mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-11 10:31:40 +00:00
8dd26253f5
Creates a configurable regalloc pipeline. Ensure specific llc options do what they say and nothing more: -reglloc=... has no effect other than selecting the allocator pass itself. This patch introduces a new umbrella flag, "-optimize-regalloc", to enable/disable the optimizing regalloc "superpass". This allows for example testing coalscing and scheduling under -O0 or vice-versa. When a CodeGen pass requires the MachineFunction to have a particular property, we need to explicitly define that property so it can be directly queried rather than naming a specific Pass. For example, to check for SSA, use MRI->isSSA, not addRequired<PHIElimination>. CodeGen transformation passes are never "required" as an analysis ProcessImplicitDefs does not require LiveVariables. We have a plan to massively simplify some of the early passes within the regalloc superpass. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@150226 91177308-0d34-0410-b5e6-96231b3b80d8
441 lines
17 KiB
C++
441 lines
17 KiB
C++
//===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass eliminates machine instruction PHI nodes by inserting copy
|
|
// instructions. This destroys SSA information, but is the desired input for
|
|
// some register allocators.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "phielim"
|
|
#include "PHIEliminationUtils.h"
|
|
#include "llvm/CodeGen/LiveVariables.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/CodeGen/MachineDominators.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineLoopInfo.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include <algorithm>
|
|
using namespace llvm;
|
|
|
|
static cl::opt<bool>
|
|
DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false),
|
|
cl::Hidden, cl::desc("Disable critical edge splitting "
|
|
"during PHI elimination"));
|
|
|
|
namespace {
|
|
class PHIElimination : public MachineFunctionPass {
|
|
MachineRegisterInfo *MRI; // Machine register information
|
|
|
|
public:
|
|
static char ID; // Pass identification, replacement for typeid
|
|
PHIElimination() : MachineFunctionPass(ID) {
|
|
initializePHIEliminationPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
virtual bool runOnMachineFunction(MachineFunction &Fn);
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const;
|
|
|
|
private:
|
|
/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
|
|
/// in predecessor basic blocks.
|
|
///
|
|
bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
|
|
void LowerAtomicPHINode(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator AfterPHIsIt);
|
|
|
|
/// analyzePHINodes - Gather information about the PHI nodes in
|
|
/// here. In particular, we want to map the number of uses of a virtual
|
|
/// register which is used in a PHI node. We map that to the BB the
|
|
/// vreg is coming from. This is used later to determine when the vreg
|
|
/// is killed in the BB.
|
|
///
|
|
void analyzePHINodes(const MachineFunction& Fn);
|
|
|
|
/// Split critical edges where necessary for good coalescer performance.
|
|
bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB,
|
|
LiveVariables &LV, MachineLoopInfo *MLI);
|
|
|
|
typedef std::pair<unsigned, unsigned> BBVRegPair;
|
|
typedef DenseMap<BBVRegPair, unsigned> VRegPHIUse;
|
|
|
|
VRegPHIUse VRegPHIUseCount;
|
|
|
|
// Defs of PHI sources which are implicit_def.
|
|
SmallPtrSet<MachineInstr*, 4> ImpDefs;
|
|
|
|
// Map reusable lowered PHI node -> incoming join register.
|
|
typedef DenseMap<MachineInstr*, unsigned,
|
|
MachineInstrExpressionTrait> LoweredPHIMap;
|
|
LoweredPHIMap LoweredPHIs;
|
|
};
|
|
}
|
|
|
|
STATISTIC(NumAtomic, "Number of atomic phis lowered");
|
|
STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split");
|
|
STATISTIC(NumReused, "Number of reused lowered phis");
|
|
|
|
char PHIElimination::ID = 0;
|
|
char& llvm::PHIEliminationID = PHIElimination::ID;
|
|
|
|
INITIALIZE_PASS_BEGIN(PHIElimination, "phi-node-elimination",
|
|
"Eliminate PHI nodes for register allocation",
|
|
false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(LiveVariables)
|
|
INITIALIZE_PASS_END(PHIElimination, "phi-node-elimination",
|
|
"Eliminate PHI nodes for register allocation", false, false)
|
|
|
|
void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.addPreserved<LiveVariables>();
|
|
AU.addPreserved<MachineDominatorTree>();
|
|
AU.addPreserved<MachineLoopInfo>();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
bool PHIElimination::runOnMachineFunction(MachineFunction &MF) {
|
|
MRI = &MF.getRegInfo();
|
|
|
|
bool Changed = false;
|
|
|
|
// This pass takes the function out of SSA form.
|
|
MRI->leaveSSA();
|
|
|
|
// Split critical edges to help the coalescer
|
|
if (!DisableEdgeSplitting) {
|
|
if (LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>()) {
|
|
MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
|
|
for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
|
|
Changed |= SplitPHIEdges(MF, *I, *LV, MLI);
|
|
}
|
|
}
|
|
|
|
// Populate VRegPHIUseCount
|
|
analyzePHINodes(MF);
|
|
|
|
// Eliminate PHI instructions by inserting copies into predecessor blocks.
|
|
for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
|
|
Changed |= EliminatePHINodes(MF, *I);
|
|
|
|
// Remove dead IMPLICIT_DEF instructions.
|
|
for (SmallPtrSet<MachineInstr*, 4>::iterator I = ImpDefs.begin(),
|
|
E = ImpDefs.end(); I != E; ++I) {
|
|
MachineInstr *DefMI = *I;
|
|
unsigned DefReg = DefMI->getOperand(0).getReg();
|
|
if (MRI->use_nodbg_empty(DefReg))
|
|
DefMI->eraseFromParent();
|
|
}
|
|
|
|
// Clean up the lowered PHI instructions.
|
|
for (LoweredPHIMap::iterator I = LoweredPHIs.begin(), E = LoweredPHIs.end();
|
|
I != E; ++I)
|
|
MF.DeleteMachineInstr(I->first);
|
|
|
|
LoweredPHIs.clear();
|
|
ImpDefs.clear();
|
|
VRegPHIUseCount.clear();
|
|
|
|
return Changed;
|
|
}
|
|
|
|
/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
|
|
/// predecessor basic blocks.
|
|
///
|
|
bool PHIElimination::EliminatePHINodes(MachineFunction &MF,
|
|
MachineBasicBlock &MBB) {
|
|
if (MBB.empty() || !MBB.front().isPHI())
|
|
return false; // Quick exit for basic blocks without PHIs.
|
|
|
|
// Get an iterator to the first instruction after the last PHI node (this may
|
|
// also be the end of the basic block).
|
|
MachineBasicBlock::iterator AfterPHIsIt = MBB.SkipPHIsAndLabels(MBB.begin());
|
|
|
|
while (MBB.front().isPHI())
|
|
LowerAtomicPHINode(MBB, AfterPHIsIt);
|
|
|
|
return true;
|
|
}
|
|
|
|
/// isSourceDefinedByImplicitDef - Return true if all sources of the phi node
|
|
/// are implicit_def's.
|
|
static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi,
|
|
const MachineRegisterInfo *MRI) {
|
|
for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) {
|
|
unsigned SrcReg = MPhi->getOperand(i).getReg();
|
|
const MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
|
|
if (!DefMI || !DefMI->isImplicitDef())
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
|
|
/// LowerAtomicPHINode - Lower the PHI node at the top of the specified block,
|
|
/// under the assuption that it needs to be lowered in a way that supports
|
|
/// atomic execution of PHIs. This lowering method is always correct all of the
|
|
/// time.
|
|
///
|
|
void PHIElimination::LowerAtomicPHINode(
|
|
MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator AfterPHIsIt) {
|
|
++NumAtomic;
|
|
// Unlink the PHI node from the basic block, but don't delete the PHI yet.
|
|
MachineInstr *MPhi = MBB.remove(MBB.begin());
|
|
|
|
unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
|
|
unsigned DestReg = MPhi->getOperand(0).getReg();
|
|
assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
|
|
bool isDead = MPhi->getOperand(0).isDead();
|
|
|
|
// Create a new register for the incoming PHI arguments.
|
|
MachineFunction &MF = *MBB.getParent();
|
|
unsigned IncomingReg = 0;
|
|
bool reusedIncoming = false; // Is IncomingReg reused from an earlier PHI?
|
|
|
|
// Insert a register to register copy at the top of the current block (but
|
|
// after any remaining phi nodes) which copies the new incoming register
|
|
// into the phi node destination.
|
|
const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
|
|
if (isSourceDefinedByImplicitDef(MPhi, MRI))
|
|
// If all sources of a PHI node are implicit_def, just emit an
|
|
// implicit_def instead of a copy.
|
|
BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
|
|
TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
|
|
else {
|
|
// Can we reuse an earlier PHI node? This only happens for critical edges,
|
|
// typically those created by tail duplication.
|
|
unsigned &entry = LoweredPHIs[MPhi];
|
|
if (entry) {
|
|
// An identical PHI node was already lowered. Reuse the incoming register.
|
|
IncomingReg = entry;
|
|
reusedIncoming = true;
|
|
++NumReused;
|
|
DEBUG(dbgs() << "Reusing " << PrintReg(IncomingReg) << " for " << *MPhi);
|
|
} else {
|
|
const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
|
|
entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
|
|
}
|
|
BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
|
|
TII->get(TargetOpcode::COPY), DestReg)
|
|
.addReg(IncomingReg);
|
|
}
|
|
|
|
// Update live variable information if there is any.
|
|
LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>();
|
|
if (LV) {
|
|
MachineInstr *PHICopy = prior(AfterPHIsIt);
|
|
|
|
if (IncomingReg) {
|
|
LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
|
|
|
|
// Increment use count of the newly created virtual register.
|
|
LV->setPHIJoin(IncomingReg);
|
|
|
|
// When we are reusing the incoming register, it may already have been
|
|
// killed in this block. The old kill will also have been inserted at
|
|
// AfterPHIsIt, so it appears before the current PHICopy.
|
|
if (reusedIncoming)
|
|
if (MachineInstr *OldKill = VI.findKill(&MBB)) {
|
|
DEBUG(dbgs() << "Remove old kill from " << *OldKill);
|
|
LV->removeVirtualRegisterKilled(IncomingReg, OldKill);
|
|
DEBUG(MBB.dump());
|
|
}
|
|
|
|
// Add information to LiveVariables to know that the incoming value is
|
|
// killed. Note that because the value is defined in several places (once
|
|
// each for each incoming block), the "def" block and instruction fields
|
|
// for the VarInfo is not filled in.
|
|
LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
|
|
}
|
|
|
|
// Since we are going to be deleting the PHI node, if it is the last use of
|
|
// any registers, or if the value itself is dead, we need to move this
|
|
// information over to the new copy we just inserted.
|
|
LV->removeVirtualRegistersKilled(MPhi);
|
|
|
|
// If the result is dead, update LV.
|
|
if (isDead) {
|
|
LV->addVirtualRegisterDead(DestReg, PHICopy);
|
|
LV->removeVirtualRegisterDead(DestReg, MPhi);
|
|
}
|
|
}
|
|
|
|
// Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
|
|
for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
|
|
--VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(),
|
|
MPhi->getOperand(i).getReg())];
|
|
|
|
// Now loop over all of the incoming arguments, changing them to copy into the
|
|
// IncomingReg register in the corresponding predecessor basic block.
|
|
SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
|
|
for (int i = NumSrcs - 1; i >= 0; --i) {
|
|
unsigned SrcReg = MPhi->getOperand(i*2+1).getReg();
|
|
unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg();
|
|
|
|
assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
|
|
"Machine PHI Operands must all be virtual registers!");
|
|
|
|
// Get the MachineBasicBlock equivalent of the BasicBlock that is the source
|
|
// path the PHI.
|
|
MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
|
|
|
|
// If source is defined by an implicit def, there is no need to insert a
|
|
// copy.
|
|
MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
|
|
if (DefMI->isImplicitDef()) {
|
|
ImpDefs.insert(DefMI);
|
|
continue;
|
|
}
|
|
|
|
// Check to make sure we haven't already emitted the copy for this block.
|
|
// This can happen because PHI nodes may have multiple entries for the same
|
|
// basic block.
|
|
if (!MBBsInsertedInto.insert(&opBlock))
|
|
continue; // If the copy has already been emitted, we're done.
|
|
|
|
// Find a safe location to insert the copy, this may be the first terminator
|
|
// in the block (or end()).
|
|
MachineBasicBlock::iterator InsertPos =
|
|
findPHICopyInsertPoint(&opBlock, &MBB, SrcReg);
|
|
|
|
// Insert the copy.
|
|
if (!reusedIncoming && IncomingReg)
|
|
BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
|
|
TII->get(TargetOpcode::COPY), IncomingReg).addReg(SrcReg, 0, SrcSubReg);
|
|
|
|
// Now update live variable information if we have it. Otherwise we're done
|
|
if (!LV) continue;
|
|
|
|
// We want to be able to insert a kill of the register if this PHI (aka, the
|
|
// copy we just inserted) is the last use of the source value. Live
|
|
// variable analysis conservatively handles this by saying that the value is
|
|
// live until the end of the block the PHI entry lives in. If the value
|
|
// really is dead at the PHI copy, there will be no successor blocks which
|
|
// have the value live-in.
|
|
|
|
// Also check to see if this register is in use by another PHI node which
|
|
// has not yet been eliminated. If so, it will be killed at an appropriate
|
|
// point later.
|
|
|
|
// Is it used by any PHI instructions in this block?
|
|
bool ValueIsUsed = VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)];
|
|
|
|
// Okay, if we now know that the value is not live out of the block, we can
|
|
// add a kill marker in this block saying that it kills the incoming value!
|
|
if (!ValueIsUsed && !LV->isLiveOut(SrcReg, opBlock)) {
|
|
// In our final twist, we have to decide which instruction kills the
|
|
// register. In most cases this is the copy, however, the first
|
|
// terminator instruction at the end of the block may also use the value.
|
|
// In this case, we should mark *it* as being the killing block, not the
|
|
// copy.
|
|
MachineBasicBlock::iterator KillInst;
|
|
MachineBasicBlock::iterator Term = opBlock.getFirstTerminator();
|
|
if (Term != opBlock.end() && Term->readsRegister(SrcReg)) {
|
|
KillInst = Term;
|
|
|
|
// Check that no other terminators use values.
|
|
#ifndef NDEBUG
|
|
for (MachineBasicBlock::iterator TI = llvm::next(Term);
|
|
TI != opBlock.end(); ++TI) {
|
|
if (TI->isDebugValue())
|
|
continue;
|
|
assert(!TI->readsRegister(SrcReg) &&
|
|
"Terminator instructions cannot use virtual registers unless"
|
|
"they are the first terminator in a block!");
|
|
}
|
|
#endif
|
|
} else if (reusedIncoming || !IncomingReg) {
|
|
// We may have to rewind a bit if we didn't insert a copy this time.
|
|
KillInst = Term;
|
|
while (KillInst != opBlock.begin()) {
|
|
--KillInst;
|
|
if (KillInst->isDebugValue())
|
|
continue;
|
|
if (KillInst->readsRegister(SrcReg))
|
|
break;
|
|
}
|
|
} else {
|
|
// We just inserted this copy.
|
|
KillInst = prior(InsertPos);
|
|
}
|
|
assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction");
|
|
|
|
// Finally, mark it killed.
|
|
LV->addVirtualRegisterKilled(SrcReg, KillInst);
|
|
|
|
// This vreg no longer lives all of the way through opBlock.
|
|
unsigned opBlockNum = opBlock.getNumber();
|
|
LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
|
|
}
|
|
}
|
|
|
|
// Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
|
|
if (reusedIncoming || !IncomingReg)
|
|
MF.DeleteMachineInstr(MPhi);
|
|
}
|
|
|
|
/// analyzePHINodes - Gather information about the PHI nodes in here. In
|
|
/// particular, we want to map the number of uses of a virtual register which is
|
|
/// used in a PHI node. We map that to the BB the vreg is coming from. This is
|
|
/// used later to determine when the vreg is killed in the BB.
|
|
///
|
|
void PHIElimination::analyzePHINodes(const MachineFunction& MF) {
|
|
for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
|
|
I != E; ++I)
|
|
for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
|
|
BBI != BBE && BBI->isPHI(); ++BBI)
|
|
for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
|
|
++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i+1).getMBB()->getNumber(),
|
|
BBI->getOperand(i).getReg())];
|
|
}
|
|
|
|
bool PHIElimination::SplitPHIEdges(MachineFunction &MF,
|
|
MachineBasicBlock &MBB,
|
|
LiveVariables &LV,
|
|
MachineLoopInfo *MLI) {
|
|
if (MBB.empty() || !MBB.front().isPHI() || MBB.isLandingPad())
|
|
return false; // Quick exit for basic blocks without PHIs.
|
|
|
|
bool Changed = false;
|
|
for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end();
|
|
BBI != BBE && BBI->isPHI(); ++BBI) {
|
|
for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
|
|
unsigned Reg = BBI->getOperand(i).getReg();
|
|
MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
|
|
// We break edges when registers are live out from the predecessor block
|
|
// (not considering PHI nodes). If the register is live in to this block
|
|
// anyway, we would gain nothing from splitting.
|
|
// Avoid splitting backedges of loops. It would introduce small
|
|
// out-of-line blocks into the loop which is very bad for code placement.
|
|
if (PreMBB != &MBB &&
|
|
!LV.isLiveIn(Reg, MBB) && LV.isLiveOut(Reg, *PreMBB)) {
|
|
if (!MLI ||
|
|
!(MLI->getLoopFor(PreMBB) == MLI->getLoopFor(&MBB) &&
|
|
MLI->isLoopHeader(&MBB))) {
|
|
if (PreMBB->SplitCriticalEdge(&MBB, this)) {
|
|
Changed = true;
|
|
++NumCriticalEdgesSplit;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return Changed;
|
|
}
|