mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-03-03 14:31:10 +00:00
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@23469 91177308-0d34-0410-b5e6-96231b3b80d8
950 lines
32 KiB
C++
950 lines
32 KiB
C++
//===-- ScheduleDAG.cpp - Implement a trivial DAG scheduler ---------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by Chris Lattner and is distributed under the
|
|
// University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This implements a simple two pass scheduler. The first pass attempts to push
|
|
// backward any lengthy instructions and critical paths. The second pass packs
|
|
// instructions into semi-optimal time slots.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "sched"
|
|
#include "llvm/CodeGen/MachineConstantPool.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/SelectionDAGISel.h"
|
|
#include "llvm/CodeGen/SelectionDAG.h"
|
|
#include "llvm/CodeGen/SSARegMap.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include <iostream>
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
// Style of scheduling to use.
|
|
enum ScheduleChoices {
|
|
noScheduling,
|
|
simpleScheduling,
|
|
};
|
|
} // namespace
|
|
|
|
cl::opt<ScheduleChoices> ScheduleStyle("sched",
|
|
cl::desc("Choose scheduling style"),
|
|
cl::init(noScheduling),
|
|
cl::values(
|
|
clEnumValN(noScheduling, "none",
|
|
"Trivial emission with no analysis"),
|
|
clEnumValN(simpleScheduling, "simple",
|
|
"Minimize critical path and maximize processor utilization"),
|
|
clEnumValEnd));
|
|
|
|
|
|
#ifndef NDEBUG
|
|
static cl::opt<bool>
|
|
ViewDAGs("view-sched-dags", cl::Hidden,
|
|
cl::desc("Pop up a window to show sched dags as they are processed"));
|
|
#else
|
|
static const bool ViewDAGs = 0;
|
|
#endif
|
|
|
|
namespace {
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// BitsIterator - Provides iteration through individual bits in a bit vector.
|
|
///
|
|
template<class T>
|
|
class BitsIterator {
|
|
private:
|
|
T Bits; // Bits left to iterate through
|
|
|
|
public:
|
|
/// Ctor.
|
|
BitsIterator(T Initial) : Bits(Initial) {}
|
|
|
|
/// Next - Returns the next bit set or zero if exhausted.
|
|
inline T Next() {
|
|
// Get the rightmost bit set
|
|
T Result = Bits & -Bits;
|
|
// Remove from rest
|
|
Bits &= ~Result;
|
|
// Return single bit or zero
|
|
return Result;
|
|
}
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// ResourceTally - Manages the use of resources over time intervals. Each
|
|
/// item (slot) in the tally vector represents the resources used at a given
|
|
/// moment. A bit set to 1 indicates that a resource is in use, otherwise
|
|
/// available. An assumption is made that the tally is large enough to schedule
|
|
/// all current instructions (asserts otherwise.)
|
|
///
|
|
template<class T>
|
|
class ResourceTally {
|
|
private:
|
|
std::vector<T> Tally; // Resources used per slot
|
|
typedef typename std::vector<T>::iterator Iter;
|
|
// Tally iterator
|
|
|
|
/// AllInUse - Test to see if all of the resources in the slot are busy (set.)
|
|
inline bool AllInUse(Iter Cursor, unsigned ResourceSet) {
|
|
return (*Cursor & ResourceSet) == ResourceSet;
|
|
}
|
|
|
|
/// Skip - Skip over slots that use all of the specified resource (all are
|
|
/// set.)
|
|
Iter Skip(Iter Cursor, unsigned ResourceSet) {
|
|
assert(ResourceSet && "At least one resource bit needs to bet set");
|
|
|
|
// Continue to the end
|
|
while (true) {
|
|
// Break out if one of the resource bits is not set
|
|
if (!AllInUse(Cursor, ResourceSet)) return Cursor;
|
|
// Try next slot
|
|
Cursor++;
|
|
assert(Cursor < Tally.end() && "Tally is not large enough for schedule");
|
|
}
|
|
}
|
|
|
|
/// FindSlots - Starting from Begin, locate N consecutive slots where at least
|
|
/// one of the resource bits is available. Returns the address of first slot.
|
|
Iter FindSlots(Iter Begin, unsigned N, unsigned ResourceSet,
|
|
unsigned &Resource) {
|
|
// Track position
|
|
Iter Cursor = Begin;
|
|
|
|
// Try all possible slots forward
|
|
while (true) {
|
|
// Skip full slots
|
|
Cursor = Skip(Cursor, ResourceSet);
|
|
// Determine end of interval
|
|
Iter End = Cursor + N;
|
|
assert(End <= Tally.end() && "Tally is not large enough for schedule");
|
|
|
|
// Iterate thru each resource
|
|
BitsIterator<T> Resources(ResourceSet & ~*Cursor);
|
|
while (unsigned Res = Resources.Next()) {
|
|
// Check if resource is available for next N slots
|
|
// Break out if resource is busy
|
|
Iter Interval = Cursor;
|
|
for (; Interval < End && !(*Interval & Res); Interval++) {}
|
|
|
|
// If available for interval, return where and which resource
|
|
if (Interval == End) {
|
|
Resource = Res;
|
|
return Cursor;
|
|
}
|
|
// Otherwise, check if worth checking other resources
|
|
if (AllInUse(Interval, ResourceSet)) {
|
|
// Start looking beyond interval
|
|
Cursor = Interval;
|
|
break;
|
|
}
|
|
}
|
|
Cursor++;
|
|
}
|
|
}
|
|
|
|
/// Reserve - Mark busy (set) the specified N slots.
|
|
void Reserve(Iter Begin, unsigned N, unsigned Resource) {
|
|
// Determine end of interval
|
|
Iter End = Begin + N;
|
|
assert(End <= Tally.end() && "Tally is not large enough for schedule");
|
|
|
|
// Set resource bit in each slot
|
|
for (; Begin < End; Begin++)
|
|
*Begin |= Resource;
|
|
}
|
|
|
|
public:
|
|
/// Initialize - Resize and zero the tally to the specified number of time
|
|
/// slots.
|
|
inline void Initialize(unsigned N) {
|
|
Tally.assign(N, 0); // Initialize tally to all zeros.
|
|
}
|
|
|
|
// FindAndReserve - Locate and mark busy (set) N bits started at slot I, using
|
|
// ResourceSet for choices.
|
|
unsigned FindAndReserve(unsigned I, unsigned N, unsigned ResourceSet) {
|
|
// Which resource used
|
|
unsigned Resource;
|
|
// Find slots for instruction.
|
|
Iter Where = FindSlots(Tally.begin() + I, N, ResourceSet, Resource);
|
|
// Reserve the slots
|
|
Reserve(Where, N, Resource);
|
|
// Return time slot (index)
|
|
return Where - Tally.begin();
|
|
}
|
|
|
|
};
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// This struct tracks information used to schedule the a node.
|
|
struct ScheduleInfo {
|
|
SDOperand Op; // Operand information
|
|
unsigned Latency; // Cycles to complete instruction
|
|
unsigned ResourceSet; // Bit vector of usable resources
|
|
unsigned Slot; // Operand's time slot
|
|
|
|
// Ctor.
|
|
ScheduleInfo(SDOperand op)
|
|
: Op(op)
|
|
, Latency(0)
|
|
, ResourceSet(0)
|
|
, Slot(0)
|
|
{}
|
|
};
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
class SimpleSched {
|
|
private:
|
|
// TODO - get ResourceSet from TII
|
|
enum {
|
|
RSInteger = 0x3, // Two integer units
|
|
RSFloat = 0xC, // Two float units
|
|
RSLoadStore = 0x30, // Two load store units
|
|
RSOther = 0 // Processing unit independent
|
|
};
|
|
|
|
MachineBasicBlock *BB; // Current basic block
|
|
SelectionDAG &DAG; // DAG of the current basic block
|
|
const TargetMachine &TM; // Target processor
|
|
const TargetInstrInfo &TII; // Target instruction information
|
|
const MRegisterInfo &MRI; // Target processor register information
|
|
SSARegMap *RegMap; // Virtual/real register map
|
|
MachineConstantPool *ConstPool; // Target constant pool
|
|
std::vector<ScheduleInfo> Operands; // All operands to be scheduled
|
|
std::vector<ScheduleInfo*> Ordering; // Emit ordering of operands
|
|
std::map<SDNode *, int> Visited; // Operands that have been visited
|
|
ResourceTally<unsigned> Tally; // Resource usage tally
|
|
unsigned NSlots; // Total latency
|
|
std::map<SDNode *, unsigned>VRMap; // Operand to VR map
|
|
static const unsigned NotFound = ~0U; // Search marker
|
|
|
|
public:
|
|
|
|
// Ctor.
|
|
SimpleSched(SelectionDAG &D, MachineBasicBlock *bb)
|
|
: BB(bb), DAG(D), TM(D.getTarget()), TII(*TM.getInstrInfo()),
|
|
MRI(*TM.getRegisterInfo()), RegMap(BB->getParent()->getSSARegMap()),
|
|
ConstPool(BB->getParent()->getConstantPool()),
|
|
NSlots(0) {
|
|
assert(&TII && "Target doesn't provide instr info?");
|
|
assert(&MRI && "Target doesn't provide register info?");
|
|
}
|
|
|
|
// Run - perform scheduling.
|
|
MachineBasicBlock *Run() {
|
|
Schedule();
|
|
return BB;
|
|
}
|
|
|
|
private:
|
|
static bool isFlagDefiner(SDOperand Op) { return isFlagDefiner(Op.Val); }
|
|
static bool isFlagUser(SDOperand Op) { return isFlagUser(Op.Val); }
|
|
static bool isFlagDefiner(SDNode *A);
|
|
static bool isFlagUser(SDNode *A);
|
|
static bool isDefiner(SDNode *A, SDNode *B);
|
|
static bool isPassiveOperand(SDOperand Op);
|
|
void IncludeOperand(SDOperand Op);
|
|
void VisitAll();
|
|
void Schedule();
|
|
void GatherOperandInfo();
|
|
bool isStrongDependency(SDOperand A, SDOperand B) {
|
|
return isStrongDependency(A.Val, B.Val);
|
|
}
|
|
bool isWeakDependency(SDOperand A, SDOperand B) {
|
|
return isWeakDependency(A.Val, B.Val);
|
|
}
|
|
static bool isStrongDependency(SDNode *A, SDNode *B);
|
|
static bool isWeakDependency(SDNode *A, SDNode *B);
|
|
void ScheduleBackward();
|
|
void ScheduleForward();
|
|
void EmitAll();
|
|
void EmitFlagUsers(SDOperand Op);
|
|
static unsigned CountResults(SDOperand Op);
|
|
static unsigned CountOperands(SDOperand Op);
|
|
unsigned CreateVirtualRegisters(SDOperand Op, MachineInstr *MI,
|
|
unsigned NumResults,
|
|
const TargetInstrDescriptor &II);
|
|
unsigned Emit(SDOperand A);
|
|
|
|
void printSI(std::ostream &O, ScheduleInfo *SI) const ;
|
|
void print(std::ostream &O) const ;
|
|
inline void dump(const char *tag) const { std::cerr << tag; dump(); }
|
|
void dump() const;
|
|
};
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
class FlagUserIterator {
|
|
private:
|
|
SDNode *Definer; // Node defining flag
|
|
SDNode::use_iterator UI; // User node iterator
|
|
SDNode::use_iterator E; // End of user nodes
|
|
unsigned MinRes; // Minimum flag result
|
|
|
|
public:
|
|
// Ctor.
|
|
FlagUserIterator(SDNode *D)
|
|
: Definer(D)
|
|
, UI(D->use_begin())
|
|
, E(D->use_end())
|
|
, MinRes(D->getNumValues()) {
|
|
// Find minimum flag result.
|
|
while (MinRes && D->getValueType(MinRes - 1) == MVT::Flag) --MinRes;
|
|
}
|
|
|
|
/// isFlagUser - Return true if node uses definer's flag.
|
|
bool isFlagUser(SDNode *U) {
|
|
// For each operand (in reverse to only look at flags)
|
|
for (unsigned N = U->getNumOperands(); 0 < N--;) {
|
|
// Get operand
|
|
SDOperand Op = U->getOperand(N);
|
|
// Not user if there are no flags
|
|
if (Op.getValueType() != MVT::Flag) return false;
|
|
// Return true if it is one of the flag results
|
|
if (Op.Val == Definer && Op.ResNo >= MinRes) return true;
|
|
}
|
|
// Not a flag user
|
|
return false;
|
|
}
|
|
|
|
SDNode *next() {
|
|
// Continue to next user
|
|
while (UI != E) {
|
|
// Next user node
|
|
SDNode *User = *UI++;
|
|
// Return true if is a flag user
|
|
if (isFlagUser(User)) return User;
|
|
}
|
|
|
|
// No more user nodes
|
|
return NULL;
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// isFlagDefiner - Returns true if the operand defines a flag result.
|
|
bool SimpleSched::isFlagDefiner(SDNode *A) {
|
|
unsigned N = A->getNumValues();
|
|
return N && A->getValueType(N - 1) == MVT::Flag;
|
|
}
|
|
|
|
/// isFlagUser - Returns true if the operand uses a flag result.
|
|
///
|
|
bool SimpleSched::isFlagUser(SDNode *A) {
|
|
unsigned N = A->getNumOperands();
|
|
return N && A->getOperand(N - 1).getValueType() == MVT::Flag;
|
|
}
|
|
|
|
/// isDefiner - Return true if Node A is a definder for B.
|
|
///
|
|
bool SimpleSched::isDefiner(SDNode *A, SDNode *B) {
|
|
for (unsigned i = 0, N = B->getNumOperands(); i < N; i++) {
|
|
if (B->getOperand(i).Val == A) return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// isPassiveOperand - Return true if the operand is a non-scheduled leaf
|
|
/// operand.
|
|
bool SimpleSched::isPassiveOperand(SDOperand Op) {
|
|
if (isa<ConstantSDNode>(Op)) return true;
|
|
if (isa<RegisterSDNode>(Op)) return true;
|
|
if (isa<GlobalAddressSDNode>(Op)) return true;
|
|
if (isa<BasicBlockSDNode>(Op)) return true;
|
|
if (isa<FrameIndexSDNode>(Op)) return true;
|
|
if (isa<ConstantPoolSDNode>(Op)) return true;
|
|
if (isa<ExternalSymbolSDNode>(Op)) return true;
|
|
return false;
|
|
}
|
|
|
|
/// IncludeOperand - Add operand to ScheduleInfo vector.
|
|
///
|
|
void SimpleSched::IncludeOperand(SDOperand Op) {
|
|
// Ignore entry node
|
|
if (Op.getOpcode() == ISD::EntryToken) return;
|
|
// Check current count for operand
|
|
int Count = Visited[Op.Val];
|
|
// If the operand is already in list
|
|
if (Count < 0) return;
|
|
// If this the first time then get count
|
|
if (!Count) Count = Op.Val->use_size();
|
|
// Decrement count to indicate a visit
|
|
Count--;
|
|
// If count has gone to zero then add operand to list
|
|
if (!Count) {
|
|
// Add operand
|
|
Operands.push_back(ScheduleInfo(Op));
|
|
// indicate operand has been added
|
|
Count--;
|
|
}
|
|
// Mark as visited with new count
|
|
Visited[Op.Val] = Count;
|
|
}
|
|
|
|
/// VisitAll - Visit each operand breadth-wise to produce an initial ordering.
|
|
/// Note that the ordering in the Operands vector is reversed.
|
|
void SimpleSched::VisitAll() {
|
|
// Add first element to list
|
|
Operands.push_back(DAG.getRoot());
|
|
for (unsigned i = 0; i < Operands.size(); i++) { // note: size() varies
|
|
// Get next operand. Need copy because Operands vector is growing and
|
|
// addresses can be ScheduleInfo changing.
|
|
SDOperand Op = Operands[i].Op;
|
|
// Get the number of real operands
|
|
unsigned NodeOperands = CountOperands(Op);
|
|
// Get the total number of operands
|
|
unsigned NumOperands = Op.getNumOperands();
|
|
|
|
// Visit all operands skipping the Other operand if present
|
|
for (unsigned i = NumOperands; 0 < i--;) {
|
|
SDOperand OpI = Op.getOperand(i);
|
|
// Ignore passive operands
|
|
if (isPassiveOperand(OpI)) continue;
|
|
// Check out operand
|
|
IncludeOperand(OpI);
|
|
}
|
|
}
|
|
|
|
// Add entry node last (IncludeOperand filters entry nodes)
|
|
if (DAG.getEntryNode().Val != DAG.getRoot().Val)
|
|
Operands.push_back(DAG.getEntryNode());
|
|
}
|
|
|
|
/// GatherOperandInfo - Get latency and resource information about each operand.
|
|
///
|
|
void SimpleSched::GatherOperandInfo() {
|
|
// Add addresses of operand info to ordering vector
|
|
// Get number of operands
|
|
unsigned N = Operands.size();
|
|
// FIXME: This is an ugly (but temporary!) hack to test the scheduler before
|
|
// we have real target info.
|
|
|
|
// For each operand being scheduled
|
|
for (unsigned i = 0; i < N; i++) {
|
|
ScheduleInfo* SI = &Operands[N - i - 1];
|
|
SDOperand Op = SI->Op;
|
|
MVT::ValueType VT = Op.Val->getValueType(0);
|
|
if (Op.isTargetOpcode()) {
|
|
MachineOpCode TOpc = Op.getTargetOpcode();
|
|
// FIXME SI->Latency = std::max(1, TII.maxLatency(TOpc));
|
|
// FIXME SI->ResourceSet = TII.resources(TOpc);
|
|
if (TII.isCall(TOpc)) {
|
|
SI->ResourceSet = RSInteger;
|
|
SI->Latency = 40;
|
|
} else if (TII.isLoad(TOpc)) {
|
|
SI->ResourceSet = RSLoadStore;
|
|
SI->Latency = 5;
|
|
} else if (TII.isStore(TOpc)) {
|
|
SI->ResourceSet = RSLoadStore;
|
|
SI->Latency = 2;
|
|
} else if (MVT::isInteger(VT)) {
|
|
SI->ResourceSet = RSInteger;
|
|
SI->Latency = 2;
|
|
} else if (MVT::isFloatingPoint(VT)) {
|
|
SI->ResourceSet = RSFloat;
|
|
SI->Latency = 3;
|
|
} else {
|
|
SI->ResourceSet = RSOther;
|
|
SI->Latency = 0;
|
|
}
|
|
} else {
|
|
if (MVT::isInteger(VT)) {
|
|
SI->ResourceSet = RSInteger;
|
|
SI->Latency = 2;
|
|
} else if (MVT::isFloatingPoint(VT)) {
|
|
SI->ResourceSet = RSFloat;
|
|
SI->Latency = 3;
|
|
} else {
|
|
SI->ResourceSet = RSOther;
|
|
SI->Latency = 0;
|
|
}
|
|
}
|
|
|
|
// Add one slot for the instruction itself
|
|
SI->Latency++;
|
|
|
|
// Sum up all the latencies for max tally size
|
|
NSlots += SI->Latency;
|
|
|
|
// Place in initial sorted order
|
|
// FIXME - PUNT - ignore flag users
|
|
if (!isFlagUser(Op)) Ordering.push_back(SI);
|
|
}
|
|
}
|
|
|
|
/// isStrongDependency - Return true if operand A has results used by operand B.
|
|
/// I.E., B must wait for latency of A.
|
|
bool SimpleSched::isStrongDependency(SDNode *A, SDNode *B) {
|
|
// If A defines for B then it's a strong dependency
|
|
if (isDefiner(A, B)) return true;
|
|
// If A defines a flag then it's users are part of the dependency
|
|
if (isFlagDefiner(A)) {
|
|
// Check each flag user
|
|
FlagUserIterator FI(A);
|
|
while (SDNode *User = FI.next()) {
|
|
// If flag user has strong dependency so does B
|
|
if (isStrongDependency(User, B)) return true;
|
|
}
|
|
}
|
|
// If B defines a flag then it's users are part of the dependency
|
|
if (isFlagDefiner(B)) {
|
|
// Check each flag user
|
|
FlagUserIterator FI(B);
|
|
while (SDNode *User = FI.next()) {
|
|
// If flag user has strong dependency so does B
|
|
if (isStrongDependency(A, User)) return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// isWeakDependency Return true if operand A produces a result that will
|
|
/// conflict with operands of B.
|
|
bool SimpleSched::isWeakDependency(SDNode *A, SDNode *B) {
|
|
// TODO check for conflicting real registers and aliases
|
|
#if 0 // Since we are in SSA form and not checking register aliasing
|
|
return A->getOpcode() == ISD::EntryToken || isStrongDependency(B, A);
|
|
#else
|
|
return A->getOpcode() == ISD::EntryToken;
|
|
#endif
|
|
}
|
|
|
|
/// ScheduleBackward - Schedule instructions so that any long latency
|
|
/// instructions and the critical path get pushed back in time. Time is run in
|
|
/// reverse to allow code reuse of the Tally and eliminate the overhead of
|
|
/// biasing every slot indices against NSlots.
|
|
void SimpleSched::ScheduleBackward() {
|
|
// Size and clear the resource tally
|
|
Tally.Initialize(NSlots);
|
|
// Get number of operands to schedule
|
|
unsigned N = Ordering.size();
|
|
|
|
// For each operand being scheduled
|
|
for (unsigned i = N; 0 < i--;) {
|
|
ScheduleInfo *SI = Ordering[i];
|
|
// Track insertion
|
|
unsigned Slot = NotFound;
|
|
|
|
// Compare against those previously scheduled operands
|
|
for (unsigned j = i + 1; j < N; j++) {
|
|
// Get following instruction
|
|
ScheduleInfo *Other = Ordering[j];
|
|
|
|
// Check dependency against previously inserted operands
|
|
if (isStrongDependency(SI->Op, Other->Op)) {
|
|
Slot = Other->Slot + Other->Latency;
|
|
break;
|
|
} else if (isWeakDependency(SI->Op, Other->Op)) {
|
|
Slot = Other->Slot;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If independent of others (or first entry)
|
|
if (Slot == NotFound) Slot = 0;
|
|
|
|
// Find a slot where the needed resources are available
|
|
if (SI->ResourceSet)
|
|
Slot = Tally.FindAndReserve(Slot, SI->Latency, SI->ResourceSet);
|
|
|
|
// Set operand slot
|
|
SI->Slot = Slot;
|
|
|
|
// Insert sort based on slot
|
|
unsigned j = i + 1;
|
|
for (; j < N; j++) {
|
|
// Get following instruction
|
|
ScheduleInfo *Other = Ordering[j];
|
|
// Should we look further
|
|
if (Slot >= Other->Slot) break;
|
|
// Shuffle other into ordering
|
|
Ordering[j - 1] = Other;
|
|
}
|
|
// Insert operand in proper slot
|
|
if (j != i + 1) Ordering[j - 1] = SI;
|
|
}
|
|
}
|
|
|
|
/// ScheduleForward - Schedule instructions to maximize packing.
|
|
///
|
|
void SimpleSched::ScheduleForward() {
|
|
// Size and clear the resource tally
|
|
Tally.Initialize(NSlots);
|
|
// Get number of operands to schedule
|
|
unsigned N = Ordering.size();
|
|
|
|
// For each operand being scheduled
|
|
for (unsigned i = 0; i < N; i++) {
|
|
ScheduleInfo *SI = Ordering[i];
|
|
// Track insertion
|
|
unsigned Slot = NotFound;
|
|
|
|
// Compare against those previously scheduled operands
|
|
for (unsigned j = i; 0 < j--;) {
|
|
// Get following instruction
|
|
ScheduleInfo *Other = Ordering[j];
|
|
|
|
// Check dependency against previously inserted operands
|
|
if (isStrongDependency(Other->Op, SI->Op)) {
|
|
Slot = Other->Slot + Other->Latency;
|
|
break;
|
|
} else if (isWeakDependency(Other->Op, SI->Op)) {
|
|
Slot = Other->Slot;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If independent of others (or first entry)
|
|
if (Slot == NotFound) Slot = 0;
|
|
|
|
// Find a slot where the needed resources are available
|
|
if (SI->ResourceSet)
|
|
Slot = Tally.FindAndReserve(Slot, SI->Latency, SI->ResourceSet);
|
|
|
|
// Set operand slot
|
|
SI->Slot = Slot;
|
|
|
|
// Insert sort based on slot
|
|
unsigned j = i;
|
|
for (; 0 < j--;) {
|
|
// Get following instruction
|
|
ScheduleInfo *Other = Ordering[j];
|
|
// Should we look further
|
|
if (Slot >= Other->Slot) break;
|
|
// Shuffle other into ordering
|
|
Ordering[j + 1] = Other;
|
|
}
|
|
// Insert operand in proper slot
|
|
if (j != i) Ordering[j + 1] = SI;
|
|
}
|
|
}
|
|
|
|
/// EmitAll - Emit all operands in schedule sorted order.
|
|
///
|
|
void SimpleSched::EmitAll() {
|
|
// For each operand in the ordering
|
|
for (unsigned i = 0, N = Ordering.size(); i < N; i++) {
|
|
// Get the scheduling info
|
|
ScheduleInfo *SI = Ordering[i];
|
|
// Get the operand
|
|
SDOperand Op = SI->Op;
|
|
// Emit the operand
|
|
Emit(Op);
|
|
// FIXME - PUNT - If Op defines a flag then it's users need to be emitted now
|
|
if (isFlagDefiner(Op)) EmitFlagUsers(Op);
|
|
}
|
|
}
|
|
|
|
/// EmitFlagUsers - Emit users of operands flag.
|
|
///
|
|
void SimpleSched::EmitFlagUsers(SDOperand Op) {
|
|
// Check each flag user
|
|
FlagUserIterator FI(Op.Val);
|
|
while (SDNode *User = FI.next()) {
|
|
// Construct user node as operand
|
|
SDOperand OpU(User, 0);
|
|
// Emit user node
|
|
Emit(OpU);
|
|
// If user defines a flag then it's users need to be emitted now
|
|
if (isFlagDefiner(User)) EmitFlagUsers(OpU);
|
|
}
|
|
}
|
|
|
|
/// CountResults - The results of target nodes have register or immediate
|
|
/// operands first, then an optional chain, and optional flag operands (which do
|
|
/// not go into the machine instrs.)
|
|
unsigned SimpleSched::CountResults(SDOperand Op) {
|
|
unsigned N = Op.Val->getNumValues();
|
|
while (N && Op.Val->getValueType(N - 1) == MVT::Flag)
|
|
--N;
|
|
if (N && Op.Val->getValueType(N - 1) == MVT::Other)
|
|
--N; // Skip over chain result.
|
|
return N;
|
|
}
|
|
|
|
/// CountOperands The inputs to target nodes have any actual inputs first,
|
|
/// followed by an optional chain operand, then flag operands. Compute the
|
|
/// number of actual operands that will go into the machine instr.
|
|
unsigned SimpleSched::CountOperands(SDOperand Op) {
|
|
unsigned N = Op.getNumOperands();
|
|
while (N && Op.getOperand(N - 1).getValueType() == MVT::Flag)
|
|
--N;
|
|
if (N && Op.getOperand(N - 1).getValueType() == MVT::Other)
|
|
--N; // Ignore chain if it exists.
|
|
return N;
|
|
}
|
|
|
|
/// CreateVirtualRegisters - Add result register values for things that are
|
|
/// defined by this instruction.
|
|
unsigned SimpleSched::CreateVirtualRegisters(SDOperand Op, MachineInstr *MI,
|
|
unsigned NumResults,
|
|
const TargetInstrDescriptor &II) {
|
|
// Create the result registers for this node and add the result regs to
|
|
// the machine instruction.
|
|
const TargetOperandInfo *OpInfo = II.OpInfo;
|
|
unsigned ResultReg = RegMap->createVirtualRegister(OpInfo[0].RegClass);
|
|
MI->addRegOperand(ResultReg, MachineOperand::Def);
|
|
for (unsigned i = 1; i != NumResults; ++i) {
|
|
assert(OpInfo[i].RegClass && "Isn't a register operand!");
|
|
MI->addRegOperand(RegMap->createVirtualRegister(OpInfo[0].RegClass),
|
|
MachineOperand::Def);
|
|
}
|
|
return ResultReg;
|
|
}
|
|
|
|
/// Emit - Generate machine code for an operand and needed dependencies.
|
|
///
|
|
unsigned SimpleSched::Emit(SDOperand Op) {
|
|
std::map<SDNode *, unsigned>::iterator OpI = VRMap.lower_bound(Op.Val);
|
|
if (OpI != VRMap.end() && OpI->first == Op.Val)
|
|
return OpI->second + Op.ResNo;
|
|
unsigned &OpSlot = VRMap.insert(OpI, std::make_pair(Op.Val, 0))->second;
|
|
|
|
unsigned ResultReg = 0;
|
|
if (Op.isTargetOpcode()) {
|
|
unsigned Opc = Op.getTargetOpcode();
|
|
const TargetInstrDescriptor &II = TII.get(Opc);
|
|
|
|
unsigned NumResults = CountResults(Op);
|
|
unsigned NodeOperands = CountOperands(Op);
|
|
unsigned NumMIOperands = NodeOperands + NumResults;
|
|
#ifndef NDEBUG
|
|
assert((unsigned(II.numOperands) == NumMIOperands || II.numOperands == -1)&&
|
|
"#operands for dag node doesn't match .td file!");
|
|
#endif
|
|
|
|
// Create the new machine instruction.
|
|
MachineInstr *MI = new MachineInstr(Opc, NumMIOperands, true, true);
|
|
|
|
// Add result register values for things that are defined by this
|
|
// instruction.
|
|
if (NumResults) ResultReg = CreateVirtualRegisters(Op, MI, NumResults, II);
|
|
|
|
// If there is a token chain operand, emit it first, as a hack to get avoid
|
|
// really bad cases.
|
|
if (Op.getNumOperands() > NodeOperands &&
|
|
Op.getOperand(NodeOperands).getValueType() == MVT::Other) {
|
|
Emit(Op.getOperand(NodeOperands));
|
|
}
|
|
|
|
// Emit all of the actual operands of this instruction, adding them to the
|
|
// instruction as appropriate.
|
|
for (unsigned i = 0; i != NodeOperands; ++i) {
|
|
if (Op.getOperand(i).isTargetOpcode()) {
|
|
// Note that this case is redundant with the final else block, but we
|
|
// include it because it is the most common and it makes the logic
|
|
// simpler here.
|
|
assert(Op.getOperand(i).getValueType() != MVT::Other &&
|
|
Op.getOperand(i).getValueType() != MVT::Flag &&
|
|
"Chain and flag operands should occur at end of operand list!");
|
|
|
|
MI->addRegOperand(Emit(Op.getOperand(i)), MachineOperand::Use);
|
|
} else if (ConstantSDNode *C =
|
|
dyn_cast<ConstantSDNode>(Op.getOperand(i))) {
|
|
MI->addZeroExtImm64Operand(C->getValue());
|
|
} else if (RegisterSDNode*R =dyn_cast<RegisterSDNode>(Op.getOperand(i))) {
|
|
MI->addRegOperand(R->getReg(), MachineOperand::Use);
|
|
} else if (GlobalAddressSDNode *TGA =
|
|
dyn_cast<GlobalAddressSDNode>(Op.getOperand(i))) {
|
|
MI->addGlobalAddressOperand(TGA->getGlobal(), false, 0);
|
|
} else if (BasicBlockSDNode *BB =
|
|
dyn_cast<BasicBlockSDNode>(Op.getOperand(i))) {
|
|
MI->addMachineBasicBlockOperand(BB->getBasicBlock());
|
|
} else if (FrameIndexSDNode *FI =
|
|
dyn_cast<FrameIndexSDNode>(Op.getOperand(i))) {
|
|
MI->addFrameIndexOperand(FI->getIndex());
|
|
} else if (ConstantPoolSDNode *CP =
|
|
dyn_cast<ConstantPoolSDNode>(Op.getOperand(i))) {
|
|
unsigned Idx = ConstPool->getConstantPoolIndex(CP->get());
|
|
MI->addConstantPoolIndexOperand(Idx);
|
|
} else if (ExternalSymbolSDNode *ES =
|
|
dyn_cast<ExternalSymbolSDNode>(Op.getOperand(i))) {
|
|
MI->addExternalSymbolOperand(ES->getSymbol(), false);
|
|
} else {
|
|
assert(Op.getOperand(i).getValueType() != MVT::Other &&
|
|
Op.getOperand(i).getValueType() != MVT::Flag &&
|
|
"Chain and flag operands should occur at end of operand list!");
|
|
MI->addRegOperand(Emit(Op.getOperand(i)), MachineOperand::Use);
|
|
}
|
|
}
|
|
|
|
// Finally, if this node has any flag operands, we *must* emit them last, to
|
|
// avoid emitting operations that might clobber the flags.
|
|
if (Op.getNumOperands() > NodeOperands) {
|
|
unsigned i = NodeOperands;
|
|
if (Op.getOperand(i).getValueType() == MVT::Other)
|
|
++i; // the chain is already selected.
|
|
for (unsigned N = Op.getNumOperands(); i < N; i++) {
|
|
assert(Op.getOperand(i).getValueType() == MVT::Flag &&
|
|
"Must be flag operands!");
|
|
Emit(Op.getOperand(i));
|
|
}
|
|
}
|
|
|
|
// Now that we have emitted all operands, emit this instruction itself.
|
|
if ((II.Flags & M_USES_CUSTOM_DAG_SCHED_INSERTION) == 0) {
|
|
BB->insert(BB->end(), MI);
|
|
} else {
|
|
// Insert this instruction into the end of the basic block, potentially
|
|
// taking some custom action.
|
|
BB = DAG.getTargetLoweringInfo().InsertAtEndOfBasicBlock(MI, BB);
|
|
}
|
|
} else {
|
|
switch (Op.getOpcode()) {
|
|
default:
|
|
Op.Val->dump();
|
|
assert(0 && "This target-independent node should have been selected!");
|
|
case ISD::EntryToken: break;
|
|
case ISD::TokenFactor:
|
|
for (unsigned i = 0, N = Op.getNumOperands(); i < N; i++) {
|
|
Emit(Op.getOperand(i));
|
|
}
|
|
break;
|
|
case ISD::CopyToReg: {
|
|
SDOperand FlagOp;
|
|
if (Op.getNumOperands() == 4) {
|
|
FlagOp = Op.getOperand(3);
|
|
}
|
|
if (Op.getOperand(0).Val != FlagOp.Val) {
|
|
Emit(Op.getOperand(0)); // Emit the chain.
|
|
}
|
|
unsigned Val = Emit(Op.getOperand(2));
|
|
if (FlagOp.Val) {
|
|
Emit(FlagOp);
|
|
}
|
|
MRI.copyRegToReg(*BB, BB->end(),
|
|
cast<RegisterSDNode>(Op.getOperand(1))->getReg(), Val,
|
|
RegMap->getRegClass(Val));
|
|
break;
|
|
}
|
|
case ISD::CopyFromReg: {
|
|
Emit(Op.getOperand(0)); // Emit the chain.
|
|
unsigned SrcReg = cast<RegisterSDNode>(Op.getOperand(1))->getReg();
|
|
|
|
// Figure out the register class to create for the destreg.
|
|
const TargetRegisterClass *TRC = 0;
|
|
if (MRegisterInfo::isVirtualRegister(SrcReg)) {
|
|
TRC = RegMap->getRegClass(SrcReg);
|
|
} else {
|
|
// FIXME: we don't know what register class to generate this for. Do
|
|
// a brute force search and pick the first match. :(
|
|
for (MRegisterInfo::regclass_iterator I = MRI.regclass_begin(),
|
|
E = MRI.regclass_end(); I != E; ++I)
|
|
if ((*I)->contains(SrcReg)) {
|
|
TRC = *I;
|
|
break;
|
|
}
|
|
assert(TRC && "Couldn't find register class for reg copy!");
|
|
}
|
|
|
|
// Create the reg, emit the copy.
|
|
ResultReg = RegMap->createVirtualRegister(TRC);
|
|
MRI.copyRegToReg(*BB, BB->end(), ResultReg, SrcReg, TRC);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
OpSlot = ResultReg;
|
|
return ResultReg+Op.ResNo;
|
|
}
|
|
|
|
/// Schedule - Order operands according to selected style.
|
|
///
|
|
void SimpleSched::Schedule() {
|
|
switch (ScheduleStyle) {
|
|
case simpleScheduling:
|
|
// Breadth first walk of DAG
|
|
VisitAll();
|
|
// Get latency and resource requirements
|
|
GatherOperandInfo();
|
|
// Don't waste time if is only entry and return
|
|
if (Operands.size() > 2) {
|
|
DEBUG(dump("Pre-"));
|
|
// Push back long instructions and critical path
|
|
ScheduleBackward();
|
|
DEBUG(dump("Mid-"));
|
|
// Pack instructions to maximize resource utilization
|
|
ScheduleForward();
|
|
DEBUG(dump("Post-"));
|
|
// Emit in scheduled order
|
|
EmitAll();
|
|
break;
|
|
} // fall thru
|
|
case noScheduling:
|
|
// Emit instructions in using a DFS from the exit root
|
|
Emit(DAG.getRoot());
|
|
break;
|
|
}
|
|
}
|
|
|
|
/// printSI - Print schedule info.
|
|
///
|
|
void SimpleSched::printSI(std::ostream &O, ScheduleInfo *SI) const {
|
|
#ifndef NDEBUG
|
|
using namespace std;
|
|
SDOperand Op = SI->Op;
|
|
O << " "
|
|
<< hex << Op.Val
|
|
<< ", RS=" << SI->ResourceSet
|
|
<< ", Lat=" << SI->Latency
|
|
<< ", Slot=" << SI->Slot
|
|
<< ", ARITY=(" << Op.getNumOperands() << ","
|
|
<< Op.Val->getNumValues() << ")"
|
|
<< " " << Op.Val->getOperationName(&DAG);
|
|
if (isFlagDefiner(Op)) O << "<#";
|
|
if (isFlagUser(Op)) O << ">#";
|
|
#endif
|
|
}
|
|
|
|
/// print - Print ordering to specified output stream.
|
|
///
|
|
void SimpleSched::print(std::ostream &O) const {
|
|
#ifndef NDEBUG
|
|
using namespace std;
|
|
O << "Ordering\n";
|
|
for (unsigned i = 0, N = Ordering.size(); i < N; i++) {
|
|
printSI(O, Ordering[i]);
|
|
O << "\n";
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/// dump - Print ordering to std::cerr.
|
|
///
|
|
void SimpleSched::dump() const {
|
|
print(std::cerr);
|
|
}
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
|
|
/// target node in the graph.
|
|
void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &SD) {
|
|
if (ViewDAGs) SD.viewGraph();
|
|
BB = SimpleSched(SD, BB).Run();
|
|
}
|