llvm-6502/lib/VMCore/Type.cpp
Chris Lattner 8ef852f4ea Dramatically simplify DerivedType::refineAbstractTypeToInternal
This makes use of the new PATypeHolder's to keep types from being deleted
prematurely, instead of the wierd "self reference" garbage.  This is easier
to understand and more efficient as well.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@8834 91177308-0d34-0410-b5e6-96231b3b80d8
2003-10-03 04:48:21 +00:00

1274 lines
44 KiB
C++

//===-- Type.cpp - Implement the Type class -------------------------------===//
//
// This file implements the Type class for the VMCore library.
//
//===----------------------------------------------------------------------===//
#include "llvm/DerivedTypes.h"
#include "llvm/SymbolTable.h"
#include "llvm/Constants.h"
#include "Support/StringExtras.h"
#include "Support/STLExtras.h"
#include <algorithm>
// DEBUG_MERGE_TYPES - Enable this #define to see how and when derived types are
// created and later destroyed, all in an effort to make sure that there is only
// a single canonical version of a type.
//
//#define DEBUG_MERGE_TYPES 1
//===----------------------------------------------------------------------===//
// Type Class Implementation
//===----------------------------------------------------------------------===//
static unsigned CurUID = 0;
static std::vector<const Type *> UIDMappings;
// Concrete/Abstract TypeDescriptions - We lazily calculate type descriptions
// for types as they are needed. Because resolution of types must invalidate
// all of the abstract type descriptions, we keep them in a seperate map to make
// this easy.
static std::map<const Type*, std::string> ConcreteTypeDescriptions;
static std::map<const Type*, std::string> AbstractTypeDescriptions;
Type::Type(const std::string &name, PrimitiveID id)
: Value(Type::TypeTy, Value::TypeVal), ForwardType(0) {
if (!name.empty())
ConcreteTypeDescriptions[this] = name;
ID = id;
Abstract = false;
UID = CurUID++; // Assign types UID's as they are created
UIDMappings.push_back(this);
}
void Type::setName(const std::string &Name, SymbolTable *ST) {
assert(ST && "Type::setName - Must provide symbol table argument!");
if (Name.size()) ST->insert(Name, this);
}
const Type *Type::getUniqueIDType(unsigned UID) {
assert(UID < UIDMappings.size() &&
"Type::getPrimitiveType: UID out of range!");
return UIDMappings[UID];
}
const Type *Type::getPrimitiveType(PrimitiveID IDNumber) {
switch (IDNumber) {
case VoidTyID : return VoidTy;
case BoolTyID : return BoolTy;
case UByteTyID : return UByteTy;
case SByteTyID : return SByteTy;
case UShortTyID: return UShortTy;
case ShortTyID : return ShortTy;
case UIntTyID : return UIntTy;
case IntTyID : return IntTy;
case ULongTyID : return ULongTy;
case LongTyID : return LongTy;
case FloatTyID : return FloatTy;
case DoubleTyID: return DoubleTy;
case TypeTyID : return TypeTy;
case LabelTyID : return LabelTy;
default:
return 0;
}
}
// isLosslesslyConvertibleTo - Return true if this type can be converted to
// 'Ty' without any reinterpretation of bits. For example, uint to int.
//
bool Type::isLosslesslyConvertibleTo(const Type *Ty) const {
if (this == Ty) return true;
if ((!isPrimitiveType() && !isa<PointerType>(this)) ||
(!isa<PointerType>(Ty) && !Ty->isPrimitiveType())) return false;
if (getPrimitiveID() == Ty->getPrimitiveID())
return true; // Handles identity cast, and cast of differing pointer types
// Now we know that they are two differing primitive or pointer types
switch (getPrimitiveID()) {
case Type::UByteTyID: return Ty == Type::SByteTy;
case Type::SByteTyID: return Ty == Type::UByteTy;
case Type::UShortTyID: return Ty == Type::ShortTy;
case Type::ShortTyID: return Ty == Type::UShortTy;
case Type::UIntTyID: return Ty == Type::IntTy;
case Type::IntTyID: return Ty == Type::UIntTy;
case Type::ULongTyID:
case Type::LongTyID:
case Type::PointerTyID:
return Ty == Type::ULongTy || Ty == Type::LongTy || isa<PointerType>(Ty);
default:
return false; // Other types have no identity values
}
}
// getPrimitiveSize - Return the basic size of this type if it is a primative
// type. These are fixed by LLVM and are not target dependent. This will
// return zero if the type does not have a size or is not a primitive type.
//
unsigned Type::getPrimitiveSize() const {
switch (getPrimitiveID()) {
#define HANDLE_PRIM_TYPE(TY,SIZE) case TY##TyID: return SIZE;
#include "llvm/Type.def"
default: return 0;
}
}
/// getForwardedTypeInternal - This method is used to implement the union-find
/// algorithm for when a type is being forwarded to another type.
const Type *Type::getForwardedTypeInternal() const {
assert(ForwardType && "This type is not being forwarded to another type!");
// Check to see if the forwarded type has been forwarded on. If so, collapse
// the forwarding links.
const Type *RealForwardedType = ForwardType->getForwardedType();
if (!RealForwardedType)
return ForwardType; // No it's not forwarded again
// Yes, it is forwarded again. First thing, add the reference to the new
// forward type.
if (RealForwardedType->isAbstract())
cast<DerivedType>(RealForwardedType)->addRef();
// Now drop the old reference. This could cause ForwardType to get deleted.
cast<DerivedType>(ForwardType)->dropRef();
// Return the updated type.
ForwardType = RealForwardedType;
return ForwardType;
}
// getTypeDescription - This is a recursive function that walks a type hierarchy
// calculating the description for a type.
//
static std::string getTypeDescription(const Type *Ty,
std::vector<const Type *> &TypeStack) {
if (isa<OpaqueType>(Ty)) { // Base case for the recursion
std::map<const Type*, std::string>::iterator I =
AbstractTypeDescriptions.lower_bound(Ty);
if (I != AbstractTypeDescriptions.end() && I->first == Ty)
return I->second;
std::string Desc = "opaque"+utostr(Ty->getUniqueID());
AbstractTypeDescriptions.insert(std::make_pair(Ty, Desc));
return Desc;
}
if (!Ty->isAbstract()) { // Base case for the recursion
std::map<const Type*, std::string>::iterator I =
ConcreteTypeDescriptions.find(Ty);
if (I != ConcreteTypeDescriptions.end()) return I->second;
}
// Check to see if the Type is already on the stack...
unsigned Slot = 0, CurSize = TypeStack.size();
while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
// This is another base case for the recursion. In this case, we know
// that we have looped back to a type that we have previously visited.
// Generate the appropriate upreference to handle this.
//
if (Slot < CurSize)
return "\\" + utostr(CurSize-Slot); // Here's the upreference
// Recursive case: derived types...
std::string Result;
TypeStack.push_back(Ty); // Add us to the stack..
switch (Ty->getPrimitiveID()) {
case Type::FunctionTyID: {
const FunctionType *FTy = cast<FunctionType>(Ty);
Result = getTypeDescription(FTy->getReturnType(), TypeStack) + " (";
for (FunctionType::ParamTypes::const_iterator
I = FTy->getParamTypes().begin(),
E = FTy->getParamTypes().end(); I != E; ++I) {
if (I != FTy->getParamTypes().begin())
Result += ", ";
Result += getTypeDescription(*I, TypeStack);
}
if (FTy->isVarArg()) {
if (!FTy->getParamTypes().empty()) Result += ", ";
Result += "...";
}
Result += ")";
break;
}
case Type::StructTyID: {
const StructType *STy = cast<StructType>(Ty);
Result = "{ ";
for (StructType::ElementTypes::const_iterator
I = STy->getElementTypes().begin(),
E = STy->getElementTypes().end(); I != E; ++I) {
if (I != STy->getElementTypes().begin())
Result += ", ";
Result += getTypeDescription(*I, TypeStack);
}
Result += " }";
break;
}
case Type::PointerTyID: {
const PointerType *PTy = cast<PointerType>(Ty);
Result = getTypeDescription(PTy->getElementType(), TypeStack) + " *";
break;
}
case Type::ArrayTyID: {
const ArrayType *ATy = cast<ArrayType>(Ty);
unsigned NumElements = ATy->getNumElements();
Result = "[";
Result += utostr(NumElements) + " x ";
Result += getTypeDescription(ATy->getElementType(), TypeStack) + "]";
break;
}
default:
Result = "<error>";
assert(0 && "Unhandled type in getTypeDescription!");
}
TypeStack.pop_back(); // Remove self from stack...
return Result;
}
static const std::string &getOrCreateDesc(std::map<const Type*,std::string>&Map,
const Type *Ty) {
std::map<const Type*, std::string>::iterator I = Map.find(Ty);
if (I != Map.end()) return I->second;
std::vector<const Type *> TypeStack;
return Map[Ty] = getTypeDescription(Ty, TypeStack);
}
const std::string &Type::getDescription() const {
if (isAbstract())
return getOrCreateDesc(AbstractTypeDescriptions, this);
else
return getOrCreateDesc(ConcreteTypeDescriptions, this);
}
bool StructType::indexValid(const Value *V) const {
if (!isa<Constant>(V)) return false;
if (V->getType() != Type::UByteTy) return false;
unsigned Idx = cast<ConstantUInt>(V)->getValue();
return Idx < ETypes.size();
}
// getTypeAtIndex - Given an index value into the type, return the type of the
// element. For a structure type, this must be a constant value...
//
const Type *StructType::getTypeAtIndex(const Value *V) const {
assert(isa<Constant>(V) && "Structure index must be a constant!!");
assert(V->getType() == Type::UByteTy && "Structure index must be ubyte!");
unsigned Idx = cast<ConstantUInt>(V)->getValue();
assert(Idx < ETypes.size() && "Structure index out of range!");
assert(indexValid(V) && "Invalid structure index!"); // Duplicate check
return ETypes[Idx];
}
//===----------------------------------------------------------------------===//
// Auxilliary classes
//===----------------------------------------------------------------------===//
//
// These classes are used to implement specialized behavior for each different
// type.
//
struct SignedIntType : public Type {
SignedIntType(const std::string &Name, PrimitiveID id) : Type(Name, id) {}
// isSigned - Return whether a numeric type is signed.
virtual bool isSigned() const { return 1; }
// isInteger - Equivalent to isSigned() || isUnsigned, but with only a single
// virtual function invocation.
//
virtual bool isInteger() const { return 1; }
};
struct UnsignedIntType : public Type {
UnsignedIntType(const std::string &N, PrimitiveID id) : Type(N, id) {}
// isUnsigned - Return whether a numeric type is signed.
virtual bool isUnsigned() const { return 1; }
// isInteger - Equivalent to isSigned() || isUnsigned, but with only a single
// virtual function invocation.
//
virtual bool isInteger() const { return 1; }
};
struct OtherType : public Type {
OtherType(const std::string &N, PrimitiveID id) : Type(N, id) {}
};
static struct TypeType : public Type {
TypeType() : Type("type", TypeTyID) {}
} TheTypeTy; // Implement the type that is global.
//===----------------------------------------------------------------------===//
// Static 'Type' data
//===----------------------------------------------------------------------===//
static OtherType TheVoidTy ("void" , Type::VoidTyID);
static OtherType TheBoolTy ("bool" , Type::BoolTyID);
static SignedIntType TheSByteTy ("sbyte" , Type::SByteTyID);
static UnsignedIntType TheUByteTy ("ubyte" , Type::UByteTyID);
static SignedIntType TheShortTy ("short" , Type::ShortTyID);
static UnsignedIntType TheUShortTy("ushort", Type::UShortTyID);
static SignedIntType TheIntTy ("int" , Type::IntTyID);
static UnsignedIntType TheUIntTy ("uint" , Type::UIntTyID);
static SignedIntType TheLongTy ("long" , Type::LongTyID);
static UnsignedIntType TheULongTy ("ulong" , Type::ULongTyID);
static OtherType TheFloatTy ("float" , Type::FloatTyID);
static OtherType TheDoubleTy("double", Type::DoubleTyID);
static OtherType TheLabelTy ("label" , Type::LabelTyID);
Type *Type::VoidTy = &TheVoidTy;
Type *Type::BoolTy = &TheBoolTy;
Type *Type::SByteTy = &TheSByteTy;
Type *Type::UByteTy = &TheUByteTy;
Type *Type::ShortTy = &TheShortTy;
Type *Type::UShortTy = &TheUShortTy;
Type *Type::IntTy = &TheIntTy;
Type *Type::UIntTy = &TheUIntTy;
Type *Type::LongTy = &TheLongTy;
Type *Type::ULongTy = &TheULongTy;
Type *Type::FloatTy = &TheFloatTy;
Type *Type::DoubleTy = &TheDoubleTy;
Type *Type::TypeTy = &TheTypeTy;
Type *Type::LabelTy = &TheLabelTy;
//===----------------------------------------------------------------------===//
// Derived Type Constructors
//===----------------------------------------------------------------------===//
FunctionType::FunctionType(const Type *Result,
const std::vector<const Type*> &Params,
bool IsVarArgs) : DerivedType(FunctionTyID),
ResultType(PATypeHandle(Result, this)),
isVarArgs(IsVarArgs) {
bool isAbstract = Result->isAbstract();
ParamTys.reserve(Params.size());
for (unsigned i = 0; i < Params.size(); ++i) {
ParamTys.push_back(PATypeHandle(Params[i], this));
isAbstract |= Params[i]->isAbstract();
}
// Calculate whether or not this type is abstract
setAbstract(isAbstract);
}
StructType::StructType(const std::vector<const Type*> &Types)
: CompositeType(StructTyID) {
ETypes.reserve(Types.size());
bool isAbstract = false;
for (unsigned i = 0; i < Types.size(); ++i) {
assert(Types[i] != Type::VoidTy && "Void type in method prototype!!");
ETypes.push_back(PATypeHandle(Types[i], this));
isAbstract |= Types[i]->isAbstract();
}
// Calculate whether or not this type is abstract
setAbstract(isAbstract);
}
ArrayType::ArrayType(const Type *ElType, unsigned NumEl)
: SequentialType(ArrayTyID, ElType) {
NumElements = NumEl;
// Calculate whether or not this type is abstract
setAbstract(ElType->isAbstract());
}
PointerType::PointerType(const Type *E) : SequentialType(PointerTyID, E) {
// Calculate whether or not this type is abstract
setAbstract(E->isAbstract());
}
OpaqueType::OpaqueType() : DerivedType(OpaqueTyID) {
setAbstract(true);
#ifdef DEBUG_MERGE_TYPES
std::cerr << "Derived new type: " << *this << "\n";
#endif
}
// isTypeAbstract - This is a recursive function that walks a type hierarchy
// calculating whether or not a type is abstract. Worst case it will have to do
// a lot of traversing if you have some whacko opaque types, but in most cases,
// it will do some simple stuff when it hits non-abstract types that aren't
// recursive.
//
bool Type::isTypeAbstract() {
if (!isAbstract()) // Base case for the recursion
return false; // Primitive = leaf type
if (isa<OpaqueType>(this)) // Base case for the recursion
return true; // This whole type is abstract!
// We have to guard against recursion. To do this, we temporarily mark this
// type as concrete, so that if we get back to here recursively we will think
// it's not abstract, and thus not scan it again.
setAbstract(false);
// Scan all of the sub-types. If any of them are abstract, than so is this
// one!
for (Type::subtype_iterator I = subtype_begin(), E = subtype_end();
I != E; ++I)
if (const_cast<Type*>(*I)->isTypeAbstract()) {
setAbstract(true); // Restore the abstract bit.
return true; // This type is abstract if subtype is abstract!
}
// Restore the abstract bit.
setAbstract(true);
// Nothing looks abstract here...
return false;
}
//===----------------------------------------------------------------------===//
// Type Structural Equality Testing
//===----------------------------------------------------------------------===//
// TypesEqual - Two types are considered structurally equal if they have the
// same "shape": Every level and element of the types have identical primitive
// ID's, and the graphs have the same edges/nodes in them. Nodes do not have to
// be pointer equals to be equivalent though. This uses an optimistic algorithm
// that assumes that two graphs are the same until proven otherwise.
//
static bool TypesEqual(const Type *Ty, const Type *Ty2,
std::map<const Type *, const Type *> &EqTypes) {
if (Ty == Ty2) return true;
if (Ty->getPrimitiveID() != Ty2->getPrimitiveID()) return false;
if (Ty->isPrimitiveType()) return true;
if (isa<OpaqueType>(Ty))
return false; // Two nonequal opaque types are never equal
std::map<const Type*, const Type*>::iterator It = EqTypes.find(Ty);
if (It != EqTypes.end())
return It->second == Ty2; // Looping back on a type, check for equality
// Otherwise, add the mapping to the table to make sure we don't get
// recursion on the types...
EqTypes.insert(std::make_pair(Ty, Ty2));
// Iterate over the types and make sure the the contents are equivalent...
Type::subtype_iterator I = Ty ->subtype_begin(), IE = Ty ->subtype_end();
Type::subtype_iterator I2 = Ty2->subtype_begin(), IE2 = Ty2->subtype_end();
for (; I != IE && I2 != IE2; ++I, ++I2)
if (!TypesEqual(*I, *I2, EqTypes)) return false;
// Two really annoying special cases that breaks an otherwise nice simple
// algorithm is the fact that arraytypes have sizes that differentiates types,
// and that function types can be varargs or not. Consider this now.
if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
if (ATy->getNumElements() != cast<ArrayType>(Ty2)->getNumElements())
return false;
} else if (const FunctionType *FTy = dyn_cast<FunctionType>(Ty)) {
if (FTy->isVarArg() != cast<FunctionType>(Ty2)->isVarArg())
return false;
}
return I == IE && I2 == IE2; // Types equal if both iterators are done
}
static bool TypesEqual(const Type *Ty, const Type *Ty2) {
std::map<const Type *, const Type *> EqTypes;
return TypesEqual(Ty, Ty2, EqTypes);
}
//===----------------------------------------------------------------------===//
// Derived Type Factory Functions
//===----------------------------------------------------------------------===//
// TypeMap - Make sure that only one instance of a particular type may be
// created on any given run of the compiler... note that this involves updating
// our map if an abstract type gets refined somehow...
//
template<class ValType, class TypeClass>
class TypeMap : public AbstractTypeUser {
typedef std::map<ValType, PATypeHandle> MapTy;
MapTy Map;
public:
typedef typename MapTy::iterator iterator;
~TypeMap() { print("ON EXIT"); }
inline TypeClass *get(const ValType &V) {
iterator I = Map.find(V);
return I != Map.end() ? (TypeClass*)I->second.get() : 0;
}
inline void add(const ValType &V, TypeClass *T) {
Map.insert(std::make_pair(V, PATypeHandle(T, this)));
print("add");
}
iterator getEntryForType(TypeClass *Ty) {
iterator I = Map.find(ValType::get(Ty));
if (I == Map.end()) print("ERROR!");
assert(I != Map.end() && "Didn't find type entry!");
assert(T->second == Ty && "Type entry wrong?");
return I;
}
void finishRefinement(TypeClass *Ty) {
//const TypeClass *Ty = (const TypeClass*)TyIt->second.get();
for (iterator I = Map.begin(), E = Map.end(); I != E; ++I)
if (I->second.get() != Ty && TypesEqual(Ty, I->second.get())) {
assert(Ty->isAbstract() && "Replacing a non-abstract type?");
TypeClass *NewTy = (TypeClass*)I->second.get();
#if 0
//Map.erase(TyIt); // The old entry is now dead!
#endif
// Refined to a different type altogether?
Ty->refineAbstractTypeToInternal(NewTy, false);
return;
}
// If the type is currently thought to be abstract, rescan all of our
// subtypes to see if the type has just become concrete!
if (Ty->isAbstract())
Ty->setAbstract(Ty->isTypeAbstract());
// This method may be called with either an abstract or a concrete type.
// Concrete types might get refined if a subelement type got refined which
// was previously marked as abstract, but was realized to be concrete. This
// can happen for recursive types.
Ty->typeIsRefined(); // Same type, different contents...
}
// refineAbstractType - This is called when one of the contained abstract
// types gets refined... this simply removes the abstract type from our table.
// We expect that whoever refined the type will add it back to the table,
// corrected.
//
virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) {
#ifdef DEBUG_MERGE_TYPES
std::cerr << "Removing Old type from Tab: " << (void*)OldTy << ", "
<< *OldTy << " replacement == " << (void*)NewTy
<< ", " << *NewTy << "\n";
#endif
for (iterator I = Map.begin(), E = Map.end(); I != E; ++I)
if (I->second.get() == OldTy) {
// Check to see if the type just became concrete. If so, remove self
// from user list.
I->second.removeUserFromConcrete();
I->second = cast<TypeClass>(NewTy);
}
}
void remove(const ValType &OldVal) {
iterator I = Map.find(OldVal);
assert(I != Map.end() && "TypeMap::remove, element not found!");
Map.erase(I);
}
void remove(iterator I) {
assert(I != Map.end() && "Cannot remove invalid iterator pointer!");
Map.erase(I);
}
void print(const char *Arg) const {
#ifdef DEBUG_MERGE_TYPES
std::cerr << "TypeMap<>::" << Arg << " table contents:\n";
unsigned i = 0;
for (typename MapTy::const_iterator I = Map.begin(), E = Map.end();
I != E; ++I)
std::cerr << " " << (++i) << ". " << (void*)I->second.get() << " "
<< *I->second.get() << "\n";
#endif
}
void dump() const { print("dump output"); }
};
// ValTypeBase - This is the base class that is used by the various
// instantiations of TypeMap. This class is an AbstractType user that notifies
// the underlying TypeMap when it gets modified.
//
template<class ValType, class TypeClass>
class ValTypeBase : public AbstractTypeUser {
TypeMap<ValType, TypeClass> &MyTable;
protected:
inline ValTypeBase(TypeMap<ValType, TypeClass> &tab) : MyTable(tab) {}
// Subclass should override this... to update self as usual
virtual void doRefinement(const DerivedType *OldTy, const Type *NewTy) = 0;
// typeBecameConcrete - This callback occurs when a contained type refines
// to itself, but becomes concrete in the process. Our subclass should remove
// itself from the ATU list of the specified type.
//
virtual void typeBecameConcrete(const DerivedType *Ty) = 0;
virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) {
assert(OldTy == NewTy || OldTy->isAbstract());
if (!OldTy->isAbstract())
typeBecameConcrete(OldTy);
TypeMap<ValType, TypeClass> &Table = MyTable; // Copy MyTable reference
ValType Tmp(*(ValType*)this); // Copy this.
PATypeHandle OldType(Table.get(*(ValType*)this), this);
Table.remove(*(ValType*)this); // Destroy's this!
// Refine temporary to new state...
if (OldTy != NewTy)
Tmp.doRefinement(OldTy, NewTy);
// FIXME: when types are not const!
Table.add((ValType&)Tmp, (TypeClass*)OldType.get());
}
void dump() const {
std::cerr << "ValTypeBase instance!\n";
}
};
//===----------------------------------------------------------------------===//
// Function Type Factory and Value Class...
//
// FunctionValType - Define a class to hold the key that goes into the TypeMap
//
class FunctionValType : public ValTypeBase<FunctionValType, FunctionType> {
PATypeHandle RetTy;
std::vector<PATypeHandle> ArgTypes;
bool isVarArg;
public:
FunctionValType(const Type *ret, const std::vector<const Type*> &args,
bool IVA, TypeMap<FunctionValType, FunctionType> &Tab)
: ValTypeBase<FunctionValType, FunctionType>(Tab), RetTy(ret, this),
isVarArg(IVA) {
for (unsigned i = 0; i < args.size(); ++i)
ArgTypes.push_back(PATypeHandle(args[i], this));
}
// We *MUST* have an explicit copy ctor so that the TypeHandles think that
// this FunctionValType owns them, not the old one!
//
FunctionValType(const FunctionValType &MVT)
: ValTypeBase<FunctionValType, FunctionType>(MVT), RetTy(MVT.RetTy, this),
isVarArg(MVT.isVarArg) {
ArgTypes.reserve(MVT.ArgTypes.size());
for (unsigned i = 0; i < MVT.ArgTypes.size(); ++i)
ArgTypes.push_back(PATypeHandle(MVT.ArgTypes[i], this));
}
static FunctionValType get(const FunctionType *FT);
// Subclass should override this... to update self as usual
virtual void doRefinement(const DerivedType *OldType, const Type *NewType) {
if (RetTy == OldType) RetTy = NewType;
for (unsigned i = 0, e = ArgTypes.size(); i != e; ++i)
if (ArgTypes[i] == OldType) ArgTypes[i] = NewType;
}
virtual void typeBecameConcrete(const DerivedType *Ty) {
if (RetTy == Ty) RetTy.removeUserFromConcrete();
for (unsigned i = 0; i < ArgTypes.size(); ++i)
if (ArgTypes[i] == Ty) ArgTypes[i].removeUserFromConcrete();
}
inline bool operator<(const FunctionValType &MTV) const {
if (RetTy.get() < MTV.RetTy.get()) return true;
if (RetTy.get() > MTV.RetTy.get()) return false;
if (ArgTypes < MTV.ArgTypes) return true;
return (ArgTypes == MTV.ArgTypes) && isVarArg < MTV.isVarArg;
}
};
// Define the actual map itself now...
static TypeMap<FunctionValType, FunctionType> FunctionTypes;
FunctionValType FunctionValType::get(const FunctionType *FT) {
// Build up a FunctionValType
std::vector<const Type *> ParamTypes;
ParamTypes.reserve(FT->getParamTypes().size());
for (unsigned i = 0, e = FT->getParamTypes().size(); i != e; ++i)
ParamTypes.push_back(FT->getParamType(i));
return FunctionValType(FT->getReturnType(), ParamTypes, FT->isVarArg(),
FunctionTypes);
}
// FunctionType::get - The factory function for the FunctionType class...
FunctionType *FunctionType::get(const Type *ReturnType,
const std::vector<const Type*> &Params,
bool isVarArg) {
FunctionValType VT(ReturnType, Params, isVarArg, FunctionTypes);
FunctionType *MT = FunctionTypes.get(VT);
if (MT) return MT;
FunctionTypes.add(VT, MT = new FunctionType(ReturnType, Params, isVarArg));
#ifdef DEBUG_MERGE_TYPES
std::cerr << "Derived new type: " << MT << "\n";
#endif
return MT;
}
void FunctionType::dropAllTypeUses(bool inMap) {
#if 0
if (inMap) FunctionTypes.remove(FunctionTypes.getEntryForType(this));
// Drop all uses of other types, which might be recursive.
#endif
ResultType = OpaqueType::get();
ParamTys.clear();
}
//===----------------------------------------------------------------------===//
// Array Type Factory...
//
class ArrayValType : public ValTypeBase<ArrayValType, ArrayType> {
PATypeHandle ValTy;
unsigned Size;
public:
ArrayValType(const Type *val, int sz, TypeMap<ArrayValType, ArrayType> &Tab)
: ValTypeBase<ArrayValType, ArrayType>(Tab), ValTy(val, this), Size(sz) {}
// We *MUST* have an explicit copy ctor so that the ValTy thinks that this
// ArrayValType owns it, not the old one!
//
ArrayValType(const ArrayValType &AVT)
: ValTypeBase<ArrayValType, ArrayType>(AVT), ValTy(AVT.ValTy, this),
Size(AVT.Size) {}
static ArrayValType get(const ArrayType *AT);
// Subclass should override this... to update self as usual
virtual void doRefinement(const DerivedType *OldType, const Type *NewType) {
assert(ValTy == OldType);
ValTy = NewType;
}
virtual void typeBecameConcrete(const DerivedType *Ty) {
assert(ValTy == Ty &&
"Contained type became concrete but we're not using it!");
ValTy.removeUserFromConcrete();
}
inline bool operator<(const ArrayValType &MTV) const {
if (Size < MTV.Size) return true;
return Size == MTV.Size && ValTy.get() < MTV.ValTy.get();
}
};
static TypeMap<ArrayValType, ArrayType> ArrayTypes;
ArrayValType ArrayValType::get(const ArrayType *AT) {
return ArrayValType(AT->getElementType(), AT->getNumElements(), ArrayTypes);
}
ArrayType *ArrayType::get(const Type *ElementType, unsigned NumElements) {
assert(ElementType && "Can't get array of null types!");
ArrayValType AVT(ElementType, NumElements, ArrayTypes);
ArrayType *AT = ArrayTypes.get(AVT);
if (AT) return AT; // Found a match, return it!
// Value not found. Derive a new type!
ArrayTypes.add(AVT, AT = new ArrayType(ElementType, NumElements));
#ifdef DEBUG_MERGE_TYPES
std::cerr << "Derived new type: " << *AT << "\n";
#endif
return AT;
}
void ArrayType::dropAllTypeUses(bool inMap) {
#if 0
if (inMap) ArrayTypes.remove(ArrayTypes.getEntryForType(this));
#endif
ElementType = OpaqueType::get();
}
//===----------------------------------------------------------------------===//
// Struct Type Factory...
//
// StructValType - Define a class to hold the key that goes into the TypeMap
//
class StructValType : public ValTypeBase<StructValType, StructType> {
std::vector<PATypeHandle> ElTypes;
public:
StructValType(const std::vector<const Type*> &args,
TypeMap<StructValType, StructType> &Tab)
: ValTypeBase<StructValType, StructType>(Tab) {
ElTypes.reserve(args.size());
for (unsigned i = 0, e = args.size(); i != e; ++i)
ElTypes.push_back(PATypeHandle(args[i], this));
}
// We *MUST* have an explicit copy ctor so that the TypeHandles think that
// this StructValType owns them, not the old one!
//
StructValType(const StructValType &SVT)
: ValTypeBase<StructValType, StructType>(SVT){
ElTypes.reserve(SVT.ElTypes.size());
for (unsigned i = 0, e = SVT.ElTypes.size(); i != e; ++i)
ElTypes.push_back(PATypeHandle(SVT.ElTypes[i], this));
}
static StructValType get(const StructType *ST);
// Subclass should override this... to update self as usual
virtual void doRefinement(const DerivedType *OldType, const Type *NewType) {
for (unsigned i = 0; i < ElTypes.size(); ++i)
if (ElTypes[i] == OldType) ElTypes[i] = NewType;
}
virtual void typeBecameConcrete(const DerivedType *Ty) {
for (unsigned i = 0, e = ElTypes.size(); i != e; ++i)
if (ElTypes[i] == Ty)
ElTypes[i].removeUserFromConcrete();
}
inline bool operator<(const StructValType &STV) const {
return ElTypes < STV.ElTypes;
}
};
static TypeMap<StructValType, StructType> StructTypes;
StructValType StructValType::get(const StructType *ST) {
std::vector<const Type *> ElTypes;
ElTypes.reserve(ST->getElementTypes().size());
for (unsigned i = 0, e = ST->getElementTypes().size(); i != e; ++i)
ElTypes.push_back(ST->getElementTypes()[i]);
return StructValType(ElTypes, StructTypes);
}
StructType *StructType::get(const std::vector<const Type*> &ETypes) {
StructValType STV(ETypes, StructTypes);
StructType *ST = StructTypes.get(STV);
if (ST) return ST;
// Value not found. Derive a new type!
StructTypes.add(STV, ST = new StructType(ETypes));
#ifdef DEBUG_MERGE_TYPES
std::cerr << "Derived new type: " << *ST << "\n";
#endif
return ST;
}
void StructType::dropAllTypeUses(bool inMap) {
#if 0
if (inMap) StructTypes.remove(StructTypes.getEntryForType(this));
#endif
ETypes.clear();
ETypes.push_back(PATypeHandle(OpaqueType::get(), this));
}
//===----------------------------------------------------------------------===//
// Pointer Type Factory...
//
// PointerValType - Define a class to hold the key that goes into the TypeMap
//
class PointerValType : public ValTypeBase<PointerValType, PointerType> {
PATypeHandle ValTy;
public:
PointerValType(const Type *val, TypeMap<PointerValType, PointerType> &Tab)
: ValTypeBase<PointerValType, PointerType>(Tab), ValTy(val, this) {}
// We *MUST* have an explicit copy ctor so that the ValTy thinks that this
// PointerValType owns it, not the old one!
//
PointerValType(const PointerValType &PVT)
: ValTypeBase<PointerValType, PointerType>(PVT), ValTy(PVT.ValTy, this) {}
static PointerValType get(const PointerType *PT);
// Subclass should override this... to update self as usual
virtual void doRefinement(const DerivedType *OldType, const Type *NewType) {
assert(ValTy == OldType);
ValTy = NewType;
}
virtual void typeBecameConcrete(const DerivedType *Ty) {
assert(ValTy == Ty &&
"Contained type became concrete but we're not using it!");
ValTy.removeUserFromConcrete();
}
inline bool operator<(const PointerValType &MTV) const {
return ValTy.get() < MTV.ValTy.get();
}
};
static TypeMap<PointerValType, PointerType> PointerTypes;
PointerValType PointerValType::get(const PointerType *PT) {
return PointerValType(PT->getElementType(), PointerTypes);
}
PointerType *PointerType::get(const Type *ValueType) {
assert(ValueType && "Can't get a pointer to <null> type!");
PointerValType PVT(ValueType, PointerTypes);
PointerType *PT = PointerTypes.get(PVT);
if (PT) return PT;
// Value not found. Derive a new type!
PointerTypes.add(PVT, PT = new PointerType(ValueType));
#ifdef DEBUG_MERGE_TYPES
std::cerr << "Derived new type: " << *PT << "\n";
#endif
return PT;
}
void PointerType::dropAllTypeUses(bool inMap) {
#if 0
if (inMap) PointerTypes.remove(PointerTypes.getEntryForType(this));
#endif
ElementType = OpaqueType::get();
}
void debug_type_tables() {
FunctionTypes.dump();
ArrayTypes.dump();
StructTypes.dump();
PointerTypes.dump();
}
//===----------------------------------------------------------------------===//
// Derived Type Refinement Functions
//===----------------------------------------------------------------------===//
// removeAbstractTypeUser - Notify an abstract type that a user of the class
// no longer has a handle to the type. This function is called primarily by
// the PATypeHandle class. When there are no users of the abstract type, it
// is anihilated, because there is no way to get a reference to it ever again.
//
void DerivedType::removeAbstractTypeUser(AbstractTypeUser *U) const {
// Search from back to front because we will notify users from back to
// front. Also, it is likely that there will be a stack like behavior to
// users that register and unregister users.
//
unsigned i;
for (i = AbstractTypeUsers.size(); AbstractTypeUsers[i-1] != U; --i)
assert(i != 0 && "AbstractTypeUser not in user list!");
--i; // Convert to be in range 0 <= i < size()
assert(i < AbstractTypeUsers.size() && "Index out of range!"); // Wraparound?
AbstractTypeUsers.erase(AbstractTypeUsers.begin()+i);
#ifdef DEBUG_MERGE_TYPES
std::cerr << " remAbstractTypeUser[" << (void*)this << ", "
<< *this << "][" << i << "] User = " << U << "\n";
#endif
if (AbstractTypeUsers.empty() && RefCount == 0 && isAbstract()) {
#ifdef DEBUG_MERGE_TYPES
std::cerr << "DELETEing unused abstract type: <" << *this
<< ">[" << (void*)this << "]" << "\n";
#endif
delete this; // No users of this abstract type!
}
}
// refineAbstractTypeToInternal - This function is used to when it is discovered
// that the 'this' abstract type is actually equivalent to the NewType
// specified. This causes all users of 'this' to switch to reference the more
// concrete type NewType and for 'this' to be deleted.
//
void DerivedType::refineAbstractTypeToInternal(const Type *NewType, bool inMap){
assert(isAbstract() && "refineAbstractTypeTo: Current type is not abstract!");
assert(this != NewType && "Can't refine to myself!");
// The descriptions may be out of date. Conservatively clear them all!
AbstractTypeDescriptions.clear();
#ifdef DEBUG_MERGE_TYPES
std::cerr << "REFINING abstract type [" << (void*)this << " "
<< *this << "] to [" << (void*)NewType << " "
<< *NewType << "]!\n";
#endif
// Make sure to put the type to be refined to into a holder so that if IT gets
// refined, that we will not continue using a dead reference...
//
PATypeHolder NewTy(NewType);
ForwardType = NewType;
if (NewType->isAbstract())
cast<DerivedType>(NewType)->addRef();
// Add a self use of the current type so that we don't delete ourself until
// after the function exits.
//
PATypeHolder CurrentTy(this);
// To make the situation simpler, we ask the subclass to remove this type from
// the type map, and to replace any type uses with uses of non-abstract types.
// This dramatically limits the amount of recursive type trouble we can find
// ourselves in.
dropAllTypeUses(inMap);
// Iterate over all of the uses of this type, invoking callback. Each user
// should remove itself from our use list automatically. We have to check to
// make sure that NewTy doesn't _become_ 'this'. If it does, resolving types
// will not cause users to drop off of the use list. If we resolve to ourself
// we succeed!
//
while (!AbstractTypeUsers.empty() && NewTy != this) {
AbstractTypeUser *User = AbstractTypeUsers.back();
unsigned OldSize = AbstractTypeUsers.size();
#ifdef DEBUG_MERGE_TYPES
std::cerr << " REFINING user " << OldSize-1 << "[" << (void*)User
<< "] of abstract type [" << (void*)this << " "
<< *this << "] to [" << (void*)NewTy.get() << " "
<< *NewTy << "]!\n";
#endif
User->refineAbstractType(this, NewTy);
#ifdef DEBUG_MERGE_TYPES
if (AbstractTypeUsers.size() == OldSize) {
User->refineAbstractType(this, NewTy);
if (AbstractTypeUsers.back() != User)
std::cerr << "User changed!\n";
std::cerr << "Top of user list is:\n";
AbstractTypeUsers.back()->dump();
std::cerr <<"\nOld User=\n";
User->dump();
}
#endif
assert(AbstractTypeUsers.size() != OldSize &&
"AbsTyUser did not remove self from user list!");
}
// If we were successful removing all users from the type, 'this' will be
// deleted when the last PATypeHolder is destroyed or updated from this type.
// This may occur on exit of this function, as the CurrentTy object is
// destroyed.
}
// typeIsRefined - Notify AbstractTypeUsers of this type that the current type
// has been refined a bit. The pointer is still valid and still should be
// used, but the subtypes have changed.
//
void DerivedType::typeIsRefined() {
assert(isRefining >= 0 && isRefining <= 2 && "isRefining out of bounds!");
if (isRefining == 1) return; // Kill recursion here...
++isRefining;
#ifdef DEBUG_MERGE_TYPES
std::cerr << "typeIsREFINED type: " << (void*)this << " " << *this << "\n";
#endif
// In this loop we have to be very careful not to get into infinite loops and
// other problem cases. Specifically, we loop through all of the abstract
// type users in the user list, notifying them that the type has been refined.
// At their choice, they may or may not choose to remove themselves from the
// list of users. Regardless of whether they do or not, we have to be sure
// that we only notify each user exactly once. Because the refineAbstractType
// method can cause an arbitrary permutation to the user list, we cannot loop
// through it in any particular order and be guaranteed that we will be
// successful at this aim. Because of this, we keep track of all the users we
// have visited and only visit users we have not seen. Because this user list
// should be small, we use a vector instead of a full featured set to keep
// track of what users we have notified so far.
//
std::vector<AbstractTypeUser*> Refined;
while (1) {
unsigned i;
for (i = AbstractTypeUsers.size(); i != 0; --i)
if (find(Refined.begin(), Refined.end(), AbstractTypeUsers[i-1]) ==
Refined.end())
break; // Found an unrefined user?
if (i == 0) break; // Noone to refine left, break out of here!
AbstractTypeUser *ATU = AbstractTypeUsers[--i];
Refined.push_back(ATU); // Keep track of which users we have refined!
#ifdef DEBUG_MERGE_TYPES
std::cerr << " typeIsREFINED user " << i << "[" << ATU
<< "] of abstract type [" << (void*)this << " "
<< *this << "]\n";
#endif
ATU->refineAbstractType(this, this);
}
--isRefining;
#ifndef _NDEBUG
if (!(isAbstract() || AbstractTypeUsers.empty()))
for (unsigned i = 0; i < AbstractTypeUsers.size(); ++i) {
if (AbstractTypeUsers[i] != this) {
// Debugging hook
std::cerr << "FOUND FAILURE\nUser: ";
AbstractTypeUsers[i]->dump();
std::cerr << "\nCatch:\n";
AbstractTypeUsers[i]->refineAbstractType(this, this);
assert(0 && "Type became concrete,"
" but it still has abstract type users hanging around!");
}
}
#endif
}
// refineAbstractType - Called when a contained type is found to be more
// concrete - this could potentially change us from an abstract type to a
// concrete type.
//
void FunctionType::refineAbstractType(const DerivedType *OldType,
const Type *NewType) {
assert((isAbstract() || !OldType->isAbstract()) &&
"Refining a non-abstract type!");
#ifdef DEBUG_MERGE_TYPES
std::cerr << "FunctionTy::refineAbstractTy(" << (void*)OldType << "["
<< *OldType << "], " << (void*)NewType << " ["
<< *NewType << "])\n";
#endif
// Look up our current type map entry..
#if 0
TypeMap<FunctionValType, FunctionType>::iterator TMI =
FunctionTypes.getEntryForType(this);
#endif
// Find the type element we are refining...
if (ResultType == OldType) {
ResultType.removeUserFromConcrete();
ResultType = NewType;
}
for (unsigned i = 0, e = ParamTys.size(); i != e; ++i)
if (ParamTys[i] == OldType) {
ParamTys[i].removeUserFromConcrete();
ParamTys[i] = NewType;
}
FunctionTypes.finishRefinement(this);
}
// refineAbstractType - Called when a contained type is found to be more
// concrete - this could potentially change us from an abstract type to a
// concrete type.
//
void ArrayType::refineAbstractType(const DerivedType *OldType,
const Type *NewType) {
assert((isAbstract() || !OldType->isAbstract()) &&
"Refining a non-abstract type!");
#ifdef DEBUG_MERGE_TYPES
std::cerr << "ArrayTy::refineAbstractTy(" << (void*)OldType << "["
<< *OldType << "], " << (void*)NewType << " ["
<< *NewType << "])\n";
#endif
#if 0
// Look up our current type map entry..
TypeMap<ArrayValType, ArrayType>::iterator TMI =
ArrayTypes.getEntryForType(this);
#endif
assert(getElementType() == OldType);
ElementType.removeUserFromConcrete();
ElementType = NewType;
ArrayTypes.finishRefinement(this);
}
// refineAbstractType - Called when a contained type is found to be more
// concrete - this could potentially change us from an abstract type to a
// concrete type.
//
void StructType::refineAbstractType(const DerivedType *OldType,
const Type *NewType) {
assert((isAbstract() || !OldType->isAbstract()) &&
"Refining a non-abstract type!");
#ifdef DEBUG_MERGE_TYPES
std::cerr << "StructTy::refineAbstractTy(" << (void*)OldType << "["
<< *OldType << "], " << (void*)NewType << " ["
<< *NewType << "])\n";
#endif
#if 0
// Look up our current type map entry..
TypeMap<StructValType, StructType>::iterator TMI =
StructTypes.getEntryForType(this);
#endif
for (int i = ETypes.size()-1; i >= 0; --i)
if (ETypes[i] == OldType) {
ETypes[i].removeUserFromConcrete();
// Update old type to new type in the array...
ETypes[i] = NewType;
}
StructTypes.finishRefinement(this);
}
// refineAbstractType - Called when a contained type is found to be more
// concrete - this could potentially change us from an abstract type to a
// concrete type.
//
void PointerType::refineAbstractType(const DerivedType *OldType,
const Type *NewType) {
assert((isAbstract() || !OldType->isAbstract()) &&
"Refining a non-abstract type!");
#ifdef DEBUG_MERGE_TYPES
std::cerr << "PointerTy::refineAbstractTy(" << (void*)OldType << "["
<< *OldType << "], " << (void*)NewType << " ["
<< *NewType << "])\n";
#endif
#if 0
// Look up our current type map entry..
TypeMap<PointerValType, PointerType>::iterator TMI =
PointerTypes.getEntryForType(this);
#endif
assert(ElementType == OldType);
ElementType.removeUserFromConcrete();
ElementType = NewType;
PointerTypes.finishRefinement(this);
}