Bob Wilson a1fe2948ed Fix SROA to avoid unnecessary scalar conversions for 1-element vectors.
When a 1-element vector alloca is promoted, a store instruction can often be
rewritten without converting the value to a scalar and using an insertelement
instruction to stuff it into the new alloca.  This patch just adds a check
to skip that conversion when it is unnecessary.  This turns out to be really
important for some ARM Neon operations where <1 x i64> is used to get around
the fact that i64 is not a legal type.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184870 91177308-0d34-0410-b5e6-96231b3b80d8
2013-06-25 19:09:50 +00:00

3766 lines
143 KiB
C++

//===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
/// This transformation implements the well known scalar replacement of
/// aggregates transformation. It tries to identify promotable elements of an
/// aggregate alloca, and promote them to registers. It will also try to
/// convert uses of an element (or set of elements) of an alloca into a vector
/// or bitfield-style integer scalar if appropriate.
///
/// It works to do this with minimal slicing of the alloca so that regions
/// which are merely transferred in and out of external memory remain unchanged
/// and are not decomposed to scalar code.
///
/// Because this also performs alloca promotion, it can be thought of as also
/// serving the purpose of SSA formation. The algorithm iterates on the
/// function until all opportunities for promotion have been realized.
///
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sroa"
#include "llvm/Transforms/Scalar.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/PtrUseVisitor.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/DIBuilder.h"
#include "llvm/DebugInfo.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Operator.h"
#include "llvm/InstVisitor.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
#include "llvm/Transforms/Utils/SSAUpdater.h"
using namespace llvm;
STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement");
STATISTIC(NumAllocaPartitions, "Number of alloca partitions formed");
STATISTIC(MaxPartitionsPerAlloca, "Maximum number of partitions");
STATISTIC(NumAllocaPartitionUses, "Number of alloca partition uses found");
STATISTIC(MaxPartitionUsesPerAlloca, "Maximum number of partition uses");
STATISTIC(NumNewAllocas, "Number of new, smaller allocas introduced");
STATISTIC(NumPromoted, "Number of allocas promoted to SSA values");
STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion");
STATISTIC(NumDeleted, "Number of instructions deleted");
STATISTIC(NumVectorized, "Number of vectorized aggregates");
/// Hidden option to force the pass to not use DomTree and mem2reg, instead
/// forming SSA values through the SSAUpdater infrastructure.
static cl::opt<bool>
ForceSSAUpdater("force-ssa-updater", cl::init(false), cl::Hidden);
namespace {
/// \brief A custom IRBuilder inserter which prefixes all names if they are
/// preserved.
template <bool preserveNames = true>
class IRBuilderPrefixedInserter :
public IRBuilderDefaultInserter<preserveNames> {
std::string Prefix;
public:
void SetNamePrefix(const Twine &P) { Prefix = P.str(); }
protected:
void InsertHelper(Instruction *I, const Twine &Name, BasicBlock *BB,
BasicBlock::iterator InsertPt) const {
IRBuilderDefaultInserter<preserveNames>::InsertHelper(
I, Name.isTriviallyEmpty() ? Name : Prefix + Name, BB, InsertPt);
}
};
// Specialization for not preserving the name is trivial.
template <>
class IRBuilderPrefixedInserter<false> :
public IRBuilderDefaultInserter<false> {
public:
void SetNamePrefix(const Twine &P) {}
};
/// \brief Provide a typedef for IRBuilder that drops names in release builds.
#ifndef NDEBUG
typedef llvm::IRBuilder<true, ConstantFolder,
IRBuilderPrefixedInserter<true> > IRBuilderTy;
#else
typedef llvm::IRBuilder<false, ConstantFolder,
IRBuilderPrefixedInserter<false> > IRBuilderTy;
#endif
}
namespace {
/// \brief A common base class for representing a half-open byte range.
struct ByteRange {
/// \brief The beginning offset of the range.
uint64_t BeginOffset;
/// \brief The ending offset, not included in the range.
uint64_t EndOffset;
ByteRange() : BeginOffset(), EndOffset() {}
ByteRange(uint64_t BeginOffset, uint64_t EndOffset)
: BeginOffset(BeginOffset), EndOffset(EndOffset) {}
/// \brief Support for ordering ranges.
///
/// This provides an ordering over ranges such that start offsets are
/// always increasing, and within equal start offsets, the end offsets are
/// decreasing. Thus the spanning range comes first in a cluster with the
/// same start position.
bool operator<(const ByteRange &RHS) const {
if (BeginOffset < RHS.BeginOffset) return true;
if (BeginOffset > RHS.BeginOffset) return false;
if (EndOffset > RHS.EndOffset) return true;
return false;
}
/// \brief Support comparison with a single offset to allow binary searches.
friend bool operator<(const ByteRange &LHS, uint64_t RHSOffset) {
return LHS.BeginOffset < RHSOffset;
}
friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset,
const ByteRange &RHS) {
return LHSOffset < RHS.BeginOffset;
}
bool operator==(const ByteRange &RHS) const {
return BeginOffset == RHS.BeginOffset && EndOffset == RHS.EndOffset;
}
bool operator!=(const ByteRange &RHS) const { return !operator==(RHS); }
};
/// \brief A partition of an alloca.
///
/// This structure represents a contiguous partition of the alloca. These are
/// formed by examining the uses of the alloca. During formation, they may
/// overlap but once an AllocaPartitioning is built, the Partitions within it
/// are all disjoint.
struct Partition : public ByteRange {
/// \brief Whether this partition is splittable into smaller partitions.
///
/// We flag partitions as splittable when they are formed entirely due to
/// accesses by trivially splittable operations such as memset and memcpy.
bool IsSplittable;
/// \brief Test whether a partition has been marked as dead.
bool isDead() const {
if (BeginOffset == UINT64_MAX) {
assert(EndOffset == UINT64_MAX);
return true;
}
return false;
}
/// \brief Kill a partition.
/// This is accomplished by setting both its beginning and end offset to
/// the maximum possible value.
void kill() {
assert(!isDead() && "He's Dead, Jim!");
BeginOffset = EndOffset = UINT64_MAX;
}
Partition() : ByteRange(), IsSplittable() {}
Partition(uint64_t BeginOffset, uint64_t EndOffset, bool IsSplittable)
: ByteRange(BeginOffset, EndOffset), IsSplittable(IsSplittable) {}
};
/// \brief A particular use of a partition of the alloca.
///
/// This structure is used to associate uses of a partition with it. They
/// mark the range of bytes which are referenced by a particular instruction,
/// and includes a handle to the user itself and the pointer value in use.
/// The bounds of these uses are determined by intersecting the bounds of the
/// memory use itself with a particular partition. As a consequence there is
/// intentionally overlap between various uses of the same partition.
class PartitionUse : public ByteRange {
/// \brief Combined storage for both the Use* and split state.
PointerIntPair<Use*, 1, bool> UsePtrAndIsSplit;
public:
PartitionUse() : ByteRange(), UsePtrAndIsSplit() {}
PartitionUse(uint64_t BeginOffset, uint64_t EndOffset, Use *U,
bool IsSplit)
: ByteRange(BeginOffset, EndOffset), UsePtrAndIsSplit(U, IsSplit) {}
/// \brief The use in question. Provides access to both user and used value.
///
/// Note that this may be null if the partition use is *dead*, that is, it
/// should be ignored.
Use *getUse() const { return UsePtrAndIsSplit.getPointer(); }
/// \brief Set the use for this partition use range.
void setUse(Use *U) { UsePtrAndIsSplit.setPointer(U); }
/// \brief Whether this use is split across multiple partitions.
bool isSplit() const { return UsePtrAndIsSplit.getInt(); }
};
}
namespace llvm {
template <> struct isPodLike<Partition> : llvm::true_type {};
template <> struct isPodLike<PartitionUse> : llvm::true_type {};
}
namespace {
/// \brief Alloca partitioning representation.
///
/// This class represents a partitioning of an alloca into slices, and
/// information about the nature of uses of each slice of the alloca. The goal
/// is that this information is sufficient to decide if and how to split the
/// alloca apart and replace slices with scalars. It is also intended that this
/// structure can capture the relevant information needed both to decide about
/// and to enact these transformations.
class AllocaPartitioning {
public:
/// \brief Construct a partitioning of a particular alloca.
///
/// Construction does most of the work for partitioning the alloca. This
/// performs the necessary walks of users and builds a partitioning from it.
AllocaPartitioning(const DataLayout &TD, AllocaInst &AI);
/// \brief Test whether a pointer to the allocation escapes our analysis.
///
/// If this is true, the partitioning is never fully built and should be
/// ignored.
bool isEscaped() const { return PointerEscapingInstr; }
/// \brief Support for iterating over the partitions.
/// @{
typedef SmallVectorImpl<Partition>::iterator iterator;
iterator begin() { return Partitions.begin(); }
iterator end() { return Partitions.end(); }
typedef SmallVectorImpl<Partition>::const_iterator const_iterator;
const_iterator begin() const { return Partitions.begin(); }
const_iterator end() const { return Partitions.end(); }
/// @}
/// \brief Support for iterating over and manipulating a particular
/// partition's uses.
///
/// The iteration support provided for uses is more limited, but also
/// includes some manipulation routines to support rewriting the uses of
/// partitions during SROA.
/// @{
typedef SmallVectorImpl<PartitionUse>::iterator use_iterator;
use_iterator use_begin(unsigned Idx) { return Uses[Idx].begin(); }
use_iterator use_begin(const_iterator I) { return Uses[I - begin()].begin(); }
use_iterator use_end(unsigned Idx) { return Uses[Idx].end(); }
use_iterator use_end(const_iterator I) { return Uses[I - begin()].end(); }
typedef SmallVectorImpl<PartitionUse>::const_iterator const_use_iterator;
const_use_iterator use_begin(unsigned Idx) const { return Uses[Idx].begin(); }
const_use_iterator use_begin(const_iterator I) const {
return Uses[I - begin()].begin();
}
const_use_iterator use_end(unsigned Idx) const { return Uses[Idx].end(); }
const_use_iterator use_end(const_iterator I) const {
return Uses[I - begin()].end();
}
unsigned use_size(unsigned Idx) const { return Uses[Idx].size(); }
unsigned use_size(const_iterator I) const { return Uses[I - begin()].size(); }
const PartitionUse &getUse(unsigned PIdx, unsigned UIdx) const {
return Uses[PIdx][UIdx];
}
const PartitionUse &getUse(const_iterator I, unsigned UIdx) const {
return Uses[I - begin()][UIdx];
}
void use_push_back(unsigned Idx, const PartitionUse &PU) {
Uses[Idx].push_back(PU);
}
void use_push_back(const_iterator I, const PartitionUse &PU) {
Uses[I - begin()].push_back(PU);
}
/// @}
/// \brief Allow iterating the dead users for this alloca.
///
/// These are instructions which will never actually use the alloca as they
/// are outside the allocated range. They are safe to replace with undef and
/// delete.
/// @{
typedef SmallVectorImpl<Instruction *>::const_iterator dead_user_iterator;
dead_user_iterator dead_user_begin() const { return DeadUsers.begin(); }
dead_user_iterator dead_user_end() const { return DeadUsers.end(); }
/// @}
/// \brief Allow iterating the dead expressions referring to this alloca.
///
/// These are operands which have cannot actually be used to refer to the
/// alloca as they are outside its range and the user doesn't correct for
/// that. These mostly consist of PHI node inputs and the like which we just
/// need to replace with undef.
/// @{
typedef SmallVectorImpl<Use *>::const_iterator dead_op_iterator;
dead_op_iterator dead_op_begin() const { return DeadOperands.begin(); }
dead_op_iterator dead_op_end() const { return DeadOperands.end(); }
/// @}
/// \brief MemTransferInst auxiliary data.
/// This struct provides some auxiliary data about memory transfer
/// intrinsics such as memcpy and memmove. These intrinsics can use two
/// different ranges within the same alloca, and provide other challenges to
/// correctly represent. We stash extra data to help us untangle this
/// after the partitioning is complete.
struct MemTransferOffsets {
/// The destination begin and end offsets when the destination is within
/// this alloca. If the end offset is zero the destination is not within
/// this alloca.
uint64_t DestBegin, DestEnd;
/// The source begin and end offsets when the source is within this alloca.
/// If the end offset is zero, the source is not within this alloca.
uint64_t SourceBegin, SourceEnd;
/// Flag for whether an alloca is splittable.
bool IsSplittable;
};
MemTransferOffsets getMemTransferOffsets(MemTransferInst &II) const {
return MemTransferInstData.lookup(&II);
}
/// \brief Map from a PHI or select operand back to a partition.
///
/// When manipulating PHI nodes or selects, they can use more than one
/// partition of an alloca. We store a special mapping to allow finding the
/// partition referenced by each of these operands, if any.
iterator findPartitionForPHIOrSelectOperand(Use *U) {
SmallDenseMap<Use *, std::pair<unsigned, unsigned> >::const_iterator MapIt
= PHIOrSelectOpMap.find(U);
if (MapIt == PHIOrSelectOpMap.end())
return end();
return begin() + MapIt->second.first;
}
/// \brief Map from a PHI or select operand back to the specific use of
/// a partition.
///
/// Similar to mapping these operands back to the partitions, this maps
/// directly to the use structure of that partition.
use_iterator findPartitionUseForPHIOrSelectOperand(Use *U) {
SmallDenseMap<Use *, std::pair<unsigned, unsigned> >::const_iterator MapIt
= PHIOrSelectOpMap.find(U);
assert(MapIt != PHIOrSelectOpMap.end());
return Uses[MapIt->second.first].begin() + MapIt->second.second;
}
/// \brief Compute a common type among the uses of a particular partition.
///
/// This routines walks all of the uses of a particular partition and tries
/// to find a common type between them. Untyped operations such as memset and
/// memcpy are ignored.
Type *getCommonType(iterator I) const;
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void print(raw_ostream &OS, const_iterator I, StringRef Indent = " ") const;
void printUsers(raw_ostream &OS, const_iterator I,
StringRef Indent = " ") const;
void print(raw_ostream &OS) const;
void LLVM_ATTRIBUTE_NOINLINE LLVM_ATTRIBUTE_USED dump(const_iterator I) const;
void LLVM_ATTRIBUTE_NOINLINE LLVM_ATTRIBUTE_USED dump() const;
#endif
private:
template <typename DerivedT, typename RetT = void> class BuilderBase;
class PartitionBuilder;
friend class AllocaPartitioning::PartitionBuilder;
class UseBuilder;
friend class AllocaPartitioning::UseBuilder;
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// \brief Handle to alloca instruction to simplify method interfaces.
AllocaInst &AI;
#endif
/// \brief The instruction responsible for this alloca having no partitioning.
///
/// When an instruction (potentially) escapes the pointer to the alloca, we
/// store a pointer to that here and abort trying to partition the alloca.
/// This will be null if the alloca is partitioned successfully.
Instruction *PointerEscapingInstr;
/// \brief The partitions of the alloca.
///
/// We store a vector of the partitions over the alloca here. This vector is
/// sorted by increasing begin offset, and then by decreasing end offset. See
/// the Partition inner class for more details. Initially (during
/// construction) there are overlaps, but we form a disjoint sequence of
/// partitions while finishing construction and a fully constructed object is
/// expected to always have this as a disjoint space.
SmallVector<Partition, 8> Partitions;
/// \brief The uses of the partitions.
///
/// This is essentially a mapping from each partition to a list of uses of
/// that partition. The mapping is done with a Uses vector that has the exact
/// same number of entries as the partition vector. Each entry is itself
/// a vector of the uses.
SmallVector<SmallVector<PartitionUse, 2>, 8> Uses;
/// \brief Instructions which will become dead if we rewrite the alloca.
///
/// Note that these are not separated by partition. This is because we expect
/// a partitioned alloca to be completely rewritten or not rewritten at all.
/// If rewritten, all these instructions can simply be removed and replaced
/// with undef as they come from outside of the allocated space.
SmallVector<Instruction *, 8> DeadUsers;
/// \brief Operands which will become dead if we rewrite the alloca.
///
/// These are operands that in their particular use can be replaced with
/// undef when we rewrite the alloca. These show up in out-of-bounds inputs
/// to PHI nodes and the like. They aren't entirely dead (there might be
/// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we
/// want to swap this particular input for undef to simplify the use lists of
/// the alloca.
SmallVector<Use *, 8> DeadOperands;
/// \brief The underlying storage for auxiliary memcpy and memset info.
SmallDenseMap<MemTransferInst *, MemTransferOffsets, 4> MemTransferInstData;
/// \brief A side datastructure used when building up the partitions and uses.
///
/// This mapping is only really used during the initial building of the
/// partitioning so that we can retain information about PHI and select nodes
/// processed.
SmallDenseMap<Instruction *, std::pair<uint64_t, bool> > PHIOrSelectSizes;
/// \brief Auxiliary information for particular PHI or select operands.
SmallDenseMap<Use *, std::pair<unsigned, unsigned>, 4> PHIOrSelectOpMap;
/// \brief A utility routine called from the constructor.
///
/// This does what it says on the tin. It is the key of the alloca partition
/// splitting and merging. After it is called we have the desired disjoint
/// collection of partitions.
void splitAndMergePartitions();
};
}
static Value *foldSelectInst(SelectInst &SI) {
// If the condition being selected on is a constant or the same value is
// being selected between, fold the select. Yes this does (rarely) happen
// early on.
if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition()))
return SI.getOperand(1+CI->isZero());
if (SI.getOperand(1) == SI.getOperand(2))
return SI.getOperand(1);
return 0;
}
/// \brief Builder for the alloca partitioning.
///
/// This class builds an alloca partitioning by recursively visiting the uses
/// of an alloca and splitting the partitions for each load and store at each
/// offset.
class AllocaPartitioning::PartitionBuilder
: public PtrUseVisitor<PartitionBuilder> {
friend class PtrUseVisitor<PartitionBuilder>;
friend class InstVisitor<PartitionBuilder>;
typedef PtrUseVisitor<PartitionBuilder> Base;
const uint64_t AllocSize;
AllocaPartitioning &P;
SmallDenseMap<Instruction *, unsigned> MemTransferPartitionMap;
public:
PartitionBuilder(const DataLayout &DL, AllocaInst &AI, AllocaPartitioning &P)
: PtrUseVisitor<PartitionBuilder>(DL),
AllocSize(DL.getTypeAllocSize(AI.getAllocatedType())),
P(P) {}
private:
void insertUse(Instruction &I, const APInt &Offset, uint64_t Size,
bool IsSplittable = false) {
// Completely skip uses which have a zero size or start either before or
// past the end of the allocation.
if (Size == 0 || Offset.isNegative() || Offset.uge(AllocSize)) {
DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @" << Offset
<< " which has zero size or starts outside of the "
<< AllocSize << " byte alloca:\n"
<< " alloca: " << P.AI << "\n"
<< " use: " << I << "\n");
return;
}
uint64_t BeginOffset = Offset.getZExtValue();
uint64_t EndOffset = BeginOffset + Size;
// Clamp the end offset to the end of the allocation. Note that this is
// formulated to handle even the case where "BeginOffset + Size" overflows.
// This may appear superficially to be something we could ignore entirely,
// but that is not so! There may be widened loads or PHI-node uses where
// some instructions are dead but not others. We can't completely ignore
// them, and so have to record at least the information here.
assert(AllocSize >= BeginOffset); // Established above.
if (Size > AllocSize - BeginOffset) {
DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @" << Offset
<< " to remain within the " << AllocSize << " byte alloca:\n"
<< " alloca: " << P.AI << "\n"
<< " use: " << I << "\n");
EndOffset = AllocSize;
}
Partition New(BeginOffset, EndOffset, IsSplittable);
P.Partitions.push_back(New);
}
void handleLoadOrStore(Type *Ty, Instruction &I, const APInt &Offset,
uint64_t Size, bool IsVolatile) {
// We allow splitting of loads and stores where the type is an integer type
// and cover the entire alloca. This prevents us from splitting over
// eagerly.
// FIXME: In the great blue eventually, we should eagerly split all integer
// loads and stores, and then have a separate step that merges adjacent
// alloca partitions into a single partition suitable for integer widening.
// Or we should skip the merge step and rely on GVN and other passes to
// merge adjacent loads and stores that survive mem2reg.
bool IsSplittable =
Ty->isIntegerTy() && !IsVolatile && Offset == 0 && Size >= AllocSize;
insertUse(I, Offset, Size, IsSplittable);
}
void visitLoadInst(LoadInst &LI) {
assert((!LI.isSimple() || LI.getType()->isSingleValueType()) &&
"All simple FCA loads should have been pre-split");
if (!IsOffsetKnown)
return PI.setAborted(&LI);
uint64_t Size = DL.getTypeStoreSize(LI.getType());
return handleLoadOrStore(LI.getType(), LI, Offset, Size, LI.isVolatile());
}
void visitStoreInst(StoreInst &SI) {
Value *ValOp = SI.getValueOperand();
if (ValOp == *U)
return PI.setEscapedAndAborted(&SI);
if (!IsOffsetKnown)
return PI.setAborted(&SI);
uint64_t Size = DL.getTypeStoreSize(ValOp->getType());
// If this memory access can be shown to *statically* extend outside the
// bounds of of the allocation, it's behavior is undefined, so simply
// ignore it. Note that this is more strict than the generic clamping
// behavior of insertUse. We also try to handle cases which might run the
// risk of overflow.
// FIXME: We should instead consider the pointer to have escaped if this
// function is being instrumented for addressing bugs or race conditions.
if (Offset.isNegative() || Size > AllocSize ||
Offset.ugt(AllocSize - Size)) {
DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte store @" << Offset
<< " which extends past the end of the " << AllocSize
<< " byte alloca:\n"
<< " alloca: " << P.AI << "\n"
<< " use: " << SI << "\n");
return;
}
assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) &&
"All simple FCA stores should have been pre-split");
handleLoadOrStore(ValOp->getType(), SI, Offset, Size, SI.isVolatile());
}
void visitMemSetInst(MemSetInst &II) {
assert(II.getRawDest() == *U && "Pointer use is not the destination?");
ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
if ((Length && Length->getValue() == 0) ||
(IsOffsetKnown && !Offset.isNegative() && Offset.uge(AllocSize)))
// Zero-length mem transfer intrinsics can be ignored entirely.
return;
if (!IsOffsetKnown)
return PI.setAborted(&II);
insertUse(II, Offset,
Length ? Length->getLimitedValue()
: AllocSize - Offset.getLimitedValue(),
(bool)Length);
}
void visitMemTransferInst(MemTransferInst &II) {
ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
if ((Length && Length->getValue() == 0) ||
(IsOffsetKnown && !Offset.isNegative() && Offset.uge(AllocSize)))
// Zero-length mem transfer intrinsics can be ignored entirely.
return;
if (!IsOffsetKnown)
return PI.setAborted(&II);
uint64_t RawOffset = Offset.getLimitedValue();
uint64_t Size = Length ? Length->getLimitedValue()
: AllocSize - RawOffset;
MemTransferOffsets &Offsets = P.MemTransferInstData[&II];
// Only intrinsics with a constant length can be split.
Offsets.IsSplittable = Length;
if (*U == II.getRawDest()) {
Offsets.DestBegin = RawOffset;
Offsets.DestEnd = RawOffset + Size;
}
if (*U == II.getRawSource()) {
Offsets.SourceBegin = RawOffset;
Offsets.SourceEnd = RawOffset + Size;
}
// If we have set up end offsets for both the source and the destination,
// we have found both sides of this transfer pointing at the same alloca.
bool SeenBothEnds = Offsets.SourceEnd && Offsets.DestEnd;
if (SeenBothEnds && II.getRawDest() != II.getRawSource()) {
unsigned PrevIdx = MemTransferPartitionMap[&II];
// Check if the begin offsets match and this is a non-volatile transfer.
// In that case, we can completely elide the transfer.
if (!II.isVolatile() && Offsets.SourceBegin == Offsets.DestBegin) {
P.Partitions[PrevIdx].kill();
return;
}
// Otherwise we have an offset transfer within the same alloca. We can't
// split those.
P.Partitions[PrevIdx].IsSplittable = Offsets.IsSplittable = false;
} else if (SeenBothEnds) {
// Handle the case where this exact use provides both ends of the
// operation.
assert(II.getRawDest() == II.getRawSource());
// For non-volatile transfers this is a no-op.
if (!II.isVolatile())
return;
// Otherwise just suppress splitting.
Offsets.IsSplittable = false;
}
// Insert the use now that we've fixed up the splittable nature.
insertUse(II, Offset, Size, Offsets.IsSplittable);
// Setup the mapping from intrinsic to partition of we've not seen both
// ends of this transfer.
if (!SeenBothEnds) {
unsigned NewIdx = P.Partitions.size() - 1;
bool Inserted
= MemTransferPartitionMap.insert(std::make_pair(&II, NewIdx)).second;
assert(Inserted &&
"Already have intrinsic in map but haven't seen both ends");
(void)Inserted;
}
}
// Disable SRoA for any intrinsics except for lifetime invariants.
// FIXME: What about debug intrinsics? This matches old behavior, but
// doesn't make sense.
void visitIntrinsicInst(IntrinsicInst &II) {
if (!IsOffsetKnown)
return PI.setAborted(&II);
if (II.getIntrinsicID() == Intrinsic::lifetime_start ||
II.getIntrinsicID() == Intrinsic::lifetime_end) {
ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0));
uint64_t Size = std::min(AllocSize - Offset.getLimitedValue(),
Length->getLimitedValue());
insertUse(II, Offset, Size, true);
return;
}
Base::visitIntrinsicInst(II);
}
Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) {
// We consider any PHI or select that results in a direct load or store of
// the same offset to be a viable use for partitioning purposes. These uses
// are considered unsplittable and the size is the maximum loaded or stored
// size.
SmallPtrSet<Instruction *, 4> Visited;
SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses;
Visited.insert(Root);
Uses.push_back(std::make_pair(cast<Instruction>(*U), Root));
// If there are no loads or stores, the access is dead. We mark that as
// a size zero access.
Size = 0;
do {
Instruction *I, *UsedI;
llvm::tie(UsedI, I) = Uses.pop_back_val();
if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
Size = std::max(Size, DL.getTypeStoreSize(LI->getType()));
continue;
}
if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
Value *Op = SI->getOperand(0);
if (Op == UsedI)
return SI;
Size = std::max(Size, DL.getTypeStoreSize(Op->getType()));
continue;
}
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
if (!GEP->hasAllZeroIndices())
return GEP;
} else if (!isa<BitCastInst>(I) && !isa<PHINode>(I) &&
!isa<SelectInst>(I)) {
return I;
}
for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE;
++UI)
if (Visited.insert(cast<Instruction>(*UI)))
Uses.push_back(std::make_pair(I, cast<Instruction>(*UI)));
} while (!Uses.empty());
return 0;
}
void visitPHINode(PHINode &PN) {
if (PN.use_empty())
return;
if (!IsOffsetKnown)
return PI.setAborted(&PN);
// See if we already have computed info on this node.
std::pair<uint64_t, bool> &PHIInfo = P.PHIOrSelectSizes[&PN];
if (PHIInfo.first) {
PHIInfo.second = true;
insertUse(PN, Offset, PHIInfo.first);
return;
}
// Check for an unsafe use of the PHI node.
if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&PN, PHIInfo.first))
return PI.setAborted(UnsafeI);
insertUse(PN, Offset, PHIInfo.first);
}
void visitSelectInst(SelectInst &SI) {
if (SI.use_empty())
return;
if (Value *Result = foldSelectInst(SI)) {
if (Result == *U)
// If the result of the constant fold will be the pointer, recurse
// through the select as if we had RAUW'ed it.
enqueueUsers(SI);
return;
}
if (!IsOffsetKnown)
return PI.setAborted(&SI);
// See if we already have computed info on this node.
std::pair<uint64_t, bool> &SelectInfo = P.PHIOrSelectSizes[&SI];
if (SelectInfo.first) {
SelectInfo.second = true;
insertUse(SI, Offset, SelectInfo.first);
return;
}
// Check for an unsafe use of the PHI node.
if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&SI, SelectInfo.first))
return PI.setAborted(UnsafeI);
insertUse(SI, Offset, SelectInfo.first);
}
/// \brief Disable SROA entirely if there are unhandled users of the alloca.
void visitInstruction(Instruction &I) {
PI.setAborted(&I);
}
};
/// \brief Use adder for the alloca partitioning.
///
/// This class adds the uses of an alloca to all of the partitions which they
/// use. For splittable partitions, this can end up doing essentially a linear
/// walk of the partitions, but the number of steps remains bounded by the
/// total result instruction size:
/// - The number of partitions is a result of the number unsplittable
/// instructions using the alloca.
/// - The number of users of each partition is at worst the total number of
/// splittable instructions using the alloca.
/// Thus we will produce N * M instructions in the end, where N are the number
/// of unsplittable uses and M are the number of splittable. This visitor does
/// the exact same number of updates to the partitioning.
///
/// In the more common case, this visitor will leverage the fact that the
/// partition space is pre-sorted, and do a logarithmic search for the
/// partition needed, making the total visit a classical ((N + M) * log(N))
/// complexity operation.
class AllocaPartitioning::UseBuilder : public PtrUseVisitor<UseBuilder> {
friend class PtrUseVisitor<UseBuilder>;
friend class InstVisitor<UseBuilder>;
typedef PtrUseVisitor<UseBuilder> Base;
const uint64_t AllocSize;
AllocaPartitioning &P;
/// \brief Set to de-duplicate dead instructions found in the use walk.
SmallPtrSet<Instruction *, 4> VisitedDeadInsts;
public:
UseBuilder(const DataLayout &TD, AllocaInst &AI, AllocaPartitioning &P)
: PtrUseVisitor<UseBuilder>(TD),
AllocSize(TD.getTypeAllocSize(AI.getAllocatedType())),
P(P) {}
private:
void markAsDead(Instruction &I) {
if (VisitedDeadInsts.insert(&I))
P.DeadUsers.push_back(&I);
}
void insertUse(Instruction &User, const APInt &Offset, uint64_t Size) {
// If the use has a zero size or extends outside of the allocation, record
// it as a dead use for elimination later.
if (Size == 0 || Offset.isNegative() || Offset.uge(AllocSize))
return markAsDead(User);
uint64_t BeginOffset = Offset.getZExtValue();
uint64_t EndOffset = BeginOffset + Size;
// Clamp the end offset to the end of the allocation. Note that this is
// formulated to handle even the case where "BeginOffset + Size" overflows.
assert(AllocSize >= BeginOffset); // Established above.
if (Size > AllocSize - BeginOffset)
EndOffset = AllocSize;
// NB: This only works if we have zero overlapping partitions.
iterator I = std::lower_bound(P.begin(), P.end(), BeginOffset);
if (I != P.begin() && llvm::prior(I)->EndOffset > BeginOffset)
I = llvm::prior(I);
iterator E = P.end();
bool IsSplit = llvm::next(I) != E && llvm::next(I)->BeginOffset < EndOffset;
for (; I != E && I->BeginOffset < EndOffset; ++I) {
PartitionUse NewPU(std::max(I->BeginOffset, BeginOffset),
std::min(I->EndOffset, EndOffset), U, IsSplit);
P.use_push_back(I, NewPU);
if (isa<PHINode>(U->getUser()) || isa<SelectInst>(U->getUser()))
P.PHIOrSelectOpMap[U]
= std::make_pair(I - P.begin(), P.Uses[I - P.begin()].size() - 1);
}
}
void visitBitCastInst(BitCastInst &BC) {
if (BC.use_empty())
return markAsDead(BC);
return Base::visitBitCastInst(BC);
}
void visitGetElementPtrInst(GetElementPtrInst &GEPI) {
if (GEPI.use_empty())
return markAsDead(GEPI);
return Base::visitGetElementPtrInst(GEPI);
}
void visitLoadInst(LoadInst &LI) {
assert(IsOffsetKnown);
uint64_t Size = DL.getTypeStoreSize(LI.getType());
insertUse(LI, Offset, Size);
}
void visitStoreInst(StoreInst &SI) {
assert(IsOffsetKnown);
uint64_t Size = DL.getTypeStoreSize(SI.getOperand(0)->getType());
// If this memory access can be shown to *statically* extend outside the
// bounds of of the allocation, it's behavior is undefined, so simply
// ignore it. Note that this is more strict than the generic clamping
// behavior of insertUse.
if (Offset.isNegative() || Size > AllocSize ||
Offset.ugt(AllocSize - Size))
return markAsDead(SI);
insertUse(SI, Offset, Size);
}
void visitMemSetInst(MemSetInst &II) {
ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
if ((Length && Length->getValue() == 0) ||
(IsOffsetKnown && !Offset.isNegative() && Offset.uge(AllocSize)))
return markAsDead(II);
assert(IsOffsetKnown);
insertUse(II, Offset, Length ? Length->getLimitedValue()
: AllocSize - Offset.getLimitedValue());
}
void visitMemTransferInst(MemTransferInst &II) {
ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
if ((Length && Length->getValue() == 0) ||
(IsOffsetKnown && !Offset.isNegative() && Offset.uge(AllocSize)))
return markAsDead(II);
assert(IsOffsetKnown);
uint64_t Size = Length ? Length->getLimitedValue()
: AllocSize - Offset.getLimitedValue();
const MemTransferOffsets &Offsets = P.MemTransferInstData[&II];
if (!II.isVolatile() && Offsets.DestEnd && Offsets.SourceEnd &&
Offsets.DestBegin == Offsets.SourceBegin)
return markAsDead(II); // Skip identity transfers without side-effects.
insertUse(II, Offset, Size);
}
void visitIntrinsicInst(IntrinsicInst &II) {
assert(IsOffsetKnown);
assert(II.getIntrinsicID() == Intrinsic::lifetime_start ||
II.getIntrinsicID() == Intrinsic::lifetime_end);
ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0));
insertUse(II, Offset, std::min(Length->getLimitedValue(),
AllocSize - Offset.getLimitedValue()));
}
void insertPHIOrSelect(Instruction &User, const APInt &Offset) {
uint64_t Size = P.PHIOrSelectSizes.lookup(&User).first;
// For PHI and select operands outside the alloca, we can't nuke the entire
// phi or select -- the other side might still be relevant, so we special
// case them here and use a separate structure to track the operands
// themselves which should be replaced with undef.
if ((Offset.isNegative() && Offset.uge(Size)) ||
(!Offset.isNegative() && Offset.uge(AllocSize))) {
P.DeadOperands.push_back(U);
return;
}
insertUse(User, Offset, Size);
}
void visitPHINode(PHINode &PN) {
if (PN.use_empty())
return markAsDead(PN);
assert(IsOffsetKnown);
insertPHIOrSelect(PN, Offset);
}
void visitSelectInst(SelectInst &SI) {
if (SI.use_empty())
return markAsDead(SI);
if (Value *Result = foldSelectInst(SI)) {
if (Result == *U)
// If the result of the constant fold will be the pointer, recurse
// through the select as if we had RAUW'ed it.
enqueueUsers(SI);
else
// Otherwise the operand to the select is dead, and we can replace it
// with undef.
P.DeadOperands.push_back(U);
return;
}
assert(IsOffsetKnown);
insertPHIOrSelect(SI, Offset);
}
/// \brief Unreachable, we've already visited the alloca once.
void visitInstruction(Instruction &I) {
llvm_unreachable("Unhandled instruction in use builder.");
}
};
void AllocaPartitioning::splitAndMergePartitions() {
size_t NumDeadPartitions = 0;
// Track the range of splittable partitions that we pass when accumulating
// overlapping unsplittable partitions.
uint64_t SplitEndOffset = 0ull;
Partition New(0ull, 0ull, false);
for (unsigned i = 0, j = i, e = Partitions.size(); i != e; i = j) {
++j;
if (!Partitions[i].IsSplittable || New.BeginOffset == New.EndOffset) {
assert(New.BeginOffset == New.EndOffset);
New = Partitions[i];
} else {
assert(New.IsSplittable);
New.EndOffset = std::max(New.EndOffset, Partitions[i].EndOffset);
}
assert(New.BeginOffset != New.EndOffset);
// Scan the overlapping partitions.
while (j != e && New.EndOffset > Partitions[j].BeginOffset) {
// If the new partition we are forming is splittable, stop at the first
// unsplittable partition.
if (New.IsSplittable && !Partitions[j].IsSplittable)
break;
// Grow the new partition to include any equally splittable range. 'j' is
// always equally splittable when New is splittable, but when New is not
// splittable, we may subsume some (or part of some) splitable partition
// without growing the new one.
if (New.IsSplittable == Partitions[j].IsSplittable) {
New.EndOffset = std::max(New.EndOffset, Partitions[j].EndOffset);
} else {
assert(!New.IsSplittable);
assert(Partitions[j].IsSplittable);
SplitEndOffset = std::max(SplitEndOffset, Partitions[j].EndOffset);
}
Partitions[j].kill();
++NumDeadPartitions;
++j;
}
// If the new partition is splittable, chop off the end as soon as the
// unsplittable subsequent partition starts and ensure we eventually cover
// the splittable area.
if (j != e && New.IsSplittable) {
SplitEndOffset = std::max(SplitEndOffset, New.EndOffset);
New.EndOffset = std::min(New.EndOffset, Partitions[j].BeginOffset);
}
// Add the new partition if it differs from the original one and is
// non-empty. We can end up with an empty partition here if it was
// splittable but there is an unsplittable one that starts at the same
// offset.
if (New != Partitions[i]) {
if (New.BeginOffset != New.EndOffset)
Partitions.push_back(New);
// Mark the old one for removal.
Partitions[i].kill();
++NumDeadPartitions;
}
New.BeginOffset = New.EndOffset;
if (!New.IsSplittable) {
New.EndOffset = std::max(New.EndOffset, SplitEndOffset);
if (j != e && !Partitions[j].IsSplittable)
New.EndOffset = std::min(New.EndOffset, Partitions[j].BeginOffset);
New.IsSplittable = true;
// If there is a trailing splittable partition which won't be fused into
// the next splittable partition go ahead and add it onto the partitions
// list.
if (New.BeginOffset < New.EndOffset &&
(j == e || !Partitions[j].IsSplittable ||
New.EndOffset < Partitions[j].BeginOffset)) {
Partitions.push_back(New);
New.BeginOffset = New.EndOffset = 0ull;
}
}
}
// Re-sort the partitions now that they have been split and merged into
// disjoint set of partitions. Also remove any of the dead partitions we've
// replaced in the process.
std::sort(Partitions.begin(), Partitions.end());
if (NumDeadPartitions) {
assert(Partitions.back().isDead());
assert((ptrdiff_t)NumDeadPartitions ==
std::count(Partitions.begin(), Partitions.end(), Partitions.back()));
}
Partitions.erase(Partitions.end() - NumDeadPartitions, Partitions.end());
}
AllocaPartitioning::AllocaPartitioning(const DataLayout &TD, AllocaInst &AI)
:
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
AI(AI),
#endif
PointerEscapingInstr(0) {
PartitionBuilder PB(TD, AI, *this);
PartitionBuilder::PtrInfo PtrI = PB.visitPtr(AI);
if (PtrI.isEscaped() || PtrI.isAborted()) {
// FIXME: We should sink the escape vs. abort info into the caller nicely,
// possibly by just storing the PtrInfo in the AllocaPartitioning.
PointerEscapingInstr = PtrI.getEscapingInst() ? PtrI.getEscapingInst()
: PtrI.getAbortingInst();
assert(PointerEscapingInstr && "Did not track a bad instruction");
return;
}
// Sort the uses. This arranges for the offsets to be in ascending order,
// and the sizes to be in descending order.
std::sort(Partitions.begin(), Partitions.end());
// Remove any partitions from the back which are marked as dead.
while (!Partitions.empty() && Partitions.back().isDead())
Partitions.pop_back();
if (Partitions.size() > 1) {
// Intersect splittability for all partitions with equal offsets and sizes.
// Then remove all but the first so that we have a sequence of non-equal but
// potentially overlapping partitions.
for (iterator I = Partitions.begin(), J = I, E = Partitions.end(); I != E;
I = J) {
++J;
while (J != E && *I == *J) {
I->IsSplittable &= J->IsSplittable;
++J;
}
}
Partitions.erase(std::unique(Partitions.begin(), Partitions.end()),
Partitions.end());
// Split splittable and merge unsplittable partitions into a disjoint set
// of partitions over the used space of the allocation.
splitAndMergePartitions();
}
// Record how many partitions we end up with.
NumAllocaPartitions += Partitions.size();
MaxPartitionsPerAlloca = std::max<unsigned>(Partitions.size(), MaxPartitionsPerAlloca);
// Now build up the user lists for each of these disjoint partitions by
// re-walking the recursive users of the alloca.
Uses.resize(Partitions.size());
UseBuilder UB(TD, AI, *this);
PtrI = UB.visitPtr(AI);
assert(!PtrI.isEscaped() && "Previously analyzed pointer now escapes!");
assert(!PtrI.isAborted() && "Early aborted the visit of the pointer.");
unsigned NumUses = 0;
#if !defined(NDEBUG) || defined(LLVM_ENABLE_STATS)
for (unsigned Idx = 0, Size = Uses.size(); Idx != Size; ++Idx)
NumUses += Uses[Idx].size();
#endif
NumAllocaPartitionUses += NumUses;
MaxPartitionUsesPerAlloca = std::max<unsigned>(NumUses, MaxPartitionUsesPerAlloca);
}
Type *AllocaPartitioning::getCommonType(iterator I) const {
Type *Ty = 0;
for (const_use_iterator UI = use_begin(I), UE = use_end(I); UI != UE; ++UI) {
Use *U = UI->getUse();
if (!U)
continue; // Skip dead uses.
if (isa<IntrinsicInst>(*U->getUser()))
continue;
if (UI->BeginOffset != I->BeginOffset || UI->EndOffset != I->EndOffset)
continue;
Type *UserTy = 0;
if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser()))
UserTy = LI->getType();
else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser()))
UserTy = SI->getValueOperand()->getType();
else
return 0; // Bail if we have weird uses.
if (IntegerType *ITy = dyn_cast<IntegerType>(UserTy)) {
// If the type is larger than the partition, skip it. We only encounter
// this for split integer operations where we want to use the type of the
// entity causing the split.
if (ITy->getBitWidth() > (I->EndOffset - I->BeginOffset)*8)
continue;
// If we have found an integer type use covering the alloca, use that
// regardless of the other types, as integers are often used for a "bucket
// of bits" type.
return ITy;
}
if (Ty && Ty != UserTy)
return 0;
Ty = UserTy;
}
return Ty;
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void AllocaPartitioning::print(raw_ostream &OS, const_iterator I,
StringRef Indent) const {
OS << Indent << "partition #" << (I - begin())
<< " [" << I->BeginOffset << "," << I->EndOffset << ")"
<< (I->IsSplittable ? " (splittable)" : "")
<< (Uses[I - begin()].empty() ? " (zero uses)" : "")
<< "\n";
}
void AllocaPartitioning::printUsers(raw_ostream &OS, const_iterator I,
StringRef Indent) const {
for (const_use_iterator UI = use_begin(I), UE = use_end(I); UI != UE; ++UI) {
if (!UI->getUse())
continue; // Skip dead uses.
OS << Indent << " [" << UI->BeginOffset << "," << UI->EndOffset << ") "
<< "used by: " << *UI->getUse()->getUser() << "\n";
if (MemTransferInst *II =
dyn_cast<MemTransferInst>(UI->getUse()->getUser())) {
const MemTransferOffsets &MTO = MemTransferInstData.lookup(II);
bool IsDest;
if (!MTO.IsSplittable)
IsDest = UI->BeginOffset == MTO.DestBegin;
else
IsDest = MTO.DestBegin != 0u;
OS << Indent << " (original " << (IsDest ? "dest" : "source") << ": "
<< "[" << (IsDest ? MTO.DestBegin : MTO.SourceBegin)
<< "," << (IsDest ? MTO.DestEnd : MTO.SourceEnd) << ")\n";
}
}
}
void AllocaPartitioning::print(raw_ostream &OS) const {
if (PointerEscapingInstr) {
OS << "No partitioning for alloca: " << AI << "\n"
<< " A pointer to this alloca escaped by:\n"
<< " " << *PointerEscapingInstr << "\n";
return;
}
OS << "Partitioning of alloca: " << AI << "\n";
for (const_iterator I = begin(), E = end(); I != E; ++I) {
print(OS, I);
printUsers(OS, I);
}
}
void AllocaPartitioning::dump(const_iterator I) const { print(dbgs(), I); }
void AllocaPartitioning::dump() const { print(dbgs()); }
#endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
namespace {
/// \brief Implementation of LoadAndStorePromoter for promoting allocas.
///
/// This subclass of LoadAndStorePromoter adds overrides to handle promoting
/// the loads and stores of an alloca instruction, as well as updating its
/// debug information. This is used when a domtree is unavailable and thus
/// mem2reg in its full form can't be used to handle promotion of allocas to
/// scalar values.
class AllocaPromoter : public LoadAndStorePromoter {
AllocaInst &AI;
DIBuilder &DIB;
SmallVector<DbgDeclareInst *, 4> DDIs;
SmallVector<DbgValueInst *, 4> DVIs;
public:
AllocaPromoter(const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S,
AllocaInst &AI, DIBuilder &DIB)
: LoadAndStorePromoter(Insts, S), AI(AI), DIB(DIB) {}
void run(const SmallVectorImpl<Instruction*> &Insts) {
// Remember which alloca we're promoting (for isInstInList).
if (MDNode *DebugNode = MDNode::getIfExists(AI.getContext(), &AI)) {
for (Value::use_iterator UI = DebugNode->use_begin(),
UE = DebugNode->use_end();
UI != UE; ++UI)
if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI))
DDIs.push_back(DDI);
else if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(*UI))
DVIs.push_back(DVI);
}
LoadAndStorePromoter::run(Insts);
AI.eraseFromParent();
while (!DDIs.empty())
DDIs.pop_back_val()->eraseFromParent();
while (!DVIs.empty())
DVIs.pop_back_val()->eraseFromParent();
}
virtual bool isInstInList(Instruction *I,
const SmallVectorImpl<Instruction*> &Insts) const {
if (LoadInst *LI = dyn_cast<LoadInst>(I))
return LI->getOperand(0) == &AI;
return cast<StoreInst>(I)->getPointerOperand() == &AI;
}
virtual void updateDebugInfo(Instruction *Inst) const {
for (SmallVector<DbgDeclareInst *, 4>::const_iterator I = DDIs.begin(),
E = DDIs.end(); I != E; ++I) {
DbgDeclareInst *DDI = *I;
if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
else if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
}
for (SmallVector<DbgValueInst *, 4>::const_iterator I = DVIs.begin(),
E = DVIs.end(); I != E; ++I) {
DbgValueInst *DVI = *I;
Value *Arg = 0;
if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
// If an argument is zero extended then use argument directly. The ZExt
// may be zapped by an optimization pass in future.
if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
Arg = dyn_cast<Argument>(ZExt->getOperand(0));
else if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
Arg = dyn_cast<Argument>(SExt->getOperand(0));
if (!Arg)
Arg = SI->getValueOperand();
} else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
Arg = LI->getPointerOperand();
} else {
continue;
}
Instruction *DbgVal =
DIB.insertDbgValueIntrinsic(Arg, 0, DIVariable(DVI->getVariable()),
Inst);
DbgVal->setDebugLoc(DVI->getDebugLoc());
}
}
};
} // end anon namespace
namespace {
/// \brief An optimization pass providing Scalar Replacement of Aggregates.
///
/// This pass takes allocations which can be completely analyzed (that is, they
/// don't escape) and tries to turn them into scalar SSA values. There are
/// a few steps to this process.
///
/// 1) It takes allocations of aggregates and analyzes the ways in which they
/// are used to try to split them into smaller allocations, ideally of
/// a single scalar data type. It will split up memcpy and memset accesses
/// as necessary and try to isolate individual scalar accesses.
/// 2) It will transform accesses into forms which are suitable for SSA value
/// promotion. This can be replacing a memset with a scalar store of an
/// integer value, or it can involve speculating operations on a PHI or
/// select to be a PHI or select of the results.
/// 3) Finally, this will try to detect a pattern of accesses which map cleanly
/// onto insert and extract operations on a vector value, and convert them to
/// this form. By doing so, it will enable promotion of vector aggregates to
/// SSA vector values.
class SROA : public FunctionPass {
const bool RequiresDomTree;
LLVMContext *C;
const DataLayout *TD;
DominatorTree *DT;
/// \brief Worklist of alloca instructions to simplify.
///
/// Each alloca in the function is added to this. Each new alloca formed gets
/// added to it as well to recursively simplify unless that alloca can be
/// directly promoted. Finally, each time we rewrite a use of an alloca other
/// the one being actively rewritten, we add it back onto the list if not
/// already present to ensure it is re-visited.
SetVector<AllocaInst *, SmallVector<AllocaInst *, 16> > Worklist;
/// \brief A collection of instructions to delete.
/// We try to batch deletions to simplify code and make things a bit more
/// efficient.
SetVector<Instruction *, SmallVector<Instruction *, 8> > DeadInsts;
/// \brief Post-promotion worklist.
///
/// Sometimes we discover an alloca which has a high probability of becoming
/// viable for SROA after a round of promotion takes place. In those cases,
/// the alloca is enqueued here for re-processing.
///
/// Note that we have to be very careful to clear allocas out of this list in
/// the event they are deleted.
SetVector<AllocaInst *, SmallVector<AllocaInst *, 16> > PostPromotionWorklist;
/// \brief A collection of alloca instructions we can directly promote.
std::vector<AllocaInst *> PromotableAllocas;
public:
SROA(bool RequiresDomTree = true)
: FunctionPass(ID), RequiresDomTree(RequiresDomTree),
C(0), TD(0), DT(0) {
initializeSROAPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F);
void getAnalysisUsage(AnalysisUsage &AU) const;
const char *getPassName() const { return "SROA"; }
static char ID;
private:
friend class PHIOrSelectSpeculator;
friend class AllocaPartitionRewriter;
friend class AllocaPartitionVectorRewriter;
bool rewriteAllocaPartition(AllocaInst &AI,
AllocaPartitioning &P,
AllocaPartitioning::iterator PI);
bool splitAlloca(AllocaInst &AI, AllocaPartitioning &P);
bool runOnAlloca(AllocaInst &AI);
void deleteDeadInstructions(SmallPtrSet<AllocaInst *, 4> &DeletedAllocas);
bool promoteAllocas(Function &F);
};
}
char SROA::ID = 0;
FunctionPass *llvm::createSROAPass(bool RequiresDomTree) {
return new SROA(RequiresDomTree);
}
INITIALIZE_PASS_BEGIN(SROA, "sroa", "Scalar Replacement Of Aggregates",
false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTree)
INITIALIZE_PASS_END(SROA, "sroa", "Scalar Replacement Of Aggregates",
false, false)
namespace {
/// \brief Visitor to speculate PHIs and Selects where possible.
class PHIOrSelectSpeculator : public InstVisitor<PHIOrSelectSpeculator> {
// Befriend the base class so it can delegate to private visit methods.
friend class llvm::InstVisitor<PHIOrSelectSpeculator>;
const DataLayout &TD;
AllocaPartitioning &P;
SROA &Pass;
public:
PHIOrSelectSpeculator(const DataLayout &TD, AllocaPartitioning &P, SROA &Pass)
: TD(TD), P(P), Pass(Pass) {}
/// \brief Visit the users of an alloca partition and rewrite them.
void visitUsers(AllocaPartitioning::const_iterator PI) {
// Note that we need to use an index here as the underlying vector of uses
// may be grown during speculation. However, we never need to re-visit the
// new uses, and so we can use the initial size bound.
for (unsigned Idx = 0, Size = P.use_size(PI); Idx != Size; ++Idx) {
const PartitionUse &PU = P.getUse(PI, Idx);
if (!PU.getUse())
continue; // Skip dead use.
visit(cast<Instruction>(PU.getUse()->getUser()));
}
}
private:
// By default, skip this instruction.
void visitInstruction(Instruction &I) {}
/// PHI instructions that use an alloca and are subsequently loaded can be
/// rewritten to load both input pointers in the pred blocks and then PHI the
/// results, allowing the load of the alloca to be promoted.
/// From this:
/// %P2 = phi [i32* %Alloca, i32* %Other]
/// %V = load i32* %P2
/// to:
/// %V1 = load i32* %Alloca -> will be mem2reg'd
/// ...
/// %V2 = load i32* %Other
/// ...
/// %V = phi [i32 %V1, i32 %V2]
///
/// We can do this to a select if its only uses are loads and if the operands
/// to the select can be loaded unconditionally.
///
/// FIXME: This should be hoisted into a generic utility, likely in
/// Transforms/Util/Local.h
bool isSafePHIToSpeculate(PHINode &PN, SmallVectorImpl<LoadInst *> &Loads) {
// For now, we can only do this promotion if the load is in the same block
// as the PHI, and if there are no stores between the phi and load.
// TODO: Allow recursive phi users.
// TODO: Allow stores.
BasicBlock *BB = PN.getParent();
unsigned MaxAlign = 0;
for (Value::use_iterator UI = PN.use_begin(), UE = PN.use_end();
UI != UE; ++UI) {
LoadInst *LI = dyn_cast<LoadInst>(*UI);
if (LI == 0 || !LI->isSimple()) return false;
// For now we only allow loads in the same block as the PHI. This is
// a common case that happens when instcombine merges two loads through
// a PHI.
if (LI->getParent() != BB) return false;
// Ensure that there are no instructions between the PHI and the load that
// could store.
for (BasicBlock::iterator BBI = &PN; &*BBI != LI; ++BBI)
if (BBI->mayWriteToMemory())
return false;
MaxAlign = std::max(MaxAlign, LI->getAlignment());
Loads.push_back(LI);
}
// We can only transform this if it is safe to push the loads into the
// predecessor blocks. The only thing to watch out for is that we can't put
// a possibly trapping load in the predecessor if it is a critical edge.
for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
TerminatorInst *TI = PN.getIncomingBlock(Idx)->getTerminator();
Value *InVal = PN.getIncomingValue(Idx);
// If the value is produced by the terminator of the predecessor (an
// invoke) or it has side-effects, there is no valid place to put a load
// in the predecessor.
if (TI == InVal || TI->mayHaveSideEffects())
return false;
// If the predecessor has a single successor, then the edge isn't
// critical.
if (TI->getNumSuccessors() == 1)
continue;
// If this pointer is always safe to load, or if we can prove that there
// is already a load in the block, then we can move the load to the pred
// block.
if (InVal->isDereferenceablePointer() ||
isSafeToLoadUnconditionally(InVal, TI, MaxAlign, &TD))
continue;
return false;
}
return true;
}
void visitPHINode(PHINode &PN) {
DEBUG(dbgs() << " original: " << PN << "\n");
SmallVector<LoadInst *, 4> Loads;
if (!isSafePHIToSpeculate(PN, Loads))
return;
assert(!Loads.empty());
Type *LoadTy = cast<PointerType>(PN.getType())->getElementType();
IRBuilderTy PHIBuilder(&PN);
PHINode *NewPN = PHIBuilder.CreatePHI(LoadTy, PN.getNumIncomingValues(),
PN.getName() + ".sroa.speculated");
// Get the TBAA tag and alignment to use from one of the loads. It doesn't
// matter which one we get and if any differ.
LoadInst *SomeLoad = cast<LoadInst>(Loads.back());
MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa);
unsigned Align = SomeLoad->getAlignment();
// Rewrite all loads of the PN to use the new PHI.
do {
LoadInst *LI = Loads.pop_back_val();
LI->replaceAllUsesWith(NewPN);
Pass.DeadInsts.insert(LI);
} while (!Loads.empty());
// Inject loads into all of the pred blocks.
for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
BasicBlock *Pred = PN.getIncomingBlock(Idx);
TerminatorInst *TI = Pred->getTerminator();
Use *InUse = &PN.getOperandUse(PN.getOperandNumForIncomingValue(Idx));
Value *InVal = PN.getIncomingValue(Idx);
IRBuilderTy PredBuilder(TI);
LoadInst *Load
= PredBuilder.CreateLoad(InVal, (PN.getName() + ".sroa.speculate.load." +
Pred->getName()));
++NumLoadsSpeculated;
Load->setAlignment(Align);
if (TBAATag)
Load->setMetadata(LLVMContext::MD_tbaa, TBAATag);
NewPN->addIncoming(Load, Pred);
Instruction *Ptr = dyn_cast<Instruction>(InVal);
if (!Ptr)
// No uses to rewrite.
continue;
// Try to lookup and rewrite any partition uses corresponding to this phi
// input.
AllocaPartitioning::iterator PI
= P.findPartitionForPHIOrSelectOperand(InUse);
if (PI == P.end())
continue;
// Replace the Use in the PartitionUse for this operand with the Use
// inside the load.
AllocaPartitioning::use_iterator UI
= P.findPartitionUseForPHIOrSelectOperand(InUse);
assert(isa<PHINode>(*UI->getUse()->getUser()));
UI->setUse(&Load->getOperandUse(Load->getPointerOperandIndex()));
}
DEBUG(dbgs() << " speculated to: " << *NewPN << "\n");
}
/// Select instructions that use an alloca and are subsequently loaded can be
/// rewritten to load both input pointers and then select between the result,
/// allowing the load of the alloca to be promoted.
/// From this:
/// %P2 = select i1 %cond, i32* %Alloca, i32* %Other
/// %V = load i32* %P2
/// to:
/// %V1 = load i32* %Alloca -> will be mem2reg'd
/// %V2 = load i32* %Other
/// %V = select i1 %cond, i32 %V1, i32 %V2
///
/// We can do this to a select if its only uses are loads and if the operand
/// to the select can be loaded unconditionally.
bool isSafeSelectToSpeculate(SelectInst &SI,
SmallVectorImpl<LoadInst *> &Loads) {
Value *TValue = SI.getTrueValue();
Value *FValue = SI.getFalseValue();
bool TDerefable = TValue->isDereferenceablePointer();
bool FDerefable = FValue->isDereferenceablePointer();
for (Value::use_iterator UI = SI.use_begin(), UE = SI.use_end();
UI != UE; ++UI) {
LoadInst *LI = dyn_cast<LoadInst>(*UI);
if (LI == 0 || !LI->isSimple()) return false;
// Both operands to the select need to be dereferencable, either
// absolutely (e.g. allocas) or at this point because we can see other
// accesses to it.
if (!TDerefable && !isSafeToLoadUnconditionally(TValue, LI,
LI->getAlignment(), &TD))
return false;
if (!FDerefable && !isSafeToLoadUnconditionally(FValue, LI,
LI->getAlignment(), &TD))
return false;
Loads.push_back(LI);
}
return true;
}
void visitSelectInst(SelectInst &SI) {
DEBUG(dbgs() << " original: " << SI << "\n");
// If the select isn't safe to speculate, just use simple logic to emit it.
SmallVector<LoadInst *, 4> Loads;
if (!isSafeSelectToSpeculate(SI, Loads))
return;
IRBuilderTy IRB(&SI);
Use *Ops[2] = { &SI.getOperandUse(1), &SI.getOperandUse(2) };
AllocaPartitioning::iterator PIs[2];
PartitionUse PUs[2];
for (unsigned i = 0, e = 2; i != e; ++i) {
PIs[i] = P.findPartitionForPHIOrSelectOperand(Ops[i]);
if (PIs[i] != P.end()) {
// If the pointer is within the partitioning, remove the select from
// its uses. We'll add in the new loads below.
AllocaPartitioning::use_iterator UI
= P.findPartitionUseForPHIOrSelectOperand(Ops[i]);
PUs[i] = *UI;
// Clear out the use here so that the offsets into the use list remain
// stable but this use is ignored when rewriting.
UI->setUse(0);
}
}
Value *TV = SI.getTrueValue();
Value *FV = SI.getFalseValue();
// Replace the loads of the select with a select of two loads.
while (!Loads.empty()) {
LoadInst *LI = Loads.pop_back_val();
IRB.SetInsertPoint(LI);
LoadInst *TL =
IRB.CreateLoad(TV, LI->getName() + ".sroa.speculate.load.true");
LoadInst *FL =
IRB.CreateLoad(FV, LI->getName() + ".sroa.speculate.load.false");
NumLoadsSpeculated += 2;
// Transfer alignment and TBAA info if present.
TL->setAlignment(LI->getAlignment());
FL->setAlignment(LI->getAlignment());
if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) {
TL->setMetadata(LLVMContext::MD_tbaa, Tag);
FL->setMetadata(LLVMContext::MD_tbaa, Tag);
}
Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL,
LI->getName() + ".sroa.speculated");
LoadInst *Loads[2] = { TL, FL };
for (unsigned i = 0, e = 2; i != e; ++i) {
if (PIs[i] != P.end()) {
Use *LoadUse = &Loads[i]->getOperandUse(0);
assert(PUs[i].getUse()->get() == LoadUse->get());
PUs[i].setUse(LoadUse);
P.use_push_back(PIs[i], PUs[i]);
}
}
DEBUG(dbgs() << " speculated to: " << *V << "\n");
LI->replaceAllUsesWith(V);
Pass.DeadInsts.insert(LI);
}
}
};
}
/// \brief Build a GEP out of a base pointer and indices.
///
/// This will return the BasePtr if that is valid, or build a new GEP
/// instruction using the IRBuilder if GEP-ing is needed.
static Value *buildGEP(IRBuilderTy &IRB, Value *BasePtr,
SmallVectorImpl<Value *> &Indices) {
if (Indices.empty())
return BasePtr;
// A single zero index is a no-op, so check for this and avoid building a GEP
// in that case.
if (Indices.size() == 1 && cast<ConstantInt>(Indices.back())->isZero())
return BasePtr;
return IRB.CreateInBoundsGEP(BasePtr, Indices, "idx");
}
/// \brief Get a natural GEP off of the BasePtr walking through Ty toward
/// TargetTy without changing the offset of the pointer.
///
/// This routine assumes we've already established a properly offset GEP with
/// Indices, and arrived at the Ty type. The goal is to continue to GEP with
/// zero-indices down through type layers until we find one the same as
/// TargetTy. If we can't find one with the same type, we at least try to use
/// one with the same size. If none of that works, we just produce the GEP as
/// indicated by Indices to have the correct offset.
static Value *getNaturalGEPWithType(IRBuilderTy &IRB, const DataLayout &TD,
Value *BasePtr, Type *Ty, Type *TargetTy,
SmallVectorImpl<Value *> &Indices) {
if (Ty == TargetTy)
return buildGEP(IRB, BasePtr, Indices);
// See if we can descend into a struct and locate a field with the correct
// type.
unsigned NumLayers = 0;
Type *ElementTy = Ty;
do {
if (ElementTy->isPointerTy())
break;
if (SequentialType *SeqTy = dyn_cast<SequentialType>(ElementTy)) {
ElementTy = SeqTy->getElementType();
// Note that we use the default address space as this index is over an
// array or a vector, not a pointer.
Indices.push_back(IRB.getInt(APInt(TD.getPointerSizeInBits(0), 0)));
} else if (StructType *STy = dyn_cast<StructType>(ElementTy)) {
if (STy->element_begin() == STy->element_end())
break; // Nothing left to descend into.
ElementTy = *STy->element_begin();
Indices.push_back(IRB.getInt32(0));
} else {
break;
}
++NumLayers;
} while (ElementTy != TargetTy);
if (ElementTy != TargetTy)
Indices.erase(Indices.end() - NumLayers, Indices.end());
return buildGEP(IRB, BasePtr, Indices);
}
/// \brief Recursively compute indices for a natural GEP.
///
/// This is the recursive step for getNaturalGEPWithOffset that walks down the
/// element types adding appropriate indices for the GEP.
static Value *getNaturalGEPRecursively(IRBuilderTy &IRB, const DataLayout &TD,
Value *Ptr, Type *Ty, APInt &Offset,
Type *TargetTy,
SmallVectorImpl<Value *> &Indices) {
if (Offset == 0)
return getNaturalGEPWithType(IRB, TD, Ptr, Ty, TargetTy, Indices);
// We can't recurse through pointer types.
if (Ty->isPointerTy())
return 0;
// We try to analyze GEPs over vectors here, but note that these GEPs are
// extremely poorly defined currently. The long-term goal is to remove GEPing
// over a vector from the IR completely.
if (VectorType *VecTy = dyn_cast<VectorType>(Ty)) {
unsigned ElementSizeInBits = TD.getTypeSizeInBits(VecTy->getScalarType());
if (ElementSizeInBits % 8)
return 0; // GEPs over non-multiple of 8 size vector elements are invalid.
APInt ElementSize(Offset.getBitWidth(), ElementSizeInBits / 8);
APInt NumSkippedElements = Offset.sdiv(ElementSize);
if (NumSkippedElements.ugt(VecTy->getNumElements()))
return 0;
Offset -= NumSkippedElements * ElementSize;
Indices.push_back(IRB.getInt(NumSkippedElements));
return getNaturalGEPRecursively(IRB, TD, Ptr, VecTy->getElementType(),
Offset, TargetTy, Indices);
}
if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
Type *ElementTy = ArrTy->getElementType();
APInt ElementSize(Offset.getBitWidth(), TD.getTypeAllocSize(ElementTy));
APInt NumSkippedElements = Offset.sdiv(ElementSize);
if (NumSkippedElements.ugt(ArrTy->getNumElements()))
return 0;
Offset -= NumSkippedElements * ElementSize;
Indices.push_back(IRB.getInt(NumSkippedElements));
return getNaturalGEPRecursively(IRB, TD, Ptr, ElementTy, Offset, TargetTy,
Indices);
}
StructType *STy = dyn_cast<StructType>(Ty);
if (!STy)
return 0;
const StructLayout *SL = TD.getStructLayout(STy);
uint64_t StructOffset = Offset.getZExtValue();
if (StructOffset >= SL->getSizeInBytes())
return 0;
unsigned Index = SL->getElementContainingOffset(StructOffset);
Offset -= APInt(Offset.getBitWidth(), SL->getElementOffset(Index));
Type *ElementTy = STy->getElementType(Index);
if (Offset.uge(TD.getTypeAllocSize(ElementTy)))
return 0; // The offset points into alignment padding.
Indices.push_back(IRB.getInt32(Index));
return getNaturalGEPRecursively(IRB, TD, Ptr, ElementTy, Offset, TargetTy,
Indices);
}
/// \brief Get a natural GEP from a base pointer to a particular offset and
/// resulting in a particular type.
///
/// The goal is to produce a "natural" looking GEP that works with the existing
/// composite types to arrive at the appropriate offset and element type for
/// a pointer. TargetTy is the element type the returned GEP should point-to if
/// possible. We recurse by decreasing Offset, adding the appropriate index to
/// Indices, and setting Ty to the result subtype.
///
/// If no natural GEP can be constructed, this function returns null.
static Value *getNaturalGEPWithOffset(IRBuilderTy &IRB, const DataLayout &TD,
Value *Ptr, APInt Offset, Type *TargetTy,
SmallVectorImpl<Value *> &Indices) {
PointerType *Ty = cast<PointerType>(Ptr->getType());
// Don't consider any GEPs through an i8* as natural unless the TargetTy is
// an i8.
if (Ty == IRB.getInt8PtrTy() && TargetTy->isIntegerTy(8))
return 0;
Type *ElementTy = Ty->getElementType();
if (!ElementTy->isSized())
return 0; // We can't GEP through an unsized element.
APInt ElementSize(Offset.getBitWidth(), TD.getTypeAllocSize(ElementTy));
if (ElementSize == 0)
return 0; // Zero-length arrays can't help us build a natural GEP.
APInt NumSkippedElements = Offset.sdiv(ElementSize);
Offset -= NumSkippedElements * ElementSize;
Indices.push_back(IRB.getInt(NumSkippedElements));
return getNaturalGEPRecursively(IRB, TD, Ptr, ElementTy, Offset, TargetTy,
Indices);
}
/// \brief Compute an adjusted pointer from Ptr by Offset bytes where the
/// resulting pointer has PointerTy.
///
/// This tries very hard to compute a "natural" GEP which arrives at the offset
/// and produces the pointer type desired. Where it cannot, it will try to use
/// the natural GEP to arrive at the offset and bitcast to the type. Where that
/// fails, it will try to use an existing i8* and GEP to the byte offset and
/// bitcast to the type.
///
/// The strategy for finding the more natural GEPs is to peel off layers of the
/// pointer, walking back through bit casts and GEPs, searching for a base
/// pointer from which we can compute a natural GEP with the desired
/// properties. The algorithm tries to fold as many constant indices into
/// a single GEP as possible, thus making each GEP more independent of the
/// surrounding code.
static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &TD,
Value *Ptr, APInt Offset, Type *PointerTy) {
// Even though we don't look through PHI nodes, we could be called on an
// instruction in an unreachable block, which may be on a cycle.
SmallPtrSet<Value *, 4> Visited;
Visited.insert(Ptr);
SmallVector<Value *, 4> Indices;
// We may end up computing an offset pointer that has the wrong type. If we
// never are able to compute one directly that has the correct type, we'll
// fall back to it, so keep it around here.
Value *OffsetPtr = 0;
// Remember any i8 pointer we come across to re-use if we need to do a raw
// byte offset.
Value *Int8Ptr = 0;
APInt Int8PtrOffset(Offset.getBitWidth(), 0);
Type *TargetTy = PointerTy->getPointerElementType();
do {
// First fold any existing GEPs into the offset.
while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
APInt GEPOffset(Offset.getBitWidth(), 0);
if (!GEP->accumulateConstantOffset(TD, GEPOffset))
break;
Offset += GEPOffset;
Ptr = GEP->getPointerOperand();
if (!Visited.insert(Ptr))
break;
}
// See if we can perform a natural GEP here.
Indices.clear();
if (Value *P = getNaturalGEPWithOffset(IRB, TD, Ptr, Offset, TargetTy,
Indices)) {
if (P->getType() == PointerTy) {
// Zap any offset pointer that we ended up computing in previous rounds.
if (OffsetPtr && OffsetPtr->use_empty())
if (Instruction *I = dyn_cast<Instruction>(OffsetPtr))
I->eraseFromParent();
return P;
}
if (!OffsetPtr) {
OffsetPtr = P;
}
}
// Stash this pointer if we've found an i8*.
if (Ptr->getType()->isIntegerTy(8)) {
Int8Ptr = Ptr;
Int8PtrOffset = Offset;
}
// Peel off a layer of the pointer and update the offset appropriately.
if (Operator::getOpcode(Ptr) == Instruction::BitCast) {
Ptr = cast<Operator>(Ptr)->getOperand(0);
} else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
if (GA->mayBeOverridden())
break;
Ptr = GA->getAliasee();
} else {
break;
}
assert(Ptr->getType()->isPointerTy() && "Unexpected operand type!");
} while (Visited.insert(Ptr));
if (!OffsetPtr) {
if (!Int8Ptr) {
Int8Ptr = IRB.CreateBitCast(Ptr, IRB.getInt8PtrTy(),
"raw_cast");
Int8PtrOffset = Offset;
}
OffsetPtr = Int8PtrOffset == 0 ? Int8Ptr :
IRB.CreateInBoundsGEP(Int8Ptr, IRB.getInt(Int8PtrOffset),
"raw_idx");
}
Ptr = OffsetPtr;
// On the off chance we were targeting i8*, guard the bitcast here.
if (Ptr->getType() != PointerTy)
Ptr = IRB.CreateBitCast(Ptr, PointerTy, "cast");
return Ptr;
}
/// \brief Test whether we can convert a value from the old to the new type.
///
/// This predicate should be used to guard calls to convertValue in order to
/// ensure that we only try to convert viable values. The strategy is that we
/// will peel off single element struct and array wrappings to get to an
/// underlying value, and convert that value.
static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy) {
if (OldTy == NewTy)
return true;
if (IntegerType *OldITy = dyn_cast<IntegerType>(OldTy))
if (IntegerType *NewITy = dyn_cast<IntegerType>(NewTy))
if (NewITy->getBitWidth() >= OldITy->getBitWidth())
return true;
if (DL.getTypeSizeInBits(NewTy) != DL.getTypeSizeInBits(OldTy))
return false;
if (!NewTy->isSingleValueType() || !OldTy->isSingleValueType())
return false;
if (NewTy->isPointerTy() || OldTy->isPointerTy()) {
if (NewTy->isPointerTy() && OldTy->isPointerTy())
return true;
if (NewTy->isIntegerTy() || OldTy->isIntegerTy())
return true;
return false;
}
return true;
}
/// \brief Generic routine to convert an SSA value to a value of a different
/// type.
///
/// This will try various different casting techniques, such as bitcasts,
/// inttoptr, and ptrtoint casts. Use the \c canConvertValue predicate to test
/// two types for viability with this routine.
static Value *convertValue(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
Type *Ty) {
assert(canConvertValue(DL, V->getType(), Ty) &&
"Value not convertable to type");
if (V->getType() == Ty)
return V;
if (IntegerType *OldITy = dyn_cast<IntegerType>(V->getType()))
if (IntegerType *NewITy = dyn_cast<IntegerType>(Ty))
if (NewITy->getBitWidth() > OldITy->getBitWidth())
return IRB.CreateZExt(V, NewITy);
if (V->getType()->isIntegerTy() && Ty->isPointerTy())
return IRB.CreateIntToPtr(V, Ty);
if (V->getType()->isPointerTy() && Ty->isIntegerTy())
return IRB.CreatePtrToInt(V, Ty);
return IRB.CreateBitCast(V, Ty);
}
/// \brief Test whether the given alloca partition can be promoted to a vector.
///
/// This is a quick test to check whether we can rewrite a particular alloca
/// partition (and its newly formed alloca) into a vector alloca with only
/// whole-vector loads and stores such that it could be promoted to a vector
/// SSA value. We only can ensure this for a limited set of operations, and we
/// don't want to do the rewrites unless we are confident that the result will
/// be promotable, so we have an early test here.
static bool isVectorPromotionViable(const DataLayout &TD,
Type *AllocaTy,
AllocaPartitioning &P,
uint64_t PartitionBeginOffset,
uint64_t PartitionEndOffset,
AllocaPartitioning::const_use_iterator I,
AllocaPartitioning::const_use_iterator E) {
VectorType *Ty = dyn_cast<VectorType>(AllocaTy);
if (!Ty)
return false;
uint64_t ElementSize = TD.getTypeSizeInBits(Ty->getScalarType());
// While the definition of LLVM vectors is bitpacked, we don't support sizes
// that aren't byte sized.
if (ElementSize % 8)
return false;
assert((TD.getTypeSizeInBits(Ty) % 8) == 0 &&
"vector size not a multiple of element size?");
ElementSize /= 8;
for (; I != E; ++I) {
Use *U = I->getUse();
if (!U)
continue; // Skip dead use.
uint64_t BeginOffset = I->BeginOffset - PartitionBeginOffset;
uint64_t BeginIndex = BeginOffset / ElementSize;
if (BeginIndex * ElementSize != BeginOffset ||
BeginIndex >= Ty->getNumElements())
return false;
uint64_t EndOffset = I->EndOffset - PartitionBeginOffset;
uint64_t EndIndex = EndOffset / ElementSize;
if (EndIndex * ElementSize != EndOffset ||
EndIndex > Ty->getNumElements())
return false;
assert(EndIndex > BeginIndex && "Empty vector!");
uint64_t NumElements = EndIndex - BeginIndex;
Type *PartitionTy
= (NumElements == 1) ? Ty->getElementType()
: VectorType::get(Ty->getElementType(), NumElements);
if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
if (MI->isVolatile())
return false;
if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U->getUser())) {
const AllocaPartitioning::MemTransferOffsets &MTO
= P.getMemTransferOffsets(*MTI);
if (!MTO.IsSplittable)
return false;
}
} else if (U->get()->getType()->getPointerElementType()->isStructTy()) {
// Disable vector promotion when there are loads or stores of an FCA.
return false;
} else if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
if (LI->isVolatile())
return false;
if (!canConvertValue(TD, PartitionTy, LI->getType()))
return false;
} else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
if (SI->isVolatile())
return false;
if (!canConvertValue(TD, SI->getValueOperand()->getType(), PartitionTy))
return false;
} else {
return false;
}
}
return true;
}
/// \brief Test whether the given alloca partition's integer operations can be
/// widened to promotable ones.
///
/// This is a quick test to check whether we can rewrite the integer loads and
/// stores to a particular alloca into wider loads and stores and be able to
/// promote the resulting alloca.
static bool isIntegerWideningViable(const DataLayout &TD,
Type *AllocaTy,
uint64_t AllocBeginOffset,
AllocaPartitioning &P,
AllocaPartitioning::const_use_iterator I,
AllocaPartitioning::const_use_iterator E) {
uint64_t SizeInBits = TD.getTypeSizeInBits(AllocaTy);
// Don't create integer types larger than the maximum bitwidth.
if (SizeInBits > IntegerType::MAX_INT_BITS)
return false;
// Don't try to handle allocas with bit-padding.
if (SizeInBits != TD.getTypeStoreSizeInBits(AllocaTy))
return false;
// We need to ensure that an integer type with the appropriate bitwidth can
// be converted to the alloca type, whatever that is. We don't want to force
// the alloca itself to have an integer type if there is a more suitable one.
Type *IntTy = Type::getIntNTy(AllocaTy->getContext(), SizeInBits);
if (!canConvertValue(TD, AllocaTy, IntTy) ||
!canConvertValue(TD, IntTy, AllocaTy))
return false;
uint64_t Size = TD.getTypeStoreSize(AllocaTy);
// Check the uses to ensure the uses are (likely) promotable integer uses.
// Also ensure that the alloca has a covering load or store. We don't want
// to widen the integer operations only to fail to promote due to some other
// unsplittable entry (which we may make splittable later).
bool WholeAllocaOp = false;
for (; I != E; ++I) {
Use *U = I->getUse();
if (!U)
continue; // Skip dead use.
uint64_t RelBegin = I->BeginOffset - AllocBeginOffset;
uint64_t RelEnd = I->EndOffset - AllocBeginOffset;
// We can't reasonably handle cases where the load or store extends past
// the end of the aloca's type and into its padding.
if (RelEnd > Size)
return false;
if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
if (LI->isVolatile())
return false;
if (RelBegin == 0 && RelEnd == Size)
WholeAllocaOp = true;
if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) {
if (ITy->getBitWidth() < TD.getTypeStoreSizeInBits(ITy))
return false;
continue;
}
// Non-integer loads need to be convertible from the alloca type so that
// they are promotable.
if (RelBegin != 0 || RelEnd != Size ||
!canConvertValue(TD, AllocaTy, LI->getType()))
return false;
} else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
Type *ValueTy = SI->getValueOperand()->getType();
if (SI->isVolatile())
return false;
if (RelBegin == 0 && RelEnd == Size)
WholeAllocaOp = true;
if (IntegerType *ITy = dyn_cast<IntegerType>(ValueTy)) {
if (ITy->getBitWidth() < TD.getTypeStoreSizeInBits(ITy))
return false;
continue;
}
// Non-integer stores need to be convertible to the alloca type so that
// they are promotable.
if (RelBegin != 0 || RelEnd != Size ||
!canConvertValue(TD, ValueTy, AllocaTy))
return false;
} else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
if (MI->isVolatile() || !isa<Constant>(MI->getLength()))
return false;
if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U->getUser())) {
const AllocaPartitioning::MemTransferOffsets &MTO
= P.getMemTransferOffsets(*MTI);
if (!MTO.IsSplittable)
return false;
}
} else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) {
if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
II->getIntrinsicID() != Intrinsic::lifetime_end)
return false;
} else {
return false;
}
}
return WholeAllocaOp;
}
static Value *extractInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
IntegerType *Ty, uint64_t Offset,
const Twine &Name) {
DEBUG(dbgs() << " start: " << *V << "\n");
IntegerType *IntTy = cast<IntegerType>(V->getType());
assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) &&
"Element extends past full value");
uint64_t ShAmt = 8*Offset;
if (DL.isBigEndian())
ShAmt = 8*(DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset);
if (ShAmt) {
V = IRB.CreateLShr(V, ShAmt, Name + ".shift");
DEBUG(dbgs() << " shifted: " << *V << "\n");
}
assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
"Cannot extract to a larger integer!");
if (Ty != IntTy) {
V = IRB.CreateTrunc(V, Ty, Name + ".trunc");
DEBUG(dbgs() << " trunced: " << *V << "\n");
}
return V;
}
static Value *insertInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *Old,
Value *V, uint64_t Offset, const Twine &Name) {
IntegerType *IntTy = cast<IntegerType>(Old->getType());
IntegerType *Ty = cast<IntegerType>(V->getType());
assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
"Cannot insert a larger integer!");
DEBUG(dbgs() << " start: " << *V << "\n");
if (Ty != IntTy) {
V = IRB.CreateZExt(V, IntTy, Name + ".ext");
DEBUG(dbgs() << " extended: " << *V << "\n");
}
assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) &&
"Element store outside of alloca store");
uint64_t ShAmt = 8*Offset;
if (DL.isBigEndian())
ShAmt = 8*(DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset);
if (ShAmt) {
V = IRB.CreateShl(V, ShAmt, Name + ".shift");
DEBUG(dbgs() << " shifted: " << *V << "\n");
}
if (ShAmt || Ty->getBitWidth() < IntTy->getBitWidth()) {
APInt Mask = ~Ty->getMask().zext(IntTy->getBitWidth()).shl(ShAmt);
Old = IRB.CreateAnd(Old, Mask, Name + ".mask");
DEBUG(dbgs() << " masked: " << *Old << "\n");
V = IRB.CreateOr(Old, V, Name + ".insert");
DEBUG(dbgs() << " inserted: " << *V << "\n");
}
return V;
}
static Value *extractVector(IRBuilderTy &IRB, Value *V,
unsigned BeginIndex, unsigned EndIndex,
const Twine &Name) {
VectorType *VecTy = cast<VectorType>(V->getType());
unsigned NumElements = EndIndex - BeginIndex;
assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
if (NumElements == VecTy->getNumElements())
return V;
if (NumElements == 1) {
V = IRB.CreateExtractElement(V, IRB.getInt32(BeginIndex),
Name + ".extract");
DEBUG(dbgs() << " extract: " << *V << "\n");
return V;
}
SmallVector<Constant*, 8> Mask;
Mask.reserve(NumElements);
for (unsigned i = BeginIndex; i != EndIndex; ++i)
Mask.push_back(IRB.getInt32(i));
V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()),
ConstantVector::get(Mask),
Name + ".extract");
DEBUG(dbgs() << " shuffle: " << *V << "\n");
return V;
}
static Value *insertVector(IRBuilderTy &IRB, Value *Old, Value *V,
unsigned BeginIndex, const Twine &Name) {
VectorType *VecTy = cast<VectorType>(Old->getType());
assert(VecTy && "Can only insert a vector into a vector");
VectorType *Ty = dyn_cast<VectorType>(V->getType());
if (!Ty) {
// Single element to insert.
V = IRB.CreateInsertElement(Old, V, IRB.getInt32(BeginIndex),
Name + ".insert");
DEBUG(dbgs() << " insert: " << *V << "\n");
return V;
}
assert(Ty->getNumElements() <= VecTy->getNumElements() &&
"Too many elements!");
if (Ty->getNumElements() == VecTy->getNumElements()) {
assert(V->getType() == VecTy && "Vector type mismatch");
return V;
}
unsigned EndIndex = BeginIndex + Ty->getNumElements();
// When inserting a smaller vector into the larger to store, we first
// use a shuffle vector to widen it with undef elements, and then
// a second shuffle vector to select between the loaded vector and the
// incoming vector.
SmallVector<Constant*, 8> Mask;
Mask.reserve(VecTy->getNumElements());
for (unsigned i = 0; i != VecTy->getNumElements(); ++i)
if (i >= BeginIndex && i < EndIndex)
Mask.push_back(IRB.getInt32(i - BeginIndex));
else
Mask.push_back(UndefValue::get(IRB.getInt32Ty()));
V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()),
ConstantVector::get(Mask),
Name + ".expand");
DEBUG(dbgs() << " shuffle: " << *V << "\n");
Mask.clear();
for (unsigned i = 0; i != VecTy->getNumElements(); ++i)
Mask.push_back(IRB.getInt1(i >= BeginIndex && i < EndIndex));
V = IRB.CreateSelect(ConstantVector::get(Mask), V, Old, Name + "blend");
DEBUG(dbgs() << " blend: " << *V << "\n");
return V;
}
namespace {
/// \brief Visitor to rewrite instructions using a partition of an alloca to
/// use a new alloca.
///
/// Also implements the rewriting to vector-based accesses when the partition
/// passes the isVectorPromotionViable predicate. Most of the rewriting logic
/// lives here.
class AllocaPartitionRewriter : public InstVisitor<AllocaPartitionRewriter,
bool> {
// Befriend the base class so it can delegate to private visit methods.
friend class llvm::InstVisitor<AllocaPartitionRewriter, bool>;
const DataLayout &TD;
AllocaPartitioning &P;
SROA &Pass;
AllocaInst &OldAI, &NewAI;
const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset;
Type *NewAllocaTy;
// If we are rewriting an alloca partition which can be written as pure
// vector operations, we stash extra information here. When VecTy is
// non-null, we have some strict guarantees about the rewritten alloca:
// - The new alloca is exactly the size of the vector type here.
// - The accesses all either map to the entire vector or to a single
// element.
// - The set of accessing instructions is only one of those handled above
// in isVectorPromotionViable. Generally these are the same access kinds
// which are promotable via mem2reg.
VectorType *VecTy;
Type *ElementTy;
uint64_t ElementSize;
// This is a convenience and flag variable that will be null unless the new
// alloca's integer operations should be widened to this integer type due to
// passing isIntegerWideningViable above. If it is non-null, the desired
// integer type will be stored here for easy access during rewriting.
IntegerType *IntTy;
// The offset of the partition user currently being rewritten.
uint64_t BeginOffset, EndOffset;
bool IsSplit;
Use *OldUse;
Instruction *OldPtr;
// Utility IR builder, whose name prefix is setup for each visited use, and
// the insertion point is set to point to the user.
IRBuilderTy IRB;
public:
AllocaPartitionRewriter(const DataLayout &TD, AllocaPartitioning &P,
AllocaPartitioning::iterator PI,
SROA &Pass, AllocaInst &OldAI, AllocaInst &NewAI,
uint64_t NewBeginOffset, uint64_t NewEndOffset)
: TD(TD), P(P), Pass(Pass),
OldAI(OldAI), NewAI(NewAI),
NewAllocaBeginOffset(NewBeginOffset),
NewAllocaEndOffset(NewEndOffset),
NewAllocaTy(NewAI.getAllocatedType()),
VecTy(), ElementTy(), ElementSize(), IntTy(),
BeginOffset(), EndOffset(), IsSplit(), OldUse(), OldPtr(),
IRB(NewAI.getContext(), ConstantFolder()) {
}
/// \brief Visit the users of the alloca partition and rewrite them.
bool visitUsers(AllocaPartitioning::const_use_iterator I,
AllocaPartitioning::const_use_iterator E) {
if (isVectorPromotionViable(TD, NewAI.getAllocatedType(), P,
NewAllocaBeginOffset, NewAllocaEndOffset,
I, E)) {
++NumVectorized;
VecTy = cast<VectorType>(NewAI.getAllocatedType());
ElementTy = VecTy->getElementType();
assert((TD.getTypeSizeInBits(VecTy->getScalarType()) % 8) == 0 &&
"Only multiple-of-8 sized vector elements are viable");
ElementSize = TD.getTypeSizeInBits(VecTy->getScalarType()) / 8;
} else if (isIntegerWideningViable(TD, NewAI.getAllocatedType(),
NewAllocaBeginOffset, P, I, E)) {
IntTy = Type::getIntNTy(NewAI.getContext(),
TD.getTypeSizeInBits(NewAI.getAllocatedType()));
}
bool CanSROA = true;
for (; I != E; ++I) {
if (!I->getUse())
continue; // Skip dead uses.
BeginOffset = I->BeginOffset;
EndOffset = I->EndOffset;
IsSplit = I->isSplit();
OldUse = I->getUse();
OldPtr = cast<Instruction>(OldUse->get());
Instruction *OldUserI = cast<Instruction>(OldUse->getUser());
IRB.SetInsertPoint(OldUserI);
IRB.SetCurrentDebugLocation(OldUserI->getDebugLoc());
IRB.SetNamePrefix(Twine(NewAI.getName()) + "." + Twine(BeginOffset) +
".");
CanSROA &= visit(cast<Instruction>(OldUse->getUser()));
}
if (VecTy) {
assert(CanSROA);
VecTy = 0;
ElementTy = 0;
ElementSize = 0;
}
if (IntTy) {
assert(CanSROA);
IntTy = 0;
}
return CanSROA;
}
private:
// Every instruction which can end up as a user must have a rewrite rule.
bool visitInstruction(Instruction &I) {
DEBUG(dbgs() << " !!!! Cannot rewrite: " << I << "\n");
llvm_unreachable("No rewrite rule for this instruction!");
}
Value *getAdjustedAllocaPtr(IRBuilderTy &IRB, Type *PointerTy) {
assert(BeginOffset >= NewAllocaBeginOffset);
APInt Offset(TD.getPointerSizeInBits(), BeginOffset - NewAllocaBeginOffset);
return getAdjustedPtr(IRB, TD, &NewAI, Offset, PointerTy);
}
/// \brief Compute suitable alignment to access an offset into the new alloca.
unsigned getOffsetAlign(uint64_t Offset) {
unsigned NewAIAlign = NewAI.getAlignment();
if (!NewAIAlign)
NewAIAlign = TD.getABITypeAlignment(NewAI.getAllocatedType());
return MinAlign(NewAIAlign, Offset);
}
/// \brief Compute suitable alignment to access this partition of the new
/// alloca.
unsigned getPartitionAlign() {
return getOffsetAlign(BeginOffset - NewAllocaBeginOffset);
}
/// \brief Compute suitable alignment to access a type at an offset of the
/// new alloca.
///
/// \returns zero if the type's ABI alignment is a suitable alignment,
/// otherwise returns the maximal suitable alignment.
unsigned getOffsetTypeAlign(Type *Ty, uint64_t Offset) {
unsigned Align = getOffsetAlign(Offset);
return Align == TD.getABITypeAlignment(Ty) ? 0 : Align;
}
/// \brief Compute suitable alignment to access a type at the beginning of
/// this partition of the new alloca.
///
/// See \c getOffsetTypeAlign for details; this routine delegates to it.
unsigned getPartitionTypeAlign(Type *Ty) {
return getOffsetTypeAlign(Ty, BeginOffset - NewAllocaBeginOffset);
}
unsigned getIndex(uint64_t Offset) {
assert(VecTy && "Can only call getIndex when rewriting a vector");
uint64_t RelOffset = Offset - NewAllocaBeginOffset;
assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds");
uint32_t Index = RelOffset / ElementSize;
assert(Index * ElementSize == RelOffset);
return Index;
}
void deleteIfTriviallyDead(Value *V) {
Instruction *I = cast<Instruction>(V);
if (isInstructionTriviallyDead(I))
Pass.DeadInsts.insert(I);
}
Value *rewriteVectorizedLoadInst() {
unsigned BeginIndex = getIndex(BeginOffset);
unsigned EndIndex = getIndex(EndOffset);
assert(EndIndex > BeginIndex && "Empty vector!");
Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
"load");
return extractVector(IRB, V, BeginIndex, EndIndex, "vec");
}
Value *rewriteIntegerLoad(LoadInst &LI) {
assert(IntTy && "We cannot insert an integer to the alloca");
assert(!LI.isVolatile());
Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
"load");
V = convertValue(TD, IRB, V, IntTy);
assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
if (Offset > 0 || EndOffset < NewAllocaEndOffset)
V = extractInteger(TD, IRB, V, cast<IntegerType>(LI.getType()), Offset,
"extract");
return V;
}
bool visitLoadInst(LoadInst &LI) {
DEBUG(dbgs() << " original: " << LI << "\n");
Value *OldOp = LI.getOperand(0);
assert(OldOp == OldPtr);
uint64_t Size = EndOffset - BeginOffset;
Type *TargetTy = IsSplit ? Type::getIntNTy(LI.getContext(), Size * 8)
: LI.getType();
bool IsPtrAdjusted = false;
Value *V;
if (VecTy) {
V = rewriteVectorizedLoadInst();
} else if (IntTy && LI.getType()->isIntegerTy()) {
V = rewriteIntegerLoad(LI);
} else if (BeginOffset == NewAllocaBeginOffset &&
canConvertValue(TD, NewAllocaTy, LI.getType())) {
V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
LI.isVolatile(), "load");
} else {
Type *LTy = TargetTy->getPointerTo();
V = IRB.CreateAlignedLoad(getAdjustedAllocaPtr(IRB, LTy),
getPartitionTypeAlign(TargetTy),
LI.isVolatile(), "load");
IsPtrAdjusted = true;
}
V = convertValue(TD, IRB, V, TargetTy);
if (IsSplit) {
assert(!LI.isVolatile());
assert(LI.getType()->isIntegerTy() &&
"Only integer type loads and stores are split");
assert(Size < TD.getTypeStoreSize(LI.getType()) &&
"Split load isn't smaller than original load");
assert(LI.getType()->getIntegerBitWidth() ==
TD.getTypeStoreSizeInBits(LI.getType()) &&
"Non-byte-multiple bit width");
// Move the insertion point just past the load so that we can refer to it.
IRB.SetInsertPoint(llvm::next(BasicBlock::iterator(&LI)));
// Create a placeholder value with the same type as LI to use as the
// basis for the new value. This allows us to replace the uses of LI with
// the computed value, and then replace the placeholder with LI, leaving
// LI only used for this computation.
Value *Placeholder
= new LoadInst(UndefValue::get(LI.getType()->getPointerTo()));
V = insertInteger(TD, IRB, Placeholder, V, BeginOffset,
"insert");
LI.replaceAllUsesWith(V);
Placeholder->replaceAllUsesWith(&LI);
delete Placeholder;
} else {
LI.replaceAllUsesWith(V);
}
Pass.DeadInsts.insert(&LI);
deleteIfTriviallyDead(OldOp);
DEBUG(dbgs() << " to: " << *V << "\n");
return !LI.isVolatile() && !IsPtrAdjusted;
}
bool rewriteVectorizedStoreInst(Value *V,
StoreInst &SI, Value *OldOp) {
if (V->getType() != VecTy) {
unsigned BeginIndex = getIndex(BeginOffset);
unsigned EndIndex = getIndex(EndOffset);
assert(EndIndex > BeginIndex && "Empty vector!");
unsigned NumElements = EndIndex - BeginIndex;
assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
Type *PartitionTy
= (NumElements == 1) ? ElementTy
: VectorType::get(ElementTy, NumElements);
if (V->getType() != PartitionTy)
V = convertValue(TD, IRB, V, PartitionTy);
// Mix in the existing elements.
Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
"load");
V = insertVector(IRB, Old, V, BeginIndex, "vec");
}
StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
Pass.DeadInsts.insert(&SI);
(void)Store;
DEBUG(dbgs() << " to: " << *Store << "\n");
return true;
}
bool rewriteIntegerStore(Value *V, StoreInst &SI) {
assert(IntTy && "We cannot extract an integer from the alloca");
assert(!SI.isVolatile());
if (TD.getTypeSizeInBits(V->getType()) != IntTy->getBitWidth()) {
Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
"oldload");
Old = convertValue(TD, IRB, Old, IntTy);
assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
V = insertInteger(TD, IRB, Old, SI.getValueOperand(), Offset,
"insert");
}
V = convertValue(TD, IRB, V, NewAllocaTy);
StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
Pass.DeadInsts.insert(&SI);
(void)Store;
DEBUG(dbgs() << " to: " << *Store << "\n");
return true;
}
bool visitStoreInst(StoreInst &SI) {
DEBUG(dbgs() << " original: " << SI << "\n");
Value *OldOp = SI.getOperand(1);
assert(OldOp == OldPtr);
Value *V = SI.getValueOperand();
// Strip all inbounds GEPs and pointer casts to try to dig out any root
// alloca that should be re-examined after promoting this alloca.
if (V->getType()->isPointerTy())
if (AllocaInst *AI = dyn_cast<AllocaInst>(V->stripInBoundsOffsets()))
Pass.PostPromotionWorklist.insert(AI);
uint64_t Size = EndOffset - BeginOffset;
if (Size < TD.getTypeStoreSize(V->getType())) {
assert(!SI.isVolatile());
assert(IsSplit && "A seemingly split store isn't splittable");
assert(V->getType()->isIntegerTy() &&
"Only integer type loads and stores are split");
assert(V->getType()->getIntegerBitWidth() ==
TD.getTypeStoreSizeInBits(V->getType()) &&
"Non-byte-multiple bit width");
IntegerType *NarrowTy = Type::getIntNTy(SI.getContext(), Size * 8);
V = extractInteger(TD, IRB, V, NarrowTy, BeginOffset,
"extract");
}
if (VecTy)
return rewriteVectorizedStoreInst(V, SI, OldOp);
if (IntTy && V->getType()->isIntegerTy())
return rewriteIntegerStore(V, SI);
StoreInst *NewSI;
if (BeginOffset == NewAllocaBeginOffset &&
EndOffset == NewAllocaEndOffset &&
canConvertValue(TD, V->getType(), NewAllocaTy)) {
V = convertValue(TD, IRB, V, NewAllocaTy);
NewSI = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(),
SI.isVolatile());
} else {
Value *NewPtr = getAdjustedAllocaPtr(IRB, V->getType()->getPointerTo());
NewSI = IRB.CreateAlignedStore(V, NewPtr,
getPartitionTypeAlign(V->getType()),
SI.isVolatile());
}
(void)NewSI;
Pass.DeadInsts.insert(&SI);
deleteIfTriviallyDead(OldOp);
DEBUG(dbgs() << " to: " << *NewSI << "\n");
return NewSI->getPointerOperand() == &NewAI && !SI.isVolatile();
}
/// \brief Compute an integer value from splatting an i8 across the given
/// number of bytes.
///
/// Note that this routine assumes an i8 is a byte. If that isn't true, don't
/// call this routine.
/// FIXME: Heed the advice above.
///
/// \param V The i8 value to splat.
/// \param Size The number of bytes in the output (assuming i8 is one byte)
Value *getIntegerSplat(Value *V, unsigned Size) {
assert(Size > 0 && "Expected a positive number of bytes.");
IntegerType *VTy = cast<IntegerType>(V->getType());
assert(VTy->getBitWidth() == 8 && "Expected an i8 value for the byte");
if (Size == 1)
return V;
Type *SplatIntTy = Type::getIntNTy(VTy->getContext(), Size*8);
V = IRB.CreateMul(IRB.CreateZExt(V, SplatIntTy, "zext"),
ConstantExpr::getUDiv(
Constant::getAllOnesValue(SplatIntTy),
ConstantExpr::getZExt(
Constant::getAllOnesValue(V->getType()),
SplatIntTy)),
"isplat");
return V;
}
/// \brief Compute a vector splat for a given element value.
Value *getVectorSplat(Value *V, unsigned NumElements) {
V = IRB.CreateVectorSplat(NumElements, V, "vsplat");
DEBUG(dbgs() << " splat: " << *V << "\n");
return V;
}
bool visitMemSetInst(MemSetInst &II) {
DEBUG(dbgs() << " original: " << II << "\n");
assert(II.getRawDest() == OldPtr);
// If the memset has a variable size, it cannot be split, just adjust the
// pointer to the new alloca.
if (!isa<Constant>(II.getLength())) {
II.setDest(getAdjustedAllocaPtr(IRB, II.getRawDest()->getType()));
Type *CstTy = II.getAlignmentCst()->getType();
II.setAlignment(ConstantInt::get(CstTy, getPartitionAlign()));
deleteIfTriviallyDead(OldPtr);
return false;
}
// Record this instruction for deletion.
Pass.DeadInsts.insert(&II);
Type *AllocaTy = NewAI.getAllocatedType();
Type *ScalarTy = AllocaTy->getScalarType();
// If this doesn't map cleanly onto the alloca type, and that type isn't
// a single value type, just emit a memset.
if (!VecTy && !IntTy &&
(BeginOffset != NewAllocaBeginOffset ||
EndOffset != NewAllocaEndOffset ||
!AllocaTy->isSingleValueType() ||
!TD.isLegalInteger(TD.getTypeSizeInBits(ScalarTy)) ||
TD.getTypeSizeInBits(ScalarTy)%8 != 0)) {
Type *SizeTy = II.getLength()->getType();
Constant *Size = ConstantInt::get(SizeTy, EndOffset - BeginOffset);
CallInst *New
= IRB.CreateMemSet(getAdjustedAllocaPtr(IRB,
II.getRawDest()->getType()),
II.getValue(), Size, getPartitionAlign(),
II.isVolatile());
(void)New;
DEBUG(dbgs() << " to: " << *New << "\n");
return false;
}
// If we can represent this as a simple value, we have to build the actual
// value to store, which requires expanding the byte present in memset to
// a sensible representation for the alloca type. This is essentially
// splatting the byte to a sufficiently wide integer, splatting it across
// any desired vector width, and bitcasting to the final type.
Value *V;
if (VecTy) {
// If this is a memset of a vectorized alloca, insert it.
assert(ElementTy == ScalarTy);
unsigned BeginIndex = getIndex(BeginOffset);
unsigned EndIndex = getIndex(EndOffset);
assert(EndIndex > BeginIndex && "Empty vector!");
unsigned NumElements = EndIndex - BeginIndex;
assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
Value *Splat =
getIntegerSplat(II.getValue(), TD.getTypeSizeInBits(ElementTy) / 8);
Splat = convertValue(TD, IRB, Splat, ElementTy);
if (NumElements > 1)
Splat = getVectorSplat(Splat, NumElements);
Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
"oldload");
V = insertVector(IRB, Old, Splat, BeginIndex, "vec");
} else if (IntTy) {
// If this is a memset on an alloca where we can widen stores, insert the
// set integer.
assert(!II.isVolatile());
uint64_t Size = EndOffset - BeginOffset;
V = getIntegerSplat(II.getValue(), Size);
if (IntTy && (BeginOffset != NewAllocaBeginOffset ||
EndOffset != NewAllocaBeginOffset)) {
Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
"oldload");
Old = convertValue(TD, IRB, Old, IntTy);
assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
V = insertInteger(TD, IRB, Old, V, Offset, "insert");
} else {
assert(V->getType() == IntTy &&
"Wrong type for an alloca wide integer!");
}
V = convertValue(TD, IRB, V, AllocaTy);
} else {
// Established these invariants above.
assert(BeginOffset == NewAllocaBeginOffset);
assert(EndOffset == NewAllocaEndOffset);
V = getIntegerSplat(II.getValue(), TD.getTypeSizeInBits(ScalarTy) / 8);
if (VectorType *AllocaVecTy = dyn_cast<VectorType>(AllocaTy))
V = getVectorSplat(V, AllocaVecTy->getNumElements());
V = convertValue(TD, IRB, V, AllocaTy);
}
Value *New = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(),
II.isVolatile());
(void)New;
DEBUG(dbgs() << " to: " << *New << "\n");
return !II.isVolatile();
}
bool visitMemTransferInst(MemTransferInst &II) {
// Rewriting of memory transfer instructions can be a bit tricky. We break
// them into two categories: split intrinsics and unsplit intrinsics.
DEBUG(dbgs() << " original: " << II << "\n");
assert(II.getRawSource() == OldPtr || II.getRawDest() == OldPtr);
bool IsDest = II.getRawDest() == OldPtr;
const AllocaPartitioning::MemTransferOffsets &MTO
= P.getMemTransferOffsets(II);
// Compute the relative offset within the transfer.
unsigned IntPtrWidth = TD.getPointerSizeInBits();
APInt RelOffset(IntPtrWidth, BeginOffset - (IsDest ? MTO.DestBegin
: MTO.SourceBegin));
unsigned Align = II.getAlignment();
if (Align > 1)
Align = MinAlign(RelOffset.zextOrTrunc(64).getZExtValue(),
MinAlign(II.getAlignment(), getPartitionAlign()));
// For unsplit intrinsics, we simply modify the source and destination
// pointers in place. This isn't just an optimization, it is a matter of
// correctness. With unsplit intrinsics we may be dealing with transfers
// within a single alloca before SROA ran, or with transfers that have
// a variable length. We may also be dealing with memmove instead of
// memcpy, and so simply updating the pointers is the necessary for us to
// update both source and dest of a single call.
if (!MTO.IsSplittable) {
Value *OldOp = IsDest ? II.getRawDest() : II.getRawSource();
if (IsDest)
II.setDest(getAdjustedAllocaPtr(IRB, II.getRawDest()->getType()));
else
II.setSource(getAdjustedAllocaPtr(IRB, II.getRawSource()->getType()));
Type *CstTy = II.getAlignmentCst()->getType();
II.setAlignment(ConstantInt::get(CstTy, Align));
DEBUG(dbgs() << " to: " << II << "\n");
deleteIfTriviallyDead(OldOp);
return false;
}
// For split transfer intrinsics we have an incredibly useful assurance:
// the source and destination do not reside within the same alloca, and at
// least one of them does not escape. This means that we can replace
// memmove with memcpy, and we don't need to worry about all manner of
// downsides to splitting and transforming the operations.
// If this doesn't map cleanly onto the alloca type, and that type isn't
// a single value type, just emit a memcpy.
bool EmitMemCpy
= !VecTy && !IntTy && (BeginOffset != NewAllocaBeginOffset ||
EndOffset != NewAllocaEndOffset ||
!NewAI.getAllocatedType()->isSingleValueType());
// If we're just going to emit a memcpy, the alloca hasn't changed, and the
// size hasn't been shrunk based on analysis of the viable range, this is
// a no-op.
if (EmitMemCpy && &OldAI == &NewAI) {
uint64_t OrigBegin = IsDest ? MTO.DestBegin : MTO.SourceBegin;
uint64_t OrigEnd = IsDest ? MTO.DestEnd : MTO.SourceEnd;
// Ensure the start lines up.
assert(BeginOffset == OrigBegin);
(void)OrigBegin;
// Rewrite the size as needed.
if (EndOffset != OrigEnd)
II.setLength(ConstantInt::get(II.getLength()->getType(),
EndOffset - BeginOffset));
return false;
}
// Record this instruction for deletion.
Pass.DeadInsts.insert(&II);
// Strip all inbounds GEPs and pointer casts to try to dig out any root
// alloca that should be re-examined after rewriting this instruction.
Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest();
if (AllocaInst *AI
= dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets()))
Pass.Worklist.insert(AI);
if (EmitMemCpy) {
Type *OtherPtrTy = IsDest ? II.getRawSource()->getType()
: II.getRawDest()->getType();
// Compute the other pointer, folding as much as possible to produce
// a single, simple GEP in most cases.
OtherPtr = getAdjustedPtr(IRB, TD, OtherPtr, RelOffset, OtherPtrTy);
Value *OurPtr
= getAdjustedAllocaPtr(IRB, IsDest ? II.getRawDest()->getType()
: II.getRawSource()->getType());
Type *SizeTy = II.getLength()->getType();
Constant *Size = ConstantInt::get(SizeTy, EndOffset - BeginOffset);
CallInst *New = IRB.CreateMemCpy(IsDest ? OurPtr : OtherPtr,
IsDest ? OtherPtr : OurPtr,
Size, Align, II.isVolatile());
(void)New;
DEBUG(dbgs() << " to: " << *New << "\n");
return false;
}
// Note that we clamp the alignment to 1 here as a 0 alignment for a memcpy
// is equivalent to 1, but that isn't true if we end up rewriting this as
// a load or store.
if (!Align)
Align = 1;
bool IsWholeAlloca = BeginOffset == NewAllocaBeginOffset &&
EndOffset == NewAllocaEndOffset;
uint64_t Size = EndOffset - BeginOffset;
unsigned BeginIndex = VecTy ? getIndex(BeginOffset) : 0;
unsigned EndIndex = VecTy ? getIndex(EndOffset) : 0;
unsigned NumElements = EndIndex - BeginIndex;
IntegerType *SubIntTy
= IntTy ? Type::getIntNTy(IntTy->getContext(), Size*8) : 0;
Type *OtherPtrTy = NewAI.getType();
if (VecTy && !IsWholeAlloca) {
if (NumElements == 1)
OtherPtrTy = VecTy->getElementType();
else
OtherPtrTy = VectorType::get(VecTy->getElementType(), NumElements);
OtherPtrTy = OtherPtrTy->getPointerTo();
} else if (IntTy && !IsWholeAlloca) {
OtherPtrTy = SubIntTy->getPointerTo();
}
Value *SrcPtr = getAdjustedPtr(IRB, TD, OtherPtr, RelOffset, OtherPtrTy);
Value *DstPtr = &NewAI;
if (!IsDest)
std::swap(SrcPtr, DstPtr);
Value *Src;
if (VecTy && !IsWholeAlloca && !IsDest) {
Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
"load");
Src = extractVector(IRB, Src, BeginIndex, EndIndex, "vec");
} else if (IntTy && !IsWholeAlloca && !IsDest) {
Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
"load");
Src = convertValue(TD, IRB, Src, IntTy);
assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
Src = extractInteger(TD, IRB, Src, SubIntTy, Offset, "extract");
} else {
Src = IRB.CreateAlignedLoad(SrcPtr, Align, II.isVolatile(),
"copyload");
}
if (VecTy && !IsWholeAlloca && IsDest) {
Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
"oldload");
Src = insertVector(IRB, Old, Src, BeginIndex, "vec");
} else if (IntTy && !IsWholeAlloca && IsDest) {
Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
"oldload");
Old = convertValue(TD, IRB, Old, IntTy);
assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
Src = insertInteger(TD, IRB, Old, Src, Offset, "insert");
Src = convertValue(TD, IRB, Src, NewAllocaTy);
}
StoreInst *Store = cast<StoreInst>(
IRB.CreateAlignedStore(Src, DstPtr, Align, II.isVolatile()));
(void)Store;
DEBUG(dbgs() << " to: " << *Store << "\n");
return !II.isVolatile();
}
bool visitIntrinsicInst(IntrinsicInst &II) {
assert(II.getIntrinsicID() == Intrinsic::lifetime_start ||
II.getIntrinsicID() == Intrinsic::lifetime_end);
DEBUG(dbgs() << " original: " << II << "\n");
assert(II.getArgOperand(1) == OldPtr);
// Record this instruction for deletion.
Pass.DeadInsts.insert(&II);
ConstantInt *Size
= ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()),
EndOffset - BeginOffset);
Value *Ptr = getAdjustedAllocaPtr(IRB, II.getArgOperand(1)->getType());
Value *New;
if (II.getIntrinsicID() == Intrinsic::lifetime_start)
New = IRB.CreateLifetimeStart(Ptr, Size);
else
New = IRB.CreateLifetimeEnd(Ptr, Size);
(void)New;
DEBUG(dbgs() << " to: " << *New << "\n");
return true;
}
bool visitPHINode(PHINode &PN) {
DEBUG(dbgs() << " original: " << PN << "\n");
// We would like to compute a new pointer in only one place, but have it be
// as local as possible to the PHI. To do that, we re-use the location of
// the old pointer, which necessarily must be in the right position to
// dominate the PHI.
IRBuilderTy PtrBuilder(cast<Instruction>(OldPtr));
PtrBuilder.SetNamePrefix(Twine(NewAI.getName()) + "." + Twine(BeginOffset) +
".");
Value *NewPtr = getAdjustedAllocaPtr(PtrBuilder, OldPtr->getType());
// Replace the operands which were using the old pointer.
std::replace(PN.op_begin(), PN.op_end(), cast<Value>(OldPtr), NewPtr);
DEBUG(dbgs() << " to: " << PN << "\n");
deleteIfTriviallyDead(OldPtr);
return false;
}
bool visitSelectInst(SelectInst &SI) {
DEBUG(dbgs() << " original: " << SI << "\n");
assert((SI.getTrueValue() == OldPtr || SI.getFalseValue() == OldPtr) &&
"Pointer isn't an operand!");
Value *NewPtr = getAdjustedAllocaPtr(IRB, OldPtr->getType());
// Replace the operands which were using the old pointer.
if (SI.getOperand(1) == OldPtr)
SI.setOperand(1, NewPtr);
if (SI.getOperand(2) == OldPtr)
SI.setOperand(2, NewPtr);
DEBUG(dbgs() << " to: " << SI << "\n");
deleteIfTriviallyDead(OldPtr);
return false;
}
};
}
namespace {
/// \brief Visitor to rewrite aggregate loads and stores as scalar.
///
/// This pass aggressively rewrites all aggregate loads and stores on
/// a particular pointer (or any pointer derived from it which we can identify)
/// with scalar loads and stores.
class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> {
// Befriend the base class so it can delegate to private visit methods.
friend class llvm::InstVisitor<AggLoadStoreRewriter, bool>;
const DataLayout &TD;
/// Queue of pointer uses to analyze and potentially rewrite.
SmallVector<Use *, 8> Queue;
/// Set to prevent us from cycling with phi nodes and loops.
SmallPtrSet<User *, 8> Visited;
/// The current pointer use being rewritten. This is used to dig up the used
/// value (as opposed to the user).
Use *U;
public:
AggLoadStoreRewriter(const DataLayout &TD) : TD(TD) {}
/// Rewrite loads and stores through a pointer and all pointers derived from
/// it.
bool rewrite(Instruction &I) {
DEBUG(dbgs() << " Rewriting FCA loads and stores...\n");
enqueueUsers(I);
bool Changed = false;
while (!Queue.empty()) {
U = Queue.pop_back_val();
Changed |= visit(cast<Instruction>(U->getUser()));
}
return Changed;
}
private:
/// Enqueue all the users of the given instruction for further processing.
/// This uses a set to de-duplicate users.
void enqueueUsers(Instruction &I) {
for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE;
++UI)
if (Visited.insert(*UI))
Queue.push_back(&UI.getUse());
}
// Conservative default is to not rewrite anything.
bool visitInstruction(Instruction &I) { return false; }
/// \brief Generic recursive split emission class.
template <typename Derived>
class OpSplitter {
protected:
/// The builder used to form new instructions.
IRBuilderTy IRB;
/// The indices which to be used with insert- or extractvalue to select the
/// appropriate value within the aggregate.
SmallVector<unsigned, 4> Indices;
/// The indices to a GEP instruction which will move Ptr to the correct slot
/// within the aggregate.
SmallVector<Value *, 4> GEPIndices;
/// The base pointer of the original op, used as a base for GEPing the
/// split operations.
Value *Ptr;
/// Initialize the splitter with an insertion point, Ptr and start with a
/// single zero GEP index.
OpSplitter(Instruction *InsertionPoint, Value *Ptr)
: IRB(InsertionPoint), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr) {}
public:
/// \brief Generic recursive split emission routine.
///
/// This method recursively splits an aggregate op (load or store) into
/// scalar or vector ops. It splits recursively until it hits a single value
/// and emits that single value operation via the template argument.
///
/// The logic of this routine relies on GEPs and insertvalue and
/// extractvalue all operating with the same fundamental index list, merely
/// formatted differently (GEPs need actual values).
///
/// \param Ty The type being split recursively into smaller ops.
/// \param Agg The aggregate value being built up or stored, depending on
/// whether this is splitting a load or a store respectively.
void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) {
if (Ty->isSingleValueType())
return static_cast<Derived *>(this)->emitFunc(Ty, Agg, Name);
if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
unsigned OldSize = Indices.size();
(void)OldSize;
for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size;
++Idx) {
assert(Indices.size() == OldSize && "Did not return to the old size");
Indices.push_back(Idx);
GEPIndices.push_back(IRB.getInt32(Idx));
emitSplitOps(ATy->getElementType(), Agg, Name + "." + Twine(Idx));
GEPIndices.pop_back();
Indices.pop_back();
}
return;
}
if (StructType *STy = dyn_cast<StructType>(Ty)) {
unsigned OldSize = Indices.size();
(void)OldSize;
for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size;
++Idx) {
assert(Indices.size() == OldSize && "Did not return to the old size");
Indices.push_back(Idx);
GEPIndices.push_back(IRB.getInt32(Idx));
emitSplitOps(STy->getElementType(Idx), Agg, Name + "." + Twine(Idx));
GEPIndices.pop_back();
Indices.pop_back();
}
return;
}
llvm_unreachable("Only arrays and structs are aggregate loadable types");
}
};
struct LoadOpSplitter : public OpSplitter<LoadOpSplitter> {
LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr)
: OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr) {}
/// Emit a leaf load of a single value. This is called at the leaves of the
/// recursive emission to actually load values.
void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) {
assert(Ty->isSingleValueType());
// Load the single value and insert it using the indices.
Value *GEP = IRB.CreateInBoundsGEP(Ptr, GEPIndices, Name + ".gep");
Value *Load = IRB.CreateLoad(GEP, Name + ".load");
Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert");
DEBUG(dbgs() << " to: " << *Load << "\n");
}
};
bool visitLoadInst(LoadInst &LI) {
assert(LI.getPointerOperand() == *U);
if (!LI.isSimple() || LI.getType()->isSingleValueType())
return false;
// We have an aggregate being loaded, split it apart.
DEBUG(dbgs() << " original: " << LI << "\n");
LoadOpSplitter Splitter(&LI, *U);
Value *V = UndefValue::get(LI.getType());
Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca");
LI.replaceAllUsesWith(V);
LI.eraseFromParent();
return true;
}
struct StoreOpSplitter : public OpSplitter<StoreOpSplitter> {
StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr)
: OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr) {}
/// Emit a leaf store of a single value. This is called at the leaves of the
/// recursive emission to actually produce stores.
void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) {
assert(Ty->isSingleValueType());
// Extract the single value and store it using the indices.
Value *Store = IRB.CreateStore(
IRB.CreateExtractValue(Agg, Indices, Name + ".extract"),
IRB.CreateInBoundsGEP(Ptr, GEPIndices, Name + ".gep"));
(void)Store;
DEBUG(dbgs() << " to: " << *Store << "\n");
}
};
bool visitStoreInst(StoreInst &SI) {
if (!SI.isSimple() || SI.getPointerOperand() != *U)
return false;
Value *V = SI.getValueOperand();
if (V->getType()->isSingleValueType())
return false;
// We have an aggregate being stored, split it apart.
DEBUG(dbgs() << " original: " << SI << "\n");
StoreOpSplitter Splitter(&SI, *U);
Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca");
SI.eraseFromParent();
return true;
}
bool visitBitCastInst(BitCastInst &BC) {
enqueueUsers(BC);
return false;
}
bool visitGetElementPtrInst(GetElementPtrInst &GEPI) {
enqueueUsers(GEPI);
return false;
}
bool visitPHINode(PHINode &PN) {
enqueueUsers(PN);
return false;
}
bool visitSelectInst(SelectInst &SI) {
enqueueUsers(SI);
return false;
}
};
}
/// \brief Strip aggregate type wrapping.
///
/// This removes no-op aggregate types wrapping an underlying type. It will
/// strip as many layers of types as it can without changing either the type
/// size or the allocated size.
static Type *stripAggregateTypeWrapping(const DataLayout &DL, Type *Ty) {
if (Ty->isSingleValueType())
return Ty;
uint64_t AllocSize = DL.getTypeAllocSize(Ty);
uint64_t TypeSize = DL.getTypeSizeInBits(Ty);
Type *InnerTy;
if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
InnerTy = ArrTy->getElementType();
} else if (StructType *STy = dyn_cast<StructType>(Ty)) {
const StructLayout *SL = DL.getStructLayout(STy);
unsigned Index = SL->getElementContainingOffset(0);
InnerTy = STy->getElementType(Index);
} else {
return Ty;
}
if (AllocSize > DL.getTypeAllocSize(InnerTy) ||
TypeSize > DL.getTypeSizeInBits(InnerTy))
return Ty;
return stripAggregateTypeWrapping(DL, InnerTy);
}
/// \brief Try to find a partition of the aggregate type passed in for a given
/// offset and size.
///
/// This recurses through the aggregate type and tries to compute a subtype
/// based on the offset and size. When the offset and size span a sub-section
/// of an array, it will even compute a new array type for that sub-section,
/// and the same for structs.
///
/// Note that this routine is very strict and tries to find a partition of the
/// type which produces the *exact* right offset and size. It is not forgiving
/// when the size or offset cause either end of type-based partition to be off.
/// Also, this is a best-effort routine. It is reasonable to give up and not
/// return a type if necessary.
static Type *getTypePartition(const DataLayout &TD, Type *Ty,
uint64_t Offset, uint64_t Size) {
if (Offset == 0 && TD.getTypeAllocSize(Ty) == Size)
return stripAggregateTypeWrapping(TD, Ty);
if (Offset > TD.getTypeAllocSize(Ty) ||
(TD.getTypeAllocSize(Ty) - Offset) < Size)
return 0;
if (SequentialType *SeqTy = dyn_cast<SequentialType>(Ty)) {
// We can't partition pointers...
if (SeqTy->isPointerTy())
return 0;
Type *ElementTy = SeqTy->getElementType();
uint64_t ElementSize = TD.getTypeAllocSize(ElementTy);
uint64_t NumSkippedElements = Offset / ElementSize;
if (ArrayType *ArrTy = dyn_cast<ArrayType>(SeqTy)) {
if (NumSkippedElements >= ArrTy->getNumElements())
return 0;
} else if (VectorType *VecTy = dyn_cast<VectorType>(SeqTy)) {
if (NumSkippedElements >= VecTy->getNumElements())
return 0;
}
Offset -= NumSkippedElements * ElementSize;
// First check if we need to recurse.
if (Offset > 0 || Size < ElementSize) {
// Bail if the partition ends in a different array element.
if ((Offset + Size) > ElementSize)
return 0;
// Recurse through the element type trying to peel off offset bytes.
return getTypePartition(TD, ElementTy, Offset, Size);
}
assert(Offset == 0);
if (Size == ElementSize)
return stripAggregateTypeWrapping(TD, ElementTy);
assert(Size > ElementSize);
uint64_t NumElements = Size / ElementSize;
if (NumElements * ElementSize != Size)
return 0;
return ArrayType::get(ElementTy, NumElements);
}
StructType *STy = dyn_cast<StructType>(Ty);
if (!STy)
return 0;
const StructLayout *SL = TD.getStructLayout(STy);
if (Offset >= SL->getSizeInBytes())
return 0;
uint64_t EndOffset = Offset + Size;
if (EndOffset > SL->getSizeInBytes())
return 0;
unsigned Index = SL->getElementContainingOffset(Offset);
Offset -= SL->getElementOffset(Index);
Type *ElementTy = STy->getElementType(Index);
uint64_t ElementSize = TD.getTypeAllocSize(ElementTy);
if (Offset >= ElementSize)
return 0; // The offset points into alignment padding.
// See if any partition must be contained by the element.
if (Offset > 0 || Size < ElementSize) {
if ((Offset + Size) > ElementSize)
return 0;
return getTypePartition(TD, ElementTy, Offset, Size);
}
assert(Offset == 0);
if (Size == ElementSize)
return stripAggregateTypeWrapping(TD, ElementTy);
StructType::element_iterator EI = STy->element_begin() + Index,
EE = STy->element_end();
if (EndOffset < SL->getSizeInBytes()) {
unsigned EndIndex = SL->getElementContainingOffset(EndOffset);
if (Index == EndIndex)
return 0; // Within a single element and its padding.
// Don't try to form "natural" types if the elements don't line up with the
// expected size.
// FIXME: We could potentially recurse down through the last element in the
// sub-struct to find a natural end point.
if (SL->getElementOffset(EndIndex) != EndOffset)
return 0;
assert(Index < EndIndex);
EE = STy->element_begin() + EndIndex;
}
// Try to build up a sub-structure.
StructType *SubTy = StructType::get(STy->getContext(), makeArrayRef(EI, EE),
STy->isPacked());
const StructLayout *SubSL = TD.getStructLayout(SubTy);
if (Size != SubSL->getSizeInBytes())
return 0; // The sub-struct doesn't have quite the size needed.
return SubTy;
}
/// \brief Rewrite an alloca partition's users.
///
/// This routine drives both of the rewriting goals of the SROA pass. It tries
/// to rewrite uses of an alloca partition to be conducive for SSA value
/// promotion. If the partition needs a new, more refined alloca, this will
/// build that new alloca, preserving as much type information as possible, and
/// rewrite the uses of the old alloca to point at the new one and have the
/// appropriate new offsets. It also evaluates how successful the rewrite was
/// at enabling promotion and if it was successful queues the alloca to be
/// promoted.
bool SROA::rewriteAllocaPartition(AllocaInst &AI,
AllocaPartitioning &P,
AllocaPartitioning::iterator PI) {
uint64_t AllocaSize = PI->EndOffset - PI->BeginOffset;
bool IsLive = false;
for (AllocaPartitioning::use_iterator UI = P.use_begin(PI),
UE = P.use_end(PI);
UI != UE && !IsLive; ++UI)
if (UI->getUse())
IsLive = true;
if (!IsLive)
return false; // No live uses left of this partition.
DEBUG(dbgs() << "Speculating PHIs and selects in partition "
<< "[" << PI->BeginOffset << "," << PI->EndOffset << ")\n");
PHIOrSelectSpeculator Speculator(*TD, P, *this);
DEBUG(dbgs() << " speculating ");
DEBUG(P.print(dbgs(), PI, ""));
Speculator.visitUsers(PI);
// Try to compute a friendly type for this partition of the alloca. This
// won't always succeed, in which case we fall back to a legal integer type
// or an i8 array of an appropriate size.
Type *AllocaTy = 0;
if (Type *PartitionTy = P.getCommonType(PI))
if (TD->getTypeAllocSize(PartitionTy) >= AllocaSize)
AllocaTy = PartitionTy;
if (!AllocaTy)
if (Type *PartitionTy = getTypePartition(*TD, AI.getAllocatedType(),
PI->BeginOffset, AllocaSize))
AllocaTy = PartitionTy;
if ((!AllocaTy ||
(AllocaTy->isArrayTy() &&
AllocaTy->getArrayElementType()->isIntegerTy())) &&
TD->isLegalInteger(AllocaSize * 8))
AllocaTy = Type::getIntNTy(*C, AllocaSize * 8);
if (!AllocaTy)
AllocaTy = ArrayType::get(Type::getInt8Ty(*C), AllocaSize);
assert(TD->getTypeAllocSize(AllocaTy) >= AllocaSize);
// Check for the case where we're going to rewrite to a new alloca of the
// exact same type as the original, and with the same access offsets. In that
// case, re-use the existing alloca, but still run through the rewriter to
// perform phi and select speculation.
AllocaInst *NewAI;
if (AllocaTy == AI.getAllocatedType()) {
assert(PI->BeginOffset == 0 &&
"Non-zero begin offset but same alloca type");
assert(PI == P.begin() && "Begin offset is zero on later partition");
NewAI = &AI;
} else {
unsigned Alignment = AI.getAlignment();
if (!Alignment) {
// The minimum alignment which users can rely on when the explicit
// alignment is omitted or zero is that required by the ABI for this
// type.
Alignment = TD->getABITypeAlignment(AI.getAllocatedType());
}
Alignment = MinAlign(Alignment, PI->BeginOffset);
// If we will get at least this much alignment from the type alone, leave
// the alloca's alignment unconstrained.
if (Alignment <= TD->getABITypeAlignment(AllocaTy))
Alignment = 0;
NewAI = new AllocaInst(AllocaTy, 0, Alignment,
AI.getName() + ".sroa." + Twine(PI - P.begin()),
&AI);
++NumNewAllocas;
}
DEBUG(dbgs() << "Rewriting alloca partition "
<< "[" << PI->BeginOffset << "," << PI->EndOffset << ") to: "
<< *NewAI << "\n");
// Track the high watermark of the post-promotion worklist. We will reset it
// to this point if the alloca is not in fact scheduled for promotion.
unsigned PPWOldSize = PostPromotionWorklist.size();
AllocaPartitionRewriter Rewriter(*TD, P, PI, *this, AI, *NewAI,
PI->BeginOffset, PI->EndOffset);
DEBUG(dbgs() << " rewriting ");
DEBUG(P.print(dbgs(), PI, ""));
bool Promotable = Rewriter.visitUsers(P.use_begin(PI), P.use_end(PI));
if (Promotable) {
DEBUG(dbgs() << " and queuing for promotion\n");
PromotableAllocas.push_back(NewAI);
} else if (NewAI != &AI) {
// If we can't promote the alloca, iterate on it to check for new
// refinements exposed by splitting the current alloca. Don't iterate on an
// alloca which didn't actually change and didn't get promoted.
Worklist.insert(NewAI);
}
// Drop any post-promotion work items if promotion didn't happen.
if (!Promotable)
while (PostPromotionWorklist.size() > PPWOldSize)
PostPromotionWorklist.pop_back();
return true;
}
/// \brief Walks the partitioning of an alloca rewriting uses of each partition.
bool SROA::splitAlloca(AllocaInst &AI, AllocaPartitioning &P) {
bool Changed = false;
for (AllocaPartitioning::iterator PI = P.begin(), PE = P.end(); PI != PE;
++PI)
Changed |= rewriteAllocaPartition(AI, P, PI);
return Changed;
}
/// \brief Analyze an alloca for SROA.
///
/// This analyzes the alloca to ensure we can reason about it, builds
/// a partitioning of the alloca, and then hands it off to be split and
/// rewritten as needed.
bool SROA::runOnAlloca(AllocaInst &AI) {
DEBUG(dbgs() << "SROA alloca: " << AI << "\n");
++NumAllocasAnalyzed;
// Special case dead allocas, as they're trivial.
if (AI.use_empty()) {
AI.eraseFromParent();
return true;
}
// Skip alloca forms that this analysis can't handle.
if (AI.isArrayAllocation() || !AI.getAllocatedType()->isSized() ||
TD->getTypeAllocSize(AI.getAllocatedType()) == 0)
return false;
bool Changed = false;
// First, split any FCA loads and stores touching this alloca to promote
// better splitting and promotion opportunities.
AggLoadStoreRewriter AggRewriter(*TD);
Changed |= AggRewriter.rewrite(AI);
// Build the partition set using a recursive instruction-visiting builder.
AllocaPartitioning P(*TD, AI);
DEBUG(P.print(dbgs()));
if (P.isEscaped())
return Changed;
// Delete all the dead users of this alloca before splitting and rewriting it.
for (AllocaPartitioning::dead_user_iterator DI = P.dead_user_begin(),
DE = P.dead_user_end();
DI != DE; ++DI) {
Changed = true;
(*DI)->replaceAllUsesWith(UndefValue::get((*DI)->getType()));
DeadInsts.insert(*DI);
}
for (AllocaPartitioning::dead_op_iterator DO = P.dead_op_begin(),
DE = P.dead_op_end();
DO != DE; ++DO) {
Value *OldV = **DO;
// Clobber the use with an undef value.
**DO = UndefValue::get(OldV->getType());
if (Instruction *OldI = dyn_cast<Instruction>(OldV))
if (isInstructionTriviallyDead(OldI)) {
Changed = true;
DeadInsts.insert(OldI);
}
}
// No partitions to split. Leave the dead alloca for a later pass to clean up.
if (P.begin() == P.end())
return Changed;
return splitAlloca(AI, P) || Changed;
}
/// \brief Delete the dead instructions accumulated in this run.
///
/// Recursively deletes the dead instructions we've accumulated. This is done
/// at the very end to maximize locality of the recursive delete and to
/// minimize the problems of invalidated instruction pointers as such pointers
/// are used heavily in the intermediate stages of the algorithm.
///
/// We also record the alloca instructions deleted here so that they aren't
/// subsequently handed to mem2reg to promote.
void SROA::deleteDeadInstructions(SmallPtrSet<AllocaInst*, 4> &DeletedAllocas) {
while (!DeadInsts.empty()) {
Instruction *I = DeadInsts.pop_back_val();
DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n");
I->replaceAllUsesWith(UndefValue::get(I->getType()));
for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
if (Instruction *U = dyn_cast<Instruction>(*OI)) {
// Zero out the operand and see if it becomes trivially dead.
*OI = 0;
if (isInstructionTriviallyDead(U))
DeadInsts.insert(U);
}
if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
DeletedAllocas.insert(AI);
++NumDeleted;
I->eraseFromParent();
}
}
/// \brief Promote the allocas, using the best available technique.
///
/// This attempts to promote whatever allocas have been identified as viable in
/// the PromotableAllocas list. If that list is empty, there is nothing to do.
/// If there is a domtree available, we attempt to promote using the full power
/// of mem2reg. Otherwise, we build and use the AllocaPromoter above which is
/// based on the SSAUpdater utilities. This function returns whether any
/// promotion occurred.
bool SROA::promoteAllocas(Function &F) {
if (PromotableAllocas.empty())
return false;
NumPromoted += PromotableAllocas.size();
if (DT && !ForceSSAUpdater) {
DEBUG(dbgs() << "Promoting allocas with mem2reg...\n");
PromoteMemToReg(PromotableAllocas, *DT);
PromotableAllocas.clear();
return true;
}
DEBUG(dbgs() << "Promoting allocas with SSAUpdater...\n");
SSAUpdater SSA;
DIBuilder DIB(*F.getParent());
SmallVector<Instruction*, 64> Insts;
for (unsigned Idx = 0, Size = PromotableAllocas.size(); Idx != Size; ++Idx) {
AllocaInst *AI = PromotableAllocas[Idx];
for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end();
UI != UE;) {
Instruction *I = cast<Instruction>(*UI++);
// FIXME: Currently the SSAUpdater infrastructure doesn't reason about
// lifetime intrinsics and so we strip them (and the bitcasts+GEPs
// leading to them) here. Eventually it should use them to optimize the
// scalar values produced.
if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) {
assert(onlyUsedByLifetimeMarkers(I) &&
"Found a bitcast used outside of a lifetime marker.");
while (!I->use_empty())
cast<Instruction>(*I->use_begin())->eraseFromParent();
I->eraseFromParent();
continue;
}
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
assert(II->getIntrinsicID() == Intrinsic::lifetime_start ||
II->getIntrinsicID() == Intrinsic::lifetime_end);
II->eraseFromParent();
continue;
}
Insts.push_back(I);
}
AllocaPromoter(Insts, SSA, *AI, DIB).run(Insts);
Insts.clear();
}
PromotableAllocas.clear();
return true;
}
namespace {
/// \brief A predicate to test whether an alloca belongs to a set.
class IsAllocaInSet {
typedef SmallPtrSet<AllocaInst *, 4> SetType;
const SetType &Set;
public:
typedef AllocaInst *argument_type;
IsAllocaInSet(const SetType &Set) : Set(Set) {}
bool operator()(AllocaInst *AI) const { return Set.count(AI); }
};
}
bool SROA::runOnFunction(Function &F) {
DEBUG(dbgs() << "SROA function: " << F.getName() << "\n");
C = &F.getContext();
TD = getAnalysisIfAvailable<DataLayout>();
if (!TD) {
DEBUG(dbgs() << " Skipping SROA -- no target data!\n");
return false;
}
DT = getAnalysisIfAvailable<DominatorTree>();
BasicBlock &EntryBB = F.getEntryBlock();
for (BasicBlock::iterator I = EntryBB.begin(), E = llvm::prior(EntryBB.end());
I != E; ++I)
if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
Worklist.insert(AI);
bool Changed = false;
// A set of deleted alloca instruction pointers which should be removed from
// the list of promotable allocas.
SmallPtrSet<AllocaInst *, 4> DeletedAllocas;
do {
while (!Worklist.empty()) {
Changed |= runOnAlloca(*Worklist.pop_back_val());
deleteDeadInstructions(DeletedAllocas);
// Remove the deleted allocas from various lists so that we don't try to
// continue processing them.
if (!DeletedAllocas.empty()) {
Worklist.remove_if(IsAllocaInSet(DeletedAllocas));
PostPromotionWorklist.remove_if(IsAllocaInSet(DeletedAllocas));
PromotableAllocas.erase(std::remove_if(PromotableAllocas.begin(),
PromotableAllocas.end(),
IsAllocaInSet(DeletedAllocas)),
PromotableAllocas.end());
DeletedAllocas.clear();
}
}
Changed |= promoteAllocas(F);
Worklist = PostPromotionWorklist;
PostPromotionWorklist.clear();
} while (!Worklist.empty());
return Changed;
}
void SROA::getAnalysisUsage(AnalysisUsage &AU) const {
if (RequiresDomTree)
AU.addRequired<DominatorTree>();
AU.setPreservesCFG();
}