mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-01 00:11:00 +00:00
8f0a16eac6
be fixed, but we are getting much closer now. * Make DSNode::TypeRec a full fledged DSTypeRec type. * Add methods used to update and access the typerecords elements * Add methods to query if and to cause a node to be completely folded * DSGraph construction doesn't use the allocation type for anything at all, now nodes get their type information based on how they are used. * Fixed a bug with global value handling introduced in the last checkin * GEP support is now much better, arrays are handled correctly. The array flag is now updated in type records. There are still cases that are not handled yet (we do not detect pessimizations), but getting much closer. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@4465 91177308-0d34-0410-b5e6-96231b3b80d8
464 lines
17 KiB
C++
464 lines
17 KiB
C++
//===- Local.cpp - Compute a local data structure graph for a function ----===//
|
|
//
|
|
// Compute the local version of the data structure graph for a function. The
|
|
// external interface to this file is the DSGraph constructor.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/DSGraph.h"
|
|
#include "llvm/Analysis/DataStructure.h"
|
|
#include "llvm/iMemory.h"
|
|
#include "llvm/iTerminators.h"
|
|
#include "llvm/iPHINode.h"
|
|
#include "llvm/iOther.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/GlobalVariable.h"
|
|
#include "llvm/Support/InstVisitor.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include "Support/Statistic.h"
|
|
|
|
// FIXME: This should eventually be a FunctionPass that is automatically
|
|
// aggregated into a Pass.
|
|
//
|
|
#include "llvm/Module.h"
|
|
|
|
using std::map;
|
|
using std::vector;
|
|
|
|
static RegisterAnalysis<LocalDataStructures>
|
|
X("datastructure", "Local Data Structure Analysis");
|
|
|
|
using namespace DataStructureAnalysis;
|
|
|
|
namespace DataStructureAnalysis {
|
|
// FIXME: Do something smarter with target data!
|
|
TargetData TD("temp-td");
|
|
unsigned PointerSize(TD.getPointerSize());
|
|
|
|
// isPointerType - Return true if this type is big enough to hold a pointer.
|
|
bool isPointerType(const Type *Ty) {
|
|
if (isa<PointerType>(Ty))
|
|
return true;
|
|
else if (Ty->isPrimitiveType() && Ty->isInteger())
|
|
return Ty->getPrimitiveSize() >= PointerSize;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
namespace {
|
|
//===--------------------------------------------------------------------===//
|
|
// GraphBuilder Class
|
|
//===--------------------------------------------------------------------===//
|
|
//
|
|
/// This class is the builder class that constructs the local data structure
|
|
/// graph by performing a single pass over the function in question.
|
|
///
|
|
class GraphBuilder : InstVisitor<GraphBuilder> {
|
|
DSGraph &G;
|
|
vector<DSNode*> &Nodes;
|
|
DSNodeHandle &RetNode; // Node that gets returned...
|
|
map<Value*, DSNodeHandle> &ValueMap;
|
|
map<GlobalValue*, DSNodeHandle> GlobalScalarValueMap;
|
|
vector<DSCallSite> &FunctionCalls;
|
|
|
|
public:
|
|
GraphBuilder(DSGraph &g, vector<DSNode*> &nodes, DSNodeHandle &retNode,
|
|
map<Value*, DSNodeHandle> &vm,
|
|
vector<DSCallSite> &fc)
|
|
: G(g), Nodes(nodes), RetNode(retNode), ValueMap(vm), FunctionCalls(fc) {
|
|
|
|
// Create scalar nodes for all pointer arguments...
|
|
for (Function::aiterator I = G.getFunction().abegin(),
|
|
E = G.getFunction().aend(); I != E; ++I)
|
|
if (isPointerType(I->getType()))
|
|
getValueDest(*I);
|
|
|
|
visit(G.getFunction()); // Single pass over the function
|
|
|
|
// Not inlining, only eliminate trivially dead nodes.
|
|
G.removeTriviallyDeadNodes();
|
|
}
|
|
|
|
private:
|
|
// Visitor functions, used to handle each instruction type we encounter...
|
|
friend class InstVisitor<GraphBuilder>;
|
|
void visitMallocInst(MallocInst &MI) { handleAlloc(MI, DSNode::NewNode); }
|
|
void visitAllocaInst(AllocaInst &AI) { handleAlloc(AI, DSNode::AllocaNode);}
|
|
void handleAlloc(AllocationInst &AI, DSNode::NodeTy NT);
|
|
|
|
void visitPHINode(PHINode &PN);
|
|
|
|
void visitGetElementPtrInst(GetElementPtrInst &GEP);
|
|
void visitReturnInst(ReturnInst &RI);
|
|
void visitLoadInst(LoadInst &LI);
|
|
void visitStoreInst(StoreInst &SI);
|
|
void visitCallInst(CallInst &CI);
|
|
void visitSetCondInst(SetCondInst &SCI) {} // SetEQ & friends are ignored
|
|
void visitFreeInst(FreeInst &FI) {} // Ignore free instructions
|
|
void visitCastInst(CastInst &CI);
|
|
void visitInstruction(Instruction &I) {}
|
|
|
|
private:
|
|
// Helper functions used to implement the visitation functions...
|
|
|
|
/// createNode - Create a new DSNode, ensuring that it is properly added to
|
|
/// the graph.
|
|
///
|
|
DSNode *createNode(DSNode::NodeTy NodeType, const Type *Ty);
|
|
|
|
/// getValueNode - Return a DSNode that corresponds the the specified LLVM
|
|
/// value. This either returns the already existing node, or creates a new
|
|
/// one and adds it to the graph, if none exists.
|
|
///
|
|
DSNodeHandle &getValueNode(Value &V);
|
|
|
|
/// getValueDest - Return the DSNode that the actual value points to. This
|
|
/// is basically the same thing as: getLink(getValueNode(V), 0)
|
|
///
|
|
DSNodeHandle &getValueDest(Value &V);
|
|
|
|
/// getGlobalNode - Just like getValueNode, except the global node itself is
|
|
/// returned, not a scalar node pointing to a global.
|
|
///
|
|
DSNodeHandle &getGlobalNode(GlobalValue &V);
|
|
|
|
/// getLink - This method is used to return the specified link in the
|
|
/// specified node if one exists. If a link does not already exist (it's
|
|
/// null), then we create a new node, link it, then return it. We must
|
|
/// specify the type of the Node field we are accessing so that we know what
|
|
/// type should be linked to if we need to create a new node.
|
|
///
|
|
DSNodeHandle &getLink(const DSNodeHandle &Node, unsigned Link,
|
|
const Type *FieldTy);
|
|
};
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DSGraph constructor - Simply use the GraphBuilder to construct the local
|
|
// graph.
|
|
DSGraph::DSGraph(Function &F) : Func(&F) {
|
|
// Use the graph builder to construct the local version of the graph
|
|
GraphBuilder B(*this, Nodes, RetNode, ValueMap, FunctionCalls);
|
|
markIncompleteNodes();
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Helper method implementations...
|
|
//
|
|
|
|
|
|
// createNode - Create a new DSNode, ensuring that it is properly added to the
|
|
// graph.
|
|
//
|
|
DSNode *GraphBuilder::createNode(DSNode::NodeTy NodeType, const Type *Ty) {
|
|
DSNode *N = new DSNode(NodeType, Ty);
|
|
Nodes.push_back(N);
|
|
return N;
|
|
}
|
|
|
|
|
|
// getGlobalNode - Just like getValueNode, except the global node itself is
|
|
// returned, not a scalar node pointing to a global.
|
|
//
|
|
DSNodeHandle &GraphBuilder::getGlobalNode(GlobalValue &V) {
|
|
DSNodeHandle &NH = ValueMap[&V];
|
|
if (NH.getNode()) return NH; // Already have a node? Just return it...
|
|
|
|
// Create a new global node for this global variable...
|
|
DSNode *G = createNode(DSNode::GlobalNode, V.getType()->getElementType());
|
|
G->addGlobal(&V);
|
|
|
|
// If this node has outgoing edges, make sure to recycle the same node for
|
|
// each use. For functions and other global variables, this is unneccesary,
|
|
// so avoid excessive merging by cloning these nodes on demand.
|
|
//
|
|
NH.setNode(G);
|
|
return NH;
|
|
}
|
|
|
|
|
|
// getValueNode - Return a DSNode that corresponds the the specified LLVM value.
|
|
// This either returns the already existing node, or creates a new one and adds
|
|
// it to the graph, if none exists.
|
|
//
|
|
DSNodeHandle &GraphBuilder::getValueNode(Value &V) {
|
|
assert(isPointerType(V.getType()) && "Should only use pointer scalars!");
|
|
|
|
if (GlobalValue *GV = dyn_cast<GlobalValue>(&V)) {
|
|
// The GlobalScalarValueMap keeps track of the scalar nodes that point to
|
|
// global values... The ValueMap contains pointers to the global memory
|
|
// object itself, not the scalar constant that points to the memory.
|
|
//
|
|
DSNodeHandle &NH = GlobalScalarValueMap[GV];
|
|
if (NH.getNode()) return NH;
|
|
|
|
// If this is a global value, create the global pointed to.
|
|
DSNode *N = createNode(DSNode::ScalarNode, V.getType());
|
|
NH.setOffset(0);
|
|
NH.setNode(N);
|
|
|
|
N->addEdgeTo(0, getGlobalNode(*GV));
|
|
return NH;
|
|
|
|
} else {
|
|
DSNodeHandle &NH = ValueMap[&V];
|
|
if (NH.getNode())
|
|
return NH; // Already have a node? Just return it...
|
|
|
|
// Otherwise we need to create a new scalar node...
|
|
DSNode *N = createNode(DSNode::ScalarNode, V.getType());
|
|
|
|
NH.setOffset(0);
|
|
NH.setNode(N);
|
|
return NH;
|
|
}
|
|
}
|
|
|
|
/// getValueDest - Return the DSNode that the actual value points to. This
|
|
/// is basically the same thing as: getLink(getValueNode(V), 0)
|
|
///
|
|
DSNodeHandle &GraphBuilder::getValueDest(Value &V) {
|
|
return getLink(getValueNode(V), 0, V.getType());
|
|
}
|
|
|
|
|
|
/// getLink - This method is used to return the specified link in the
|
|
/// specified node if one exists. If a link does not already exist (it's
|
|
/// null), then we create a new node, link it, then return it. We must
|
|
/// specify the type of the Node field we are accessing so that we know what
|
|
/// type should be linked to if we need to create a new node.
|
|
///
|
|
DSNodeHandle &GraphBuilder::getLink(const DSNodeHandle &node,
|
|
unsigned LinkNo,
|
|
const Type *FieldTy // FIXME: eliminate
|
|
) {
|
|
DSNodeHandle &Node = const_cast<DSNodeHandle&>(node);
|
|
DSNodeHandle *Link = Node.getLink(LinkNo);
|
|
if (Link) return *Link;
|
|
|
|
#if 0 // FIXME: delete
|
|
// If we are indexing with a typed pointer, then the thing we are pointing
|
|
// to is of the pointed type. If we are pointing to it with an integer
|
|
// (because of cast to an integer), we represent it with a void type.
|
|
//
|
|
const Type *ReqTy = 0;
|
|
if (const PointerType *Ptr = dyn_cast<PointerType>(FieldTy))
|
|
ReqTy = Ptr->getElementType();
|
|
#endif
|
|
|
|
// If the link hasn't been created yet, make and return a new shadow node
|
|
DSNode *N = createNode(DSNode::ShadowNode, 0);
|
|
Node.setLink(LinkNo, N);
|
|
return *Node.getLink(LinkNo);
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Specific instruction type handler implementations...
|
|
//
|
|
|
|
/// Alloca & Malloc instruction implementation - Simply create a new memory
|
|
/// object, pointing the scalar to it.
|
|
///
|
|
void GraphBuilder::handleAlloc(AllocationInst &AI, DSNode::NodeTy NodeType) {
|
|
DSNode *New = createNode(NodeType, 0);
|
|
|
|
// Make the scalar point to the new node...
|
|
getValueNode(AI).addEdgeTo(New);
|
|
}
|
|
|
|
// PHINode - Make the scalar for the PHI node point to all of the things the
|
|
// incoming values point to... which effectively causes them to be merged.
|
|
//
|
|
void GraphBuilder::visitPHINode(PHINode &PN) {
|
|
if (!isPointerType(PN.getType())) return; // Only pointer PHIs
|
|
|
|
DSNodeHandle &ScalarDest = getValueDest(PN);
|
|
for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
|
|
if (!isa<ConstantPointerNull>(PN.getIncomingValue(i)))
|
|
ScalarDest.mergeWith(getValueDest(*PN.getIncomingValue(i)));
|
|
}
|
|
|
|
void GraphBuilder::visitGetElementPtrInst(GetElementPtrInst &GEP) {
|
|
DSNodeHandle Value = getValueDest(*GEP.getOperand(0));
|
|
|
|
unsigned Offset = 0;
|
|
const PointerType *PTy = cast<PointerType>(GEP.getOperand(0)->getType());
|
|
const Type *CurTy = PTy->getElementType();
|
|
DSTypeRec &TopTypeRec =
|
|
Value.getNode()->getTypeRec(PTy->getElementType(), Value.getOffset());
|
|
|
|
// If the node had to be folded... exit quickly
|
|
if (TopTypeRec.Ty == Type::VoidTy) {
|
|
getValueNode(GEP).addEdgeTo(Value); // GEP result points to folded node
|
|
return;
|
|
}
|
|
|
|
// Handle the pointer index specially...
|
|
if (GEP.getNumOperands() > 1 &&
|
|
GEP.getOperand(1) != ConstantSInt::getNullValue(Type::LongTy)) {
|
|
|
|
// If we already know this is an array being accessed, don't do anything...
|
|
if (!TopTypeRec.isArray) {
|
|
TopTypeRec.isArray = true;
|
|
|
|
// If we are treating some inner field pointer as an array, fold the node
|
|
// up because we cannot handle it right. This can come because of
|
|
// something like this: &((&Pt->X)[1]) == &Pt->Y
|
|
//
|
|
if (Value.getOffset()) {
|
|
// Value is now the pointer we want to GEP to be...
|
|
Value.getNode()->foldNodeCompletely();
|
|
getValueNode(GEP).addEdgeTo(Value); // GEP result points to folded node
|
|
return;
|
|
} else {
|
|
// This is a pointer to the first byte of the node. Make sure that we
|
|
// are pointing to the outter most type in the node.
|
|
// FIXME: We need to check one more case here...
|
|
}
|
|
}
|
|
}
|
|
|
|
// All of these subscripts are indexing INTO the elements we have...
|
|
for (unsigned i = 2, e = GEP.getNumOperands(); i < e; ++i)
|
|
if (GEP.getOperand(i)->getType() == Type::LongTy) {
|
|
// Get the type indexing into...
|
|
const SequentialType *STy = cast<SequentialType>(CurTy);
|
|
CurTy = STy->getElementType();
|
|
if (ConstantSInt *CS = dyn_cast<ConstantSInt>(GEP.getOperand(i))) {
|
|
Offset += CS->getValue()*TD.getTypeSize(CurTy);
|
|
} else {
|
|
// Variable index into a node. We must merge all of the elements of the
|
|
// sequential type here.
|
|
if (isa<PointerType>(STy))
|
|
std::cerr << "Pointer indexing not handled yet!\n";
|
|
else {
|
|
const ArrayType *ATy = cast<ArrayType>(STy);
|
|
unsigned ElSize = TD.getTypeSize(CurTy);
|
|
DSNode *N = Value.getNode();
|
|
assert(N && "Value must have a node!");
|
|
unsigned RawOffset = Offset+Value.getOffset();
|
|
|
|
// Loop over all of the elements of the array, merging them into the
|
|
// zero'th element.
|
|
for (unsigned i = 1, e = ATy->getNumElements(); i != e; ++i)
|
|
// Merge all of the byte components of this array element
|
|
for (unsigned j = 0; j != ElSize; ++j)
|
|
N->mergeIndexes(RawOffset+j, RawOffset+i*ElSize+j);
|
|
}
|
|
}
|
|
} else if (GEP.getOperand(i)->getType() == Type::UByteTy) {
|
|
unsigned FieldNo = cast<ConstantUInt>(GEP.getOperand(i))->getValue();
|
|
const StructType *STy = cast<StructType>(CurTy);
|
|
Offset += TD.getStructLayout(STy)->MemberOffsets[FieldNo];
|
|
CurTy = STy->getContainedType(FieldNo);
|
|
}
|
|
|
|
// Add in the offset calculated...
|
|
Value.setOffset(Value.getOffset()+Offset);
|
|
|
|
// Value is now the pointer we want to GEP to be...
|
|
getValueNode(GEP).addEdgeTo(Value);
|
|
}
|
|
|
|
void GraphBuilder::visitLoadInst(LoadInst &LI) {
|
|
DSNodeHandle &Ptr = getValueDest(*LI.getOperand(0));
|
|
Ptr.getNode()->NodeType |= DSNode::Read;
|
|
|
|
// Ensure a typerecord exists...
|
|
Ptr.getNode()->getTypeRec(LI.getType(), Ptr.getOffset());
|
|
|
|
if (isPointerType(LI.getType()))
|
|
getValueNode(LI).addEdgeTo(getLink(Ptr, 0, LI.getType()));
|
|
}
|
|
|
|
void GraphBuilder::visitStoreInst(StoreInst &SI) {
|
|
DSNodeHandle &Dest = getValueDest(*SI.getOperand(1));
|
|
Dest.getNode()->NodeType |= DSNode::Modified;
|
|
const Type *StoredTy = SI.getOperand(0)->getType();
|
|
|
|
// Ensure a typerecord exists...
|
|
Dest.getNode()->getTypeRec(StoredTy, Dest.getOffset());
|
|
|
|
// Avoid adding edges from null, or processing non-"pointer" stores
|
|
if (isPointerType(StoredTy) &&
|
|
!isa<ConstantPointerNull>(SI.getOperand(0))) {
|
|
Dest.addEdgeTo(getValueDest(*SI.getOperand(0)));
|
|
}
|
|
}
|
|
|
|
void GraphBuilder::visitReturnInst(ReturnInst &RI) {
|
|
if (RI.getNumOperands() && isPointerType(RI.getOperand(0)->getType()) &&
|
|
!isa<ConstantPointerNull>(RI.getOperand(0))) {
|
|
DSNodeHandle &Value = getValueDest(*RI.getOperand(0));
|
|
Value.mergeWith(RetNode);
|
|
RetNode = Value;
|
|
}
|
|
}
|
|
|
|
void GraphBuilder::visitCallInst(CallInst &CI) {
|
|
// Set up the return value...
|
|
DSNodeHandle RetVal;
|
|
if (isPointerType(CI.getType()))
|
|
RetVal = getLink(getValueNode(CI), 0, CI.getType());
|
|
|
|
DSNodeHandle Callee;
|
|
// Special case for a direct call, avoid creating spurious scalar node...
|
|
if (GlobalValue *GV = dyn_cast<GlobalValue>(CI.getOperand(0)))
|
|
Callee = getGlobalNode(*GV);
|
|
else
|
|
Callee = getLink(getValueNode(*CI.getOperand(0)), 0,
|
|
CI.getOperand(0)->getType());
|
|
|
|
std::vector<DSNodeHandle> Args;
|
|
Args.reserve(CI.getNumOperands()-1);
|
|
|
|
// Calculate the arguments vector...
|
|
for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
|
|
if (isPointerType(CI.getOperand(i)->getType()))
|
|
Args.push_back(getLink(getValueNode(*CI.getOperand(i)), 0,
|
|
CI.getOperand(i)->getType()));
|
|
|
|
// Add a new function call entry...
|
|
FunctionCalls.push_back(DSCallSite(CI, RetVal, Callee, Args));
|
|
}
|
|
|
|
/// Handle casts...
|
|
void GraphBuilder::visitCastInst(CastInst &CI) {
|
|
if (isPointerType(CI.getType()) && isPointerType(CI.getOperand(0)->getType()))
|
|
getValueNode(CI).addEdgeTo(getLink(getValueNode(*CI.getOperand(0)), 0,
|
|
CI.getOperand(0)->getType()));
|
|
}
|
|
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// LocalDataStructures Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// releaseMemory - If the pass pipeline is done with this pass, we can release
|
|
// our memory... here...
|
|
//
|
|
void LocalDataStructures::releaseMemory() {
|
|
for (std::map<const Function*, DSGraph*>::iterator I = DSInfo.begin(),
|
|
E = DSInfo.end(); I != E; ++I)
|
|
delete I->second;
|
|
|
|
// Empty map so next time memory is released, data structures are not
|
|
// re-deleted.
|
|
DSInfo.clear();
|
|
}
|
|
|
|
bool LocalDataStructures::run(Module &M) {
|
|
// Calculate all of the graphs...
|
|
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
|
|
if (!I->isExternal())
|
|
DSInfo.insert(std::make_pair(I, new DSGraph(*I)));
|
|
return false;
|
|
}
|