, choosing a new unique name if
/// the provided name is taken.
///
/// \arg Name - The new name; or "" if the value's name should be removed.
void setName(const Twine &Name);
/// takeName - transfer the name from V to this value, setting V's name to
/// empty. It is an error to call V->takeName(V).
void takeName(Value *V);
/// replaceAllUsesWith - Go through the uses list for this definition and make
/// each use point to "V" instead of "this". After this completes, 'this's
/// use list is guaranteed to be empty.
///
void replaceAllUsesWith(Value *V);
// uncheckedReplaceAllUsesWith - Just like replaceAllUsesWith but dangerous.
// Only use when in type resolution situations!
void uncheckedReplaceAllUsesWith(Value *V);
/// clearOptionalData - Clear any optional optimization data from this Value.
/// Transformation passes must call this method whenever changing the IR
/// in a way that would affect the values produced by this Value, unless
/// it takes special care to ensure correctness in some other way.
void clearOptionalData() { SubclassOptionalData = 0; }
//----------------------------------------------------------------------
// Methods for handling the chain of uses of this Value.
//
typedef value_use_iterator<User> use_iterator;
typedef value_use_iterator<const User> use_const_iterator;
bool use_empty() const { return UseList == 0; }
use_iterator use_begin() { return use_iterator(UseList); }
use_const_iterator use_begin() const { return use_const_iterator(UseList); }
use_iterator use_end() { return use_iterator(0); }
use_const_iterator use_end() const { return use_const_iterator(0); }
User *use_back() { return *use_begin(); }
const User *use_back() const { return *use_begin(); }
/// hasOneUse - Return true if there is exactly one user of this value. This
/// is specialized because it is a common request and does not require
/// traversing the whole use list.
///
bool hasOneUse() const {
use_const_iterator I = use_begin(), E = use_end();
if (I == E) return false;
return ++I == E;
}
/// hasNUses - Return true if this Value has exactly N users.
///
bool hasNUses(unsigned N) const;
/// hasNUsesOrMore - Return true if this value has N users or more. This is
/// logically equivalent to getNumUses() >= N.
///
bool hasNUsesOrMore(unsigned N) const;
bool isUsedInBasicBlock(const BasicBlock *BB) const;
/// getNumUses - This method computes the number of uses of this Value. This
/// is a linear time operation. Use hasOneUse, hasNUses, or hasMoreThanNUses
/// to check for specific values.
unsigned getNumUses() const;
/// addUse - This method should only be used by the Use class.
///
void addUse(Use &U) { U.addToList(&UseList); }
/// An enumeration for keeping track of the concrete subclass of Value that
/// is actually instantiated. Values of this enumeration are kept in the
/// Value classes SubclassID field. They are used for concrete type
/// identification.
enum ValueTy {
ArgumentVal, // This is an instance of Argument
BasicBlockVal, // This is an instance of BasicBlock
FunctionVal, // This is an instance of Function
GlobalAliasVal, // This is an instance of GlobalAlias
GlobalVariableVal, // This is an instance of GlobalVariable
UndefValueVal, // This is an instance of UndefValue
ConstantExprVal, // This is an instance of ConstantExpr
ConstantAggregateZeroVal, // This is an instance of ConstantAggregateNull
ConstantIntVal, // This is an instance of ConstantInt
ConstantFPVal, // This is an instance of ConstantFP
ConstantArrayVal, // This is an instance of ConstantArray
ConstantStructVal, // This is an instance of ConstantStruct
ConstantVectorVal, // This is an instance of ConstantVector
ConstantPointerNullVal, // This is an instance of ConstantPointerNull
MDNodeVal, // This is an instance of MDNode
MDStringVal, // This is an instance of MDString
NamedMDNodeVal, // This is an instance of NamedMDNode
InlineAsmVal, // This is an instance of InlineAsm
PseudoSourceValueVal, // This is an instance of PseudoSourceValue
InstructionVal, // This is an instance of Instruction
// Markers:
ConstantFirstVal = FunctionVal,
ConstantLastVal = ConstantPointerNullVal
};
/// getValueID - Return an ID for the concrete type of this object. This is
/// used to implement the classof checks. This should not be used for any
/// other purpose, as the values may change as LLVM evolves. Also, note that
/// for instructions, the Instruction's opcode is added to InstructionVal. So
/// this means three things:
/// # there is no value with code InstructionVal (no opcode==0).
/// # there are more possible values for the value type than in ValueTy enum.
/// # the InstructionVal enumerator must be the highest valued enumerator in
/// the ValueTy enum.
unsigned getValueID() const {
return SubclassID;
}
/// hasSameSubclassOptionalData - Test whether the optional flags contained
/// in this value are equal to the optional flags in the given value.
bool hasSameSubclassOptionalData(const Value *V) const {
return SubclassOptionalData == V->SubclassOptionalData;
}
/// intersectOptionalDataWith - Clear any optional flags in this value
/// that are not also set in the given value.
void intersectOptionalDataWith(const Value *V) {
SubclassOptionalData &= V->SubclassOptionalData;
}
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Value *) {
return true; // Values are always values.
}
/// getRawType - This should only be used to implement the vmcore library.
///
const Type *getRawType() const { return VTy.getRawType(); }
/// stripPointerCasts - This method strips off any unneeded pointer
/// casts from the specified value, returning the original uncasted value.
/// Note that the returned value has pointer type if the specified value does.
Value *stripPointerCasts();
const Value *stripPointerCasts() const {
return const_cast<Value*>(this)->stripPointerCasts();
}
/// getUnderlyingObject - This method strips off any GEP address adjustments
/// and pointer casts from the specified value, returning the original object
/// being addressed. Note that the returned value has pointer type if the
/// specified value does.
Value *getUnderlyingObject();
const Value *getUnderlyingObject() const {
return const_cast<Value*>(this)->getUnderlyingObject();
}
/// DoPHITranslation - If this value is a PHI node with CurBB as its parent,
/// return the value in the PHI node corresponding to PredBB. If not, return
/// ourself. This is useful if you want to know the value something has in a
/// predecessor block.
Value *DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB);
const Value *DoPHITranslation(const BasicBlock *CurBB,
const BasicBlock *PredBB) const{
return const_cast<Value*>(this)->DoPHITranslation(CurBB, PredBB);
}
};
inline raw_ostream &operator<<(raw_ostream &OS, const Value &V) {
V.print(OS);
return OS;
}
void Use::set(Value *V) {
if (Val) removeFromList();
Val = V;
if (V) V->addUse(*this);
}
// isa - Provide some specializations of isa so that we don't have to include
// the subtype header files to test to see if the value is a subclass...
//
template <> inline bool isa_impl<Constant, Value>(const Value &Val) {
return Val.getValueID() >= Value::ConstantFirstVal &&
Val.getValueID() <= Value::ConstantLastVal;
}
template <> inline bool isa_impl<Argument, Value>(const Value &Val) {
return Val.getValueID() == Value::ArgumentVal;
}
template <> inline bool isa_impl<InlineAsm, Value>(const Value &Val) {
return Val.getValueID() == Value::InlineAsmVal;
}
template <> inline bool isa_impl<Instruction, Value>(const Value &Val) {
return Val.getValueID() >= Value::InstructionVal;
}
template <> inline bool isa_impl<BasicBlock, Value>(const Value &Val) {
return Val.getValueID() == Value::BasicBlockVal;
}
template <> inline bool isa_impl<Function, Value>(const Value &Val) {
return Val.getValueID() == Value::FunctionVal;
}
template <> inline bool isa_impl<GlobalVariable, Value>(const Value &Val) {
return Val.getValueID() == Value::GlobalVariableVal;
}
template <> inline bool isa_impl<GlobalAlias, Value>(const Value &Val) {
return Val.getValueID() == Value::GlobalAliasVal;
}
template <> inline bool isa_impl<GlobalValue, Value>(const Value &Val) {
return isa<GlobalVariable>(Val) || isa<Function>(Val) ||
isa<GlobalAlias>(Val);
}
// Value* is only 4-byte aligned.
template<>
class PointerLikeTypeTraits<Value*> {
typedef Value* PT;
public:
static inline void *getAsVoidPointer(PT P) { return P; }
static inline PT getFromVoidPointer(void *P) {
return static_cast<PT>(P);
}
enum { NumLowBitsAvailable = 2 };
};
} // End llvm namespace
#endif