llvm-6502/tools/llvm-mc/AsmParser.cpp

406 lines
11 KiB
C++

//===- AsmParser.cpp - Parser for Assembly Files --------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This class implements the parser for assembly files.
//
//===----------------------------------------------------------------------===//
#include "AsmParser.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
bool AsmParser::Error(SMLoc L, const char *Msg) {
Lexer.PrintMessage(L, Msg);
return true;
}
bool AsmParser::TokError(const char *Msg) {
Lexer.PrintMessage(Lexer.getLoc(), Msg);
return true;
}
bool AsmParser::Run() {
// Prime the lexer.
Lexer.Lex();
while (Lexer.isNot(asmtok::Eof))
if (ParseStatement())
return true;
return false;
}
/// EatToEndOfStatement - Throw away the rest of the line for testing purposes.
void AsmParser::EatToEndOfStatement() {
while (Lexer.isNot(asmtok::EndOfStatement) &&
Lexer.isNot(asmtok::Eof))
Lexer.Lex();
// Eat EOL.
if (Lexer.is(asmtok::EndOfStatement))
Lexer.Lex();
}
struct AsmParser::X86Operand {
enum {
Register,
Immediate,
Memory
} Kind;
union {
struct {
unsigned RegNo;
} Reg;
struct {
// FIXME: Should be a general expression.
int64_t Val;
} Imm;
struct {
unsigned SegReg;
int64_t Disp; // FIXME: Should be a general expression.
unsigned BaseReg;
unsigned Scale;
unsigned ScaleReg;
} Mem;
};
static X86Operand CreateReg(unsigned RegNo) {
X86Operand Res;
Res.Kind = Register;
Res.Reg.RegNo = RegNo;
return Res;
}
static X86Operand CreateImm(int64_t Val) {
X86Operand Res;
Res.Kind = Immediate;
Res.Imm.Val = Val;
return Res;
}
static X86Operand CreateMem(unsigned SegReg, int64_t Disp, unsigned BaseReg,
unsigned Scale, unsigned ScaleReg) {
X86Operand Res;
Res.Kind = Memory;
Res.Mem.SegReg = SegReg;
Res.Mem.Disp = Disp;
Res.Mem.BaseReg = BaseReg;
Res.Mem.Scale = Scale;
Res.Mem.ScaleReg = ScaleReg;
return Res;
}
};
bool AsmParser::ParseX86Operand(X86Operand &Op) {
switch (Lexer.getKind()) {
default:
return ParseX86MemOperand(Op);
case asmtok::Register:
// FIXME: Decode reg #.
// FIXME: if a segment register, this could either be just the seg reg, or
// the start of a memory operand.
Op = X86Operand::CreateReg(123);
Lexer.Lex(); // Eat register.
return false;
case asmtok::Dollar: {
// $42 -> immediate.
Lexer.Lex();
int64_t Val;
if (ParseExpression(Val))
return TokError("expected integer constant");
Op = X86Operand::CreateReg(Val);
return false;
case asmtok::Star:
Lexer.Lex(); // Eat the star.
if (Lexer.is(asmtok::Register)) {
Op = X86Operand::CreateReg(123);
Lexer.Lex(); // Eat register.
} else if (ParseX86MemOperand(Op))
return true;
// FIXME: Note that these are 'dereferenced' so that clients know the '*' is
// there.
return false;
}
}
}
/// ParseX86MemOperand: segment: disp(basereg, indexreg, scale)
bool AsmParser::ParseX86MemOperand(X86Operand &Op) {
// FIXME: If SegReg ':' (e.g. %gs:), eat and remember.
unsigned SegReg = 0;
// We have to disambiguate a parenthesized expression "(4+5)" from the start
// of a memory operand with a missing displacement "(%ebx)" or "(,%eax)". The
// only way to do this without lookahead is to eat the ( and see what is after
// it.
int64_t Disp = 0;
if (Lexer.isNot(asmtok::LParen)) {
if (ParseExpression(Disp)) return true;
// After parsing the base expression we could either have a parenthesized
// memory address or not. If not, return now. If so, eat the (.
if (Lexer.isNot(asmtok::LParen)) {
Op = X86Operand::CreateMem(SegReg, Disp, 0, 0, 0);
return false;
}
// Eat the '('.
Lexer.Lex();
} else {
// Okay, we have a '('. We don't know if this is an expression or not, but
// so we have to eat the ( to see beyond it.
Lexer.Lex(); // Eat the '('.
if (Lexer.is(asmtok::Register) || Lexer.is(asmtok::Comma)) {
// Nothing to do here, fall into the code below with the '(' part of the
// memory operand consumed.
} else {
// It must be an parenthesized expression, parse it now.
if (ParseParenExpr(Disp) ||
ParseBinOpRHS(1, Disp))
return true;
// After parsing the base expression we could either have a parenthesized
// memory address or not. If not, return now. If so, eat the (.
if (Lexer.isNot(asmtok::LParen)) {
Op = X86Operand::CreateMem(SegReg, Disp, 0, 0, 0);
return false;
}
// Eat the '('.
Lexer.Lex();
}
}
// If we reached here, then we just ate the ( of the memory operand. Process
// the rest of the memory operand.
unsigned BaseReg = 0, ScaleReg = 0, Scale = 0;
if (Lexer.is(asmtok::Register)) {
BaseReg = 123; // FIXME: decode reg #
Lexer.Lex(); // eat the register.
}
if (Lexer.is(asmtok::Comma)) {
Lexer.Lex(); // eat the comma.
if (Lexer.is(asmtok::Register)) {
ScaleReg = 123; // FIXME: decode reg #
Lexer.Lex(); // eat the register.
Scale = 1; // If not specified, the scale defaults to 1.
}
if (Lexer.is(asmtok::Comma)) {
Lexer.Lex(); // eat the comma.
// If present, get and validate scale amount.
if (Lexer.is(asmtok::IntVal)) {
int64_t ScaleVal = Lexer.getCurIntVal();
if (ScaleVal != 1 && ScaleVal != 2 && ScaleVal != 4 && ScaleVal != 8)
return TokError("scale factor in address must be 1, 2, 4 or 8");
Lexer.Lex(); // eat the scale.
Scale = (unsigned)ScaleVal;
}
}
}
// Ok, we've eaten the memory operand, verify we have a ')' and eat it too.
if (Lexer.isNot(asmtok::RParen))
return TokError("unexpected token in memory operand");
Lexer.Lex(); // Eat the ')'.
Op = X86Operand::CreateMem(SegReg, Disp, BaseReg, Scale, ScaleReg);
return false;
}
/// ParseParenExpr - Parse a paren expression and return it.
/// NOTE: This assumes the leading '(' has already been consumed.
///
/// parenexpr ::= expr)
///
bool AsmParser::ParseParenExpr(int64_t &Res) {
if (ParseExpression(Res)) return true;
if (Lexer.isNot(asmtok::RParen))
return TokError("expected ')' in parentheses expression");
Lexer.Lex();
return false;
}
/// ParsePrimaryExpr - Parse a primary expression and return it.
/// primaryexpr ::= (parenexpr
/// primaryexpr ::= symbol
/// primaryexpr ::= number
/// primaryexpr ::= ~,+,- primaryexpr
bool AsmParser::ParsePrimaryExpr(int64_t &Res) {
switch (Lexer.getKind()) {
default:
return TokError("unknown token in expression");
case asmtok::Identifier:
// This is a label, this should be parsed as part of an expression, to
// handle things like LFOO+4
Res = 0; // FIXME.
Lexer.Lex(); // Eat identifier.
return false;
case asmtok::IntVal:
Res = Lexer.getCurIntVal();
Lexer.Lex(); // Eat identifier.
return false;
case asmtok::LParen:
Lexer.Lex(); // Eat the '('.
return ParseParenExpr(Res);
case asmtok::Tilde:
case asmtok::Plus:
case asmtok::Minus:
Lexer.Lex(); // Eat the operator.
return ParsePrimaryExpr(Res);
}
}
/// ParseExpression - Parse an expression and return it.
///
/// expr ::= expr +,- expr -> lowest.
/// expr ::= expr |,^,&,! expr -> middle.
/// expr ::= expr *,/,%,<<,>> expr -> highest.
/// expr ::= primaryexpr
///
bool AsmParser::ParseExpression(int64_t &Res) {
return ParsePrimaryExpr(Res) ||
ParseBinOpRHS(1, Res);
}
static unsigned getBinOpPrecedence(asmtok::TokKind K) {
switch (K) {
default: return 0; // not a binop.
case asmtok::Plus:
case asmtok::Minus:
return 1;
case asmtok::Pipe:
case asmtok::Caret:
case asmtok::Amp:
case asmtok::Exclaim:
return 2;
case asmtok::Star:
case asmtok::Slash:
case asmtok::Percent:
case asmtok::LessLess:
case asmtok::GreaterGreater:
return 3;
}
}
/// ParseBinOpRHS - Parse all binary operators with precedence >= 'Precedence'.
/// Res contains the LHS of the expression on input.
bool AsmParser::ParseBinOpRHS(unsigned Precedence, int64_t &Res) {
while (1) {
unsigned TokPrec = getBinOpPrecedence(Lexer.getKind());
// If the next token is lower precedence than we are allowed to eat, return
// successfully with what we ate already.
if (TokPrec < Precedence)
return false;
//asmtok::TokKind BinOp = Lexer.getKind();
Lexer.Lex();
// Eat the next primary expression.
int64_t RHS;
if (ParsePrimaryExpr(RHS)) return true;
// If BinOp binds less tightly with RHS than the operator after RHS, let
// the pending operator take RHS as its LHS.
unsigned NextTokPrec = getBinOpPrecedence(Lexer.getKind());
if (TokPrec < NextTokPrec) {
if (ParseBinOpRHS(Precedence+1, RHS)) return true;
}
// Merge LHS/RHS: fixme use the right operator etc.
Res += RHS;
}
}
/// ParseStatement:
/// ::= EndOfStatement
/// ::= Label* Directive ...Operands... EndOfStatement
/// ::= Label* Identifier OperandList* EndOfStatement
bool AsmParser::ParseStatement() {
switch (Lexer.getKind()) {
default:
return TokError("unexpected token at start of statement");
case asmtok::EndOfStatement:
Lexer.Lex();
return false;
case asmtok::Identifier:
break;
// TODO: Recurse on local labels etc.
}
// If we have an identifier, handle it as the key symbol.
SMLoc IDLoc = Lexer.getLoc();
std::string IDVal = Lexer.getCurStrVal();
// Consume the identifier, see what is after it.
if (Lexer.Lex() == asmtok::Colon) {
// identifier ':' -> Label.
Lexer.Lex();
return ParseStatement();
}
// Otherwise, we have a normal instruction or directive.
if (IDVal[0] == '.') {
Lexer.PrintMessage(IDLoc, "warning: ignoring directive for now");
EatToEndOfStatement();
return false;
}
// If it's an instruction, parse an operand list.
std::vector<X86Operand> Operands;
// Read the first operand, if present. Note that we require a newline at the
// end of file, so we don't have to worry about Eof here.
if (Lexer.isNot(asmtok::EndOfStatement)) {
X86Operand Op;
if (ParseX86Operand(Op))
return true;
Operands.push_back(Op);
}
while (Lexer.is(asmtok::Comma)) {
Lexer.Lex(); // Eat the comma.
// Parse and remember the operand.
X86Operand Op;
if (ParseX86Operand(Op))
return true;
Operands.push_back(Op);
}
if (Lexer.isNot(asmtok::EndOfStatement))
return TokError("unexpected token in operand list");
// Eat the end of statement marker.
Lexer.Lex();
// Instruction is good, process it.
outs() << "Found instruction: " << IDVal << " with " << Operands.size()
<< " operands.\n";
// Skip to end of line for now.
return false;
}