llvm-6502/include/llvm/CodeGen/SelectionDAGNodes.h
Dan Gohman e7852d0144 Take the next steps in making SDUse more consistent with LLVM Use, and
tidy up SDUse and related code.
 - Replace the operator= member functions with a set method, like
   LLVM Use has, and variants setInitial and setNode, which take
   care up updating use lists, like LLVM Use's does. This simplifies
   code that calls these functions.
 - getSDValue() is renamed to get(), as in LLVM Use, though most
   places can either use the implicit conversion to SDValue or the
   convenience functions instead.
 - Fix some more node vs. value terminology issues.

Also, eliminate the one remaining use of SDOperandPtr, and
SDOperandPtr itself.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@62995 91177308-0d34-0410-b5e6-96231b3b80d8
2009-01-26 04:35:06 +00:00

2468 lines
90 KiB
C++

//===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares the SDNode class and derived classes, which are used to
// represent the nodes and operations present in a SelectionDAG. These nodes
// and operations are machine code level operations, with some similarities to
// the GCC RTL representation.
//
// Clients should include the SelectionDAG.h file instead of this file directly.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
#define LLVM_CODEGEN_SELECTIONDAGNODES_H
#include "llvm/Constants.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/iterator.h"
#include "llvm/ADT/ilist_node.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/RecyclingAllocator.h"
#include "llvm/Support/DataTypes.h"
#include <cassert>
namespace llvm {
class SelectionDAG;
class GlobalValue;
class MachineBasicBlock;
class MachineConstantPoolValue;
class SDNode;
class Value;
template <typename T> struct DenseMapInfo;
template <typename T> struct simplify_type;
template <typename T> struct ilist_traits;
/// SDVTList - This represents a list of ValueType's that has been intern'd by
/// a SelectionDAG. Instances of this simple value class are returned by
/// SelectionDAG::getVTList(...).
///
struct SDVTList {
const MVT *VTs;
unsigned short NumVTs;
};
/// ISD namespace - This namespace contains an enum which represents all of the
/// SelectionDAG node types and value types.
///
namespace ISD {
//===--------------------------------------------------------------------===//
/// ISD::NodeType enum - This enum defines all of the operators valid in a
/// SelectionDAG.
///
enum NodeType {
// DELETED_NODE - This is an illegal flag value that is used to catch
// errors. This opcode is not a legal opcode for any node.
DELETED_NODE,
// EntryToken - This is the marker used to indicate the start of the region.
EntryToken,
// TokenFactor - This node takes multiple tokens as input and produces a
// single token result. This is used to represent the fact that the operand
// operators are independent of each other.
TokenFactor,
// AssertSext, AssertZext - These nodes record if a register contains a
// value that has already been zero or sign extended from a narrower type.
// These nodes take two operands. The first is the node that has already
// been extended, and the second is a value type node indicating the width
// of the extension
AssertSext, AssertZext,
// Various leaf nodes.
BasicBlock, VALUETYPE, ARG_FLAGS, CONDCODE, Register,
Constant, ConstantFP,
GlobalAddress, GlobalTLSAddress, FrameIndex,
JumpTable, ConstantPool, ExternalSymbol,
// The address of the GOT
GLOBAL_OFFSET_TABLE,
// FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and
// llvm.returnaddress on the DAG. These nodes take one operand, the index
// of the frame or return address to return. An index of zero corresponds
// to the current function's frame or return address, an index of one to the
// parent's frame or return address, and so on.
FRAMEADDR, RETURNADDR,
// FRAME_TO_ARGS_OFFSET - This node represents offset from frame pointer to
// first (possible) on-stack argument. This is needed for correct stack
// adjustment during unwind.
FRAME_TO_ARGS_OFFSET,
// RESULT, OUTCHAIN = EXCEPTIONADDR(INCHAIN) - This node represents the
// address of the exception block on entry to an landing pad block.
EXCEPTIONADDR,
// RESULT, OUTCHAIN = EHSELECTION(INCHAIN, EXCEPTION) - This node represents
// the selection index of the exception thrown.
EHSELECTION,
// OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) - This node represents
// 'eh_return' gcc dwarf builtin, which is used to return from
// exception. The general meaning is: adjust stack by OFFSET and pass
// execution to HANDLER. Many platform-related details also :)
EH_RETURN,
// TargetConstant* - Like Constant*, but the DAG does not do any folding or
// simplification of the constant.
TargetConstant,
TargetConstantFP,
// TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
// anything else with this node, and this is valid in the target-specific
// dag, turning into a GlobalAddress operand.
TargetGlobalAddress,
TargetGlobalTLSAddress,
TargetFrameIndex,
TargetJumpTable,
TargetConstantPool,
TargetExternalSymbol,
/// RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...)
/// This node represents a target intrinsic function with no side effects.
/// The first operand is the ID number of the intrinsic from the
/// llvm::Intrinsic namespace. The operands to the intrinsic follow. The
/// node has returns the result of the intrinsic.
INTRINSIC_WO_CHAIN,
/// RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...)
/// This node represents a target intrinsic function with side effects that
/// returns a result. The first operand is a chain pointer. The second is
/// the ID number of the intrinsic from the llvm::Intrinsic namespace. The
/// operands to the intrinsic follow. The node has two results, the result
/// of the intrinsic and an output chain.
INTRINSIC_W_CHAIN,
/// OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...)
/// This node represents a target intrinsic function with side effects that
/// does not return a result. The first operand is a chain pointer. The
/// second is the ID number of the intrinsic from the llvm::Intrinsic
/// namespace. The operands to the intrinsic follow.
INTRINSIC_VOID,
// CopyToReg - This node has three operands: a chain, a register number to
// set to this value, and a value.
CopyToReg,
// CopyFromReg - This node indicates that the input value is a virtual or
// physical register that is defined outside of the scope of this
// SelectionDAG. The register is available from the RegisterSDNode object.
CopyFromReg,
// UNDEF - An undefined node
UNDEF,
/// FORMAL_ARGUMENTS(CHAIN, CC#, ISVARARG, FLAG0, ..., FLAGn) - This node
/// represents the formal arguments for a function. CC# is a Constant value
/// indicating the calling convention of the function, and ISVARARG is a
/// flag that indicates whether the function is varargs or not. This node
/// has one result value for each incoming argument, plus one for the output
/// chain. It must be custom legalized. See description of CALL node for
/// FLAG argument contents explanation.
///
FORMAL_ARGUMENTS,
/// RV1, RV2...RVn, CHAIN = CALL(CHAIN, CALLEE,
/// ARG0, FLAG0, ARG1, FLAG1, ... ARGn, FLAGn)
/// This node represents a fully general function call, before the legalizer
/// runs. This has one result value for each argument / flag pair, plus
/// a chain result. It must be custom legalized. Flag argument indicates
/// misc. argument attributes. Currently:
/// Bit 0 - signness
/// Bit 1 - 'inreg' attribute
/// Bit 2 - 'sret' attribute
/// Bit 4 - 'byval' attribute
/// Bit 5 - 'nest' attribute
/// Bit 6-9 - alignment of byval structures
/// Bit 10-26 - size of byval structures
/// Bits 31:27 - argument ABI alignment in the first argument piece and
/// alignment '1' in other argument pieces.
///
/// CALL nodes use the CallSDNode subclass of SDNode, which
/// additionally carries information about the calling convention,
/// whether the call is varargs, and if it's marked as a tail call.
///
CALL,
// EXTRACT_ELEMENT - This is used to get the lower or upper (determined by
// a Constant, which is required to be operand #1) half of the integer or
// float value specified as operand #0. This is only for use before
// legalization, for values that will be broken into multiple registers.
EXTRACT_ELEMENT,
// BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways. Given
// two values of the same integer value type, this produces a value twice as
// big. Like EXTRACT_ELEMENT, this can only be used before legalization.
BUILD_PAIR,
// MERGE_VALUES - This node takes multiple discrete operands and returns
// them all as its individual results. This nodes has exactly the same
// number of inputs and outputs, and is only valid before legalization.
// This node is useful for some pieces of the code generator that want to
// think about a single node with multiple results, not multiple nodes.
MERGE_VALUES,
// Simple integer binary arithmetic operators.
ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
// SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing
// a signed/unsigned value of type i[2*N], and return the full value as
// two results, each of type iN.
SMUL_LOHI, UMUL_LOHI,
// SDIVREM/UDIVREM - Divide two integers and produce both a quotient and
// remainder result.
SDIVREM, UDIVREM,
// CARRY_FALSE - This node is used when folding other nodes,
// like ADDC/SUBC, which indicate the carry result is always false.
CARRY_FALSE,
// Carry-setting nodes for multiple precision addition and subtraction.
// These nodes take two operands of the same value type, and produce two
// results. The first result is the normal add or sub result, the second
// result is the carry flag result.
ADDC, SUBC,
// Carry-using nodes for multiple precision addition and subtraction. These
// nodes take three operands: The first two are the normal lhs and rhs to
// the add or sub, and the third is the input carry flag. These nodes
// produce two results; the normal result of the add or sub, and the output
// carry flag. These nodes both read and write a carry flag to allow them
// to them to be chained together for add and sub of arbitrarily large
// values.
ADDE, SUBE,
// RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
// These nodes take two operands: the normal LHS and RHS to the add. They
// produce two results: the normal result of the add, and a boolean that
// indicates if an overflow occured (*not* a flag, because it may be stored
// to memory, etc.). If the type of the boolean is not i1 then the high
// bits conform to getBooleanContents.
// These nodes are generated from the llvm.[su]add.with.overflow intrinsics.
SADDO, UADDO,
// Same for subtraction
SSUBO, USUBO,
// Same for multiplication
SMULO, UMULO,
// Simple binary floating point operators.
FADD, FSUB, FMUL, FDIV, FREM,
// FCOPYSIGN(X, Y) - Return the value of X with the sign of Y. NOTE: This
// DAG node does not require that X and Y have the same type, just that they
// are both floating point. X and the result must have the same type.
// FCOPYSIGN(f32, f64) is allowed.
FCOPYSIGN,
// INT = FGETSIGN(FP) - Return the sign bit of the specified floating point
// value as an integer 0/1 value.
FGETSIGN,
/// BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a vector
/// with the specified, possibly variable, elements. The number of elements
/// is required to be a power of two.
BUILD_VECTOR,
/// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element
/// at IDX replaced with VAL. If the type of VAL is larger than the vector
/// element type then VAL is truncated before replacement.
INSERT_VECTOR_ELT,
/// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
/// identified by the (potentially variable) element number IDX.
EXTRACT_VECTOR_ELT,
/// CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of
/// vector type with the same length and element type, this produces a
/// concatenated vector result value, with length equal to the sum of the
/// lengths of the input vectors.
CONCAT_VECTORS,
/// EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR (an
/// vector value) starting with the (potentially variable) element number
/// IDX, which must be a multiple of the result vector length.
EXTRACT_SUBVECTOR,
/// VECTOR_SHUFFLE(VEC1, VEC2, SHUFFLEVEC) - Returns a vector, of the same
/// type as VEC1/VEC2. SHUFFLEVEC is a BUILD_VECTOR of constant int values
/// (maybe of an illegal datatype) or undef that indicate which value each
/// result element will get. The elements of VEC1/VEC2 are enumerated in
/// order. This is quite similar to the Altivec 'vperm' instruction, except
/// that the indices must be constants and are in terms of the element size
/// of VEC1/VEC2, not in terms of bytes.
VECTOR_SHUFFLE,
/// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a
/// scalar value into element 0 of the resultant vector type. The top
/// elements 1 to N-1 of the N-element vector are undefined.
SCALAR_TO_VECTOR,
// EXTRACT_SUBREG - This node is used to extract a sub-register value.
// This node takes a superreg and a constant sub-register index as operands.
// Note sub-register indices must be increasing. That is, if the
// sub-register index of a 8-bit sub-register is N, then the index for a
// 16-bit sub-register must be at least N+1.
EXTRACT_SUBREG,
// INSERT_SUBREG - This node is used to insert a sub-register value.
// This node takes a superreg, a subreg value, and a constant sub-register
// index as operands.
INSERT_SUBREG,
// MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing
// an unsigned/signed value of type i[2*N], then return the top part.
MULHU, MULHS,
// Bitwise operators - logical and, logical or, logical xor, shift left,
// shift right algebraic (shift in sign bits), shift right logical (shift in
// zeroes), rotate left, rotate right, and byteswap.
AND, OR, XOR, SHL, SRA, SRL, ROTL, ROTR, BSWAP,
// Counting operators
CTTZ, CTLZ, CTPOP,
// Select(COND, TRUEVAL, FALSEVAL). If the type of the boolean COND is not
// i1 then the high bits must conform to getBooleanContents.
SELECT,
// Select with condition operator - This selects between a true value and
// a false value (ops #2 and #3) based on the boolean result of comparing
// the lhs and rhs (ops #0 and #1) of a conditional expression with the
// condition code in op #4, a CondCodeSDNode.
SELECT_CC,
// SetCC operator - This evaluates to a true value iff the condition is
// true. If the result value type is not i1 then the high bits conform
// to getBooleanContents. The operands to this are the left and right
// operands to compare (ops #0, and #1) and the condition code to compare
// them with (op #2) as a CondCodeSDNode.
SETCC,
// Vector SetCC operator - This evaluates to a vector of integer elements
// with the high bit in each element set to true if the comparison is true
// and false if the comparison is false. All other bits in each element
// are undefined. The operands to this are the left and right operands
// to compare (ops #0, and #1) and the condition code to compare them with
// (op #2) as a CondCodeSDNode.
VSETCC,
// SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
// integer shift operations, just like ADD/SUB_PARTS. The operation
// ordering is:
// [Lo,Hi] = op [LoLHS,HiLHS], Amt
SHL_PARTS, SRA_PARTS, SRL_PARTS,
// Conversion operators. These are all single input single output
// operations. For all of these, the result type must be strictly
// wider or narrower (depending on the operation) than the source
// type.
// SIGN_EXTEND - Used for integer types, replicating the sign bit
// into new bits.
SIGN_EXTEND,
// ZERO_EXTEND - Used for integer types, zeroing the new bits.
ZERO_EXTEND,
// ANY_EXTEND - Used for integer types. The high bits are undefined.
ANY_EXTEND,
// TRUNCATE - Completely drop the high bits.
TRUNCATE,
// [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
// depends on the first letter) to floating point.
SINT_TO_FP,
UINT_TO_FP,
// SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
// sign extend a small value in a large integer register (e.g. sign
// extending the low 8 bits of a 32-bit register to fill the top 24 bits
// with the 7th bit). The size of the smaller type is indicated by the 1th
// operand, a ValueType node.
SIGN_EXTEND_INREG,
/// FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
/// integer.
FP_TO_SINT,
FP_TO_UINT,
/// X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type
/// down to the precision of the destination VT. TRUNC is a flag, which is
/// always an integer that is zero or one. If TRUNC is 0, this is a
/// normal rounding, if it is 1, this FP_ROUND is known to not change the
/// value of Y.
///
/// The TRUNC = 1 case is used in cases where we know that the value will
/// not be modified by the node, because Y is not using any of the extra
/// precision of source type. This allows certain transformations like
/// FP_EXTEND(FP_ROUND(X,1)) -> X which are not safe for
/// FP_EXTEND(FP_ROUND(X,0)) because the extra bits aren't removed.
FP_ROUND,
// FLT_ROUNDS_ - Returns current rounding mode:
// -1 Undefined
// 0 Round to 0
// 1 Round to nearest
// 2 Round to +inf
// 3 Round to -inf
FLT_ROUNDS_,
/// X = FP_ROUND_INREG(Y, VT) - This operator takes an FP register, and
/// rounds it to a floating point value. It then promotes it and returns it
/// in a register of the same size. This operation effectively just
/// discards excess precision. The type to round down to is specified by
/// the VT operand, a VTSDNode.
FP_ROUND_INREG,
/// X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
FP_EXTEND,
// BIT_CONVERT - Theis operator converts between integer and FP values, as
// if one was stored to memory as integer and the other was loaded from the
// same address (or equivalently for vector format conversions, etc). The
// source and result are required to have the same bit size (e.g.
// f32 <-> i32). This can also be used for int-to-int or fp-to-fp
// conversions, but that is a noop, deleted by getNode().
BIT_CONVERT,
// CONVERT_RNDSAT - This operator is used to support various conversions
// between various types (float, signed, unsigned and vectors of those
// types) with rounding and saturation. NOTE: Avoid using this operator as
// most target don't support it and the operator might be removed in the
// future. It takes the following arguments:
// 0) value
// 1) dest type (type to convert to)
// 2) src type (type to convert from)
// 3) rounding imm
// 4) saturation imm
// 5) ISD::CvtCode indicating the type of conversion to do
CONVERT_RNDSAT,
// FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
// FLOG, FLOG2, FLOG10, FEXP, FEXP2,
// FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR - Perform various unary floating
// point operations. These are inspired by libm.
FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
FLOG, FLOG2, FLOG10, FEXP, FEXP2,
FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR,
// LOAD and STORE have token chains as their first operand, then the same
// operands as an LLVM load/store instruction, then an offset node that
// is added / subtracted from the base pointer to form the address (for
// indexed memory ops).
LOAD, STORE,
// DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
// to a specified boundary. This node always has two return values: a new
// stack pointer value and a chain. The first operand is the token chain,
// the second is the number of bytes to allocate, and the third is the
// alignment boundary. The size is guaranteed to be a multiple of the stack
// alignment, and the alignment is guaranteed to be bigger than the stack
// alignment (if required) or 0 to get standard stack alignment.
DYNAMIC_STACKALLOC,
// Control flow instructions. These all have token chains.
// BR - Unconditional branch. The first operand is the chain
// operand, the second is the MBB to branch to.
BR,
// BRIND - Indirect branch. The first operand is the chain, the second
// is the value to branch to, which must be of the same type as the target's
// pointer type.
BRIND,
// BR_JT - Jumptable branch. The first operand is the chain, the second
// is the jumptable index, the last one is the jumptable entry index.
BR_JT,
// BRCOND - Conditional branch. The first operand is the chain, the
// second is the condition, the third is the block to branch to if the
// condition is true. If the type of the condition is not i1, then the
// high bits must conform to getBooleanContents.
BRCOND,
// BR_CC - Conditional branch. The behavior is like that of SELECT_CC, in
// that the condition is represented as condition code, and two nodes to
// compare, rather than as a combined SetCC node. The operands in order are
// chain, cc, lhs, rhs, block to branch to if condition is true.
BR_CC,
// RET - Return from function. The first operand is the chain,
// and any subsequent operands are pairs of return value and return value
// attributes (see CALL for description of attributes) for the function.
// This operation can have variable number of operands.
RET,
// INLINEASM - Represents an inline asm block. This node always has two
// return values: a chain and a flag result. The inputs are as follows:
// Operand #0 : Input chain.
// Operand #1 : a ExternalSymbolSDNode with a pointer to the asm string.
// Operand #2n+2: A RegisterNode.
// Operand #2n+3: A TargetConstant, indicating if the reg is a use/def
// Operand #last: Optional, an incoming flag.
INLINEASM,
// DBG_LABEL, EH_LABEL - Represents a label in mid basic block used to track
// locations needed for debug and exception handling tables. These nodes
// take a chain as input and return a chain.
DBG_LABEL,
EH_LABEL,
// DECLARE - Represents a llvm.dbg.declare intrinsic. It's used to track
// local variable declarations for debugging information. First operand is
// a chain, while the next two operands are first two arguments (address
// and variable) of a llvm.dbg.declare instruction.
DECLARE,
// STACKSAVE - STACKSAVE has one operand, an input chain. It produces a
// value, the same type as the pointer type for the system, and an output
// chain.
STACKSAVE,
// STACKRESTORE has two operands, an input chain and a pointer to restore to
// it returns an output chain.
STACKRESTORE,
// CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of
// a call sequence, and carry arbitrary information that target might want
// to know. The first operand is a chain, the rest are specified by the
// target and not touched by the DAG optimizers.
// CALLSEQ_START..CALLSEQ_END pairs may not be nested.
CALLSEQ_START, // Beginning of a call sequence
CALLSEQ_END, // End of a call sequence
// VAARG - VAARG has three operands: an input chain, a pointer, and a
// SRCVALUE. It returns a pair of values: the vaarg value and a new chain.
VAARG,
// VACOPY - VACOPY has five operands: an input chain, a destination pointer,
// a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the
// source.
VACOPY,
// VAEND, VASTART - VAEND and VASTART have three operands: an input chain, a
// pointer, and a SRCVALUE.
VAEND, VASTART,
// SRCVALUE - This is a node type that holds a Value* that is used to
// make reference to a value in the LLVM IR.
SRCVALUE,
// MEMOPERAND - This is a node that contains a MachineMemOperand which
// records information about a memory reference. This is used to make
// AliasAnalysis queries from the backend.
MEMOPERAND,
// PCMARKER - This corresponds to the pcmarker intrinsic.
PCMARKER,
// READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
// The only operand is a chain and a value and a chain are produced. The
// value is the contents of the architecture specific cycle counter like
// register (or other high accuracy low latency clock source)
READCYCLECOUNTER,
// HANDLENODE node - Used as a handle for various purposes.
HANDLENODE,
// DBG_STOPPOINT - This node is used to represent a source location for
// debug info. It takes token chain as input, and carries a line number,
// column number, and a pointer to a CompileUnit object identifying
// the containing compilation unit. It produces a token chain as output.
DBG_STOPPOINT,
// DEBUG_LOC - This node is used to represent source line information
// embedded in the code. It takes a token chain as input, then a line
// number, then a column then a file id (provided by MachineModuleInfo.) It
// produces a token chain as output.
DEBUG_LOC,
// TRAMPOLINE - This corresponds to the init_trampoline intrinsic.
// It takes as input a token chain, the pointer to the trampoline,
// the pointer to the nested function, the pointer to pass for the
// 'nest' parameter, a SRCVALUE for the trampoline and another for
// the nested function (allowing targets to access the original
// Function*). It produces the result of the intrinsic and a token
// chain as output.
TRAMPOLINE,
// TRAP - Trapping instruction
TRAP,
// PREFETCH - This corresponds to a prefetch intrinsic. It takes chains are
// their first operand. The other operands are the address to prefetch,
// read / write specifier, and locality specifier.
PREFETCH,
// OUTCHAIN = MEMBARRIER(INCHAIN, load-load, load-store, store-load,
// store-store, device)
// This corresponds to the memory.barrier intrinsic.
// it takes an input chain, 4 operands to specify the type of barrier, an
// operand specifying if the barrier applies to device and uncached memory
// and produces an output chain.
MEMBARRIER,
// Val, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
// this corresponds to the atomic.lcs intrinsic.
// cmp is compared to *ptr, and if equal, swap is stored in *ptr.
// the return is always the original value in *ptr
ATOMIC_CMP_SWAP,
// Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt)
// this corresponds to the atomic.swap intrinsic.
// amt is stored to *ptr atomically.
// the return is always the original value in *ptr
ATOMIC_SWAP,
// Val, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN, ptr, amt)
// this corresponds to the atomic.load.[OpName] intrinsic.
// op(*ptr, amt) is stored to *ptr atomically.
// the return is always the original value in *ptr
ATOMIC_LOAD_ADD,
ATOMIC_LOAD_SUB,
ATOMIC_LOAD_AND,
ATOMIC_LOAD_OR,
ATOMIC_LOAD_XOR,
ATOMIC_LOAD_NAND,
ATOMIC_LOAD_MIN,
ATOMIC_LOAD_MAX,
ATOMIC_LOAD_UMIN,
ATOMIC_LOAD_UMAX,
// BUILTIN_OP_END - This must be the last enum value in this list.
BUILTIN_OP_END
};
/// Node predicates
/// isBuildVectorAllOnes - Return true if the specified node is a
/// BUILD_VECTOR where all of the elements are ~0 or undef.
bool isBuildVectorAllOnes(const SDNode *N);
/// isBuildVectorAllZeros - Return true if the specified node is a
/// BUILD_VECTOR where all of the elements are 0 or undef.
bool isBuildVectorAllZeros(const SDNode *N);
/// isScalarToVector - Return true if the specified node is a
/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
/// element is not an undef.
bool isScalarToVector(const SDNode *N);
/// isDebugLabel - Return true if the specified node represents a debug
/// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
bool isDebugLabel(const SDNode *N);
//===--------------------------------------------------------------------===//
/// MemIndexedMode enum - This enum defines the load / store indexed
/// addressing modes.
///
/// UNINDEXED "Normal" load / store. The effective address is already
/// computed and is available in the base pointer. The offset
/// operand is always undefined. In addition to producing a
/// chain, an unindexed load produces one value (result of the
/// load); an unindexed store does not produce a value.
///
/// PRE_INC Similar to the unindexed mode where the effective address is
/// PRE_DEC the value of the base pointer add / subtract the offset.
/// It considers the computation as being folded into the load /
/// store operation (i.e. the load / store does the address
/// computation as well as performing the memory transaction).
/// The base operand is always undefined. In addition to
/// producing a chain, pre-indexed load produces two values
/// (result of the load and the result of the address
/// computation); a pre-indexed store produces one value (result
/// of the address computation).
///
/// POST_INC The effective address is the value of the base pointer. The
/// POST_DEC value of the offset operand is then added to / subtracted
/// from the base after memory transaction. In addition to
/// producing a chain, post-indexed load produces two values
/// (the result of the load and the result of the base +/- offset
/// computation); a post-indexed store produces one value (the
/// the result of the base +/- offset computation).
///
enum MemIndexedMode {
UNINDEXED = 0,
PRE_INC,
PRE_DEC,
POST_INC,
POST_DEC,
LAST_INDEXED_MODE
};
//===--------------------------------------------------------------------===//
/// LoadExtType enum - This enum defines the three variants of LOADEXT
/// (load with extension).
///
/// SEXTLOAD loads the integer operand and sign extends it to a larger
/// integer result type.
/// ZEXTLOAD loads the integer operand and zero extends it to a larger
/// integer result type.
/// EXTLOAD is used for three things: floating point extending loads,
/// integer extending loads [the top bits are undefined], and vector
/// extending loads [load into low elt].
///
enum LoadExtType {
NON_EXTLOAD = 0,
EXTLOAD,
SEXTLOAD,
ZEXTLOAD,
LAST_LOADEXT_TYPE
};
//===--------------------------------------------------------------------===//
/// ISD::CondCode enum - These are ordered carefully to make the bitfields
/// below work out, when considering SETFALSE (something that never exists
/// dynamically) as 0. "U" -> Unsigned (for integer operands) or Unordered
/// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
/// to. If the "N" column is 1, the result of the comparison is undefined if
/// the input is a NAN.
///
/// All of these (except for the 'always folded ops') should be handled for
/// floating point. For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
/// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
///
/// Note that these are laid out in a specific order to allow bit-twiddling
/// to transform conditions.
enum CondCode {
// Opcode N U L G E Intuitive operation
SETFALSE, // 0 0 0 0 Always false (always folded)
SETOEQ, // 0 0 0 1 True if ordered and equal
SETOGT, // 0 0 1 0 True if ordered and greater than
SETOGE, // 0 0 1 1 True if ordered and greater than or equal
SETOLT, // 0 1 0 0 True if ordered and less than
SETOLE, // 0 1 0 1 True if ordered and less than or equal
SETONE, // 0 1 1 0 True if ordered and operands are unequal
SETO, // 0 1 1 1 True if ordered (no nans)
SETUO, // 1 0 0 0 True if unordered: isnan(X) | isnan(Y)
SETUEQ, // 1 0 0 1 True if unordered or equal
SETUGT, // 1 0 1 0 True if unordered or greater than
SETUGE, // 1 0 1 1 True if unordered, greater than, or equal
SETULT, // 1 1 0 0 True if unordered or less than
SETULE, // 1 1 0 1 True if unordered, less than, or equal
SETUNE, // 1 1 1 0 True if unordered or not equal
SETTRUE, // 1 1 1 1 Always true (always folded)
// Don't care operations: undefined if the input is a nan.
SETFALSE2, // 1 X 0 0 0 Always false (always folded)
SETEQ, // 1 X 0 0 1 True if equal
SETGT, // 1 X 0 1 0 True if greater than
SETGE, // 1 X 0 1 1 True if greater than or equal
SETLT, // 1 X 1 0 0 True if less than
SETLE, // 1 X 1 0 1 True if less than or equal
SETNE, // 1 X 1 1 0 True if not equal
SETTRUE2, // 1 X 1 1 1 Always true (always folded)
SETCC_INVALID // Marker value.
};
/// isSignedIntSetCC - Return true if this is a setcc instruction that
/// performs a signed comparison when used with integer operands.
inline bool isSignedIntSetCC(CondCode Code) {
return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
}
/// isUnsignedIntSetCC - Return true if this is a setcc instruction that
/// performs an unsigned comparison when used with integer operands.
inline bool isUnsignedIntSetCC(CondCode Code) {
return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
}
/// isTrueWhenEqual - Return true if the specified condition returns true if
/// the two operands to the condition are equal. Note that if one of the two
/// operands is a NaN, this value is meaningless.
inline bool isTrueWhenEqual(CondCode Cond) {
return ((int)Cond & 1) != 0;
}
/// getUnorderedFlavor - This function returns 0 if the condition is always
/// false if an operand is a NaN, 1 if the condition is always true if the
/// operand is a NaN, and 2 if the condition is undefined if the operand is a
/// NaN.
inline unsigned getUnorderedFlavor(CondCode Cond) {
return ((int)Cond >> 3) & 3;
}
/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
/// 'op' is a valid SetCC operation.
CondCode getSetCCInverse(CondCode Operation, bool isInteger);
/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
/// when given the operation for (X op Y).
CondCode getSetCCSwappedOperands(CondCode Operation);
/// getSetCCOrOperation - Return the result of a logical OR between different
/// comparisons of identical values: ((X op1 Y) | (X op2 Y)). This
/// function returns SETCC_INVALID if it is not possible to represent the
/// resultant comparison.
CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
/// getSetCCAndOperation - Return the result of a logical AND between
/// different comparisons of identical values: ((X op1 Y) & (X op2 Y)). This
/// function returns SETCC_INVALID if it is not possible to represent the
/// resultant comparison.
CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
//===--------------------------------------------------------------------===//
/// CvtCode enum - This enum defines the various converts CONVERT_RNDSAT
/// supports.
enum CvtCode {
CVT_FF, // Float from Float
CVT_FS, // Float from Signed
CVT_FU, // Float from Unsigned
CVT_SF, // Signed from Float
CVT_UF, // Unsigned from Float
CVT_SS, // Signed from Signed
CVT_SU, // Signed from Unsigned
CVT_US, // Unsigned from Signed
CVT_UU, // Unsigned from Unsigned
CVT_INVALID // Marker - Invalid opcode
};
} // end llvm::ISD namespace
//===----------------------------------------------------------------------===//
/// SDValue - Unlike LLVM values, Selection DAG nodes may return multiple
/// values as the result of a computation. Many nodes return multiple values,
/// from loads (which define a token and a return value) to ADDC (which returns
/// a result and a carry value), to calls (which may return an arbitrary number
/// of values).
///
/// As such, each use of a SelectionDAG computation must indicate the node that
/// computes it as well as which return value to use from that node. This pair
/// of information is represented with the SDValue value type.
///
class SDValue {
SDNode *Node; // The node defining the value we are using.
unsigned ResNo; // Which return value of the node we are using.
public:
SDValue() : Node(0), ResNo(0) {}
SDValue(SDNode *node, unsigned resno) : Node(node), ResNo(resno) {}
/// get the index which selects a specific result in the SDNode
unsigned getResNo() const { return ResNo; }
/// get the SDNode which holds the desired result
SDNode *getNode() const { return Node; }
/// set the SDNode
void setNode(SDNode *N) { Node = N; }
bool operator==(const SDValue &O) const {
return Node == O.Node && ResNo == O.ResNo;
}
bool operator!=(const SDValue &O) const {
return !operator==(O);
}
bool operator<(const SDValue &O) const {
return Node < O.Node || (Node == O.Node && ResNo < O.ResNo);
}
SDValue getValue(unsigned R) const {
return SDValue(Node, R);
}
// isOperandOf - Return true if this node is an operand of N.
bool isOperandOf(SDNode *N) const;
/// getValueType - Return the ValueType of the referenced return value.
///
inline MVT getValueType() const;
/// getValueSizeInBits - Returns the size of the value in bits.
///
unsigned getValueSizeInBits() const {
return getValueType().getSizeInBits();
}
// Forwarding methods - These forward to the corresponding methods in SDNode.
inline unsigned getOpcode() const;
inline unsigned getNumOperands() const;
inline const SDValue &getOperand(unsigned i) const;
inline uint64_t getConstantOperandVal(unsigned i) const;
inline bool isTargetOpcode() const;
inline bool isMachineOpcode() const;
inline unsigned getMachineOpcode() const;
/// reachesChainWithoutSideEffects - Return true if this operand (which must
/// be a chain) reaches the specified operand without crossing any
/// side-effecting instructions. In practice, this looks through token
/// factors and non-volatile loads. In order to remain efficient, this only
/// looks a couple of nodes in, it does not do an exhaustive search.
bool reachesChainWithoutSideEffects(SDValue Dest,
unsigned Depth = 2) const;
/// use_empty - Return true if there are no nodes using value ResNo
/// of Node.
///
inline bool use_empty() const;
/// hasOneUse - Return true if there is exactly one node using value
/// ResNo of Node.
///
inline bool hasOneUse() const;
};
template<> struct DenseMapInfo<SDValue> {
static inline SDValue getEmptyKey() {
return SDValue((SDNode*)-1, -1U);
}
static inline SDValue getTombstoneKey() {
return SDValue((SDNode*)-1, 0);
}
static unsigned getHashValue(const SDValue &Val) {
return ((unsigned)((uintptr_t)Val.getNode() >> 4) ^
(unsigned)((uintptr_t)Val.getNode() >> 9)) + Val.getResNo();
}
static bool isEqual(const SDValue &LHS, const SDValue &RHS) {
return LHS == RHS;
}
static bool isPod() { return true; }
};
/// simplify_type specializations - Allow casting operators to work directly on
/// SDValues as if they were SDNode*'s.
template<> struct simplify_type<SDValue> {
typedef SDNode* SimpleType;
static SimpleType getSimplifiedValue(const SDValue &Val) {
return static_cast<SimpleType>(Val.getNode());
}
};
template<> struct simplify_type<const SDValue> {
typedef SDNode* SimpleType;
static SimpleType getSimplifiedValue(const SDValue &Val) {
return static_cast<SimpleType>(Val.getNode());
}
};
/// SDUse - Represents a use of a SDNode. This class holds an SDValue,
/// which records the SDNode being used and the result number, a
/// pointer to the SDNode using the value, and Next and Prev pointers,
/// which link together all the uses of an SDNode.
///
class SDUse {
/// Val - The value being used.
SDValue Val;
/// User - The user of this value.
SDNode *User;
/// Prev, Next - Pointers to the uses list of the SDNode referred by
/// this operand.
SDUse **Prev, *Next;
SDUse(const SDUse &U); // Do not implement
void operator=(const SDUse &U); // Do not implement
public:
SDUse() : Val(), User(NULL), Prev(NULL), Next(NULL) {}
/// Normally SDUse will just implicitly convert to an SDValue that it holds.
operator const SDValue&() const { return Val; }
/// If implicit conversion to SDValue doesn't work, the get() method returns
/// the SDValue.
const SDValue &get() const { return Val; }
/// getUser - This returns the SDNode that contains this Use.
SDNode *getUser() { return User; }
/// getNext - Get the next SDUse in the use list.
SDUse *getNext() const { return Next; }
/// getNode - Convenience function for get().getNode().
SDNode *getNode() const { return Val.getNode(); }
/// getResNo - Convenience function for get().getResNo().
unsigned getResNo() const { return Val.getResNo(); }
/// getValueType - Convenience function for get().getValueType().
MVT getValueType() const { return Val.getValueType(); }
/// operator== - Convenience function for get().operator==
bool operator==(const SDValue &V) const {
return Val == V;
}
/// operator!= - Convenience function for get().operator!=
bool operator!=(const SDValue &V) const {
return Val != V;
}
/// operator< - Convenience function for get().operator<
bool operator<(const SDValue &V) const {
return Val < V;
}
private:
friend class SelectionDAG;
friend class SDNode;
void setUser(SDNode *p) { User = p; }
/// set - Remove this use from its existing use list, assign it the
/// given value, and add it to the new value's node's use list.
inline void set(const SDValue &V);
/// setInitial - like set, but only supports initializing a newly-allocated
/// SDUse with a non-null value.
inline void setInitial(const SDValue &V);
/// setNode - like set, but only sets the Node portion of the value,
/// leaving the ResNo portion unmodified.
inline void setNode(SDNode *N);
void addToList(SDUse **List) {
Next = *List;
if (Next) Next->Prev = &Next;
Prev = List;
*List = this;
}
void removeFromList() {
*Prev = Next;
if (Next) Next->Prev = Prev;
}
};
/// simplify_type specializations - Allow casting operators to work directly on
/// SDValues as if they were SDNode*'s.
template<> struct simplify_type<SDUse> {
typedef SDNode* SimpleType;
static SimpleType getSimplifiedValue(const SDUse &Val) {
return static_cast<SimpleType>(Val.getNode());
}
};
template<> struct simplify_type<const SDUse> {
typedef SDNode* SimpleType;
static SimpleType getSimplifiedValue(const SDUse &Val) {
return static_cast<SimpleType>(Val.getNode());
}
};
/// SDNode - Represents one node in the SelectionDAG.
///
class SDNode : public FoldingSetNode, public ilist_node<SDNode> {
private:
/// NodeType - The operation that this node performs.
///
short NodeType;
/// OperandsNeedDelete - This is true if OperandList was new[]'d. If true,
/// then they will be delete[]'d when the node is destroyed.
unsigned short OperandsNeedDelete : 1;
protected:
/// SubclassData - This member is defined by this class, but is not used for
/// anything. Subclasses can use it to hold whatever state they find useful.
/// This field is initialized to zero by the ctor.
unsigned short SubclassData : 15;
private:
/// NodeId - Unique id per SDNode in the DAG.
int NodeId;
/// OperandList - The values that are used by this operation.
///
SDUse *OperandList;
/// ValueList - The types of the values this node defines. SDNode's may
/// define multiple values simultaneously.
const MVT *ValueList;
/// NumOperands/NumValues - The number of entries in the Operand/Value list.
unsigned short NumOperands, NumValues;
/// UseList - List of uses for this SDNode.
SDUse *UseList;
/// getValueTypeList - Return a pointer to the specified value type.
static const MVT *getValueTypeList(MVT VT);
friend class SelectionDAG;
friend struct ilist_traits<SDNode>;
public:
//===--------------------------------------------------------------------===//
// Accessors
//
/// getOpcode - Return the SelectionDAG opcode value for this node. For
/// pre-isel nodes (those for which isMachineOpcode returns false), these
/// are the opcode values in the ISD and <target>ISD namespaces. For
/// post-isel opcodes, see getMachineOpcode.
unsigned getOpcode() const { return (unsigned short)NodeType; }
/// isTargetOpcode - Test if this node has a target-specific opcode (in the
/// <target>ISD namespace).
bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
/// isMachineOpcode - Test if this node has a post-isel opcode, directly
/// corresponding to a MachineInstr opcode.
bool isMachineOpcode() const { return NodeType < 0; }
/// getMachineOpcode - This may only be called if isMachineOpcode returns
/// true. It returns the MachineInstr opcode value that the node's opcode
/// corresponds to.
unsigned getMachineOpcode() const {
assert(isMachineOpcode() && "Not a MachineInstr opcode!");
return ~NodeType;
}
/// use_empty - Return true if there are no uses of this node.
///
bool use_empty() const { return UseList == NULL; }
/// hasOneUse - Return true if there is exactly one use of this node.
///
bool hasOneUse() const {
return !use_empty() && next(use_begin()) == use_end();
}
/// use_size - Return the number of uses of this node. This method takes
/// time proportional to the number of uses.
///
size_t use_size() const { return std::distance(use_begin(), use_end()); }
/// getNodeId - Return the unique node id.
///
int getNodeId() const { return NodeId; }
/// setNodeId - Set unique node id.
void setNodeId(int Id) { NodeId = Id; }
/// use_iterator - This class provides iterator support for SDUse
/// operands that use a specific SDNode.
class use_iterator
: public forward_iterator<SDUse, ptrdiff_t> {
SDUse *Op;
explicit use_iterator(SDUse *op) : Op(op) {
}
friend class SDNode;
public:
typedef forward_iterator<SDUse, ptrdiff_t>::reference reference;
typedef forward_iterator<SDUse, ptrdiff_t>::pointer pointer;
use_iterator(const use_iterator &I) : Op(I.Op) {}
use_iterator() : Op(0) {}
bool operator==(const use_iterator &x) const {
return Op == x.Op;
}
bool operator!=(const use_iterator &x) const {
return !operator==(x);
}
/// atEnd - return true if this iterator is at the end of uses list.
bool atEnd() const { return Op == 0; }
// Iterator traversal: forward iteration only.
use_iterator &operator++() { // Preincrement
assert(Op && "Cannot increment end iterator!");
Op = Op->getNext();
return *this;
}
use_iterator operator++(int) { // Postincrement
use_iterator tmp = *this; ++*this; return tmp;
}
/// Retrieve a pointer to the current user node.
SDNode *operator*() const {
assert(Op && "Cannot dereference end iterator!");
return Op->getUser();
}
SDNode *operator->() const { return operator*(); }
SDUse &getUse() const { return *Op; }
/// getOperandNo - Retrieve the operand # of this use in its user.
///
unsigned getOperandNo() const {
assert(Op && "Cannot dereference end iterator!");
return (unsigned)(Op - Op->getUser()->OperandList);
}
};
/// use_begin/use_end - Provide iteration support to walk over all uses
/// of an SDNode.
use_iterator use_begin() const {
return use_iterator(UseList);
}
static use_iterator use_end() { return use_iterator(0); }
/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
/// indicated value. This method ignores uses of other values defined by this
/// operation.
bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
/// hasAnyUseOfValue - Return true if there are any use of the indicated
/// value. This method ignores uses of other values defined by this operation.
bool hasAnyUseOfValue(unsigned Value) const;
/// isOnlyUserOf - Return true if this node is the only use of N.
///
bool isOnlyUserOf(SDNode *N) const;
/// isOperandOf - Return true if this node is an operand of N.
///
bool isOperandOf(SDNode *N) const;
/// isPredecessorOf - Return true if this node is a predecessor of N. This
/// node is either an operand of N or it can be reached by recursively
/// traversing up the operands.
/// NOTE: this is an expensive method. Use it carefully.
bool isPredecessorOf(SDNode *N) const;
/// getNumOperands - Return the number of values used by this operation.
///
unsigned getNumOperands() const { return NumOperands; }
/// getConstantOperandVal - Helper method returns the integer value of a
/// ConstantSDNode operand.
uint64_t getConstantOperandVal(unsigned Num) const;
const SDValue &getOperand(unsigned Num) const {
assert(Num < NumOperands && "Invalid child # of SDNode!");
return OperandList[Num];
}
typedef SDUse* op_iterator;
op_iterator op_begin() const { return OperandList; }
op_iterator op_end() const { return OperandList+NumOperands; }
SDVTList getVTList() const {
SDVTList X = { ValueList, NumValues };
return X;
};
/// getFlaggedNode - If this node has a flag operand, return the node
/// to which the flag operand points. Otherwise return NULL.
SDNode *getFlaggedNode() const {
if (getNumOperands() != 0 &&
getOperand(getNumOperands()-1).getValueType() == MVT::Flag)
return getOperand(getNumOperands()-1).getNode();
return 0;
}
// If this is a pseudo op, like copyfromreg, look to see if there is a
// real target node flagged to it. If so, return the target node.
const SDNode *getFlaggedMachineNode() const {
const SDNode *FoundNode = this;
// Climb up flag edges until a machine-opcode node is found, or the
// end of the chain is reached.
while (!FoundNode->isMachineOpcode()) {
const SDNode *N = FoundNode->getFlaggedNode();
if (!N) break;
FoundNode = N;
}
return FoundNode;
}
/// getNumValues - Return the number of values defined/returned by this
/// operator.
///
unsigned getNumValues() const { return NumValues; }
/// getValueType - Return the type of a specified result.
///
MVT getValueType(unsigned ResNo) const {
assert(ResNo < NumValues && "Illegal result number!");
return ValueList[ResNo];
}
/// getValueSizeInBits - Returns MVT::getSizeInBits(getValueType(ResNo)).
///
unsigned getValueSizeInBits(unsigned ResNo) const {
return getValueType(ResNo).getSizeInBits();
}
typedef const MVT* value_iterator;
value_iterator value_begin() const { return ValueList; }
value_iterator value_end() const { return ValueList+NumValues; }
/// getOperationName - Return the opcode of this operation for printing.
///
std::string getOperationName(const SelectionDAG *G = 0) const;
static const char* getIndexedModeName(ISD::MemIndexedMode AM);
void print(raw_ostream &OS, const SelectionDAG *G = 0) const;
void dump() const;
void dump(const SelectionDAG *G) const;
static bool classof(const SDNode *) { return true; }
/// Profile - Gather unique data for the node.
///
void Profile(FoldingSetNodeID &ID) const;
/// addUse - This method should only be used by the SDUse class.
///
void addUse(SDUse &U) { U.addToList(&UseList); }
protected:
static SDVTList getSDVTList(MVT VT) {
SDVTList Ret = { getValueTypeList(VT), 1 };
return Ret;
}
SDNode(unsigned Opc, SDVTList VTs, const SDValue *Ops, unsigned NumOps)
: NodeType(Opc), OperandsNeedDelete(true), SubclassData(0),
NodeId(-1),
OperandList(NumOps ? new SDUse[NumOps] : 0),
ValueList(VTs.VTs),
NumOperands(NumOps), NumValues(VTs.NumVTs),
UseList(NULL) {
for (unsigned i = 0; i != NumOps; ++i) {
OperandList[i].setUser(this);
OperandList[i].setInitial(Ops[i]);
}
}
/// This constructor adds no operands itself; operands can be
/// set later with InitOperands.
SDNode(unsigned Opc, SDVTList VTs)
: NodeType(Opc), OperandsNeedDelete(false), SubclassData(0),
NodeId(-1), OperandList(0), ValueList(VTs.VTs),
NumOperands(0), NumValues(VTs.NumVTs),
UseList(NULL) {}
/// InitOperands - Initialize the operands list of this with 1 operand.
void InitOperands(SDUse *Ops, const SDValue &Op0) {
Ops[0].setUser(this);
Ops[0].setInitial(Op0);
NumOperands = 1;
OperandList = Ops;
}
/// InitOperands - Initialize the operands list of this with 2 operands.
void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1) {
Ops[0].setUser(this);
Ops[0].setInitial(Op0);
Ops[1].setUser(this);
Ops[1].setInitial(Op1);
NumOperands = 2;
OperandList = Ops;
}
/// InitOperands - Initialize the operands list of this with 3 operands.
void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1,
const SDValue &Op2) {
Ops[0].setUser(this);
Ops[0].setInitial(Op0);
Ops[1].setUser(this);
Ops[1].setInitial(Op1);
Ops[2].setUser(this);
Ops[2].setInitial(Op2);
NumOperands = 3;
OperandList = Ops;
}
/// InitOperands - Initialize the operands list of this with 4 operands.
void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1,
const SDValue &Op2, const SDValue &Op3) {
Ops[0].setUser(this);
Ops[0].setInitial(Op0);
Ops[1].setUser(this);
Ops[1].setInitial(Op1);
Ops[2].setUser(this);
Ops[2].setInitial(Op2);
Ops[3].setUser(this);
Ops[3].setInitial(Op3);
NumOperands = 4;
OperandList = Ops;
}
/// InitOperands - Initialize the operands list of this with N operands.
void InitOperands(SDUse *Ops, const SDValue *Vals, unsigned N) {
for (unsigned i = 0; i != N; ++i) {
Ops[i].setUser(this);
Ops[i].setInitial(Vals[i]);
}
NumOperands = N;
OperandList = Ops;
}
/// DropOperands - Release the operands and set this node to have
/// zero operands.
void DropOperands();
};
// Define inline functions from the SDValue class.
inline unsigned SDValue::getOpcode() const {
return Node->getOpcode();
}
inline MVT SDValue::getValueType() const {
return Node->getValueType(ResNo);
}
inline unsigned SDValue::getNumOperands() const {
return Node->getNumOperands();
}
inline const SDValue &SDValue::getOperand(unsigned i) const {
return Node->getOperand(i);
}
inline uint64_t SDValue::getConstantOperandVal(unsigned i) const {
return Node->getConstantOperandVal(i);
}
inline bool SDValue::isTargetOpcode() const {
return Node->isTargetOpcode();
}
inline bool SDValue::isMachineOpcode() const {
return Node->isMachineOpcode();
}
inline unsigned SDValue::getMachineOpcode() const {
return Node->getMachineOpcode();
}
inline bool SDValue::use_empty() const {
return !Node->hasAnyUseOfValue(ResNo);
}
inline bool SDValue::hasOneUse() const {
return Node->hasNUsesOfValue(1, ResNo);
}
// Define inline functions from the SDUse class.
inline void SDUse::set(const SDValue &V) {
if (Val.getNode()) removeFromList();
Val = V;
if (V.getNode()) V.getNode()->addUse(*this);
}
inline void SDUse::setInitial(const SDValue &V) {
Val = V;
V.getNode()->addUse(*this);
}
inline void SDUse::setNode(SDNode *N) {
if (Val.getNode()) removeFromList();
Val.setNode(N);
if (N) N->addUse(*this);
}
/// UnarySDNode - This class is used for single-operand SDNodes. This is solely
/// to allow co-allocation of node operands with the node itself.
class UnarySDNode : public SDNode {
SDUse Op;
public:
UnarySDNode(unsigned Opc, SDVTList VTs, SDValue X)
: SDNode(Opc, VTs) {
InitOperands(&Op, X);
}
};
/// BinarySDNode - This class is used for two-operand SDNodes. This is solely
/// to allow co-allocation of node operands with the node itself.
class BinarySDNode : public SDNode {
SDUse Ops[2];
public:
BinarySDNode(unsigned Opc, SDVTList VTs, SDValue X, SDValue Y)
: SDNode(Opc, VTs) {
InitOperands(Ops, X, Y);
}
};
/// TernarySDNode - This class is used for three-operand SDNodes. This is solely
/// to allow co-allocation of node operands with the node itself.
class TernarySDNode : public SDNode {
SDUse Ops[3];
public:
TernarySDNode(unsigned Opc, SDVTList VTs, SDValue X, SDValue Y,
SDValue Z)
: SDNode(Opc, VTs) {
InitOperands(Ops, X, Y, Z);
}
};
/// HandleSDNode - This class is used to form a handle around another node that
/// is persistant and is updated across invocations of replaceAllUsesWith on its
/// operand. This node should be directly created by end-users and not added to
/// the AllNodes list.
class HandleSDNode : public SDNode {
SDUse Op;
public:
// FIXME: Remove the "noinline" attribute once <rdar://problem/5852746> is
// fixed.
#ifdef __GNUC__
explicit __attribute__((__noinline__)) HandleSDNode(SDValue X)
#else
explicit HandleSDNode(SDValue X)
#endif
: SDNode(ISD::HANDLENODE, getSDVTList(MVT::Other)) {
InitOperands(&Op, X);
}
~HandleSDNode();
const SDValue &getValue() const { return Op; }
};
/// Abstact virtual class for operations for memory operations
class MemSDNode : public SDNode {
private:
// MemoryVT - VT of in-memory value.
MVT MemoryVT;
//! SrcValue - Memory location for alias analysis.
const Value *SrcValue;
//! SVOffset - Memory location offset. Note that base is defined in MemSDNode
int SVOffset;
/// Flags - the low bit indicates whether this is a volatile reference;
/// the remainder is a log2 encoding of the alignment in bytes.
unsigned Flags;
public:
MemSDNode(unsigned Opc, SDVTList VTs, MVT MemoryVT,
const Value *srcValue, int SVOff,
unsigned alignment, bool isvolatile);
MemSDNode(unsigned Opc, SDVTList VTs, const SDValue *Ops, unsigned NumOps,
MVT MemoryVT, const Value *srcValue, int SVOff,
unsigned alignment, bool isvolatile);
/// Returns alignment and volatility of the memory access
unsigned getAlignment() const { return (1u << (Flags >> 1)) >> 1; }
bool isVolatile() const { return Flags & 1; }
/// Returns the SrcValue and offset that describes the location of the access
const Value *getSrcValue() const { return SrcValue; }
int getSrcValueOffset() const { return SVOffset; }
/// getMemoryVT - Return the type of the in-memory value.
MVT getMemoryVT() const { return MemoryVT; }
/// getMemOperand - Return a MachineMemOperand object describing the memory
/// reference performed by operation.
MachineMemOperand getMemOperand() const;
const SDValue &getChain() const { return getOperand(0); }
const SDValue &getBasePtr() const {
return getOperand(getOpcode() == ISD::STORE ? 2 : 1);
}
/// getRawFlags - Represent the flags as a bunch of bits.
///
unsigned getRawFlags() const { return Flags; }
// Methods to support isa and dyn_cast
static bool classof(const MemSDNode *) { return true; }
static bool classof(const SDNode *N) {
// For some targets, we lower some target intrinsics to a MemIntrinsicNode
// with either an intrinsic or a target opcode.
return N->getOpcode() == ISD::LOAD ||
N->getOpcode() == ISD::STORE ||
N->getOpcode() == ISD::ATOMIC_CMP_SWAP ||
N->getOpcode() == ISD::ATOMIC_SWAP ||
N->getOpcode() == ISD::ATOMIC_LOAD_ADD ||
N->getOpcode() == ISD::ATOMIC_LOAD_SUB ||
N->getOpcode() == ISD::ATOMIC_LOAD_AND ||
N->getOpcode() == ISD::ATOMIC_LOAD_OR ||
N->getOpcode() == ISD::ATOMIC_LOAD_XOR ||
N->getOpcode() == ISD::ATOMIC_LOAD_NAND ||
N->getOpcode() == ISD::ATOMIC_LOAD_MIN ||
N->getOpcode() == ISD::ATOMIC_LOAD_MAX ||
N->getOpcode() == ISD::ATOMIC_LOAD_UMIN ||
N->getOpcode() == ISD::ATOMIC_LOAD_UMAX ||
N->getOpcode() == ISD::INTRINSIC_W_CHAIN ||
N->getOpcode() == ISD::INTRINSIC_VOID ||
N->isTargetOpcode();
}
};
/// AtomicSDNode - A SDNode reprenting atomic operations.
///
class AtomicSDNode : public MemSDNode {
SDUse Ops[4];
public:
// Opc: opcode for atomic
// VTL: value type list
// Chain: memory chain for operaand
// Ptr: address to update as a SDValue
// Cmp: compare value
// Swp: swap value
// SrcVal: address to update as a Value (used for MemOperand)
// Align: alignment of memory
AtomicSDNode(unsigned Opc, SDVTList VTL, MVT MemVT,
SDValue Chain, SDValue Ptr,
SDValue Cmp, SDValue Swp, const Value* SrcVal,
unsigned Align=0)
: MemSDNode(Opc, VTL, MemVT, SrcVal, /*SVOffset=*/0,
Align, /*isVolatile=*/true) {
InitOperands(Ops, Chain, Ptr, Cmp, Swp);
}
AtomicSDNode(unsigned Opc, SDVTList VTL, MVT MemVT,
SDValue Chain, SDValue Ptr,
SDValue Val, const Value* SrcVal, unsigned Align=0)
: MemSDNode(Opc, VTL, MemVT, SrcVal, /*SVOffset=*/0,
Align, /*isVolatile=*/true) {
InitOperands(Ops, Chain, Ptr, Val);
}
const SDValue &getBasePtr() const { return getOperand(1); }
const SDValue &getVal() const { return getOperand(2); }
bool isCompareAndSwap() const {
unsigned Op = getOpcode();
return Op == ISD::ATOMIC_CMP_SWAP;
}
// Methods to support isa and dyn_cast
static bool classof(const AtomicSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::ATOMIC_CMP_SWAP ||
N->getOpcode() == ISD::ATOMIC_SWAP ||
N->getOpcode() == ISD::ATOMIC_LOAD_ADD ||
N->getOpcode() == ISD::ATOMIC_LOAD_SUB ||
N->getOpcode() == ISD::ATOMIC_LOAD_AND ||
N->getOpcode() == ISD::ATOMIC_LOAD_OR ||
N->getOpcode() == ISD::ATOMIC_LOAD_XOR ||
N->getOpcode() == ISD::ATOMIC_LOAD_NAND ||
N->getOpcode() == ISD::ATOMIC_LOAD_MIN ||
N->getOpcode() == ISD::ATOMIC_LOAD_MAX ||
N->getOpcode() == ISD::ATOMIC_LOAD_UMIN ||
N->getOpcode() == ISD::ATOMIC_LOAD_UMAX;
}
};
/// MemIntrinsicSDNode - This SDNode is used for target intrinsic that touches
/// memory and need an associated memory operand.
///
class MemIntrinsicSDNode : public MemSDNode {
bool ReadMem; // Intrinsic reads memory
bool WriteMem; // Intrinsic writes memory
public:
MemIntrinsicSDNode(unsigned Opc, SDVTList VTs,
const SDValue *Ops, unsigned NumOps,
MVT MemoryVT, const Value *srcValue, int SVO,
unsigned Align, bool Vol, bool ReadMem, bool WriteMem)
: MemSDNode(Opc, VTs, Ops, NumOps, MemoryVT, srcValue, SVO, Align, Vol),
ReadMem(ReadMem), WriteMem(WriteMem) {
}
bool readMem() const { return ReadMem; }
bool writeMem() const { return WriteMem; }
// Methods to support isa and dyn_cast
static bool classof(const MemIntrinsicSDNode *) { return true; }
static bool classof(const SDNode *N) {
// We lower some target intrinsics to their target opcode
// early a node with a target opcode can be of this class
return N->getOpcode() == ISD::INTRINSIC_W_CHAIN ||
N->getOpcode() == ISD::INTRINSIC_VOID ||
N->isTargetOpcode();
}
};
class ConstantSDNode : public SDNode {
const ConstantInt *Value;
protected:
friend class SelectionDAG;
ConstantSDNode(bool isTarget, const ConstantInt *val, MVT VT)
: SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, getSDVTList(VT)),
Value(val) {
}
public:
const ConstantInt *getConstantIntValue() const { return Value; }
const APInt &getAPIntValue() const { return Value->getValue(); }
uint64_t getZExtValue() const { return Value->getZExtValue(); }
int64_t getSExtValue() const { return Value->getSExtValue(); }
bool isNullValue() const { return Value->isNullValue(); }
bool isAllOnesValue() const { return Value->isAllOnesValue(); }
static bool classof(const ConstantSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::Constant ||
N->getOpcode() == ISD::TargetConstant;
}
};
class ConstantFPSDNode : public SDNode {
const ConstantFP *Value;
protected:
friend class SelectionDAG;
ConstantFPSDNode(bool isTarget, const ConstantFP *val, MVT VT)
: SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP,
getSDVTList(VT)), Value(val) {
}
public:
const APFloat& getValueAPF() const { return Value->getValueAPF(); }
const ConstantFP *getConstantFPValue() const { return Value; }
/// isExactlyValue - We don't rely on operator== working on double values, as
/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
/// As such, this method can be used to do an exact bit-for-bit comparison of
/// two floating point values.
/// We leave the version with the double argument here because it's just so
/// convenient to write "2.0" and the like. Without this function we'd
/// have to duplicate its logic everywhere it's called.
bool isExactlyValue(double V) const {
bool ignored;
// convert is not supported on this type
if (&Value->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble)
return false;
APFloat Tmp(V);
Tmp.convert(Value->getValueAPF().getSemantics(),
APFloat::rmNearestTiesToEven, &ignored);
return isExactlyValue(Tmp);
}
bool isExactlyValue(const APFloat& V) const;
bool isValueValidForType(MVT VT, const APFloat& Val);
static bool classof(const ConstantFPSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::ConstantFP ||
N->getOpcode() == ISD::TargetConstantFP;
}
};
class GlobalAddressSDNode : public SDNode {
GlobalValue *TheGlobal;
int64_t Offset;
protected:
friend class SelectionDAG;
GlobalAddressSDNode(bool isTarget, const GlobalValue *GA, MVT VT,
int64_t o = 0);
public:
GlobalValue *getGlobal() const { return TheGlobal; }
int64_t getOffset() const { return Offset; }
static bool classof(const GlobalAddressSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::GlobalAddress ||
N->getOpcode() == ISD::TargetGlobalAddress ||
N->getOpcode() == ISD::GlobalTLSAddress ||
N->getOpcode() == ISD::TargetGlobalTLSAddress;
}
};
class FrameIndexSDNode : public SDNode {
int FI;
protected:
friend class SelectionDAG;
FrameIndexSDNode(int fi, MVT VT, bool isTarg)
: SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex, getSDVTList(VT)),
FI(fi) {
}
public:
int getIndex() const { return FI; }
static bool classof(const FrameIndexSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::FrameIndex ||
N->getOpcode() == ISD::TargetFrameIndex;
}
};
class JumpTableSDNode : public SDNode {
int JTI;
protected:
friend class SelectionDAG;
JumpTableSDNode(int jti, MVT VT, bool isTarg)
: SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable, getSDVTList(VT)),
JTI(jti) {
}
public:
int getIndex() const { return JTI; }
static bool classof(const JumpTableSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::JumpTable ||
N->getOpcode() == ISD::TargetJumpTable;
}
};
class ConstantPoolSDNode : public SDNode {
union {
Constant *ConstVal;
MachineConstantPoolValue *MachineCPVal;
} Val;
int Offset; // It's a MachineConstantPoolValue if top bit is set.
unsigned Alignment;
protected:
friend class SelectionDAG;
ConstantPoolSDNode(bool isTarget, Constant *c, MVT VT, int o=0)
: SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
getSDVTList(VT)), Offset(o), Alignment(0) {
assert((int)Offset >= 0 && "Offset is too large");
Val.ConstVal = c;
}
ConstantPoolSDNode(bool isTarget, Constant *c, MVT VT, int o, unsigned Align)
: SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
getSDVTList(VT)), Offset(o), Alignment(Align) {
assert((int)Offset >= 0 && "Offset is too large");
Val.ConstVal = c;
}
ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
MVT VT, int o=0)
: SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
getSDVTList(VT)), Offset(o), Alignment(0) {
assert((int)Offset >= 0 && "Offset is too large");
Val.MachineCPVal = v;
Offset |= 1 << (sizeof(unsigned)*8-1);
}
ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
MVT VT, int o, unsigned Align)
: SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
getSDVTList(VT)), Offset(o), Alignment(Align) {
assert((int)Offset >= 0 && "Offset is too large");
Val.MachineCPVal = v;
Offset |= 1 << (sizeof(unsigned)*8-1);
}
public:
bool isMachineConstantPoolEntry() const {
return (int)Offset < 0;
}
Constant *getConstVal() const {
assert(!isMachineConstantPoolEntry() && "Wrong constantpool type");
return Val.ConstVal;
}
MachineConstantPoolValue *getMachineCPVal() const {
assert(isMachineConstantPoolEntry() && "Wrong constantpool type");
return Val.MachineCPVal;
}
int getOffset() const {
return Offset & ~(1 << (sizeof(unsigned)*8-1));
}
// Return the alignment of this constant pool object, which is either 0 (for
// default alignment) or log2 of the desired value.
unsigned getAlignment() const { return Alignment; }
const Type *getType() const;
static bool classof(const ConstantPoolSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::ConstantPool ||
N->getOpcode() == ISD::TargetConstantPool;
}
};
class BasicBlockSDNode : public SDNode {
MachineBasicBlock *MBB;
protected:
friend class SelectionDAG;
explicit BasicBlockSDNode(MachineBasicBlock *mbb)
: SDNode(ISD::BasicBlock, getSDVTList(MVT::Other)), MBB(mbb) {
}
public:
MachineBasicBlock *getBasicBlock() const { return MBB; }
static bool classof(const BasicBlockSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::BasicBlock;
}
};
/// SrcValueSDNode - An SDNode that holds an arbitrary LLVM IR Value. This is
/// used when the SelectionDAG needs to make a simple reference to something
/// in the LLVM IR representation.
///
/// Note that this is not used for carrying alias information; that is done
/// with MemOperandSDNode, which includes a Value which is required to be a
/// pointer, and several other fields specific to memory references.
///
class SrcValueSDNode : public SDNode {
const Value *V;
protected:
friend class SelectionDAG;
/// Create a SrcValue for a general value.
explicit SrcValueSDNode(const Value *v)
: SDNode(ISD::SRCVALUE, getSDVTList(MVT::Other)), V(v) {}
public:
/// getValue - return the contained Value.
const Value *getValue() const { return V; }
static bool classof(const SrcValueSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::SRCVALUE;
}
};
/// MemOperandSDNode - An SDNode that holds a MachineMemOperand. This is
/// used to represent a reference to memory after ISD::LOAD
/// and ISD::STORE have been lowered.
///
class MemOperandSDNode : public SDNode {
protected:
friend class SelectionDAG;
/// Create a MachineMemOperand node
explicit MemOperandSDNode(const MachineMemOperand &mo)
: SDNode(ISD::MEMOPERAND, getSDVTList(MVT::Other)), MO(mo) {}
public:
/// MO - The contained MachineMemOperand.
const MachineMemOperand MO;
static bool classof(const MemOperandSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::MEMOPERAND;
}
};
class RegisterSDNode : public SDNode {
unsigned Reg;
protected:
friend class SelectionDAG;
RegisterSDNode(unsigned reg, MVT VT)
: SDNode(ISD::Register, getSDVTList(VT)), Reg(reg) {
}
public:
unsigned getReg() const { return Reg; }
static bool classof(const RegisterSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::Register;
}
};
class DbgStopPointSDNode : public SDNode {
SDUse Chain;
unsigned Line;
unsigned Column;
Value *CU;
protected:
friend class SelectionDAG;
DbgStopPointSDNode(SDValue ch, unsigned l, unsigned c,
Value *cu)
: SDNode(ISD::DBG_STOPPOINT, getSDVTList(MVT::Other)),
Line(l), Column(c), CU(cu) {
InitOperands(&Chain, ch);
}
public:
unsigned getLine() const { return Line; }
unsigned getColumn() const { return Column; }
Value *getCompileUnit() const { return CU; }
static bool classof(const DbgStopPointSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::DBG_STOPPOINT;
}
};
class LabelSDNode : public SDNode {
SDUse Chain;
unsigned LabelID;
protected:
friend class SelectionDAG;
LabelSDNode(unsigned NodeTy, SDValue ch, unsigned id)
: SDNode(NodeTy, getSDVTList(MVT::Other)), LabelID(id) {
InitOperands(&Chain, ch);
}
public:
unsigned getLabelID() const { return LabelID; }
static bool classof(const LabelSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::DBG_LABEL ||
N->getOpcode() == ISD::EH_LABEL;
}
};
class ExternalSymbolSDNode : public SDNode {
const char *Symbol;
protected:
friend class SelectionDAG;
ExternalSymbolSDNode(bool isTarget, const char *Sym, MVT VT)
: SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol,
getSDVTList(VT)), Symbol(Sym) {
}
public:
const char *getSymbol() const { return Symbol; }
static bool classof(const ExternalSymbolSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::ExternalSymbol ||
N->getOpcode() == ISD::TargetExternalSymbol;
}
};
class CondCodeSDNode : public SDNode {
ISD::CondCode Condition;
protected:
friend class SelectionDAG;
explicit CondCodeSDNode(ISD::CondCode Cond)
: SDNode(ISD::CONDCODE, getSDVTList(MVT::Other)), Condition(Cond) {
}
public:
ISD::CondCode get() const { return Condition; }
static bool classof(const CondCodeSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::CONDCODE;
}
};
/// CvtRndSatSDNode - NOTE: avoid using this node as this may disappear in the
/// future and most targets don't support it.
class CvtRndSatSDNode : public SDNode {
ISD::CvtCode CvtCode;
protected:
friend class SelectionDAG;
explicit CvtRndSatSDNode(MVT VT, const SDValue *Ops, unsigned NumOps,
ISD::CvtCode Code)
: SDNode(ISD::CONVERT_RNDSAT, getSDVTList(VT), Ops, NumOps), CvtCode(Code) {
assert(NumOps == 5 && "wrong number of operations");
}
public:
ISD::CvtCode getCvtCode() const { return CvtCode; }
static bool classof(const CvtRndSatSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::CONVERT_RNDSAT;
}
};
namespace ISD {
struct ArgFlagsTy {
private:
static const uint64_t NoFlagSet = 0ULL;
static const uint64_t ZExt = 1ULL<<0; ///< Zero extended
static const uint64_t ZExtOffs = 0;
static const uint64_t SExt = 1ULL<<1; ///< Sign extended
static const uint64_t SExtOffs = 1;
static const uint64_t InReg = 1ULL<<2; ///< Passed in register
static const uint64_t InRegOffs = 2;
static const uint64_t SRet = 1ULL<<3; ///< Hidden struct-ret ptr
static const uint64_t SRetOffs = 3;
static const uint64_t ByVal = 1ULL<<4; ///< Struct passed by value
static const uint64_t ByValOffs = 4;
static const uint64_t Nest = 1ULL<<5; ///< Nested fn static chain
static const uint64_t NestOffs = 5;
static const uint64_t ByValAlign = 0xFULL << 6; //< Struct alignment
static const uint64_t ByValAlignOffs = 6;
static const uint64_t Split = 1ULL << 10;
static const uint64_t SplitOffs = 10;
static const uint64_t OrigAlign = 0x1FULL<<27;
static const uint64_t OrigAlignOffs = 27;
static const uint64_t ByValSize = 0xffffffffULL << 32; //< Struct size
static const uint64_t ByValSizeOffs = 32;
static const uint64_t One = 1ULL; //< 1 of this type, for shifts
uint64_t Flags;
public:
ArgFlagsTy() : Flags(0) { }
bool isZExt() const { return Flags & ZExt; }
void setZExt() { Flags |= One << ZExtOffs; }
bool isSExt() const { return Flags & SExt; }
void setSExt() { Flags |= One << SExtOffs; }
bool isInReg() const { return Flags & InReg; }
void setInReg() { Flags |= One << InRegOffs; }
bool isSRet() const { return Flags & SRet; }
void setSRet() { Flags |= One << SRetOffs; }
bool isByVal() const { return Flags & ByVal; }
void setByVal() { Flags |= One << ByValOffs; }
bool isNest() const { return Flags & Nest; }
void setNest() { Flags |= One << NestOffs; }
unsigned getByValAlign() const {
return (unsigned)
((One << ((Flags & ByValAlign) >> ByValAlignOffs)) / 2);
}
void setByValAlign(unsigned A) {
Flags = (Flags & ~ByValAlign) |
(uint64_t(Log2_32(A) + 1) << ByValAlignOffs);
}
bool isSplit() const { return Flags & Split; }
void setSplit() { Flags |= One << SplitOffs; }
unsigned getOrigAlign() const {
return (unsigned)
((One << ((Flags & OrigAlign) >> OrigAlignOffs)) / 2);
}
void setOrigAlign(unsigned A) {
Flags = (Flags & ~OrigAlign) |
(uint64_t(Log2_32(A) + 1) << OrigAlignOffs);
}
unsigned getByValSize() const {
return (unsigned)((Flags & ByValSize) >> ByValSizeOffs);
}
void setByValSize(unsigned S) {
Flags = (Flags & ~ByValSize) | (uint64_t(S) << ByValSizeOffs);
}
/// getArgFlagsString - Returns the flags as a string, eg: "zext align:4".
std::string getArgFlagsString();
/// getRawBits - Represent the flags as a bunch of bits.
uint64_t getRawBits() const { return Flags; }
};
}
/// ARG_FLAGSSDNode - Leaf node holding parameter flags.
class ARG_FLAGSSDNode : public SDNode {
ISD::ArgFlagsTy TheFlags;
protected:
friend class SelectionDAG;
explicit ARG_FLAGSSDNode(ISD::ArgFlagsTy Flags)
: SDNode(ISD::ARG_FLAGS, getSDVTList(MVT::Other)), TheFlags(Flags) {
}
public:
ISD::ArgFlagsTy getArgFlags() const { return TheFlags; }
static bool classof(const ARG_FLAGSSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::ARG_FLAGS;
}
};
/// CallSDNode - Node for calls -- ISD::CALL.
class CallSDNode : public SDNode {
unsigned CallingConv;
bool IsVarArg;
bool IsTailCall;
// We might eventually want a full-blown Attributes for the result; that
// will expand the size of the representation. At the moment we only
// need Inreg.
bool Inreg;
protected:
friend class SelectionDAG;
CallSDNode(unsigned cc, bool isvararg, bool istailcall, bool isinreg,
SDVTList VTs, const SDValue *Operands, unsigned numOperands)
: SDNode(ISD::CALL, VTs, Operands, numOperands),
CallingConv(cc), IsVarArg(isvararg), IsTailCall(istailcall),
Inreg(isinreg) {}
public:
unsigned getCallingConv() const { return CallingConv; }
unsigned isVarArg() const { return IsVarArg; }
unsigned isTailCall() const { return IsTailCall; }
unsigned isInreg() const { return Inreg; }
/// Set this call to not be marked as a tail call. Normally setter
/// methods in SDNodes are unsafe because it breaks the CSE map,
/// but we don't include the tail call flag for calls so it's ok
/// in this case.
void setNotTailCall() { IsTailCall = false; }
SDValue getChain() const { return getOperand(0); }
SDValue getCallee() const { return getOperand(1); }
unsigned getNumArgs() const { return (getNumOperands() - 2) / 2; }
SDValue getArg(unsigned i) const { return getOperand(2+2*i); }
SDValue getArgFlagsVal(unsigned i) const {
return getOperand(3+2*i);
}
ISD::ArgFlagsTy getArgFlags(unsigned i) const {
return cast<ARG_FLAGSSDNode>(getArgFlagsVal(i).getNode())->getArgFlags();
}
unsigned getNumRetVals() const { return getNumValues() - 1; }
MVT getRetValType(unsigned i) const { return getValueType(i); }
static bool classof(const CallSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::CALL;
}
};
/// VTSDNode - This class is used to represent MVT's, which are used
/// to parameterize some operations.
class VTSDNode : public SDNode {
MVT ValueType;
protected:
friend class SelectionDAG;
explicit VTSDNode(MVT VT)
: SDNode(ISD::VALUETYPE, getSDVTList(MVT::Other)), ValueType(VT) {
}
public:
MVT getVT() const { return ValueType; }
static bool classof(const VTSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::VALUETYPE;
}
};
/// LSBaseSDNode - Base class for LoadSDNode and StoreSDNode
///
class LSBaseSDNode : public MemSDNode {
protected:
//! Operand array for load and store
/*!
\note Moving this array to the base class captures more
common functionality shared between LoadSDNode and
StoreSDNode
*/
SDUse Ops[4];
public:
LSBaseSDNode(ISD::NodeType NodeTy, SDValue *Operands, unsigned numOperands,
SDVTList VTs, ISD::MemIndexedMode AM, MVT VT,
const Value *SV, int SVO, unsigned Align, bool Vol)
: MemSDNode(NodeTy, VTs, VT, SV, SVO, Align, Vol) {
SubclassData = AM;
InitOperands(Ops, Operands, numOperands);
assert(Align != 0 && "Loads and stores should have non-zero aligment");
assert((getOffset().getOpcode() == ISD::UNDEF || isIndexed()) &&
"Only indexed loads and stores have a non-undef offset operand");
}
const SDValue &getOffset() const {
return getOperand(getOpcode() == ISD::LOAD ? 2 : 3);
}
/// getAddressingMode - Return the addressing mode for this load or store:
/// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
ISD::MemIndexedMode getAddressingMode() const {
return ISD::MemIndexedMode(SubclassData & 7);
}
/// isIndexed - Return true if this is a pre/post inc/dec load/store.
bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
/// isUnindexed - Return true if this is NOT a pre/post inc/dec load/store.
bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
static bool classof(const LSBaseSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::LOAD ||
N->getOpcode() == ISD::STORE;
}
};
/// LoadSDNode - This class is used to represent ISD::LOAD nodes.
///
class LoadSDNode : public LSBaseSDNode {
protected:
friend class SelectionDAG;
LoadSDNode(SDValue *ChainPtrOff, SDVTList VTs,
ISD::MemIndexedMode AM, ISD::LoadExtType ETy, MVT LVT,
const Value *SV, int O=0, unsigned Align=0, bool Vol=false)
: LSBaseSDNode(ISD::LOAD, ChainPtrOff, 3,
VTs, AM, LVT, SV, O, Align, Vol) {
SubclassData |= (unsigned short)ETy << 3;
}
public:
/// getExtensionType - Return whether this is a plain node,
/// or one of the varieties of value-extending loads.
ISD::LoadExtType getExtensionType() const {
return ISD::LoadExtType((SubclassData >> 3) & 3);
}
const SDValue &getBasePtr() const { return getOperand(1); }
const SDValue &getOffset() const { return getOperand(2); }
static bool classof(const LoadSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::LOAD;
}
};
/// StoreSDNode - This class is used to represent ISD::STORE nodes.
///
class StoreSDNode : public LSBaseSDNode {
protected:
friend class SelectionDAG;
StoreSDNode(SDValue *ChainValuePtrOff, SDVTList VTs,
ISD::MemIndexedMode AM, bool isTrunc, MVT SVT,
const Value *SV, int O=0, unsigned Align=0, bool Vol=false)
: LSBaseSDNode(ISD::STORE, ChainValuePtrOff, 4,
VTs, AM, SVT, SV, O, Align, Vol) {
SubclassData |= (unsigned short)isTrunc << 3;
}
public:
/// isTruncatingStore - Return true if the op does a truncation before store.
/// For integers this is the same as doing a TRUNCATE and storing the result.
/// For floats, it is the same as doing an FP_ROUND and storing the result.
bool isTruncatingStore() const { return (SubclassData >> 3) & 1; }
const SDValue &getValue() const { return getOperand(1); }
const SDValue &getBasePtr() const { return getOperand(2); }
const SDValue &getOffset() const { return getOperand(3); }
static bool classof(const StoreSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::STORE;
}
};
class SDNodeIterator : public forward_iterator<SDNode, ptrdiff_t> {
SDNode *Node;
unsigned Operand;
SDNodeIterator(SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
public:
bool operator==(const SDNodeIterator& x) const {
return Operand == x.Operand;
}
bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
const SDNodeIterator &operator=(const SDNodeIterator &I) {
assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
Operand = I.Operand;
return *this;
}
pointer operator*() const {
return Node->getOperand(Operand).getNode();
}
pointer operator->() const { return operator*(); }
SDNodeIterator& operator++() { // Preincrement
++Operand;
return *this;
}
SDNodeIterator operator++(int) { // Postincrement
SDNodeIterator tmp = *this; ++*this; return tmp;
}
static SDNodeIterator begin(SDNode *N) { return SDNodeIterator(N, 0); }
static SDNodeIterator end (SDNode *N) {
return SDNodeIterator(N, N->getNumOperands());
}
unsigned getOperand() const { return Operand; }
const SDNode *getNode() const { return Node; }
};
template <> struct GraphTraits<SDNode*> {
typedef SDNode NodeType;
typedef SDNodeIterator ChildIteratorType;
static inline NodeType *getEntryNode(SDNode *N) { return N; }
static inline ChildIteratorType child_begin(NodeType *N) {
return SDNodeIterator::begin(N);
}
static inline ChildIteratorType child_end(NodeType *N) {
return SDNodeIterator::end(N);
}
};
/// LargestSDNode - The largest SDNode class.
///
typedef LoadSDNode LargestSDNode;
/// MostAlignedSDNode - The SDNode class with the greatest alignment
/// requirement.
///
typedef ARG_FLAGSSDNode MostAlignedSDNode;
namespace ISD {
/// isNormalLoad - Returns true if the specified node is a non-extending
/// and unindexed load.
inline bool isNormalLoad(const SDNode *N) {
const LoadSDNode *Ld = dyn_cast<LoadSDNode>(N);
return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD &&
Ld->getAddressingMode() == ISD::UNINDEXED;
}
/// isNON_EXTLoad - Returns true if the specified node is a non-extending
/// load.
inline bool isNON_EXTLoad(const SDNode *N) {
return isa<LoadSDNode>(N) &&
cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD;
}
/// isEXTLoad - Returns true if the specified node is a EXTLOAD.
///
inline bool isEXTLoad(const SDNode *N) {
return isa<LoadSDNode>(N) &&
cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD;
}
/// isSEXTLoad - Returns true if the specified node is a SEXTLOAD.
///
inline bool isSEXTLoad(const SDNode *N) {
return isa<LoadSDNode>(N) &&
cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
}
/// isZEXTLoad - Returns true if the specified node is a ZEXTLOAD.
///
inline bool isZEXTLoad(const SDNode *N) {
return isa<LoadSDNode>(N) &&
cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD;
}
/// isUNINDEXEDLoad - Returns true if the specified node is an unindexed load.
///
inline bool isUNINDEXEDLoad(const SDNode *N) {
return isa<LoadSDNode>(N) &&
cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
}
/// isNormalStore - Returns true if the specified node is a non-truncating
/// and unindexed store.
inline bool isNormalStore(const SDNode *N) {
const StoreSDNode *St = dyn_cast<StoreSDNode>(N);
return St && !St->isTruncatingStore() &&
St->getAddressingMode() == ISD::UNINDEXED;
}
/// isNON_TRUNCStore - Returns true if the specified node is a non-truncating
/// store.
inline bool isNON_TRUNCStore(const SDNode *N) {
return isa<StoreSDNode>(N) && !cast<StoreSDNode>(N)->isTruncatingStore();
}
/// isTRUNCStore - Returns true if the specified node is a truncating
/// store.
inline bool isTRUNCStore(const SDNode *N) {
return isa<StoreSDNode>(N) && cast<StoreSDNode>(N)->isTruncatingStore();
}
/// isUNINDEXEDStore - Returns true if the specified node is an
/// unindexed store.
inline bool isUNINDEXEDStore(const SDNode *N) {
return isa<StoreSDNode>(N) &&
cast<StoreSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
}
}
} // end llvm namespace
#endif