llvm-6502/include/llvm/Transforms/Utils/LoopUtils.h
Karthik Bhat 611d4bde9b Refactor Code inside LoopVectorizer's function isInductionVariable.
This patch exposes LoopVectorizer's isInductionVariable function as common
a functionality.
http://reviews.llvm.org/D8608


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233352 91177308-0d34-0410-b5e6-96231b3b80d8
2015-03-27 03:44:15 +00:00

132 lines
5.5 KiB
C++

//===- llvm/Transforms/Utils/LoopUtils.h - Loop utilities -*- C++ -*-=========//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines some loop transformation utilities.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TRANSFORMS_UTILS_LOOPUTILS_H
#define LLVM_TRANSFORMS_UTILS_LOOPUTILS_H
#include "llvm/ADT/SmallVector.h"
#include "llvm/IR/Dominators.h"
namespace llvm {
class AliasAnalysis;
class AliasSet;
class AliasSetTracker;
class AssumptionCache;
class BasicBlock;
class DataLayout;
class DominatorTree;
class Loop;
class LoopInfo;
class Pass;
class PredIteratorCache;
class ScalarEvolution;
class TargetLibraryInfo;
/// \brief Captures loop safety information.
/// It keep information for loop & its header may throw exception.
struct LICMSafetyInfo {
bool MayThrow; // The current loop contains an instruction which
// may throw.
bool HeaderMayThrow; // Same as previous, but specific to loop header
LICMSafetyInfo() : MayThrow(false), HeaderMayThrow(false)
{}
};
BasicBlock *InsertPreheaderForLoop(Loop *L, Pass *P);
/// \brief Simplify each loop in a loop nest recursively.
///
/// This takes a potentially un-simplified loop L (and its children) and turns
/// it into a simplified loop nest with preheaders and single backedges. It
/// will optionally update \c AliasAnalysis and \c ScalarEvolution analyses if
/// passed into it.
bool simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, Pass *PP,
AliasAnalysis *AA = nullptr, ScalarEvolution *SE = nullptr,
AssumptionCache *AC = nullptr);
/// \brief Put loop into LCSSA form.
///
/// Looks at all instructions in the loop which have uses outside of the
/// current loop. For each, an LCSSA PHI node is inserted and the uses outside
/// the loop are rewritten to use this node.
///
/// LoopInfo and DominatorTree are required and preserved.
///
/// If ScalarEvolution is passed in, it will be preserved.
///
/// Returns true if any modifications are made to the loop.
bool formLCSSA(Loop &L, DominatorTree &DT, LoopInfo *LI,
ScalarEvolution *SE = nullptr);
/// \brief Put a loop nest into LCSSA form.
///
/// This recursively forms LCSSA for a loop nest.
///
/// LoopInfo and DominatorTree are required and preserved.
///
/// If ScalarEvolution is passed in, it will be preserved.
///
/// Returns true if any modifications are made to the loop.
bool formLCSSARecursively(Loop &L, DominatorTree &DT, LoopInfo *LI,
ScalarEvolution *SE = nullptr);
/// \brief Walk the specified region of the CFG (defined by all blocks
/// dominated by the specified block, and that are in the current loop) in
/// reverse depth first order w.r.t the DominatorTree. This allows us to visit
/// uses before definitions, allowing us to sink a loop body in one pass without
/// iteration. Takes DomTreeNode, AliasAnalysis, LoopInfo, DominatorTree,
/// DataLayout, TargetLibraryInfo, Loop, AliasSet information for all
/// instructions of the loop and loop safety information as arguments.
/// It returns changed status.
bool sinkRegion(DomTreeNode *, AliasAnalysis *, LoopInfo *, DominatorTree *,
TargetLibraryInfo *, Loop *, AliasSetTracker *,
LICMSafetyInfo *);
/// \brief Walk the specified region of the CFG (defined by all blocks
/// dominated by the specified block, and that are in the current loop) in depth
/// first order w.r.t the DominatorTree. This allows us to visit definitions
/// before uses, allowing us to hoist a loop body in one pass without iteration.
/// Takes DomTreeNode, AliasAnalysis, LoopInfo, DominatorTree, DataLayout,
/// TargetLibraryInfo, Loop, AliasSet information for all instructions of the
/// loop and loop safety information as arguments. It returns changed status.
bool hoistRegion(DomTreeNode *, AliasAnalysis *, LoopInfo *, DominatorTree *,
TargetLibraryInfo *, Loop *, AliasSetTracker *,
LICMSafetyInfo *);
/// \brief Try to promote memory values to scalars by sinking stores out of
/// the loop and moving loads to before the loop. We do this by looping over
/// the stores in the loop, looking for stores to Must pointers which are
/// loop invariant. It takes AliasSet, Loop exit blocks vector, loop exit blocks
/// insertion point vector, PredIteratorCache, LoopInfo, DominatorTree, Loop,
/// AliasSet information for all instructions of the loop and loop safety
/// information as arguments. It returns changed status.
bool promoteLoopAccessesToScalars(AliasSet &, SmallVectorImpl<BasicBlock*> &,
SmallVectorImpl<Instruction*> &,
PredIteratorCache &, LoopInfo *,
DominatorTree *, Loop *, AliasSetTracker *,
LICMSafetyInfo *);
/// \brief Computes safety information for a loop
/// checks loop body & header for the possiblity of may throw
/// exception, it takes LICMSafetyInfo and loop as argument.
/// Updates safety information in LICMSafetyInfo argument.
void computeLICMSafetyInfo(LICMSafetyInfo *, Loop *);
/// \brief Checks if the given PHINode in a loop header is an induction
/// variable. Returns true if this is an induction PHI along with the step
/// value.
bool isInductionPHI(PHINode *, ScalarEvolution *, ConstantInt *&);
}
#endif