llvm-6502/lib/CodeGen/SelectionDAG/LegalizeIntegerTypes.cpp
Duncan Sands e9c80f4d57 Port some integer multiplication fixes from LegalizeDAG.
Bail out with an error if there is no libcall available
for the given size of integer.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@52622 91177308-0d34-0410-b5e6-96231b3b80d8
2008-06-23 15:15:44 +00:00

1957 lines
78 KiB
C++

//===----- LegalizeIntegerTypes.cpp - Legalization of integer types -------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements integer type expansion and promotion for LegalizeTypes.
// Promotion is the act of changing a computation in an illegal type into a
// computation in a larger type. For example, implementing i8 arithmetic in an
// i32 register (often needed on powerpc).
// Expansion is the act of changing a computation in an illegal type into a
// computation in two identical registers of a smaller type. For example,
// implementing i64 arithmetic in two i32 registers (often needed on 32-bit
// targets).
//
//===----------------------------------------------------------------------===//
#include "LegalizeTypes.h"
#include "llvm/Constants.h"
using namespace llvm;
//===----------------------------------------------------------------------===//
// Integer Result Promotion
//===----------------------------------------------------------------------===//
/// PromoteIntegerResult - This method is called when a result of a node is
/// found to be in need of promotion to a larger type. At this point, the node
/// may also have invalid operands or may have other results that need
/// expansion, we just know that (at least) one result needs promotion.
void DAGTypeLegalizer::PromoteIntegerResult(SDNode *N, unsigned ResNo) {
DEBUG(cerr << "Promote integer result: "; N->dump(&DAG); cerr << "\n");
SDOperand Result = SDOperand();
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
cerr << "PromoteIntegerResult #" << ResNo << ": ";
N->dump(&DAG); cerr << "\n";
#endif
assert(0 && "Do not know how to promote this operator!");
abort();
case ISD::UNDEF: Result = PromoteIntRes_UNDEF(N); break;
case ISD::Constant: Result = PromoteIntRes_Constant(N); break;
case ISD::TRUNCATE: Result = PromoteIntRes_TRUNCATE(N); break;
case ISD::SIGN_EXTEND:
case ISD::ZERO_EXTEND:
case ISD::ANY_EXTEND: Result = PromoteIntRes_INT_EXTEND(N); break;
case ISD::FP_ROUND: Result = PromoteIntRes_FP_ROUND(N); break;
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT: Result = PromoteIntRes_FP_TO_XINT(N); break;
case ISD::SETCC: Result = PromoteIntRes_SETCC(N); break;
case ISD::LOAD: Result = PromoteIntRes_LOAD(cast<LoadSDNode>(N)); break;
case ISD::BUILD_PAIR: Result = PromoteIntRes_BUILD_PAIR(N); break;
case ISD::BIT_CONVERT: Result = PromoteIntRes_BIT_CONVERT(N); break;
case ISD::AND:
case ISD::OR:
case ISD::XOR:
case ISD::ADD:
case ISD::SUB:
case ISD::MUL: Result = PromoteIntRes_SimpleIntBinOp(N); break;
case ISD::SDIV:
case ISD::SREM: Result = PromoteIntRes_SDIV(N); break;
case ISD::UDIV:
case ISD::UREM: Result = PromoteIntRes_UDIV(N); break;
case ISD::SHL: Result = PromoteIntRes_SHL(N); break;
case ISD::SRA: Result = PromoteIntRes_SRA(N); break;
case ISD::SRL: Result = PromoteIntRes_SRL(N); break;
case ISD::SELECT: Result = PromoteIntRes_SELECT(N); break;
case ISD::SELECT_CC: Result = PromoteIntRes_SELECT_CC(N); break;
case ISD::CTLZ: Result = PromoteIntRes_CTLZ(N); break;
case ISD::CTPOP: Result = PromoteIntRes_CTPOP(N); break;
case ISD::CTTZ: Result = PromoteIntRes_CTTZ(N); break;
case ISD::EXTRACT_VECTOR_ELT:
Result = PromoteIntRes_EXTRACT_VECTOR_ELT(N);
break;
}
// If Result is null, the sub-method took care of registering the result.
if (Result.Val)
SetPromotedInteger(SDOperand(N, ResNo), Result);
}
SDOperand DAGTypeLegalizer::PromoteIntRes_UNDEF(SDNode *N) {
return DAG.getNode(ISD::UNDEF, TLI.getTypeToTransformTo(N->getValueType(0)));
}
SDOperand DAGTypeLegalizer::PromoteIntRes_Constant(SDNode *N) {
MVT VT = N->getValueType(0);
// Zero extend things like i1, sign extend everything else. It shouldn't
// matter in theory which one we pick, but this tends to give better code?
unsigned Opc = VT.isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
SDOperand Result = DAG.getNode(Opc, TLI.getTypeToTransformTo(VT),
SDOperand(N, 0));
assert(isa<ConstantSDNode>(Result) && "Didn't constant fold ext?");
return Result;
}
SDOperand DAGTypeLegalizer::PromoteIntRes_TRUNCATE(SDNode *N) {
SDOperand Res;
switch (getTypeAction(N->getOperand(0).getValueType())) {
default: assert(0 && "Unknown type action!");
case Legal:
case ExpandInteger:
Res = N->getOperand(0);
break;
case PromoteInteger:
Res = GetPromotedInteger(N->getOperand(0));
break;
}
MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
assert(Res.getValueType().getSizeInBits() >= NVT.getSizeInBits() &&
"Truncation doesn't make sense!");
if (Res.getValueType() == NVT)
return Res;
// Truncate to NVT instead of VT
return DAG.getNode(ISD::TRUNCATE, NVT, Res);
}
SDOperand DAGTypeLegalizer::PromoteIntRes_INT_EXTEND(SDNode *N) {
MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
if (getTypeAction(N->getOperand(0).getValueType()) == PromoteInteger) {
SDOperand Res = GetPromotedInteger(N->getOperand(0));
assert(Res.getValueType().getSizeInBits() <= NVT.getSizeInBits() &&
"Extension doesn't make sense!");
// If the result and operand types are the same after promotion, simplify
// to an in-register extension.
if (NVT == Res.getValueType()) {
// The high bits are not guaranteed to be anything. Insert an extend.
if (N->getOpcode() == ISD::SIGN_EXTEND)
return DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Res,
DAG.getValueType(N->getOperand(0).getValueType()));
if (N->getOpcode() == ISD::ZERO_EXTEND)
return DAG.getZeroExtendInReg(Res, N->getOperand(0).getValueType());
assert(N->getOpcode() == ISD::ANY_EXTEND && "Unknown integer extension!");
return Res;
}
}
// Otherwise, just extend the original operand all the way to the larger type.
return DAG.getNode(N->getOpcode(), NVT, N->getOperand(0));
}
SDOperand DAGTypeLegalizer::PromoteIntRes_FP_ROUND(SDNode *N) {
// NOTE: Assumes input is legal.
if (N->getConstantOperandVal(1) == 0)
return DAG.getNode(ISD::FP_ROUND_INREG, N->getOperand(0).getValueType(),
N->getOperand(0), DAG.getValueType(N->getValueType(0)));
// If the precision discard isn't needed, just return the operand unrounded.
return N->getOperand(0);
}
SDOperand DAGTypeLegalizer::PromoteIntRes_FP_TO_XINT(SDNode *N) {
unsigned NewOpc = N->getOpcode();
MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
// If we're promoting a UINT to a larger size, check to see if the new node
// will be legal. If it isn't, check to see if FP_TO_SINT is legal, since
// we can use that instead. This allows us to generate better code for
// FP_TO_UINT for small destination sizes on targets where FP_TO_UINT is not
// legal, such as PowerPC.
if (N->getOpcode() == ISD::FP_TO_UINT) {
if (!TLI.isOperationLegal(ISD::FP_TO_UINT, NVT) &&
(TLI.isOperationLegal(ISD::FP_TO_SINT, NVT) ||
TLI.getOperationAction(ISD::FP_TO_SINT, NVT)==TargetLowering::Custom))
NewOpc = ISD::FP_TO_SINT;
}
return DAG.getNode(NewOpc, NVT, N->getOperand(0));
}
SDOperand DAGTypeLegalizer::PromoteIntRes_SETCC(SDNode *N) {
assert(isTypeLegal(TLI.getSetCCResultType(N->getOperand(0)))
&& "SetCC type is not legal??");
return DAG.getNode(ISD::SETCC, TLI.getSetCCResultType(N->getOperand(0)),
N->getOperand(0), N->getOperand(1), N->getOperand(2));
}
SDOperand DAGTypeLegalizer::PromoteIntRes_LOAD(LoadSDNode *N) {
assert(ISD::isUNINDEXEDLoad(N) && "Indexed load during type legalization!");
MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
ISD::LoadExtType ExtType =
ISD::isNON_EXTLoad(N) ? ISD::EXTLOAD : N->getExtensionType();
SDOperand Res = DAG.getExtLoad(ExtType, NVT, N->getChain(), N->getBasePtr(),
N->getSrcValue(), N->getSrcValueOffset(),
N->getMemoryVT(), N->isVolatile(),
N->getAlignment());
// Legalized the chain result - switch anything that used the old chain to
// use the new one.
ReplaceValueWith(SDOperand(N, 1), Res.getValue(1));
return Res;
}
SDOperand DAGTypeLegalizer::PromoteIntRes_BUILD_PAIR(SDNode *N) {
// The pair element type may be legal, or may not promote to the same type as
// the result, for example i14 = BUILD_PAIR (i7, i7). Handle all cases.
return DAG.getNode(ISD::ANY_EXTEND,
TLI.getTypeToTransformTo(N->getValueType(0)),
JoinIntegers(N->getOperand(0), N->getOperand(1)));
}
SDOperand DAGTypeLegalizer::PromoteIntRes_BIT_CONVERT(SDNode *N) {
SDOperand InOp = N->getOperand(0);
MVT InVT = InOp.getValueType();
MVT NInVT = TLI.getTypeToTransformTo(InVT);
MVT OutVT = TLI.getTypeToTransformTo(N->getValueType(0));
switch (getTypeAction(InVT)) {
default:
assert(false && "Unknown type action!");
break;
case Legal:
break;
case PromoteInteger:
if (OutVT.getSizeInBits() == NInVT.getSizeInBits())
// The input promotes to the same size. Convert the promoted value.
return DAG.getNode(ISD::BIT_CONVERT, OutVT, GetPromotedInteger(InOp));
break;
case SoftenFloat:
// Promote the integer operand by hand.
return DAG.getNode(ISD::ANY_EXTEND, OutVT, GetSoftenedFloat(InOp));
case ExpandInteger:
case ExpandFloat:
break;
case Scalarize:
// Convert the element to an integer and promote it by hand.
return DAG.getNode(ISD::ANY_EXTEND, OutVT,
BitConvertToInteger(GetScalarizedVector(InOp)));
case Split:
// For example, i32 = BIT_CONVERT v2i16 on alpha. Convert the split
// pieces of the input into integers and reassemble in the final type.
SDOperand Lo, Hi;
GetSplitVector(N->getOperand(0), Lo, Hi);
Lo = BitConvertToInteger(Lo);
Hi = BitConvertToInteger(Hi);
if (TLI.isBigEndian())
std::swap(Lo, Hi);
InOp = DAG.getNode(ISD::ANY_EXTEND,
MVT::getIntegerVT(OutVT.getSizeInBits()),
JoinIntegers(Lo, Hi));
return DAG.getNode(ISD::BIT_CONVERT, OutVT, InOp);
}
// Otherwise, lower the bit-convert to a store/load from the stack, then
// promote the load.
SDOperand Op = CreateStackStoreLoad(InOp, N->getValueType(0));
return PromoteIntRes_LOAD(cast<LoadSDNode>(Op.Val));
}
SDOperand DAGTypeLegalizer::PromoteIntRes_SimpleIntBinOp(SDNode *N) {
// The input may have strange things in the top bits of the registers, but
// these operations don't care. They may have weird bits going out, but
// that too is okay if they are integer operations.
SDOperand LHS = GetPromotedInteger(N->getOperand(0));
SDOperand RHS = GetPromotedInteger(N->getOperand(1));
return DAG.getNode(N->getOpcode(), LHS.getValueType(), LHS, RHS);
}
SDOperand DAGTypeLegalizer::PromoteIntRes_SDIV(SDNode *N) {
// Sign extend the input.
SDOperand LHS = GetPromotedInteger(N->getOperand(0));
SDOperand RHS = GetPromotedInteger(N->getOperand(1));
MVT VT = N->getValueType(0);
LHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, LHS.getValueType(), LHS,
DAG.getValueType(VT));
RHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, RHS.getValueType(), RHS,
DAG.getValueType(VT));
return DAG.getNode(N->getOpcode(), LHS.getValueType(), LHS, RHS);
}
SDOperand DAGTypeLegalizer::PromoteIntRes_UDIV(SDNode *N) {
// Zero extend the input.
SDOperand LHS = GetPromotedInteger(N->getOperand(0));
SDOperand RHS = GetPromotedInteger(N->getOperand(1));
MVT VT = N->getValueType(0);
LHS = DAG.getZeroExtendInReg(LHS, VT);
RHS = DAG.getZeroExtendInReg(RHS, VT);
return DAG.getNode(N->getOpcode(), LHS.getValueType(), LHS, RHS);
}
SDOperand DAGTypeLegalizer::PromoteIntRes_SHL(SDNode *N) {
return DAG.getNode(ISD::SHL, TLI.getTypeToTransformTo(N->getValueType(0)),
GetPromotedInteger(N->getOperand(0)), N->getOperand(1));
}
SDOperand DAGTypeLegalizer::PromoteIntRes_SRA(SDNode *N) {
// The input value must be properly sign extended.
MVT VT = N->getValueType(0);
MVT NVT = TLI.getTypeToTransformTo(VT);
SDOperand Res = GetPromotedInteger(N->getOperand(0));
Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Res, DAG.getValueType(VT));
return DAG.getNode(ISD::SRA, NVT, Res, N->getOperand(1));
}
SDOperand DAGTypeLegalizer::PromoteIntRes_SRL(SDNode *N) {
// The input value must be properly zero extended.
MVT VT = N->getValueType(0);
MVT NVT = TLI.getTypeToTransformTo(VT);
SDOperand Res = ZExtPromotedInteger(N->getOperand(0));
return DAG.getNode(ISD::SRL, NVT, Res, N->getOperand(1));
}
SDOperand DAGTypeLegalizer::PromoteIntRes_SELECT(SDNode *N) {
SDOperand LHS = GetPromotedInteger(N->getOperand(1));
SDOperand RHS = GetPromotedInteger(N->getOperand(2));
return DAG.getNode(ISD::SELECT, LHS.getValueType(), N->getOperand(0),LHS,RHS);
}
SDOperand DAGTypeLegalizer::PromoteIntRes_SELECT_CC(SDNode *N) {
SDOperand LHS = GetPromotedInteger(N->getOperand(2));
SDOperand RHS = GetPromotedInteger(N->getOperand(3));
return DAG.getNode(ISD::SELECT_CC, LHS.getValueType(), N->getOperand(0),
N->getOperand(1), LHS, RHS, N->getOperand(4));
}
SDOperand DAGTypeLegalizer::PromoteIntRes_CTLZ(SDNode *N) {
SDOperand Op = GetPromotedInteger(N->getOperand(0));
MVT OVT = N->getValueType(0);
MVT NVT = Op.getValueType();
// Zero extend to the promoted type and do the count there.
Op = DAG.getNode(ISD::CTLZ, NVT, DAG.getZeroExtendInReg(Op, OVT));
// Subtract off the extra leading bits in the bigger type.
return DAG.getNode(ISD::SUB, NVT, Op,
DAG.getConstant(NVT.getSizeInBits() -
OVT.getSizeInBits(), NVT));
}
SDOperand DAGTypeLegalizer::PromoteIntRes_CTPOP(SDNode *N) {
SDOperand Op = GetPromotedInteger(N->getOperand(0));
MVT OVT = N->getValueType(0);
MVT NVT = Op.getValueType();
// Zero extend to the promoted type and do the count there.
return DAG.getNode(ISD::CTPOP, NVT, DAG.getZeroExtendInReg(Op, OVT));
}
SDOperand DAGTypeLegalizer::PromoteIntRes_CTTZ(SDNode *N) {
SDOperand Op = GetPromotedInteger(N->getOperand(0));
MVT OVT = N->getValueType(0);
MVT NVT = Op.getValueType();
// The count is the same in the promoted type except if the original
// value was zero. This can be handled by setting the bit just off
// the top of the original type.
Op = DAG.getNode(ISD::OR, NVT, Op,
// FIXME: Do this using an APINT constant.
DAG.getConstant(1UL << OVT.getSizeInBits(), NVT));
return DAG.getNode(ISD::CTTZ, NVT, Op);
}
SDOperand DAGTypeLegalizer::PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode *N) {
MVT OldVT = N->getValueType(0);
SDOperand OldVec = N->getOperand(0);
unsigned OldElts = OldVec.getValueType().getVectorNumElements();
if (OldElts == 1) {
assert(!isTypeLegal(OldVec.getValueType()) &&
"Legal one-element vector of a type needing promotion!");
// It is tempting to follow GetScalarizedVector by a call to
// GetPromotedInteger, but this would be wrong because the
// scalarized value may not yet have been processed.
return DAG.getNode(ISD::ANY_EXTEND, TLI.getTypeToTransformTo(OldVT),
GetScalarizedVector(OldVec));
}
// Convert to a vector half as long with an element type of twice the width,
// for example <4 x i16> -> <2 x i32>.
assert(!(OldElts & 1) && "Odd length vectors not supported!");
MVT NewVT = MVT::getIntegerVT(2 * OldVT.getSizeInBits());
assert(OldVT.isSimple() && NewVT.isSimple());
SDOperand NewVec = DAG.getNode(ISD::BIT_CONVERT,
MVT::getVectorVT(NewVT, OldElts / 2),
OldVec);
// Extract the element at OldIdx / 2 from the new vector.
SDOperand OldIdx = N->getOperand(1);
SDOperand NewIdx = DAG.getNode(ISD::SRL, OldIdx.getValueType(), OldIdx,
DAG.getConstant(1, TLI.getShiftAmountTy()));
SDOperand Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, NewVT, NewVec, NewIdx);
// Select the appropriate half of the element: Lo if OldIdx was even,
// Hi if it was odd.
SDOperand Lo = Elt;
SDOperand Hi = DAG.getNode(ISD::SRL, NewVT, Elt,
DAG.getConstant(OldVT.getSizeInBits(),
TLI.getShiftAmountTy()));
if (TLI.isBigEndian())
std::swap(Lo, Hi);
SDOperand Odd = DAG.getNode(ISD::AND, OldIdx.getValueType(), OldIdx,
DAG.getConstant(1, TLI.getShiftAmountTy()));
return DAG.getNode(ISD::SELECT, NewVT, Odd, Hi, Lo);
}
//===----------------------------------------------------------------------===//
// Integer Operand Promotion
//===----------------------------------------------------------------------===//
/// PromoteIntegerOperand - This method is called when the specified operand of
/// the specified node is found to need promotion. At this point, all of the
/// result types of the node are known to be legal, but other operands of the
/// node may need promotion or expansion as well as the specified one.
bool DAGTypeLegalizer::PromoteIntegerOperand(SDNode *N, unsigned OpNo) {
DEBUG(cerr << "Promote integer operand: "; N->dump(&DAG); cerr << "\n");
SDOperand Res;
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
cerr << "PromoteIntegerOperand Op #" << OpNo << ": ";
N->dump(&DAG); cerr << "\n";
#endif
assert(0 && "Do not know how to promote this operator's operand!");
abort();
case ISD::ANY_EXTEND: Res = PromoteIntOp_ANY_EXTEND(N); break;
case ISD::ZERO_EXTEND: Res = PromoteIntOp_ZERO_EXTEND(N); break;
case ISD::SIGN_EXTEND: Res = PromoteIntOp_SIGN_EXTEND(N); break;
case ISD::TRUNCATE: Res = PromoteIntOp_TRUNCATE(N); break;
case ISD::FP_EXTEND: Res = PromoteIntOp_FP_EXTEND(N); break;
case ISD::FP_ROUND: Res = PromoteIntOp_FP_ROUND(N); break;
case ISD::SINT_TO_FP:
case ISD::UINT_TO_FP: Res = PromoteIntOp_INT_TO_FP(N); break;
case ISD::BUILD_PAIR: Res = PromoteIntOp_BUILD_PAIR(N); break;
case ISD::SELECT: Res = PromoteIntOp_SELECT(N, OpNo); break;
case ISD::BRCOND: Res = PromoteIntOp_BRCOND(N, OpNo); break;
case ISD::BR_CC: Res = PromoteIntOp_BR_CC(N, OpNo); break;
case ISD::SETCC: Res = PromoteIntOp_SETCC(N, OpNo); break;
case ISD::STORE: Res = PromoteIntOp_STORE(cast<StoreSDNode>(N),
OpNo); break;
case ISD::BUILD_VECTOR: Res = PromoteIntOp_BUILD_VECTOR(N); break;
case ISD::INSERT_VECTOR_ELT:
Res = PromoteIntOp_INSERT_VECTOR_ELT(N, OpNo);
break;
case ISD::MEMBARRIER: Res = PromoteIntOp_MEMBARRIER(N); break;
}
// If the result is null, the sub-method took care of registering results etc.
if (!Res.Val) return false;
// If the result is N, the sub-method updated N in place.
if (Res.Val == N) {
// Mark N as new and remark N and its operands. This allows us to correctly
// revisit N if it needs another step of promotion and allows us to visit
// any new operands to N.
ReanalyzeNode(N);
return true;
}
assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
"Invalid operand expansion");
ReplaceValueWith(SDOperand(N, 0), Res);
return false;
}
SDOperand DAGTypeLegalizer::PromoteIntOp_ANY_EXTEND(SDNode *N) {
SDOperand Op = GetPromotedInteger(N->getOperand(0));
return DAG.getNode(ISD::ANY_EXTEND, N->getValueType(0), Op);
}
SDOperand DAGTypeLegalizer::PromoteIntOp_ZERO_EXTEND(SDNode *N) {
SDOperand Op = GetPromotedInteger(N->getOperand(0));
Op = DAG.getNode(ISD::ANY_EXTEND, N->getValueType(0), Op);
return DAG.getZeroExtendInReg(Op, N->getOperand(0).getValueType());
}
SDOperand DAGTypeLegalizer::PromoteIntOp_SIGN_EXTEND(SDNode *N) {
SDOperand Op = GetPromotedInteger(N->getOperand(0));
Op = DAG.getNode(ISD::ANY_EXTEND, N->getValueType(0), Op);
return DAG.getNode(ISD::SIGN_EXTEND_INREG, Op.getValueType(),
Op, DAG.getValueType(N->getOperand(0).getValueType()));
}
SDOperand DAGTypeLegalizer::PromoteIntOp_TRUNCATE(SDNode *N) {
SDOperand Op = GetPromotedInteger(N->getOperand(0));
return DAG.getNode(ISD::TRUNCATE, N->getValueType(0), Op);
}
SDOperand DAGTypeLegalizer::PromoteIntOp_FP_EXTEND(SDNode *N) {
SDOperand Op = GetPromotedInteger(N->getOperand(0));
return DAG.getNode(ISD::FP_EXTEND, N->getValueType(0), Op);
}
SDOperand DAGTypeLegalizer::PromoteIntOp_FP_ROUND(SDNode *N) {
SDOperand Op = GetPromotedInteger(N->getOperand(0));
return DAG.getNode(ISD::FP_ROUND, N->getValueType(0), Op,
DAG.getIntPtrConstant(0));
}
SDOperand DAGTypeLegalizer::PromoteIntOp_INT_TO_FP(SDNode *N) {
SDOperand In = GetPromotedInteger(N->getOperand(0));
MVT OpVT = N->getOperand(0).getValueType();
if (N->getOpcode() == ISD::UINT_TO_FP)
In = DAG.getZeroExtendInReg(In, OpVT);
else
In = DAG.getNode(ISD::SIGN_EXTEND_INREG, In.getValueType(),
In, DAG.getValueType(OpVT));
return DAG.UpdateNodeOperands(SDOperand(N, 0), In);
}
SDOperand DAGTypeLegalizer::PromoteIntOp_BUILD_PAIR(SDNode *N) {
// Since the result type is legal, the operands must promote to it.
MVT OVT = N->getOperand(0).getValueType();
SDOperand Lo = GetPromotedInteger(N->getOperand(0));
SDOperand Hi = GetPromotedInteger(N->getOperand(1));
assert(Lo.getValueType() == N->getValueType(0) && "Operand over promoted?");
Lo = DAG.getZeroExtendInReg(Lo, OVT);
Hi = DAG.getNode(ISD::SHL, N->getValueType(0), Hi,
DAG.getConstant(OVT.getSizeInBits(),
TLI.getShiftAmountTy()));
return DAG.getNode(ISD::OR, N->getValueType(0), Lo, Hi);
}
SDOperand DAGTypeLegalizer::PromoteIntOp_SELECT(SDNode *N, unsigned OpNo) {
assert(OpNo == 0 && "Only know how to promote condition");
SDOperand Cond = GetPromotedInteger(N->getOperand(0)); // Promote condition.
// The top bits of the promoted condition are not necessarily zero, ensure
// that the value is properly zero extended.
unsigned BitWidth = Cond.getValueSizeInBits();
if (!DAG.MaskedValueIsZero(Cond,
APInt::getHighBitsSet(BitWidth, BitWidth-1)))
Cond = DAG.getZeroExtendInReg(Cond, MVT::i1);
// The chain (Op#0) and basic block destination (Op#2) are always legal types.
return DAG.UpdateNodeOperands(SDOperand(N, 0), Cond, N->getOperand(1),
N->getOperand(2));
}
SDOperand DAGTypeLegalizer::PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo) {
assert(OpNo == 1 && "only know how to promote condition");
SDOperand Cond = GetPromotedInteger(N->getOperand(1)); // Promote condition.
// The top bits of the promoted condition are not necessarily zero, ensure
// that the value is properly zero extended.
unsigned BitWidth = Cond.getValueSizeInBits();
if (!DAG.MaskedValueIsZero(Cond,
APInt::getHighBitsSet(BitWidth, BitWidth-1)))
Cond = DAG.getZeroExtendInReg(Cond, MVT::i1);
// The chain (Op#0) and basic block destination (Op#2) are always legal types.
return DAG.UpdateNodeOperands(SDOperand(N, 0), N->getOperand(0), Cond,
N->getOperand(2));
}
SDOperand DAGTypeLegalizer::PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo) {
assert(OpNo == 2 && "Don't know how to promote this operand");
SDOperand LHS = N->getOperand(2);
SDOperand RHS = N->getOperand(3);
PromoteSetCCOperands(LHS, RHS, cast<CondCodeSDNode>(N->getOperand(1))->get());
// The chain (Op#0), CC (#1) and basic block destination (Op#4) are always
// legal types.
return DAG.UpdateNodeOperands(SDOperand(N, 0), N->getOperand(0),
N->getOperand(1), LHS, RHS, N->getOperand(4));
}
SDOperand DAGTypeLegalizer::PromoteIntOp_SETCC(SDNode *N, unsigned OpNo) {
assert(OpNo == 0 && "Don't know how to promote this operand");
SDOperand LHS = N->getOperand(0);
SDOperand RHS = N->getOperand(1);
PromoteSetCCOperands(LHS, RHS, cast<CondCodeSDNode>(N->getOperand(2))->get());
// The CC (#2) is always legal.
return DAG.UpdateNodeOperands(SDOperand(N, 0), LHS, RHS, N->getOperand(2));
}
/// PromoteSetCCOperands - Promote the operands of a comparison. This code is
/// shared among BR_CC, SELECT_CC, and SETCC handlers.
void DAGTypeLegalizer::PromoteSetCCOperands(SDOperand &NewLHS,SDOperand &NewRHS,
ISD::CondCode CCCode) {
MVT VT = NewLHS.getValueType();
// Get the promoted values.
NewLHS = GetPromotedInteger(NewLHS);
NewRHS = GetPromotedInteger(NewRHS);
// If this is an FP compare, the operands have already been extended.
if (!NewLHS.getValueType().isInteger())
return;
// Otherwise, we have to insert explicit sign or zero extends. Note
// that we could insert sign extends for ALL conditions, but zero extend
// is cheaper on many machines (an AND instead of two shifts), so prefer
// it.
switch (CCCode) {
default: assert(0 && "Unknown integer comparison!");
case ISD::SETEQ:
case ISD::SETNE:
case ISD::SETUGE:
case ISD::SETUGT:
case ISD::SETULE:
case ISD::SETULT:
// ALL of these operations will work if we either sign or zero extend
// the operands (including the unsigned comparisons!). Zero extend is
// usually a simpler/cheaper operation, so prefer it.
NewLHS = DAG.getZeroExtendInReg(NewLHS, VT);
NewRHS = DAG.getZeroExtendInReg(NewRHS, VT);
return;
case ISD::SETGE:
case ISD::SETGT:
case ISD::SETLT:
case ISD::SETLE:
NewLHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, NewLHS.getValueType(), NewLHS,
DAG.getValueType(VT));
NewRHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, NewRHS.getValueType(), NewRHS,
DAG.getValueType(VT));
return;
}
}
SDOperand DAGTypeLegalizer::PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo){
assert(ISD::isUNINDEXEDStore(N) && "Indexed store during type legalization!");
SDOperand Ch = N->getChain(), Ptr = N->getBasePtr();
int SVOffset = N->getSrcValueOffset();
unsigned Alignment = N->getAlignment();
bool isVolatile = N->isVolatile();
SDOperand Val = GetPromotedInteger(N->getValue()); // Get promoted value.
assert(!N->isTruncatingStore() && "Cannot promote this store operand!");
// Truncate the value and store the result.
return DAG.getTruncStore(Ch, Val, Ptr, N->getSrcValue(),
SVOffset, N->getMemoryVT(),
isVolatile, Alignment);
}
SDOperand DAGTypeLegalizer::PromoteIntOp_BUILD_VECTOR(SDNode *N) {
// The vector type is legal but the element type is not. This implies
// that the vector is a power-of-two in length and that the element
// type does not have a strange size (eg: it is not i1).
MVT VecVT = N->getValueType(0);
unsigned NumElts = VecVT.getVectorNumElements();
assert(!(NumElts & 1) && "Legal vector of one illegal element?");
// Build a vector of half the length out of elements of twice the bitwidth.
// For example <4 x i16> -> <2 x i32>.
MVT OldVT = N->getOperand(0).getValueType();
MVT NewVT = MVT::getIntegerVT(2 * OldVT.getSizeInBits());
assert(OldVT.isSimple() && NewVT.isSimple());
std::vector<SDOperand> NewElts;
NewElts.reserve(NumElts/2);
for (unsigned i = 0; i < NumElts; i += 2) {
// Combine two successive elements into one promoted element.
SDOperand Lo = N->getOperand(i);
SDOperand Hi = N->getOperand(i+1);
if (TLI.isBigEndian())
std::swap(Lo, Hi);
NewElts.push_back(JoinIntegers(Lo, Hi));
}
SDOperand NewVec = DAG.getNode(ISD::BUILD_VECTOR,
MVT::getVectorVT(NewVT, NewElts.size()),
&NewElts[0], NewElts.size());
// Convert the new vector to the old vector type.
return DAG.getNode(ISD::BIT_CONVERT, VecVT, NewVec);
}
SDOperand DAGTypeLegalizer::PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N,
unsigned OpNo) {
if (OpNo == 1) {
// Promote the inserted value. This is valid because the type does not
// have to match the vector element type.
// Check that any extra bits introduced will be truncated away.
assert(N->getOperand(1).getValueType().getSizeInBits() >=
N->getValueType(0).getVectorElementType().getSizeInBits() &&
"Type of inserted value narrower than vector element type!");
return DAG.UpdateNodeOperands(SDOperand(N, 0), N->getOperand(0),
GetPromotedInteger(N->getOperand(1)),
N->getOperand(2));
}
assert(OpNo == 2 && "Different operand and result vector types?");
// Promote the index.
SDOperand Idx = N->getOperand(2);
Idx = DAG.getZeroExtendInReg(GetPromotedInteger(Idx), Idx.getValueType());
return DAG.UpdateNodeOperands(SDOperand(N, 0), N->getOperand(0),
N->getOperand(1), Idx);
}
SDOperand DAGTypeLegalizer::PromoteIntOp_MEMBARRIER(SDNode *N) {
SDOperand NewOps[6];
NewOps[0] = N->getOperand(0);
for (unsigned i = 1; i < array_lengthof(NewOps); ++i) {
SDOperand Flag = GetPromotedInteger(N->getOperand(i));
NewOps[i] = DAG.getZeroExtendInReg(Flag, MVT::i1);
}
return DAG.UpdateNodeOperands(SDOperand (N, 0), NewOps,
array_lengthof(NewOps));
}
//===----------------------------------------------------------------------===//
// Integer Result Expansion
//===----------------------------------------------------------------------===//
/// ExpandIntegerResult - This method is called when the specified result of the
/// specified node is found to need expansion. At this point, the node may also
/// have invalid operands or may have other results that need promotion, we just
/// know that (at least) one result needs expansion.
void DAGTypeLegalizer::ExpandIntegerResult(SDNode *N, unsigned ResNo) {
DEBUG(cerr << "Expand integer result: "; N->dump(&DAG); cerr << "\n");
SDOperand Lo, Hi;
Lo = Hi = SDOperand();
// See if the target wants to custom expand this node.
if (TLI.getOperationAction(N->getOpcode(), N->getValueType(0)) ==
TargetLowering::Custom) {
// If the target wants to, allow it to lower this itself.
if (SDNode *P = TLI.ExpandOperationResult(N, DAG)) {
// Everything that once used N now uses P. We are guaranteed that the
// result value types of N and the result value types of P match.
ReplaceNodeWith(N, P);
return;
}
}
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
cerr << "ExpandIntegerResult #" << ResNo << ": ";
N->dump(&DAG); cerr << "\n";
#endif
assert(0 && "Do not know how to expand the result of this operator!");
abort();
case ISD::MERGE_VALUES: SplitRes_MERGE_VALUES(N, Lo, Hi); break;
case ISD::SELECT: SplitRes_SELECT(N, Lo, Hi); break;
case ISD::SELECT_CC: SplitRes_SELECT_CC(N, Lo, Hi); break;
case ISD::UNDEF: SplitRes_UNDEF(N, Lo, Hi); break;
case ISD::BIT_CONVERT: ExpandRes_BIT_CONVERT(N, Lo, Hi); break;
case ISD::BUILD_PAIR: ExpandRes_BUILD_PAIR(N, Lo, Hi); break;
case ISD::EXTRACT_ELEMENT: ExpandRes_EXTRACT_ELEMENT(N, Lo, Hi); break;
case ISD::EXTRACT_VECTOR_ELT: ExpandRes_EXTRACT_VECTOR_ELT(N, Lo, Hi); break;
case ISD::Constant: ExpandIntRes_Constant(N, Lo, Hi); break;
case ISD::ANY_EXTEND: ExpandIntRes_ANY_EXTEND(N, Lo, Hi); break;
case ISD::ZERO_EXTEND: ExpandIntRes_ZERO_EXTEND(N, Lo, Hi); break;
case ISD::SIGN_EXTEND: ExpandIntRes_SIGN_EXTEND(N, Lo, Hi); break;
case ISD::AssertZext: ExpandIntRes_AssertZext(N, Lo, Hi); break;
case ISD::TRUNCATE: ExpandIntRes_TRUNCATE(N, Lo, Hi); break;
case ISD::SIGN_EXTEND_INREG: ExpandIntRes_SIGN_EXTEND_INREG(N, Lo, Hi); break;
case ISD::FP_TO_SINT: ExpandIntRes_FP_TO_SINT(N, Lo, Hi); break;
case ISD::FP_TO_UINT: ExpandIntRes_FP_TO_UINT(N, Lo, Hi); break;
case ISD::LOAD: ExpandIntRes_LOAD(cast<LoadSDNode>(N), Lo, Hi); break;
case ISD::AND:
case ISD::OR:
case ISD::XOR: ExpandIntRes_Logical(N, Lo, Hi); break;
case ISD::BSWAP: ExpandIntRes_BSWAP(N, Lo, Hi); break;
case ISD::ADD:
case ISD::SUB: ExpandIntRes_ADDSUB(N, Lo, Hi); break;
case ISD::ADDC:
case ISD::SUBC: ExpandIntRes_ADDSUBC(N, Lo, Hi); break;
case ISD::ADDE:
case ISD::SUBE: ExpandIntRes_ADDSUBE(N, Lo, Hi); break;
case ISD::MUL: ExpandIntRes_MUL(N, Lo, Hi); break;
case ISD::SDIV: ExpandIntRes_SDIV(N, Lo, Hi); break;
case ISD::SREM: ExpandIntRes_SREM(N, Lo, Hi); break;
case ISD::UDIV: ExpandIntRes_UDIV(N, Lo, Hi); break;
case ISD::UREM: ExpandIntRes_UREM(N, Lo, Hi); break;
case ISD::SHL:
case ISD::SRA:
case ISD::SRL: ExpandIntRes_Shift(N, Lo, Hi); break;
case ISD::CTLZ: ExpandIntRes_CTLZ(N, Lo, Hi); break;
case ISD::CTPOP: ExpandIntRes_CTPOP(N, Lo, Hi); break;
case ISD::CTTZ: ExpandIntRes_CTTZ(N, Lo, Hi); break;
}
// If Lo/Hi is null, the sub-method took care of registering results etc.
if (Lo.Val)
SetExpandedInteger(SDOperand(N, ResNo), Lo, Hi);
}
void DAGTypeLegalizer::ExpandIntRes_Constant(SDNode *N,
SDOperand &Lo, SDOperand &Hi) {
MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
unsigned NBitWidth = NVT.getSizeInBits();
const APInt &Cst = cast<ConstantSDNode>(N)->getAPIntValue();
Lo = DAG.getConstant(APInt(Cst).trunc(NBitWidth), NVT);
Hi = DAG.getConstant(Cst.lshr(NBitWidth).trunc(NBitWidth), NVT);
}
void DAGTypeLegalizer::ExpandIntRes_ANY_EXTEND(SDNode *N,
SDOperand &Lo, SDOperand &Hi) {
MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
SDOperand Op = N->getOperand(0);
if (Op.getValueType().bitsLE(NVT)) {
// The low part is any extension of the input (which degenerates to a copy).
Lo = DAG.getNode(ISD::ANY_EXTEND, NVT, Op);
Hi = DAG.getNode(ISD::UNDEF, NVT); // The high part is undefined.
} else {
// For example, extension of an i48 to an i64. The operand type necessarily
// promotes to the result type, so will end up being expanded too.
assert(getTypeAction(Op.getValueType()) == PromoteInteger &&
"Only know how to promote this result!");
SDOperand Res = GetPromotedInteger(Op);
assert(Res.getValueType() == N->getValueType(0) &&
"Operand over promoted?");
// Split the promoted operand. This will simplify when it is expanded.
SplitInteger(Res, Lo, Hi);
}
}
void DAGTypeLegalizer::ExpandIntRes_ZERO_EXTEND(SDNode *N,
SDOperand &Lo, SDOperand &Hi) {
MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
SDOperand Op = N->getOperand(0);
if (Op.getValueType().bitsLE(NVT)) {
// The low part is zero extension of the input (which degenerates to a copy).
Lo = DAG.getNode(ISD::ZERO_EXTEND, NVT, N->getOperand(0));
Hi = DAG.getConstant(0, NVT); // The high part is just a zero.
} else {
// For example, extension of an i48 to an i64. The operand type necessarily
// promotes to the result type, so will end up being expanded too.
assert(getTypeAction(Op.getValueType()) == PromoteInteger &&
"Only know how to promote this result!");
SDOperand Res = GetPromotedInteger(Op);
assert(Res.getValueType() == N->getValueType(0) &&
"Operand over promoted?");
// Split the promoted operand. This will simplify when it is expanded.
SplitInteger(Res, Lo, Hi);
unsigned ExcessBits =
Op.getValueType().getSizeInBits() - NVT.getSizeInBits();
Hi = DAG.getZeroExtendInReg(Hi, MVT::getIntegerVT(ExcessBits));
}
}
void DAGTypeLegalizer::ExpandIntRes_SIGN_EXTEND(SDNode *N,
SDOperand &Lo, SDOperand &Hi) {
MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
SDOperand Op = N->getOperand(0);
if (Op.getValueType().bitsLE(NVT)) {
// The low part is sign extension of the input (which degenerates to a copy).
Lo = DAG.getNode(ISD::SIGN_EXTEND, NVT, N->getOperand(0));
// The high part is obtained by SRA'ing all but one of the bits of low part.
unsigned LoSize = NVT.getSizeInBits();
Hi = DAG.getNode(ISD::SRA, NVT, Lo,
DAG.getConstant(LoSize-1, TLI.getShiftAmountTy()));
} else {
// For example, extension of an i48 to an i64. The operand type necessarily
// promotes to the result type, so will end up being expanded too.
assert(getTypeAction(Op.getValueType()) == PromoteInteger &&
"Only know how to promote this result!");
SDOperand Res = GetPromotedInteger(Op);
assert(Res.getValueType() == N->getValueType(0) &&
"Operand over promoted?");
// Split the promoted operand. This will simplify when it is expanded.
SplitInteger(Res, Lo, Hi);
unsigned ExcessBits =
Op.getValueType().getSizeInBits() - NVT.getSizeInBits();
Hi = DAG.getNode(ISD::SIGN_EXTEND_INREG, Hi.getValueType(), Hi,
DAG.getValueType(MVT::getIntegerVT(ExcessBits)));
}
}
void DAGTypeLegalizer::ExpandIntRes_AssertZext(SDNode *N,
SDOperand &Lo, SDOperand &Hi) {
GetExpandedInteger(N->getOperand(0), Lo, Hi);
MVT NVT = Lo.getValueType();
MVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
unsigned NVTBits = NVT.getSizeInBits();
unsigned EVTBits = EVT.getSizeInBits();
if (NVTBits < EVTBits) {
Hi = DAG.getNode(ISD::AssertZext, NVT, Hi,
DAG.getValueType(MVT::getIntegerVT(EVTBits - NVTBits)));
} else {
Lo = DAG.getNode(ISD::AssertZext, NVT, Lo, DAG.getValueType(EVT));
// The high part must be zero, make it explicit.
Hi = DAG.getConstant(0, NVT);
}
}
void DAGTypeLegalizer::ExpandIntRes_TRUNCATE(SDNode *N,
SDOperand &Lo, SDOperand &Hi) {
MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
Lo = DAG.getNode(ISD::TRUNCATE, NVT, N->getOperand(0));
Hi = DAG.getNode(ISD::SRL, N->getOperand(0).getValueType(), N->getOperand(0),
DAG.getConstant(NVT.getSizeInBits(),
TLI.getShiftAmountTy()));
Hi = DAG.getNode(ISD::TRUNCATE, NVT, Hi);
}
void DAGTypeLegalizer::
ExpandIntRes_SIGN_EXTEND_INREG(SDNode *N, SDOperand &Lo, SDOperand &Hi) {
GetExpandedInteger(N->getOperand(0), Lo, Hi);
MVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
if (EVT.bitsLE(Lo.getValueType())) {
// sext_inreg the low part if needed.
Lo = DAG.getNode(ISD::SIGN_EXTEND_INREG, Lo.getValueType(), Lo,
N->getOperand(1));
// The high part gets the sign extension from the lo-part. This handles
// things like sextinreg V:i64 from i8.
Hi = DAG.getNode(ISD::SRA, Hi.getValueType(), Lo,
DAG.getConstant(Hi.getValueType().getSizeInBits()-1,
TLI.getShiftAmountTy()));
} else {
// For example, extension of an i48 to an i64. Leave the low part alone,
// sext_inreg the high part.
unsigned ExcessBits =
EVT.getSizeInBits() - Lo.getValueType().getSizeInBits();
Hi = DAG.getNode(ISD::SIGN_EXTEND_INREG, Hi.getValueType(), Hi,
DAG.getValueType(MVT::getIntegerVT(ExcessBits)));
}
}
void DAGTypeLegalizer::ExpandIntRes_FP_TO_SINT(SDNode *N, SDOperand &Lo,
SDOperand &Hi) {
MVT VT = N->getValueType(0);
SDOperand Op = N->getOperand(0);
RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
if (VT == MVT::i64) {
if (Op.getValueType() == MVT::f32)
LC = RTLIB::FPTOSINT_F32_I64;
else if (Op.getValueType() == MVT::f64)
LC = RTLIB::FPTOSINT_F64_I64;
else if (Op.getValueType() == MVT::f80)
LC = RTLIB::FPTOSINT_F80_I64;
else if (Op.getValueType() == MVT::ppcf128)
LC = RTLIB::FPTOSINT_PPCF128_I64;
} else if (VT == MVT::i128) {
if (Op.getValueType() == MVT::f32)
LC = RTLIB::FPTOSINT_F32_I128;
else if (Op.getValueType() == MVT::f64)
LC = RTLIB::FPTOSINT_F64_I128;
else if (Op.getValueType() == MVT::f80)
LC = RTLIB::FPTOSINT_F80_I128;
else if (Op.getValueType() == MVT::ppcf128)
LC = RTLIB::FPTOSINT_PPCF128_I128;
} else {
assert(0 && "Unexpected fp-to-sint conversion!");
}
SplitInteger(MakeLibCall(LC, VT, &Op, 1, true/*sign irrelevant*/), Lo, Hi);
}
void DAGTypeLegalizer::ExpandIntRes_FP_TO_UINT(SDNode *N, SDOperand &Lo,
SDOperand &Hi) {
MVT VT = N->getValueType(0);
SDOperand Op = N->getOperand(0);
RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
if (VT == MVT::i64) {
if (Op.getValueType() == MVT::f32)
LC = RTLIB::FPTOUINT_F32_I64;
else if (Op.getValueType() == MVT::f64)
LC = RTLIB::FPTOUINT_F64_I64;
else if (Op.getValueType() == MVT::f80)
LC = RTLIB::FPTOUINT_F80_I64;
else if (Op.getValueType() == MVT::ppcf128)
LC = RTLIB::FPTOUINT_PPCF128_I64;
} else if (VT == MVT::i128) {
if (Op.getValueType() == MVT::f32)
LC = RTLIB::FPTOUINT_F32_I128;
else if (Op.getValueType() == MVT::f64)
LC = RTLIB::FPTOUINT_F64_I128;
else if (Op.getValueType() == MVT::f80)
LC = RTLIB::FPTOUINT_F80_I128;
else if (Op.getValueType() == MVT::ppcf128)
LC = RTLIB::FPTOUINT_PPCF128_I128;
} else {
assert(0 && "Unexpected fp-to-uint conversion!");
}
SplitInteger(MakeLibCall(LC, VT, &Op, 1, false/*sign irrelevant*/), Lo, Hi);
}
void DAGTypeLegalizer::ExpandIntRes_LOAD(LoadSDNode *N,
SDOperand &Lo, SDOperand &Hi) {
if (ISD::isNormalLoad(N)) {
ExpandRes_NormalLoad(N, Lo, Hi);
return;
}
assert(ISD::isUNINDEXEDLoad(N) && "Indexed load during type legalization!");
MVT VT = N->getValueType(0);
MVT NVT = TLI.getTypeToTransformTo(VT);
SDOperand Ch = N->getChain(); // Legalize the chain.
SDOperand Ptr = N->getBasePtr(); // Legalize the pointer.
ISD::LoadExtType ExtType = N->getExtensionType();
int SVOffset = N->getSrcValueOffset();
unsigned Alignment = N->getAlignment();
bool isVolatile = N->isVolatile();
assert(NVT.isByteSized() && "Expanded type not byte sized!");
if (N->getMemoryVT().bitsLE(NVT)) {
MVT EVT = N->getMemoryVT();
Lo = DAG.getExtLoad(ExtType, NVT, Ch, Ptr, N->getSrcValue(), SVOffset, EVT,
isVolatile, Alignment);
// Remember the chain.
Ch = Lo.getValue(1);
if (ExtType == ISD::SEXTLOAD) {
// The high part is obtained by SRA'ing all but one of the bits of the
// lo part.
unsigned LoSize = Lo.getValueType().getSizeInBits();
Hi = DAG.getNode(ISD::SRA, NVT, Lo,
DAG.getConstant(LoSize-1, TLI.getShiftAmountTy()));
} else if (ExtType == ISD::ZEXTLOAD) {
// The high part is just a zero.
Hi = DAG.getConstant(0, NVT);
} else {
assert(ExtType == ISD::EXTLOAD && "Unknown extload!");
// The high part is undefined.
Hi = DAG.getNode(ISD::UNDEF, NVT);
}
} else if (TLI.isLittleEndian()) {
// Little-endian - low bits are at low addresses.
Lo = DAG.getLoad(NVT, Ch, Ptr, N->getSrcValue(), SVOffset,
isVolatile, Alignment);
unsigned ExcessBits =
N->getMemoryVT().getSizeInBits() - NVT.getSizeInBits();
MVT NEVT = MVT::getIntegerVT(ExcessBits);
// Increment the pointer to the other half.
unsigned IncrementSize = NVT.getSizeInBits()/8;
Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr,
DAG.getIntPtrConstant(IncrementSize));
Hi = DAG.getExtLoad(ExtType, NVT, Ch, Ptr, N->getSrcValue(),
SVOffset+IncrementSize, NEVT,
isVolatile, MinAlign(Alignment, IncrementSize));
// Build a factor node to remember that this load is independent of the
// other one.
Ch = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1),
Hi.getValue(1));
} else {
// Big-endian - high bits are at low addresses. Favor aligned loads at
// the cost of some bit-fiddling.
MVT EVT = N->getMemoryVT();
unsigned EBytes = EVT.getStoreSizeInBits()/8;
unsigned IncrementSize = NVT.getSizeInBits()/8;
unsigned ExcessBits = (EBytes - IncrementSize)*8;
// Load both the high bits and maybe some of the low bits.
Hi = DAG.getExtLoad(ExtType, NVT, Ch, Ptr, N->getSrcValue(), SVOffset,
MVT::getIntegerVT(EVT.getSizeInBits() - ExcessBits),
isVolatile, Alignment);
// Increment the pointer to the other half.
Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr,
DAG.getIntPtrConstant(IncrementSize));
// Load the rest of the low bits.
Lo = DAG.getExtLoad(ISD::ZEXTLOAD, NVT, Ch, Ptr, N->getSrcValue(),
SVOffset+IncrementSize,
MVT::getIntegerVT(ExcessBits),
isVolatile, MinAlign(Alignment, IncrementSize));
// Build a factor node to remember that this load is independent of the
// other one.
Ch = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1),
Hi.getValue(1));
if (ExcessBits < NVT.getSizeInBits()) {
// Transfer low bits from the bottom of Hi to the top of Lo.
Lo = DAG.getNode(ISD::OR, NVT, Lo,
DAG.getNode(ISD::SHL, NVT, Hi,
DAG.getConstant(ExcessBits,
TLI.getShiftAmountTy())));
// Move high bits to the right position in Hi.
Hi = DAG.getNode(ExtType == ISD::SEXTLOAD ? ISD::SRA : ISD::SRL, NVT, Hi,
DAG.getConstant(NVT.getSizeInBits() - ExcessBits,
TLI.getShiftAmountTy()));
}
}
// Legalized the chain result - switch anything that used the old chain to
// use the new one.
ReplaceValueWith(SDOperand(N, 1), Ch);
}
void DAGTypeLegalizer::ExpandIntRes_Logical(SDNode *N,
SDOperand &Lo, SDOperand &Hi) {
SDOperand LL, LH, RL, RH;
GetExpandedInteger(N->getOperand(0), LL, LH);
GetExpandedInteger(N->getOperand(1), RL, RH);
Lo = DAG.getNode(N->getOpcode(), LL.getValueType(), LL, RL);
Hi = DAG.getNode(N->getOpcode(), LL.getValueType(), LH, RH);
}
void DAGTypeLegalizer::ExpandIntRes_BSWAP(SDNode *N,
SDOperand &Lo, SDOperand &Hi) {
GetExpandedInteger(N->getOperand(0), Hi, Lo); // Note swapped operands.
Lo = DAG.getNode(ISD::BSWAP, Lo.getValueType(), Lo);
Hi = DAG.getNode(ISD::BSWAP, Hi.getValueType(), Hi);
}
void DAGTypeLegalizer::ExpandIntRes_ADDSUB(SDNode *N,
SDOperand &Lo, SDOperand &Hi) {
// Expand the subcomponents.
SDOperand LHSL, LHSH, RHSL, RHSH;
GetExpandedInteger(N->getOperand(0), LHSL, LHSH);
GetExpandedInteger(N->getOperand(1), RHSL, RHSH);
SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag);
SDOperand LoOps[2] = { LHSL, RHSL };
SDOperand HiOps[3] = { LHSH, RHSH };
if (N->getOpcode() == ISD::ADD) {
Lo = DAG.getNode(ISD::ADDC, VTList, LoOps, 2);
HiOps[2] = Lo.getValue(1);
Hi = DAG.getNode(ISD::ADDE, VTList, HiOps, 3);
} else {
Lo = DAG.getNode(ISD::SUBC, VTList, LoOps, 2);
HiOps[2] = Lo.getValue(1);
Hi = DAG.getNode(ISD::SUBE, VTList, HiOps, 3);
}
}
void DAGTypeLegalizer::ExpandIntRes_ADDSUBC(SDNode *N,
SDOperand &Lo, SDOperand &Hi) {
// Expand the subcomponents.
SDOperand LHSL, LHSH, RHSL, RHSH;
GetExpandedInteger(N->getOperand(0), LHSL, LHSH);
GetExpandedInteger(N->getOperand(1), RHSL, RHSH);
SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag);
SDOperand LoOps[2] = { LHSL, RHSL };
SDOperand HiOps[3] = { LHSH, RHSH };
if (N->getOpcode() == ISD::ADDC) {
Lo = DAG.getNode(ISD::ADDC, VTList, LoOps, 2);
HiOps[2] = Lo.getValue(1);
Hi = DAG.getNode(ISD::ADDE, VTList, HiOps, 3);
} else {
Lo = DAG.getNode(ISD::SUBC, VTList, LoOps, 2);
HiOps[2] = Lo.getValue(1);
Hi = DAG.getNode(ISD::SUBE, VTList, HiOps, 3);
}
// Legalized the flag result - switch anything that used the old flag to
// use the new one.
ReplaceValueWith(SDOperand(N, 1), Hi.getValue(1));
}
void DAGTypeLegalizer::ExpandIntRes_ADDSUBE(SDNode *N,
SDOperand &Lo, SDOperand &Hi) {
// Expand the subcomponents.
SDOperand LHSL, LHSH, RHSL, RHSH;
GetExpandedInteger(N->getOperand(0), LHSL, LHSH);
GetExpandedInteger(N->getOperand(1), RHSL, RHSH);
SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag);
SDOperand LoOps[3] = { LHSL, RHSL, N->getOperand(2) };
SDOperand HiOps[3] = { LHSH, RHSH };
Lo = DAG.getNode(N->getOpcode(), VTList, LoOps, 3);
HiOps[2] = Lo.getValue(1);
Hi = DAG.getNode(N->getOpcode(), VTList, HiOps, 3);
// Legalized the flag result - switch anything that used the old flag to
// use the new one.
ReplaceValueWith(SDOperand(N, 1), Hi.getValue(1));
}
void DAGTypeLegalizer::ExpandIntRes_MUL(SDNode *N,
SDOperand &Lo, SDOperand &Hi) {
MVT VT = N->getValueType(0);
MVT NVT = TLI.getTypeToTransformTo(VT);
bool HasMULHS = TLI.isOperationLegal(ISD::MULHS, NVT);
bool HasMULHU = TLI.isOperationLegal(ISD::MULHU, NVT);
bool HasSMUL_LOHI = TLI.isOperationLegal(ISD::SMUL_LOHI, NVT);
bool HasUMUL_LOHI = TLI.isOperationLegal(ISD::UMUL_LOHI, NVT);
if (HasMULHU || HasMULHS || HasUMUL_LOHI || HasSMUL_LOHI) {
SDOperand LL, LH, RL, RH;
GetExpandedInteger(N->getOperand(0), LL, LH);
GetExpandedInteger(N->getOperand(1), RL, RH);
unsigned OuterBitSize = VT.getSizeInBits();
unsigned InnerBitSize = NVT.getSizeInBits();
unsigned LHSSB = DAG.ComputeNumSignBits(N->getOperand(0));
unsigned RHSSB = DAG.ComputeNumSignBits(N->getOperand(1));
APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
if (DAG.MaskedValueIsZero(N->getOperand(0), HighMask) &&
DAG.MaskedValueIsZero(N->getOperand(1), HighMask)) {
// The inputs are both zero-extended.
if (HasUMUL_LOHI) {
// We can emit a umul_lohi.
Lo = DAG.getNode(ISD::UMUL_LOHI, DAG.getVTList(NVT, NVT), LL, RL);
Hi = SDOperand(Lo.Val, 1);
return;
}
if (HasMULHU) {
// We can emit a mulhu+mul.
Lo = DAG.getNode(ISD::MUL, NVT, LL, RL);
Hi = DAG.getNode(ISD::MULHU, NVT, LL, RL);
return;
}
}
if (LHSSB > InnerBitSize && RHSSB > InnerBitSize) {
// The input values are both sign-extended.
if (HasSMUL_LOHI) {
// We can emit a smul_lohi.
Lo = DAG.getNode(ISD::SMUL_LOHI, DAG.getVTList(NVT, NVT), LL, RL);
Hi = SDOperand(Lo.Val, 1);
return;
}
if (HasMULHS) {
// We can emit a mulhs+mul.
Lo = DAG.getNode(ISD::MUL, NVT, LL, RL);
Hi = DAG.getNode(ISD::MULHS, NVT, LL, RL);
return;
}
}
if (HasUMUL_LOHI) {
// Lo,Hi = umul LHS, RHS.
SDOperand UMulLOHI = DAG.getNode(ISD::UMUL_LOHI,
DAG.getVTList(NVT, NVT), LL, RL);
Lo = UMulLOHI;
Hi = UMulLOHI.getValue(1);
RH = DAG.getNode(ISD::MUL, NVT, LL, RH);
LH = DAG.getNode(ISD::MUL, NVT, LH, RL);
Hi = DAG.getNode(ISD::ADD, NVT, Hi, RH);
Hi = DAG.getNode(ISD::ADD, NVT, Hi, LH);
return;
}
if (HasMULHU) {
Lo = DAG.getNode(ISD::MUL, NVT, LL, RL);
Hi = DAG.getNode(ISD::MULHU, NVT, LL, RL);
RH = DAG.getNode(ISD::MUL, NVT, LL, RH);
LH = DAG.getNode(ISD::MUL, NVT, LH, RL);
Hi = DAG.getNode(ISD::ADD, NVT, Hi, RH);
Hi = DAG.getNode(ISD::ADD, NVT, Hi, LH);
return;
}
}
// If nothing else, we can make a libcall.
RTLIB::Libcall LC;
switch (VT.getSimpleVT()) {
default:
assert(false && "Unsupported MUL!");
case MVT::i64:
LC = RTLIB::MUL_I64;
break;
}
SDOperand Ops[2] = { N->getOperand(0), N->getOperand(1) };
SplitInteger(MakeLibCall(LC, VT, Ops, 2, true/*sign irrelevant*/), Lo, Hi);
}
void DAGTypeLegalizer::ExpandIntRes_SDIV(SDNode *N,
SDOperand &Lo, SDOperand &Hi) {
assert(N->getValueType(0) == MVT::i64 && "Unsupported sdiv!");
SDOperand Ops[2] = { N->getOperand(0), N->getOperand(1) };
SplitInteger(MakeLibCall(RTLIB::SDIV_I64, N->getValueType(0), Ops, 2, true),
Lo, Hi);
}
void DAGTypeLegalizer::ExpandIntRes_SREM(SDNode *N,
SDOperand &Lo, SDOperand &Hi) {
assert(N->getValueType(0) == MVT::i64 && "Unsupported srem!");
SDOperand Ops[2] = { N->getOperand(0), N->getOperand(1) };
SplitInteger(MakeLibCall(RTLIB::SREM_I64, N->getValueType(0), Ops, 2, true),
Lo, Hi);
}
void DAGTypeLegalizer::ExpandIntRes_UDIV(SDNode *N,
SDOperand &Lo, SDOperand &Hi) {
assert(N->getValueType(0) == MVT::i64 && "Unsupported udiv!");
SDOperand Ops[2] = { N->getOperand(0), N->getOperand(1) };
SplitInteger(MakeLibCall(RTLIB::UDIV_I64, N->getValueType(0), Ops, 2, false),
Lo, Hi);
}
void DAGTypeLegalizer::ExpandIntRes_UREM(SDNode *N,
SDOperand &Lo, SDOperand &Hi) {
assert(N->getValueType(0) == MVT::i64 && "Unsupported urem!");
SDOperand Ops[2] = { N->getOperand(0), N->getOperand(1) };
SplitInteger(MakeLibCall(RTLIB::UREM_I64, N->getValueType(0), Ops, 2, false),
Lo, Hi);
}
void DAGTypeLegalizer::ExpandIntRes_Shift(SDNode *N,
SDOperand &Lo, SDOperand &Hi) {
MVT VT = N->getValueType(0);
// If we can emit an efficient shift operation, do so now. Check to see if
// the RHS is a constant.
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)))
return ExpandShiftByConstant(N, CN->getValue(), Lo, Hi);
// If we can determine that the high bit of the shift is zero or one, even if
// the low bits are variable, emit this shift in an optimized form.
if (ExpandShiftWithKnownAmountBit(N, Lo, Hi))
return;
// If this target supports shift_PARTS, use it. First, map to the _PARTS opc.
unsigned PartsOpc;
if (N->getOpcode() == ISD::SHL) {
PartsOpc = ISD::SHL_PARTS;
} else if (N->getOpcode() == ISD::SRL) {
PartsOpc = ISD::SRL_PARTS;
} else {
assert(N->getOpcode() == ISD::SRA && "Unknown shift!");
PartsOpc = ISD::SRA_PARTS;
}
// Next check to see if the target supports this SHL_PARTS operation or if it
// will custom expand it.
MVT NVT = TLI.getTypeToTransformTo(VT);
TargetLowering::LegalizeAction Action = TLI.getOperationAction(PartsOpc, NVT);
if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) ||
Action == TargetLowering::Custom) {
// Expand the subcomponents.
SDOperand LHSL, LHSH;
GetExpandedInteger(N->getOperand(0), LHSL, LHSH);
SDOperand Ops[] = { LHSL, LHSH, N->getOperand(1) };
MVT VT = LHSL.getValueType();
Lo = DAG.getNode(PartsOpc, DAG.getNodeValueTypes(VT, VT), 2, Ops, 3);
Hi = Lo.getValue(1);
return;
}
// Otherwise, emit a libcall.
assert(VT == MVT::i64 && "Unsupported shift!");
RTLIB::Libcall LC;
bool isSigned;
if (N->getOpcode() == ISD::SHL) {
LC = RTLIB::SHL_I64;
isSigned = false; /*sign irrelevant*/
} else if (N->getOpcode() == ISD::SRL) {
LC = RTLIB::SRL_I64;
isSigned = false;
} else {
assert(N->getOpcode() == ISD::SRA && "Unknown shift!");
LC = RTLIB::SRA_I64;
isSigned = true;
}
SDOperand Ops[2] = { N->getOperand(0), N->getOperand(1) };
SplitInteger(MakeLibCall(LC, VT, Ops, 2, isSigned), Lo, Hi);
}
void DAGTypeLegalizer::ExpandIntRes_CTLZ(SDNode *N,
SDOperand &Lo, SDOperand &Hi) {
// ctlz (HiLo) -> Hi != 0 ? ctlz(Hi) : (ctlz(Lo)+32)
GetExpandedInteger(N->getOperand(0), Lo, Hi);
MVT NVT = Lo.getValueType();
SDOperand HiNotZero = DAG.getSetCC(TLI.getSetCCResultType(Hi), Hi,
DAG.getConstant(0, NVT), ISD::SETNE);
SDOperand LoLZ = DAG.getNode(ISD::CTLZ, NVT, Lo);
SDOperand HiLZ = DAG.getNode(ISD::CTLZ, NVT, Hi);
Lo = DAG.getNode(ISD::SELECT, NVT, HiNotZero, HiLZ,
DAG.getNode(ISD::ADD, NVT, LoLZ,
DAG.getConstant(NVT.getSizeInBits(), NVT)));
Hi = DAG.getConstant(0, NVT);
}
void DAGTypeLegalizer::ExpandIntRes_CTPOP(SDNode *N,
SDOperand &Lo, SDOperand &Hi) {
// ctpop(HiLo) -> ctpop(Hi)+ctpop(Lo)
GetExpandedInteger(N->getOperand(0), Lo, Hi);
MVT NVT = Lo.getValueType();
Lo = DAG.getNode(ISD::ADD, NVT, DAG.getNode(ISD::CTPOP, NVT, Lo),
DAG.getNode(ISD::CTPOP, NVT, Hi));
Hi = DAG.getConstant(0, NVT);
}
void DAGTypeLegalizer::ExpandIntRes_CTTZ(SDNode *N,
SDOperand &Lo, SDOperand &Hi) {
// cttz (HiLo) -> Lo != 0 ? cttz(Lo) : (cttz(Hi)+32)
GetExpandedInteger(N->getOperand(0), Lo, Hi);
MVT NVT = Lo.getValueType();
SDOperand LoNotZero = DAG.getSetCC(TLI.getSetCCResultType(Lo), Lo,
DAG.getConstant(0, NVT), ISD::SETNE);
SDOperand LoLZ = DAG.getNode(ISD::CTTZ, NVT, Lo);
SDOperand HiLZ = DAG.getNode(ISD::CTTZ, NVT, Hi);
Lo = DAG.getNode(ISD::SELECT, NVT, LoNotZero, LoLZ,
DAG.getNode(ISD::ADD, NVT, HiLZ,
DAG.getConstant(NVT.getSizeInBits(), NVT)));
Hi = DAG.getConstant(0, NVT);
}
/// ExpandShiftByConstant - N is a shift by a value that needs to be expanded,
/// and the shift amount is a constant 'Amt'. Expand the operation.
void DAGTypeLegalizer::ExpandShiftByConstant(SDNode *N, unsigned Amt,
SDOperand &Lo, SDOperand &Hi) {
// Expand the incoming operand to be shifted, so that we have its parts
SDOperand InL, InH;
GetExpandedInteger(N->getOperand(0), InL, InH);
MVT NVT = InL.getValueType();
unsigned VTBits = N->getValueType(0).getSizeInBits();
unsigned NVTBits = NVT.getSizeInBits();
MVT ShTy = N->getOperand(1).getValueType();
if (N->getOpcode() == ISD::SHL) {
if (Amt > VTBits) {
Lo = Hi = DAG.getConstant(0, NVT);
} else if (Amt > NVTBits) {
Lo = DAG.getConstant(0, NVT);
Hi = DAG.getNode(ISD::SHL, NVT, InL, DAG.getConstant(Amt-NVTBits,ShTy));
} else if (Amt == NVTBits) {
Lo = DAG.getConstant(0, NVT);
Hi = InL;
} else {
Lo = DAG.getNode(ISD::SHL, NVT, InL, DAG.getConstant(Amt, ShTy));
Hi = DAG.getNode(ISD::OR, NVT,
DAG.getNode(ISD::SHL, NVT, InH,
DAG.getConstant(Amt, ShTy)),
DAG.getNode(ISD::SRL, NVT, InL,
DAG.getConstant(NVTBits-Amt, ShTy)));
}
return;
}
if (N->getOpcode() == ISD::SRL) {
if (Amt > VTBits) {
Lo = DAG.getConstant(0, NVT);
Hi = DAG.getConstant(0, NVT);
} else if (Amt > NVTBits) {
Lo = DAG.getNode(ISD::SRL, NVT, InH, DAG.getConstant(Amt-NVTBits,ShTy));
Hi = DAG.getConstant(0, NVT);
} else if (Amt == NVTBits) {
Lo = InH;
Hi = DAG.getConstant(0, NVT);
} else {
Lo = DAG.getNode(ISD::OR, NVT,
DAG.getNode(ISD::SRL, NVT, InL,
DAG.getConstant(Amt, ShTy)),
DAG.getNode(ISD::SHL, NVT, InH,
DAG.getConstant(NVTBits-Amt, ShTy)));
Hi = DAG.getNode(ISD::SRL, NVT, InH, DAG.getConstant(Amt, ShTy));
}
return;
}
assert(N->getOpcode() == ISD::SRA && "Unknown shift!");
if (Amt > VTBits) {
Hi = Lo = DAG.getNode(ISD::SRA, NVT, InH,
DAG.getConstant(NVTBits-1, ShTy));
} else if (Amt > NVTBits) {
Lo = DAG.getNode(ISD::SRA, NVT, InH,
DAG.getConstant(Amt-NVTBits, ShTy));
Hi = DAG.getNode(ISD::SRA, NVT, InH,
DAG.getConstant(NVTBits-1, ShTy));
} else if (Amt == NVTBits) {
Lo = InH;
Hi = DAG.getNode(ISD::SRA, NVT, InH,
DAG.getConstant(NVTBits-1, ShTy));
} else {
Lo = DAG.getNode(ISD::OR, NVT,
DAG.getNode(ISD::SRL, NVT, InL,
DAG.getConstant(Amt, ShTy)),
DAG.getNode(ISD::SHL, NVT, InH,
DAG.getConstant(NVTBits-Amt, ShTy)));
Hi = DAG.getNode(ISD::SRA, NVT, InH, DAG.getConstant(Amt, ShTy));
}
}
/// ExpandShiftWithKnownAmountBit - Try to determine whether we can simplify
/// this shift based on knowledge of the high bit of the shift amount. If we
/// can tell this, we know that it is >= 32 or < 32, without knowing the actual
/// shift amount.
bool DAGTypeLegalizer::
ExpandShiftWithKnownAmountBit(SDNode *N, SDOperand &Lo, SDOperand &Hi) {
SDOperand Amt = N->getOperand(1);
MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
MVT ShTy = Amt.getValueType();
unsigned ShBits = ShTy.getSizeInBits();
unsigned NVTBits = NVT.getSizeInBits();
assert(isPowerOf2_32(NVTBits) &&
"Expanded integer type size not a power of two!");
APInt HighBitMask = APInt::getHighBitsSet(ShBits, ShBits - Log2_32(NVTBits));
APInt KnownZero, KnownOne;
DAG.ComputeMaskedBits(N->getOperand(1), HighBitMask, KnownZero, KnownOne);
// If we don't know anything about the high bits, exit.
if (((KnownZero|KnownOne) & HighBitMask) == 0)
return false;
// Get the incoming operand to be shifted.
SDOperand InL, InH;
GetExpandedInteger(N->getOperand(0), InL, InH);
// If we know that any of the high bits of the shift amount are one, then we
// can do this as a couple of simple shifts.
if (KnownOne.intersects(HighBitMask)) {
// Mask out the high bit, which we know is set.
Amt = DAG.getNode(ISD::AND, ShTy, Amt,
DAG.getConstant(~HighBitMask, ShTy));
switch (N->getOpcode()) {
default: assert(0 && "Unknown shift");
case ISD::SHL:
Lo = DAG.getConstant(0, NVT); // Low part is zero.
Hi = DAG.getNode(ISD::SHL, NVT, InL, Amt); // High part from Lo part.
return true;
case ISD::SRL:
Hi = DAG.getConstant(0, NVT); // Hi part is zero.
Lo = DAG.getNode(ISD::SRL, NVT, InH, Amt); // Lo part from Hi part.
return true;
case ISD::SRA:
Hi = DAG.getNode(ISD::SRA, NVT, InH, // Sign extend high part.
DAG.getConstant(NVTBits-1, ShTy));
Lo = DAG.getNode(ISD::SRA, NVT, InH, Amt); // Lo part from Hi part.
return true;
}
}
// If we know that all of the high bits of the shift amount are zero, then we
// can do this as a couple of simple shifts.
if ((KnownZero & HighBitMask) == HighBitMask) {
// Compute 32-amt.
SDOperand Amt2 = DAG.getNode(ISD::SUB, ShTy,
DAG.getConstant(NVTBits, ShTy),
Amt);
unsigned Op1, Op2;
switch (N->getOpcode()) {
default: assert(0 && "Unknown shift");
case ISD::SHL: Op1 = ISD::SHL; Op2 = ISD::SRL; break;
case ISD::SRL:
case ISD::SRA: Op1 = ISD::SRL; Op2 = ISD::SHL; break;
}
Lo = DAG.getNode(N->getOpcode(), NVT, InL, Amt);
Hi = DAG.getNode(ISD::OR, NVT,
DAG.getNode(Op1, NVT, InH, Amt),
DAG.getNode(Op2, NVT, InL, Amt2));
return true;
}
return false;
}
//===----------------------------------------------------------------------===//
// Integer Operand Expansion
//===----------------------------------------------------------------------===//
/// ExpandIntegerOperand - This method is called when the specified operand of
/// the specified node is found to need expansion. At this point, all of the
/// result types of the node are known to be legal, but other operands of the
/// node may need promotion or expansion as well as the specified one.
bool DAGTypeLegalizer::ExpandIntegerOperand(SDNode *N, unsigned OpNo) {
DEBUG(cerr << "Expand integer operand: "; N->dump(&DAG); cerr << "\n");
SDOperand Res(0, 0);
if (TLI.getOperationAction(N->getOpcode(), N->getOperand(OpNo).getValueType())
== TargetLowering::Custom)
Res = TLI.LowerOperation(SDOperand(N, 0), DAG);
if (Res.Val == 0) {
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
cerr << "ExpandIntegerOperand Op #" << OpNo << ": ";
N->dump(&DAG); cerr << "\n";
#endif
assert(0 && "Do not know how to expand this operator's operand!");
abort();
case ISD::BUILD_VECTOR: Res = ExpandOp_BUILD_VECTOR(N); break;
case ISD::BIT_CONVERT: Res = ExpandOp_BIT_CONVERT(N); break;
case ISD::EXTRACT_ELEMENT: Res = ExpandOp_EXTRACT_ELEMENT(N); break;
case ISD::TRUNCATE: Res = ExpandIntOp_TRUNCATE(N); break;
case ISD::SINT_TO_FP:
Res = ExpandIntOp_SINT_TO_FP(N->getOperand(0), N->getValueType(0));
break;
case ISD::UINT_TO_FP:
Res = ExpandIntOp_UINT_TO_FP(N->getOperand(0), N->getValueType(0));
break;
case ISD::BR_CC: Res = ExpandIntOp_BR_CC(N); break;
case ISD::SETCC: Res = ExpandIntOp_SETCC(N); break;
case ISD::STORE:
Res = ExpandIntOp_STORE(cast<StoreSDNode>(N), OpNo);
break;
}
}
// If the result is null, the sub-method took care of registering results etc.
if (!Res.Val) return false;
// If the result is N, the sub-method updated N in place. Check to see if any
// operands are new, and if so, mark them.
if (Res.Val == N) {
// Mark N as new and remark N and its operands. This allows us to correctly
// revisit N if it needs another step of expansion and allows us to visit
// any new operands to N.
ReanalyzeNode(N);
return true;
}
assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
"Invalid operand expansion");
ReplaceValueWith(SDOperand(N, 0), Res);
return false;
}
SDOperand DAGTypeLegalizer::ExpandIntOp_TRUNCATE(SDNode *N) {
SDOperand InL, InH;
GetExpandedInteger(N->getOperand(0), InL, InH);
// Just truncate the low part of the source.
return DAG.getNode(ISD::TRUNCATE, N->getValueType(0), InL);
}
SDOperand DAGTypeLegalizer::ExpandIntOp_SINT_TO_FP(SDOperand Source,
MVT DestTy) {
// We know the destination is legal, but that the input needs to be expanded.
MVT SourceVT = Source.getValueType();
// Check to see if the target has a custom way to lower this. If so, use it.
switch (TLI.getOperationAction(ISD::SINT_TO_FP, SourceVT)) {
default: assert(0 && "This action not implemented for this operation!");
case TargetLowering::Legal:
case TargetLowering::Expand:
break; // This case is handled below.
case TargetLowering::Custom:
SDOperand NV = TLI.LowerOperation(DAG.getNode(ISD::SINT_TO_FP, DestTy,
Source), DAG);
if (NV.Val) return NV;
break; // The target lowered this.
}
RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
if (SourceVT == MVT::i64) {
if (DestTy == MVT::f32)
LC = RTLIB::SINTTOFP_I64_F32;
else {
assert(DestTy == MVT::f64 && "Unknown fp value type!");
LC = RTLIB::SINTTOFP_I64_F64;
}
} else if (SourceVT == MVT::i128) {
if (DestTy == MVT::f32)
LC = RTLIB::SINTTOFP_I128_F32;
else if (DestTy == MVT::f64)
LC = RTLIB::SINTTOFP_I128_F64;
else if (DestTy == MVT::f80)
LC = RTLIB::SINTTOFP_I128_F80;
else {
assert(DestTy == MVT::ppcf128 && "Unknown fp value type!");
LC = RTLIB::SINTTOFP_I128_PPCF128;
}
} else {
assert(0 && "Unknown int value type!");
}
assert(LC != RTLIB::UNKNOWN_LIBCALL &&
"Don't know how to expand this SINT_TO_FP!");
return MakeLibCall(LC, DestTy, &Source, 1, true);
}
SDOperand DAGTypeLegalizer::ExpandIntOp_UINT_TO_FP(SDOperand Source,
MVT DestTy) {
// We know the destination is legal, but that the input needs to be expanded.
assert(getTypeAction(Source.getValueType()) == ExpandInteger &&
"This is not an expansion!");
// If this is unsigned, and not supported, first perform the conversion to
// signed, then adjust the result if the sign bit is set.
SDOperand SignedConv = ExpandIntOp_SINT_TO_FP(Source, DestTy);
// The 64-bit value loaded will be incorrectly if the 'sign bit' of the
// incoming integer is set. To handle this, we dynamically test to see if
// it is set, and, if so, add a fudge factor.
SDOperand Lo, Hi;
GetExpandedInteger(Source, Lo, Hi);
SDOperand SignSet = DAG.getSetCC(TLI.getSetCCResultType(Hi), Hi,
DAG.getConstant(0, Hi.getValueType()),
ISD::SETLT);
SDOperand Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
SDOperand CstOffset = DAG.getNode(ISD::SELECT, Zero.getValueType(),
SignSet, Four, Zero);
uint64_t FF = 0x5f800000ULL;
if (TLI.isLittleEndian()) FF <<= 32;
Constant *FudgeFactor = ConstantInt::get((Type*)Type::Int64Ty, FF);
SDOperand CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
CPIdx = DAG.getNode(ISD::ADD, TLI.getPointerTy(), CPIdx, CstOffset);
SDOperand FudgeInReg;
if (DestTy == MVT::f32)
FudgeInReg = DAG.getLoad(MVT::f32, DAG.getEntryNode(), CPIdx, NULL, 0);
else if (DestTy.bitsGT(MVT::f32))
// FIXME: Avoid the extend by construction the right constantpool?
FudgeInReg = DAG.getExtLoad(ISD::EXTLOAD, DestTy, DAG.getEntryNode(),
CPIdx, NULL, 0, MVT::f32);
else
assert(0 && "Unexpected conversion");
return DAG.getNode(ISD::FADD, DestTy, SignedConv, FudgeInReg);
}
SDOperand DAGTypeLegalizer::ExpandIntOp_BR_CC(SDNode *N) {
SDOperand NewLHS = N->getOperand(2), NewRHS = N->getOperand(3);
ISD::CondCode CCCode = cast<CondCodeSDNode>(N->getOperand(1))->get();
ExpandSetCCOperands(NewLHS, NewRHS, CCCode);
// If ExpandSetCCOperands returned a scalar, we need to compare the result
// against zero to select between true and false values.
if (NewRHS.Val == 0) {
NewRHS = DAG.getConstant(0, NewLHS.getValueType());
CCCode = ISD::SETNE;
}
// Update N to have the operands specified.
return DAG.UpdateNodeOperands(SDOperand(N, 0), N->getOperand(0),
DAG.getCondCode(CCCode), NewLHS, NewRHS,
N->getOperand(4));
}
SDOperand DAGTypeLegalizer::ExpandIntOp_SETCC(SDNode *N) {
SDOperand NewLHS = N->getOperand(0), NewRHS = N->getOperand(1);
ISD::CondCode CCCode = cast<CondCodeSDNode>(N->getOperand(2))->get();
ExpandSetCCOperands(NewLHS, NewRHS, CCCode);
// If ExpandSetCCOperands returned a scalar, use it.
if (NewRHS.Val == 0) return NewLHS;
// Otherwise, update N to have the operands specified.
return DAG.UpdateNodeOperands(SDOperand(N, 0), NewLHS, NewRHS,
DAG.getCondCode(CCCode));
}
/// ExpandSetCCOperands - Expand the operands of a comparison. This code is
/// shared among BR_CC, SELECT_CC, and SETCC handlers.
void DAGTypeLegalizer::ExpandSetCCOperands(SDOperand &NewLHS, SDOperand &NewRHS,
ISD::CondCode &CCCode) {
SDOperand LHSLo, LHSHi, RHSLo, RHSHi;
GetExpandedInteger(NewLHS, LHSLo, LHSHi);
GetExpandedInteger(NewRHS, RHSLo, RHSHi);
MVT VT = NewLHS.getValueType();
if (VT == MVT::ppcf128) {
// FIXME: This generated code sucks. We want to generate
// FCMP crN, hi1, hi2
// BNE crN, L:
// FCMP crN, lo1, lo2
// The following can be improved, but not that much.
SDOperand Tmp1, Tmp2, Tmp3;
Tmp1 = DAG.getSetCC(TLI.getSetCCResultType(LHSHi), LHSHi, RHSHi, ISD::SETEQ);
Tmp2 = DAG.getSetCC(TLI.getSetCCResultType(LHSLo), LHSLo, RHSLo, CCCode);
Tmp3 = DAG.getNode(ISD::AND, Tmp1.getValueType(), Tmp1, Tmp2);
Tmp1 = DAG.getSetCC(TLI.getSetCCResultType(LHSHi), LHSHi, RHSHi, ISD::SETNE);
Tmp2 = DAG.getSetCC(TLI.getSetCCResultType(LHSHi), LHSHi, RHSHi, CCCode);
Tmp1 = DAG.getNode(ISD::AND, Tmp1.getValueType(), Tmp1, Tmp2);
NewLHS = DAG.getNode(ISD::OR, Tmp1.getValueType(), Tmp1, Tmp3);
NewRHS = SDOperand(); // LHS is the result, not a compare.
return;
}
if (CCCode == ISD::SETEQ || CCCode == ISD::SETNE) {
if (RHSLo == RHSHi)
if (ConstantSDNode *RHSCST = dyn_cast<ConstantSDNode>(RHSLo))
if (RHSCST->isAllOnesValue()) {
// Equality comparison to -1.
NewLHS = DAG.getNode(ISD::AND, LHSLo.getValueType(), LHSLo, LHSHi);
NewRHS = RHSLo;
return;
}
NewLHS = DAG.getNode(ISD::XOR, LHSLo.getValueType(), LHSLo, RHSLo);
NewRHS = DAG.getNode(ISD::XOR, LHSLo.getValueType(), LHSHi, RHSHi);
NewLHS = DAG.getNode(ISD::OR, NewLHS.getValueType(), NewLHS, NewRHS);
NewRHS = DAG.getConstant(0, NewLHS.getValueType());
return;
}
// If this is a comparison of the sign bit, just look at the top part.
// X > -1, x < 0
if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(NewRHS))
if ((CCCode == ISD::SETLT && CST->isNullValue()) || // X < 0
(CCCode == ISD::SETGT && CST->isAllOnesValue())) { // X > -1
NewLHS = LHSHi;
NewRHS = RHSHi;
return;
}
// FIXME: This generated code sucks.
ISD::CondCode LowCC;
switch (CCCode) {
default: assert(0 && "Unknown integer setcc!");
case ISD::SETLT:
case ISD::SETULT: LowCC = ISD::SETULT; break;
case ISD::SETGT:
case ISD::SETUGT: LowCC = ISD::SETUGT; break;
case ISD::SETLE:
case ISD::SETULE: LowCC = ISD::SETULE; break;
case ISD::SETGE:
case ISD::SETUGE: LowCC = ISD::SETUGE; break;
}
// Tmp1 = lo(op1) < lo(op2) // Always unsigned comparison
// Tmp2 = hi(op1) < hi(op2) // Signedness depends on operands
// dest = hi(op1) == hi(op2) ? Tmp1 : Tmp2;
// NOTE: on targets without efficient SELECT of bools, we can always use
// this identity: (B1 ? B2 : B3) --> (B1 & B2)|(!B1&B3)
TargetLowering::DAGCombinerInfo DagCombineInfo(DAG, false, true, NULL);
SDOperand Tmp1, Tmp2;
Tmp1 = TLI.SimplifySetCC(TLI.getSetCCResultType(LHSLo), LHSLo, RHSLo, LowCC,
false, DagCombineInfo);
if (!Tmp1.Val)
Tmp1 = DAG.getSetCC(TLI.getSetCCResultType(LHSLo), LHSLo, RHSLo, LowCC);
Tmp2 = TLI.SimplifySetCC(TLI.getSetCCResultType(LHSHi), LHSHi, RHSHi,
CCCode, false, DagCombineInfo);
if (!Tmp2.Val)
Tmp2 = DAG.getNode(ISD::SETCC, TLI.getSetCCResultType(LHSHi), LHSHi, RHSHi,
DAG.getCondCode(CCCode));
ConstantSDNode *Tmp1C = dyn_cast<ConstantSDNode>(Tmp1.Val);
ConstantSDNode *Tmp2C = dyn_cast<ConstantSDNode>(Tmp2.Val);
if ((Tmp1C && Tmp1C->isNullValue()) ||
(Tmp2C && Tmp2C->isNullValue() &&
(CCCode == ISD::SETLE || CCCode == ISD::SETGE ||
CCCode == ISD::SETUGE || CCCode == ISD::SETULE)) ||
(Tmp2C && Tmp2C->getAPIntValue() == 1 &&
(CCCode == ISD::SETLT || CCCode == ISD::SETGT ||
CCCode == ISD::SETUGT || CCCode == ISD::SETULT))) {
// low part is known false, returns high part.
// For LE / GE, if high part is known false, ignore the low part.
// For LT / GT, if high part is known true, ignore the low part.
NewLHS = Tmp2;
NewRHS = SDOperand();
return;
}
NewLHS = TLI.SimplifySetCC(TLI.getSetCCResultType(LHSHi), LHSHi, RHSHi,
ISD::SETEQ, false, DagCombineInfo);
if (!NewLHS.Val)
NewLHS = DAG.getSetCC(TLI.getSetCCResultType(LHSHi), LHSHi, RHSHi,
ISD::SETEQ);
NewLHS = DAG.getNode(ISD::SELECT, Tmp1.getValueType(),
NewLHS, Tmp1, Tmp2);
NewRHS = SDOperand();
}
SDOperand DAGTypeLegalizer::ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo) {
if (ISD::isNormalStore(N))
return ExpandOp_NormalStore(N, OpNo);
assert(ISD::isUNINDEXEDStore(N) && "Indexed store during type legalization!");
assert(OpNo == 1 && "Can only expand the stored value so far");
MVT VT = N->getOperand(1).getValueType();
MVT NVT = TLI.getTypeToTransformTo(VT);
SDOperand Ch = N->getChain();
SDOperand Ptr = N->getBasePtr();
int SVOffset = N->getSrcValueOffset();
unsigned Alignment = N->getAlignment();
bool isVolatile = N->isVolatile();
SDOperand Lo, Hi;
assert(NVT.isByteSized() && "Expanded type not byte sized!");
if (N->getMemoryVT().bitsLE(NVT)) {
GetExpandedInteger(N->getValue(), Lo, Hi);
return DAG.getTruncStore(Ch, Lo, Ptr, N->getSrcValue(), SVOffset,
N->getMemoryVT(), isVolatile, Alignment);
} else if (TLI.isLittleEndian()) {
// Little-endian - low bits are at low addresses.
GetExpandedInteger(N->getValue(), Lo, Hi);
Lo = DAG.getStore(Ch, Lo, Ptr, N->getSrcValue(), SVOffset,
isVolatile, Alignment);
unsigned ExcessBits =
N->getMemoryVT().getSizeInBits() - NVT.getSizeInBits();
MVT NEVT = MVT::getIntegerVT(ExcessBits);
// Increment the pointer to the other half.
unsigned IncrementSize = NVT.getSizeInBits()/8;
Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr,
DAG.getIntPtrConstant(IncrementSize));
Hi = DAG.getTruncStore(Ch, Hi, Ptr, N->getSrcValue(),
SVOffset+IncrementSize, NEVT,
isVolatile, MinAlign(Alignment, IncrementSize));
return DAG.getNode(ISD::TokenFactor, MVT::Other, Lo, Hi);
} else {
// Big-endian - high bits are at low addresses. Favor aligned stores at
// the cost of some bit-fiddling.
GetExpandedInteger(N->getValue(), Lo, Hi);
MVT EVT = N->getMemoryVT();
unsigned EBytes = EVT.getStoreSizeInBits()/8;
unsigned IncrementSize = NVT.getSizeInBits()/8;
unsigned ExcessBits = (EBytes - IncrementSize)*8;
MVT HiVT = MVT::getIntegerVT(EVT.getSizeInBits() - ExcessBits);
if (ExcessBits < NVT.getSizeInBits()) {
// Transfer high bits from the top of Lo to the bottom of Hi.
Hi = DAG.getNode(ISD::SHL, NVT, Hi,
DAG.getConstant(NVT.getSizeInBits() - ExcessBits,
TLI.getShiftAmountTy()));
Hi = DAG.getNode(ISD::OR, NVT, Hi,
DAG.getNode(ISD::SRL, NVT, Lo,
DAG.getConstant(ExcessBits,
TLI.getShiftAmountTy())));
}
// Store both the high bits and maybe some of the low bits.
Hi = DAG.getTruncStore(Ch, Hi, Ptr, N->getSrcValue(),
SVOffset, HiVT, isVolatile, Alignment);
// Increment the pointer to the other half.
Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr,
DAG.getIntPtrConstant(IncrementSize));
// Store the lowest ExcessBits bits in the second half.
Lo = DAG.getTruncStore(Ch, Lo, Ptr, N->getSrcValue(),
SVOffset+IncrementSize,
MVT::getIntegerVT(ExcessBits),
isVolatile, MinAlign(Alignment, IncrementSize));
return DAG.getNode(ISD::TokenFactor, MVT::Other, Lo, Hi);
}
}