mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-01 00:11:00 +00:00
b2d414391a
These docs *don't* match the way WinEHPrepare uses them yet, and verifier support isn't implemented either. The implementation will come after the documentation text is reviewed and agreed upon. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232003 91177308-0d34-0410-b5e6-96231b3b80d8
1389 lines
54 KiB
C++
1389 lines
54 KiB
C++
//===-- WinEHPrepare - Prepare exception handling for code generation ---===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass lowers LLVM IR exception handling into something closer to what the
|
|
// backend wants. It snifs the personality function to see which kind of
|
|
// preparation is necessary. If the personality function uses the Itanium LSDA,
|
|
// this pass delegates to the DWARF EH preparation pass.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/ADT/MapVector.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/TinyPtrVector.h"
|
|
#include "llvm/Analysis/LibCallSemantics.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/Cloning.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include <memory>
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::PatternMatch;
|
|
|
|
#define DEBUG_TYPE "winehprepare"
|
|
|
|
namespace {
|
|
|
|
// This map is used to model frame variable usage during outlining, to
|
|
// construct a structure type to hold the frame variables in a frame
|
|
// allocation block, and to remap the frame variable allocas (including
|
|
// spill locations as needed) to GEPs that get the variable from the
|
|
// frame allocation structure.
|
|
typedef MapVector<Value *, TinyPtrVector<AllocaInst *>> FrameVarInfoMap;
|
|
|
|
typedef SmallSet<BasicBlock *, 4> VisitedBlockSet;
|
|
|
|
enum ActionType { Catch, Cleanup };
|
|
|
|
class LandingPadActions;
|
|
class ActionHandler;
|
|
class CatchHandler;
|
|
class CleanupHandler;
|
|
class LandingPadMap;
|
|
|
|
typedef DenseMap<const BasicBlock *, CatchHandler *> CatchHandlerMapTy;
|
|
typedef DenseMap<const BasicBlock *, CleanupHandler *> CleanupHandlerMapTy;
|
|
|
|
class WinEHPrepare : public FunctionPass {
|
|
public:
|
|
static char ID; // Pass identification, replacement for typeid.
|
|
WinEHPrepare(const TargetMachine *TM = nullptr)
|
|
: FunctionPass(ID) {}
|
|
|
|
bool runOnFunction(Function &Fn) override;
|
|
|
|
bool doFinalization(Module &M) override;
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override;
|
|
|
|
const char *getPassName() const override {
|
|
return "Windows exception handling preparation";
|
|
}
|
|
|
|
private:
|
|
bool prepareCPPEHHandlers(Function &F,
|
|
SmallVectorImpl<LandingPadInst *> &LPads);
|
|
bool outlineHandler(ActionHandler *Action, Function *SrcFn,
|
|
LandingPadInst *LPad, BasicBlock *StartBB,
|
|
FrameVarInfoMap &VarInfo);
|
|
|
|
void mapLandingPadBlocks(LandingPadInst *LPad, LandingPadActions &Actions);
|
|
CatchHandler *findCatchHandler(BasicBlock *BB, BasicBlock *&NextBB,
|
|
VisitedBlockSet &VisitedBlocks);
|
|
CleanupHandler *findCleanupHandler(BasicBlock *StartBB, BasicBlock *EndBB);
|
|
|
|
CatchHandlerMapTy CatchHandlerMap;
|
|
CleanupHandlerMapTy CleanupHandlerMap;
|
|
DenseMap<const LandingPadInst *, LandingPadMap> LPadMaps;
|
|
};
|
|
|
|
class WinEHFrameVariableMaterializer : public ValueMaterializer {
|
|
public:
|
|
WinEHFrameVariableMaterializer(Function *OutlinedFn,
|
|
FrameVarInfoMap &FrameVarInfo);
|
|
~WinEHFrameVariableMaterializer() {}
|
|
|
|
virtual Value *materializeValueFor(Value *V) override;
|
|
|
|
private:
|
|
FrameVarInfoMap &FrameVarInfo;
|
|
IRBuilder<> Builder;
|
|
};
|
|
|
|
class LandingPadMap {
|
|
public:
|
|
LandingPadMap() : OriginLPad(nullptr) {}
|
|
void mapLandingPad(const LandingPadInst *LPad);
|
|
|
|
bool isInitialized() { return OriginLPad != nullptr; }
|
|
|
|
bool mapIfEHPtrLoad(const LoadInst *Load) {
|
|
return mapIfEHLoad(Load, EHPtrStores, EHPtrStoreAddrs);
|
|
}
|
|
bool mapIfSelectorLoad(const LoadInst *Load) {
|
|
return mapIfEHLoad(Load, SelectorStores, SelectorStoreAddrs);
|
|
}
|
|
|
|
bool isLandingPadSpecificInst(const Instruction *Inst) const;
|
|
|
|
void remapSelector(ValueToValueMapTy &VMap, Value *MappedValue) const;
|
|
|
|
private:
|
|
bool mapIfEHLoad(const LoadInst *Load,
|
|
SmallVectorImpl<const StoreInst *> &Stores,
|
|
SmallVectorImpl<const Value *> &StoreAddrs);
|
|
|
|
const LandingPadInst *OriginLPad;
|
|
// We will normally only see one of each of these instructions, but
|
|
// if more than one occurs for some reason we can handle that.
|
|
TinyPtrVector<const ExtractValueInst *> ExtractedEHPtrs;
|
|
TinyPtrVector<const ExtractValueInst *> ExtractedSelectors;
|
|
|
|
// In optimized code, there will typically be at most one instance of
|
|
// each of the following, but in unoptimized IR it is not uncommon
|
|
// for the values to be stored, loaded and then stored again. In that
|
|
// case we will create a second entry for each store and store address.
|
|
SmallVector<const StoreInst *, 2> EHPtrStores;
|
|
SmallVector<const StoreInst *, 2> SelectorStores;
|
|
SmallVector<const Value *, 2> EHPtrStoreAddrs;
|
|
SmallVector<const Value *, 2> SelectorStoreAddrs;
|
|
};
|
|
|
|
class WinEHCloningDirectorBase : public CloningDirector {
|
|
public:
|
|
WinEHCloningDirectorBase(Function *HandlerFn,
|
|
FrameVarInfoMap &VarInfo,
|
|
LandingPadMap &LPadMap)
|
|
: Materializer(HandlerFn, VarInfo),
|
|
SelectorIDType(Type::getInt32Ty(HandlerFn->getContext())),
|
|
Int8PtrType(Type::getInt8PtrTy(HandlerFn->getContext())),
|
|
LPadMap(LPadMap) {}
|
|
|
|
CloningAction handleInstruction(ValueToValueMapTy &VMap,
|
|
const Instruction *Inst,
|
|
BasicBlock *NewBB) override;
|
|
|
|
virtual CloningAction handleBeginCatch(ValueToValueMapTy &VMap,
|
|
const Instruction *Inst,
|
|
BasicBlock *NewBB) = 0;
|
|
virtual CloningAction handleEndCatch(ValueToValueMapTy &VMap,
|
|
const Instruction *Inst,
|
|
BasicBlock *NewBB) = 0;
|
|
virtual CloningAction handleTypeIdFor(ValueToValueMapTy &VMap,
|
|
const Instruction *Inst,
|
|
BasicBlock *NewBB) = 0;
|
|
virtual CloningAction handleInvoke(ValueToValueMapTy &VMap,
|
|
const InvokeInst *Invoke,
|
|
BasicBlock *NewBB) = 0;
|
|
virtual CloningAction handleResume(ValueToValueMapTy &VMap,
|
|
const ResumeInst *Resume,
|
|
BasicBlock *NewBB) = 0;
|
|
|
|
ValueMaterializer *getValueMaterializer() override { return &Materializer; }
|
|
|
|
protected:
|
|
WinEHFrameVariableMaterializer Materializer;
|
|
Type *SelectorIDType;
|
|
Type *Int8PtrType;
|
|
LandingPadMap &LPadMap;
|
|
};
|
|
|
|
class WinEHCatchDirector : public WinEHCloningDirectorBase {
|
|
public:
|
|
WinEHCatchDirector(Function *CatchFn, Value *Selector,
|
|
FrameVarInfoMap &VarInfo, LandingPadMap &LPadMap)
|
|
: WinEHCloningDirectorBase(CatchFn, VarInfo, LPadMap),
|
|
CurrentSelector(Selector->stripPointerCasts()),
|
|
ExceptionObjectVar(nullptr) {}
|
|
|
|
CloningAction handleBeginCatch(ValueToValueMapTy &VMap,
|
|
const Instruction *Inst,
|
|
BasicBlock *NewBB) override;
|
|
CloningAction handleEndCatch(ValueToValueMapTy &VMap, const Instruction *Inst,
|
|
BasicBlock *NewBB) override;
|
|
CloningAction handleTypeIdFor(ValueToValueMapTy &VMap,
|
|
const Instruction *Inst,
|
|
BasicBlock *NewBB) override;
|
|
CloningAction handleInvoke(ValueToValueMapTy &VMap, const InvokeInst *Invoke,
|
|
BasicBlock *NewBB) override;
|
|
CloningAction handleResume(ValueToValueMapTy &VMap, const ResumeInst *Resume,
|
|
BasicBlock *NewBB) override;
|
|
|
|
const Value *getExceptionVar() { return ExceptionObjectVar; }
|
|
TinyPtrVector<BasicBlock *> &getReturnTargets() { return ReturnTargets; }
|
|
|
|
private:
|
|
Value *CurrentSelector;
|
|
|
|
const Value *ExceptionObjectVar;
|
|
TinyPtrVector<BasicBlock *> ReturnTargets;
|
|
};
|
|
|
|
class WinEHCleanupDirector : public WinEHCloningDirectorBase {
|
|
public:
|
|
WinEHCleanupDirector(Function *CleanupFn,
|
|
FrameVarInfoMap &VarInfo, LandingPadMap &LPadMap)
|
|
: WinEHCloningDirectorBase(CleanupFn, VarInfo, LPadMap) {}
|
|
|
|
CloningAction handleBeginCatch(ValueToValueMapTy &VMap,
|
|
const Instruction *Inst,
|
|
BasicBlock *NewBB) override;
|
|
CloningAction handleEndCatch(ValueToValueMapTy &VMap, const Instruction *Inst,
|
|
BasicBlock *NewBB) override;
|
|
CloningAction handleTypeIdFor(ValueToValueMapTy &VMap,
|
|
const Instruction *Inst,
|
|
BasicBlock *NewBB) override;
|
|
CloningAction handleInvoke(ValueToValueMapTy &VMap, const InvokeInst *Invoke,
|
|
BasicBlock *NewBB) override;
|
|
CloningAction handleResume(ValueToValueMapTy &VMap, const ResumeInst *Resume,
|
|
BasicBlock *NewBB) override;
|
|
};
|
|
|
|
class ActionHandler {
|
|
public:
|
|
ActionHandler(BasicBlock *BB, ActionType Type)
|
|
: StartBB(BB), Type(Type), OutlinedFn(nullptr) {}
|
|
|
|
ActionType getType() const { return Type; }
|
|
BasicBlock *getStartBlock() const { return StartBB; }
|
|
|
|
bool hasBeenOutlined() { return OutlinedFn != nullptr; }
|
|
|
|
void setOutlinedFunction(Function *F) { OutlinedFn = F; }
|
|
Function *getOutlinedFunction() { return OutlinedFn; }
|
|
|
|
private:
|
|
BasicBlock *StartBB;
|
|
ActionType Type;
|
|
Function *OutlinedFn;
|
|
};
|
|
|
|
class CatchHandler : public ActionHandler {
|
|
public:
|
|
CatchHandler(BasicBlock *BB, Constant *Selector, BasicBlock *NextBB)
|
|
: ActionHandler(BB, ActionType::Catch), Selector(Selector),
|
|
NextBB(NextBB), ExceptionObjectVar(nullptr) {}
|
|
|
|
// Method for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const ActionHandler *H) {
|
|
return H->getType() == ActionType::Catch;
|
|
}
|
|
|
|
Constant *getSelector() const { return Selector; }
|
|
BasicBlock *getNextBB() const { return NextBB; }
|
|
|
|
const Value *getExceptionVar() { return ExceptionObjectVar; }
|
|
TinyPtrVector<BasicBlock *> &getReturnTargets() { return ReturnTargets; }
|
|
|
|
void setExceptionVar(const Value *Val) { ExceptionObjectVar = Val; }
|
|
void setReturnTargets(TinyPtrVector<BasicBlock *> &Targets) {
|
|
ReturnTargets = Targets;
|
|
}
|
|
|
|
private:
|
|
Constant *Selector;
|
|
BasicBlock *NextBB;
|
|
const Value *ExceptionObjectVar;
|
|
TinyPtrVector<BasicBlock *> ReturnTargets;
|
|
};
|
|
|
|
class CleanupHandler : public ActionHandler {
|
|
public:
|
|
CleanupHandler(BasicBlock *BB) : ActionHandler(BB, ActionType::Cleanup) {}
|
|
|
|
// Method for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const ActionHandler *H) {
|
|
return H->getType() == ActionType::Cleanup;
|
|
}
|
|
};
|
|
|
|
class LandingPadActions {
|
|
public:
|
|
LandingPadActions() : HasCleanupHandlers(false) {}
|
|
|
|
void insertCatchHandler(CatchHandler *Action) { Actions.push_back(Action); }
|
|
void insertCleanupHandler(CleanupHandler *Action) {
|
|
Actions.push_back(Action);
|
|
HasCleanupHandlers = true;
|
|
}
|
|
|
|
bool includesCleanup() const { return HasCleanupHandlers; }
|
|
|
|
SmallVectorImpl<ActionHandler *>::iterator begin() { return Actions.begin(); }
|
|
SmallVectorImpl<ActionHandler *>::iterator end() { return Actions.end(); }
|
|
|
|
private:
|
|
// Note that this class does not own the ActionHandler objects in this vector.
|
|
// The ActionHandlers are owned by the CatchHandlerMap and CleanupHandlerMap
|
|
// in the WinEHPrepare class.
|
|
SmallVector<ActionHandler *, 4> Actions;
|
|
bool HasCleanupHandlers;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
char WinEHPrepare::ID = 0;
|
|
INITIALIZE_TM_PASS(WinEHPrepare, "winehprepare", "Prepare Windows exceptions",
|
|
false, false)
|
|
|
|
FunctionPass *llvm::createWinEHPass(const TargetMachine *TM) {
|
|
return new WinEHPrepare(TM);
|
|
}
|
|
|
|
bool WinEHPrepare::runOnFunction(Function &Fn) {
|
|
SmallVector<LandingPadInst *, 4> LPads;
|
|
SmallVector<ResumeInst *, 4> Resumes;
|
|
for (BasicBlock &BB : Fn) {
|
|
if (auto *LP = BB.getLandingPadInst())
|
|
LPads.push_back(LP);
|
|
if (auto *Resume = dyn_cast<ResumeInst>(BB.getTerminator()))
|
|
Resumes.push_back(Resume);
|
|
}
|
|
|
|
// No need to prepare functions that lack landing pads.
|
|
if (LPads.empty())
|
|
return false;
|
|
|
|
// Classify the personality to see what kind of preparation we need.
|
|
EHPersonality Pers = classifyEHPersonality(LPads.back()->getPersonalityFn());
|
|
|
|
// Do nothing if this is not an MSVC personality.
|
|
if (!isMSVCEHPersonality(Pers))
|
|
return false;
|
|
|
|
// FIXME: This only returns true if the C++ EH handlers were outlined.
|
|
// When that code is complete, it should always return whatever
|
|
// prepareCPPEHHandlers returns.
|
|
if (Pers == EHPersonality::MSVC_CXX && prepareCPPEHHandlers(Fn, LPads))
|
|
return true;
|
|
|
|
// FIXME: SEH Cleanups are unimplemented. Replace them with unreachable.
|
|
if (Resumes.empty())
|
|
return false;
|
|
|
|
for (ResumeInst *Resume : Resumes) {
|
|
IRBuilder<>(Resume).CreateUnreachable();
|
|
Resume->eraseFromParent();
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool WinEHPrepare::doFinalization(Module &M) {
|
|
return false;
|
|
}
|
|
|
|
void WinEHPrepare::getAnalysisUsage(AnalysisUsage &AU) const {}
|
|
|
|
bool WinEHPrepare::prepareCPPEHHandlers(
|
|
Function &F, SmallVectorImpl<LandingPadInst *> &LPads) {
|
|
// These containers are used to re-map frame variables that are used in
|
|
// outlined catch and cleanup handlers. They will be populated as the
|
|
// handlers are outlined.
|
|
FrameVarInfoMap FrameVarInfo;
|
|
|
|
bool HandlersOutlined = false;
|
|
|
|
Module *M = F.getParent();
|
|
LLVMContext &Context = M->getContext();
|
|
|
|
// Create a new function to receive the handler contents.
|
|
PointerType *Int8PtrType = Type::getInt8PtrTy(Context);
|
|
Type *Int32Type = Type::getInt32Ty(Context);
|
|
Function *ActionIntrin = Intrinsic::getDeclaration(M, Intrinsic::eh_actions);
|
|
|
|
for (LandingPadInst *LPad : LPads) {
|
|
// Look for evidence that this landingpad has already been processed.
|
|
bool LPadHasActionList = false;
|
|
BasicBlock *LPadBB = LPad->getParent();
|
|
for (Instruction &Inst : LPadBB->getInstList()) {
|
|
// FIXME: Make this an intrinsic.
|
|
if (auto *IntrinCall = dyn_cast<IntrinsicInst>(&Inst)) {
|
|
if (IntrinCall->getIntrinsicID() == Intrinsic::eh_actions) {
|
|
LPadHasActionList = true;
|
|
break;
|
|
}
|
|
}
|
|
// FIXME: This is here to help with the development of nested landing pad
|
|
// outlining. It should be removed when that is finished.
|
|
if (isa<UnreachableInst>(Inst)) {
|
|
LPadHasActionList = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If we've already outlined the handlers for this landingpad,
|
|
// there's nothing more to do here.
|
|
if (LPadHasActionList)
|
|
continue;
|
|
|
|
LandingPadActions Actions;
|
|
mapLandingPadBlocks(LPad, Actions);
|
|
|
|
for (ActionHandler *Action : Actions) {
|
|
if (Action->hasBeenOutlined())
|
|
continue;
|
|
BasicBlock *StartBB = Action->getStartBlock();
|
|
if (outlineHandler(Action, &F, LPad, StartBB, FrameVarInfo)) {
|
|
HandlersOutlined = true;
|
|
}
|
|
} // End for each Action
|
|
|
|
// FIXME: We need a guard against partially outlined functions.
|
|
if (!HandlersOutlined)
|
|
continue;
|
|
|
|
// Replace the landing pad with a new llvm.eh.action based landing pad.
|
|
BasicBlock *NewLPadBB = BasicBlock::Create(Context, "lpad", &F, LPadBB);
|
|
assert(!isa<PHINode>(LPadBB->begin()));
|
|
Instruction *NewLPad = LPad->clone();
|
|
NewLPadBB->getInstList().push_back(NewLPad);
|
|
while (!pred_empty(LPadBB)) {
|
|
auto *pred = *pred_begin(LPadBB);
|
|
InvokeInst *Invoke = cast<InvokeInst>(pred->getTerminator());
|
|
Invoke->setUnwindDest(NewLPadBB);
|
|
}
|
|
|
|
// Add a call to describe the actions for this landing pad.
|
|
std::vector<Value *> ActionArgs;
|
|
ActionArgs.push_back(NewLPad);
|
|
for (ActionHandler *Action : Actions) {
|
|
if (auto *CatchAction = dyn_cast<CatchHandler>(Action)) {
|
|
ActionArgs.push_back(ConstantInt::get(Int32Type, 0));
|
|
ActionArgs.push_back(CatchAction->getSelector());
|
|
Value *EHObj = const_cast<Value *>(CatchAction->getExceptionVar());
|
|
if (EHObj)
|
|
ActionArgs.push_back(EHObj);
|
|
else
|
|
ActionArgs.push_back(ConstantPointerNull::get(Int8PtrType));
|
|
} else {
|
|
ActionArgs.push_back(ConstantInt::get(Int32Type, 1));
|
|
}
|
|
Constant *HandlerPtr =
|
|
ConstantExpr::getBitCast(Action->getOutlinedFunction(), Int8PtrType);
|
|
ActionArgs.push_back(HandlerPtr);
|
|
}
|
|
CallInst *Recover =
|
|
CallInst::Create(ActionIntrin, ActionArgs, "recover", NewLPadBB);
|
|
|
|
// Add an indirect branch listing possible successors of the catch handlers.
|
|
IndirectBrInst *Branch = IndirectBrInst::Create(Recover, 0, NewLPadBB);
|
|
for (ActionHandler *Action : Actions) {
|
|
if (auto *CatchAction = dyn_cast<CatchHandler>(Action)) {
|
|
for (auto *Target : CatchAction->getReturnTargets()) {
|
|
Branch->addDestination(Target);
|
|
}
|
|
}
|
|
}
|
|
} // End for each landingpad
|
|
|
|
// If nothing got outlined, there is no more processing to be done.
|
|
if (!HandlersOutlined)
|
|
return false;
|
|
|
|
// Delete any blocks that were only used by handlers that were outlined above.
|
|
removeUnreachableBlocks(F);
|
|
|
|
BasicBlock *Entry = &F.getEntryBlock();
|
|
IRBuilder<> Builder(F.getParent()->getContext());
|
|
Builder.SetInsertPoint(Entry->getFirstInsertionPt());
|
|
|
|
Function *FrameEscapeFn =
|
|
Intrinsic::getDeclaration(M, Intrinsic::frameescape);
|
|
Function *RecoverFrameFn =
|
|
Intrinsic::getDeclaration(M, Intrinsic::framerecover);
|
|
|
|
// Finally, replace all of the temporary allocas for frame variables used in
|
|
// the outlined handlers with calls to llvm.framerecover.
|
|
BasicBlock::iterator II = Entry->getFirstInsertionPt();
|
|
Instruction *AllocaInsertPt = II;
|
|
SmallVector<Value *, 8> AllocasToEscape;
|
|
for (auto &VarInfoEntry : FrameVarInfo) {
|
|
Value *ParentVal = VarInfoEntry.first;
|
|
TinyPtrVector<AllocaInst *> &Allocas = VarInfoEntry.second;
|
|
|
|
// If the mapped value isn't already an alloca, we need to spill it if it
|
|
// is a computed value or copy it if it is an argument.
|
|
AllocaInst *ParentAlloca = dyn_cast<AllocaInst>(ParentVal);
|
|
if (!ParentAlloca) {
|
|
if (auto *Arg = dyn_cast<Argument>(ParentVal)) {
|
|
// Lower this argument to a copy and then demote that to the stack.
|
|
// We can't just use the argument location because the handler needs
|
|
// it to be in the frame allocation block.
|
|
// Use 'select i8 true, %arg, undef' to simulate a 'no-op' instruction.
|
|
Value *TrueValue = ConstantInt::getTrue(Context);
|
|
Value *UndefValue = UndefValue::get(Arg->getType());
|
|
Instruction *SI =
|
|
SelectInst::Create(TrueValue, Arg, UndefValue,
|
|
Arg->getName() + ".tmp", AllocaInsertPt);
|
|
Arg->replaceAllUsesWith(SI);
|
|
// Reset the select operand, because it was clobbered by the RAUW above.
|
|
SI->setOperand(1, Arg);
|
|
ParentAlloca = DemoteRegToStack(*SI, true, SI);
|
|
} else if (auto *PN = dyn_cast<PHINode>(ParentVal)) {
|
|
ParentAlloca = DemotePHIToStack(PN, AllocaInsertPt);
|
|
} else {
|
|
Instruction *ParentInst = cast<Instruction>(ParentVal);
|
|
// FIXME: This is a work-around to temporarily handle the case where an
|
|
// instruction that is only used in handlers is not sunk.
|
|
// Without uses, DemoteRegToStack would just eliminate the value.
|
|
// This will fail if ParentInst is an invoke.
|
|
if (ParentInst->getNumUses() == 0) {
|
|
BasicBlock::iterator InsertPt = ParentInst;
|
|
++InsertPt;
|
|
ParentAlloca =
|
|
new AllocaInst(ParentInst->getType(), nullptr,
|
|
ParentInst->getName() + ".reg2mem", InsertPt);
|
|
new StoreInst(ParentInst, ParentAlloca, InsertPt);
|
|
} else {
|
|
ParentAlloca = DemoteRegToStack(*ParentInst, true, ParentInst);
|
|
}
|
|
}
|
|
}
|
|
|
|
// If the parent alloca is no longer used and only one of the handlers used
|
|
// it, erase the parent and leave the copy in the outlined handler.
|
|
if (ParentAlloca->getNumUses() == 0 && Allocas.size() == 1) {
|
|
ParentAlloca->eraseFromParent();
|
|
continue;
|
|
}
|
|
|
|
// Add this alloca to the list of things to escape.
|
|
AllocasToEscape.push_back(ParentAlloca);
|
|
|
|
// Next replace all outlined allocas that are mapped to it.
|
|
for (AllocaInst *TempAlloca : Allocas) {
|
|
Function *HandlerFn = TempAlloca->getParent()->getParent();
|
|
// FIXME: Sink this GEP into the blocks where it is used.
|
|
Builder.SetInsertPoint(TempAlloca);
|
|
Builder.SetCurrentDebugLocation(TempAlloca->getDebugLoc());
|
|
Value *RecoverArgs[] = {
|
|
Builder.CreateBitCast(&F, Int8PtrType, ""),
|
|
&(HandlerFn->getArgumentList().back()),
|
|
llvm::ConstantInt::get(Int32Type, AllocasToEscape.size() - 1)};
|
|
Value *RecoveredAlloca = Builder.CreateCall(RecoverFrameFn, RecoverArgs);
|
|
// Add a pointer bitcast if the alloca wasn't an i8.
|
|
if (RecoveredAlloca->getType() != TempAlloca->getType()) {
|
|
RecoveredAlloca->setName(Twine(TempAlloca->getName()) + ".i8");
|
|
RecoveredAlloca =
|
|
Builder.CreateBitCast(RecoveredAlloca, TempAlloca->getType());
|
|
}
|
|
TempAlloca->replaceAllUsesWith(RecoveredAlloca);
|
|
TempAlloca->removeFromParent();
|
|
RecoveredAlloca->takeName(TempAlloca);
|
|
delete TempAlloca;
|
|
}
|
|
} // End for each FrameVarInfo entry.
|
|
|
|
// Insert 'call void (...)* @llvm.frameescape(...)' at the end of the entry
|
|
// block.
|
|
Builder.SetInsertPoint(&F.getEntryBlock().back());
|
|
Builder.CreateCall(FrameEscapeFn, AllocasToEscape);
|
|
|
|
// Clean up the handler action maps we created for this function
|
|
DeleteContainerSeconds(CatchHandlerMap);
|
|
CatchHandlerMap.clear();
|
|
DeleteContainerSeconds(CleanupHandlerMap);
|
|
CleanupHandlerMap.clear();
|
|
|
|
return HandlersOutlined;
|
|
}
|
|
|
|
// This function examines a block to determine whether the block ends with a
|
|
// conditional branch to a catch handler based on a selector comparison.
|
|
// This function is used both by the WinEHPrepare::findSelectorComparison() and
|
|
// WinEHCleanupDirector::handleTypeIdFor().
|
|
static bool isSelectorDispatch(BasicBlock *BB, BasicBlock *&CatchHandler,
|
|
Constant *&Selector, BasicBlock *&NextBB) {
|
|
ICmpInst::Predicate Pred;
|
|
BasicBlock *TBB, *FBB;
|
|
Value *LHS, *RHS;
|
|
|
|
if (!match(BB->getTerminator(),
|
|
m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), TBB, FBB)))
|
|
return false;
|
|
|
|
if (!match(LHS,
|
|
m_Intrinsic<Intrinsic::eh_typeid_for>(m_Constant(Selector))) &&
|
|
!match(RHS, m_Intrinsic<Intrinsic::eh_typeid_for>(m_Constant(Selector))))
|
|
return false;
|
|
|
|
if (Pred == CmpInst::ICMP_EQ) {
|
|
CatchHandler = TBB;
|
|
NextBB = FBB;
|
|
return true;
|
|
}
|
|
|
|
if (Pred == CmpInst::ICMP_NE) {
|
|
CatchHandler = FBB;
|
|
NextBB = TBB;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool WinEHPrepare::outlineHandler(ActionHandler *Action, Function *SrcFn,
|
|
LandingPadInst *LPad, BasicBlock *StartBB,
|
|
FrameVarInfoMap &VarInfo) {
|
|
Module *M = SrcFn->getParent();
|
|
LLVMContext &Context = M->getContext();
|
|
|
|
// Create a new function to receive the handler contents.
|
|
Type *Int8PtrType = Type::getInt8PtrTy(Context);
|
|
std::vector<Type *> ArgTys;
|
|
ArgTys.push_back(Int8PtrType);
|
|
ArgTys.push_back(Int8PtrType);
|
|
Function *Handler;
|
|
if (Action->getType() == Catch) {
|
|
FunctionType *FnType = FunctionType::get(Int8PtrType, ArgTys, false);
|
|
Handler = Function::Create(FnType, GlobalVariable::InternalLinkage,
|
|
SrcFn->getName() + ".catch", M);
|
|
} else {
|
|
FunctionType *FnType =
|
|
FunctionType::get(Type::getVoidTy(Context), ArgTys, false);
|
|
Handler = Function::Create(FnType, GlobalVariable::InternalLinkage,
|
|
SrcFn->getName() + ".cleanup", M);
|
|
}
|
|
|
|
// Generate a standard prolog to setup the frame recovery structure.
|
|
IRBuilder<> Builder(Context);
|
|
BasicBlock *Entry = BasicBlock::Create(Context, "entry");
|
|
Handler->getBasicBlockList().push_front(Entry);
|
|
Builder.SetInsertPoint(Entry);
|
|
Builder.SetCurrentDebugLocation(LPad->getDebugLoc());
|
|
|
|
std::unique_ptr<WinEHCloningDirectorBase> Director;
|
|
|
|
ValueToValueMapTy VMap;
|
|
|
|
LandingPadMap &LPadMap = LPadMaps[LPad];
|
|
if (!LPadMap.isInitialized())
|
|
LPadMap.mapLandingPad(LPad);
|
|
if (Action->getType() == Catch) {
|
|
Constant *SelectorType = cast<CatchHandler>(Action)->getSelector();
|
|
Director.reset(
|
|
new WinEHCatchDirector(Handler, SelectorType, VarInfo, LPadMap));
|
|
LPadMap.remapSelector(VMap, ConstantInt::get( Type::getInt32Ty(Context), 1));
|
|
} else {
|
|
Director.reset(new WinEHCleanupDirector(Handler, VarInfo, LPadMap));
|
|
}
|
|
|
|
SmallVector<ReturnInst *, 8> Returns;
|
|
ClonedCodeInfo OutlinedFunctionInfo;
|
|
|
|
// Skip over PHIs and, if applicable, landingpad instructions.
|
|
BasicBlock::iterator II = StartBB->getFirstInsertionPt();
|
|
|
|
CloneAndPruneIntoFromInst(Handler, SrcFn, II, VMap,
|
|
/*ModuleLevelChanges=*/false, Returns, "",
|
|
&OutlinedFunctionInfo, Director.get());
|
|
|
|
// Move all the instructions in the first cloned block into our entry block.
|
|
BasicBlock *FirstClonedBB = std::next(Function::iterator(Entry));
|
|
Entry->getInstList().splice(Entry->end(), FirstClonedBB->getInstList());
|
|
FirstClonedBB->eraseFromParent();
|
|
|
|
if (auto *CatchAction = dyn_cast<CatchHandler>(Action)) {
|
|
WinEHCatchDirector *CatchDirector =
|
|
reinterpret_cast<WinEHCatchDirector *>(Director.get());
|
|
CatchAction->setExceptionVar(CatchDirector->getExceptionVar());
|
|
CatchAction->setReturnTargets(CatchDirector->getReturnTargets());
|
|
}
|
|
|
|
Action->setOutlinedFunction(Handler);
|
|
|
|
return true;
|
|
}
|
|
|
|
void LandingPadMap::mapLandingPad(const LandingPadInst *LPad) {
|
|
// Each instance of this class should only ever be used to map a single
|
|
// landing pad.
|
|
assert(OriginLPad == nullptr || OriginLPad == LPad);
|
|
|
|
// If the landing pad has already been mapped, there's nothing more to do.
|
|
if (OriginLPad == LPad)
|
|
return;
|
|
|
|
OriginLPad = LPad;
|
|
|
|
// The landingpad instruction returns an aggregate value. Typically, its
|
|
// value will be passed to a pair of extract value instructions and the
|
|
// results of those extracts are often passed to store instructions.
|
|
// In unoptimized code the stored value will often be loaded and then stored
|
|
// again.
|
|
for (auto *U : LPad->users()) {
|
|
const ExtractValueInst *Extract = dyn_cast<ExtractValueInst>(U);
|
|
if (!Extract)
|
|
continue;
|
|
assert(Extract->getNumIndices() == 1 &&
|
|
"Unexpected operation: extracting both landing pad values");
|
|
unsigned int Idx = *(Extract->idx_begin());
|
|
assert((Idx == 0 || Idx == 1) &&
|
|
"Unexpected operation: extracting an unknown landing pad element");
|
|
if (Idx == 0) {
|
|
// Element 0 doesn't directly corresponds to anything in the WinEH
|
|
// scheme.
|
|
// It will be stored to a memory location, then later loaded and finally
|
|
// the loaded value will be used as the argument to an
|
|
// llvm.eh.begincatch
|
|
// call. We're tracking it here so that we can skip the store and load.
|
|
ExtractedEHPtrs.push_back(Extract);
|
|
} else if (Idx == 1) {
|
|
// Element 1 corresponds to the filter selector. We'll map it to 1 for
|
|
// matching purposes, but it will also probably be stored to memory and
|
|
// reloaded, so we need to track the instuction so that we can map the
|
|
// loaded value too.
|
|
ExtractedSelectors.push_back(Extract);
|
|
}
|
|
|
|
// Look for stores of the extracted values.
|
|
for (auto *EU : Extract->users()) {
|
|
if (auto *Store = dyn_cast<StoreInst>(EU)) {
|
|
if (Idx == 1) {
|
|
SelectorStores.push_back(Store);
|
|
SelectorStoreAddrs.push_back(Store->getPointerOperand());
|
|
} else {
|
|
EHPtrStores.push_back(Store);
|
|
EHPtrStoreAddrs.push_back(Store->getPointerOperand());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool LandingPadMap::isLandingPadSpecificInst(const Instruction *Inst) const {
|
|
if (Inst == OriginLPad)
|
|
return true;
|
|
for (auto *Extract : ExtractedEHPtrs) {
|
|
if (Inst == Extract)
|
|
return true;
|
|
}
|
|
for (auto *Extract : ExtractedSelectors) {
|
|
if (Inst == Extract)
|
|
return true;
|
|
}
|
|
for (auto *Store : EHPtrStores) {
|
|
if (Inst == Store)
|
|
return true;
|
|
}
|
|
for (auto *Store : SelectorStores) {
|
|
if (Inst == Store)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void LandingPadMap::remapSelector(ValueToValueMapTy &VMap,
|
|
Value *MappedValue) const {
|
|
// Remap all selector extract instructions to the specified value.
|
|
for (auto *Extract : ExtractedSelectors)
|
|
VMap[Extract] = MappedValue;
|
|
}
|
|
|
|
bool LandingPadMap::mapIfEHLoad(const LoadInst *Load,
|
|
SmallVectorImpl<const StoreInst *> &Stores,
|
|
SmallVectorImpl<const Value *> &StoreAddrs) {
|
|
// This makes the assumption that a store we've previously seen dominates
|
|
// this load instruction. That might seem like a rather huge assumption,
|
|
// but given the way that landingpads are constructed its fairly safe.
|
|
// FIXME: Add debug/assert code that verifies this.
|
|
const Value *LoadAddr = Load->getPointerOperand();
|
|
for (auto *StoreAddr : StoreAddrs) {
|
|
if (LoadAddr == StoreAddr) {
|
|
// Handle the common debug scenario where this loaded value is stored
|
|
// to a different location.
|
|
for (auto *U : Load->users()) {
|
|
if (auto *Store = dyn_cast<StoreInst>(U)) {
|
|
Stores.push_back(Store);
|
|
StoreAddrs.push_back(Store->getPointerOperand());
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
CloningDirector::CloningAction WinEHCloningDirectorBase::handleInstruction(
|
|
ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
|
|
// If this is one of the boilerplate landing pad instructions, skip it.
|
|
// The instruction will have already been remapped in VMap.
|
|
if (LPadMap.isLandingPadSpecificInst(Inst))
|
|
return CloningDirector::SkipInstruction;
|
|
|
|
if (auto *Load = dyn_cast<LoadInst>(Inst)) {
|
|
// Look for loads of (previously suppressed) landingpad values.
|
|
// The EHPtr load can be mapped to an undef value as it should only be used
|
|
// as an argument to llvm.eh.begincatch, but the selector value needs to be
|
|
// mapped to a constant value of 1. This value will be used to simplify the
|
|
// branching to always flow to the current handler.
|
|
if (LPadMap.mapIfSelectorLoad(Load)) {
|
|
VMap[Inst] = ConstantInt::get(SelectorIDType, 1);
|
|
return CloningDirector::SkipInstruction;
|
|
}
|
|
if (LPadMap.mapIfEHPtrLoad(Load)) {
|
|
VMap[Inst] = UndefValue::get(Int8PtrType);
|
|
return CloningDirector::SkipInstruction;
|
|
}
|
|
|
|
// Any other loads just get cloned.
|
|
return CloningDirector::CloneInstruction;
|
|
}
|
|
|
|
// Nested landing pads will be cloned as stubs, with just the
|
|
// landingpad instruction and an unreachable instruction. When
|
|
// all landingpads have been outlined, we'll replace this with the
|
|
// llvm.eh.actions call and indirect branch created when the
|
|
// landing pad was outlined.
|
|
if (auto *NestedLPad = dyn_cast<LandingPadInst>(Inst)) {
|
|
Instruction *NewInst = NestedLPad->clone();
|
|
if (NestedLPad->hasName())
|
|
NewInst->setName(NestedLPad->getName());
|
|
// FIXME: Store this mapping somewhere else also.
|
|
VMap[NestedLPad] = NewInst;
|
|
BasicBlock::InstListType &InstList = NewBB->getInstList();
|
|
InstList.push_back(NewInst);
|
|
InstList.push_back(new UnreachableInst(NewBB->getContext()));
|
|
return CloningDirector::StopCloningBB;
|
|
}
|
|
|
|
if (auto *Invoke = dyn_cast<InvokeInst>(Inst))
|
|
return handleInvoke(VMap, Invoke, NewBB);
|
|
|
|
if (auto *Resume = dyn_cast<ResumeInst>(Inst))
|
|
return handleResume(VMap, Resume, NewBB);
|
|
|
|
if (match(Inst, m_Intrinsic<Intrinsic::eh_begincatch>()))
|
|
return handleBeginCatch(VMap, Inst, NewBB);
|
|
if (match(Inst, m_Intrinsic<Intrinsic::eh_endcatch>()))
|
|
return handleEndCatch(VMap, Inst, NewBB);
|
|
if (match(Inst, m_Intrinsic<Intrinsic::eh_typeid_for>()))
|
|
return handleTypeIdFor(VMap, Inst, NewBB);
|
|
|
|
// Continue with the default cloning behavior.
|
|
return CloningDirector::CloneInstruction;
|
|
}
|
|
|
|
CloningDirector::CloningAction WinEHCatchDirector::handleBeginCatch(
|
|
ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
|
|
// The argument to the call is some form of the first element of the
|
|
// landingpad aggregate value, but that doesn't matter. It isn't used
|
|
// here.
|
|
// The second argument is an outparameter where the exception object will be
|
|
// stored. Typically the exception object is a scalar, but it can be an
|
|
// aggregate when catching by value.
|
|
// FIXME: Leave something behind to indicate where the exception object lives
|
|
// for this handler. Should it be part of llvm.eh.actions?
|
|
assert(ExceptionObjectVar == nullptr && "Multiple calls to "
|
|
"llvm.eh.begincatch found while "
|
|
"outlining catch handler.");
|
|
ExceptionObjectVar = Inst->getOperand(1)->stripPointerCasts();
|
|
return CloningDirector::SkipInstruction;
|
|
}
|
|
|
|
CloningDirector::CloningAction
|
|
WinEHCatchDirector::handleEndCatch(ValueToValueMapTy &VMap,
|
|
const Instruction *Inst, BasicBlock *NewBB) {
|
|
auto *IntrinCall = dyn_cast<IntrinsicInst>(Inst);
|
|
// It might be interesting to track whether or not we are inside a catch
|
|
// function, but that might make the algorithm more brittle than it needs
|
|
// to be.
|
|
|
|
// The end catch call can occur in one of two places: either in a
|
|
// landingpad block that is part of the catch handlers exception mechanism,
|
|
// or at the end of the catch block. If it occurs in a landing pad, we must
|
|
// skip it and continue so that the landing pad gets cloned.
|
|
// FIXME: This case isn't fully supported yet and shouldn't turn up in any
|
|
// of the test cases until it is.
|
|
if (IntrinCall->getParent()->isLandingPad())
|
|
return CloningDirector::SkipInstruction;
|
|
|
|
// If an end catch occurs anywhere else the next instruction should be an
|
|
// unconditional branch instruction that we want to replace with a return
|
|
// to the the address of the branch target.
|
|
const BasicBlock *EndCatchBB = IntrinCall->getParent();
|
|
const TerminatorInst *Terminator = EndCatchBB->getTerminator();
|
|
const BranchInst *Branch = dyn_cast<BranchInst>(Terminator);
|
|
assert(Branch && Branch->isUnconditional());
|
|
assert(std::next(BasicBlock::const_iterator(IntrinCall)) ==
|
|
BasicBlock::const_iterator(Branch));
|
|
|
|
BasicBlock *ContinueLabel = Branch->getSuccessor(0);
|
|
ReturnInst::Create(NewBB->getContext(), BlockAddress::get(ContinueLabel),
|
|
NewBB);
|
|
ReturnTargets.push_back(ContinueLabel);
|
|
|
|
// We just added a terminator to the cloned block.
|
|
// Tell the caller to stop processing the current basic block so that
|
|
// the branch instruction will be skipped.
|
|
return CloningDirector::StopCloningBB;
|
|
}
|
|
|
|
CloningDirector::CloningAction WinEHCatchDirector::handleTypeIdFor(
|
|
ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
|
|
auto *IntrinCall = dyn_cast<IntrinsicInst>(Inst);
|
|
Value *Selector = IntrinCall->getArgOperand(0)->stripPointerCasts();
|
|
// This causes a replacement that will collapse the landing pad CFG based
|
|
// on the filter function we intend to match.
|
|
if (Selector == CurrentSelector)
|
|
VMap[Inst] = ConstantInt::get(SelectorIDType, 1);
|
|
else
|
|
VMap[Inst] = ConstantInt::get(SelectorIDType, 0);
|
|
// Tell the caller not to clone this instruction.
|
|
return CloningDirector::SkipInstruction;
|
|
}
|
|
|
|
CloningDirector::CloningAction
|
|
WinEHCatchDirector::handleInvoke(ValueToValueMapTy &VMap,
|
|
const InvokeInst *Invoke, BasicBlock *NewBB) {
|
|
return CloningDirector::CloneInstruction;
|
|
}
|
|
|
|
CloningDirector::CloningAction
|
|
WinEHCatchDirector::handleResume(ValueToValueMapTy &VMap,
|
|
const ResumeInst *Resume, BasicBlock *NewBB) {
|
|
// Resume instructions shouldn't be reachable from catch handlers.
|
|
// We still need to handle it, but it will be pruned.
|
|
BasicBlock::InstListType &InstList = NewBB->getInstList();
|
|
InstList.push_back(new UnreachableInst(NewBB->getContext()));
|
|
return CloningDirector::StopCloningBB;
|
|
}
|
|
|
|
CloningDirector::CloningAction WinEHCleanupDirector::handleBeginCatch(
|
|
ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
|
|
// Catch blocks within cleanup handlers will always be unreachable.
|
|
// We'll insert an unreachable instruction now, but it will be pruned
|
|
// before the cloning process is complete.
|
|
BasicBlock::InstListType &InstList = NewBB->getInstList();
|
|
InstList.push_back(new UnreachableInst(NewBB->getContext()));
|
|
return CloningDirector::StopCloningBB;
|
|
}
|
|
|
|
CloningDirector::CloningAction WinEHCleanupDirector::handleEndCatch(
|
|
ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
|
|
// Catch blocks within cleanup handlers will always be unreachable.
|
|
// We'll insert an unreachable instruction now, but it will be pruned
|
|
// before the cloning process is complete.
|
|
BasicBlock::InstListType &InstList = NewBB->getInstList();
|
|
InstList.push_back(new UnreachableInst(NewBB->getContext()));
|
|
return CloningDirector::StopCloningBB;
|
|
}
|
|
|
|
CloningDirector::CloningAction WinEHCleanupDirector::handleTypeIdFor(
|
|
ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
|
|
// If we encounter a selector comparison while cloning a cleanup handler,
|
|
// we want to stop cloning immediately. Anything after the dispatch
|
|
// will be outlined into a different handler.
|
|
BasicBlock *CatchHandler;
|
|
Constant *Selector;
|
|
BasicBlock *NextBB;
|
|
if (isSelectorDispatch(const_cast<BasicBlock *>(Inst->getParent()),
|
|
CatchHandler, Selector, NextBB)) {
|
|
ReturnInst::Create(NewBB->getContext(), nullptr, NewBB);
|
|
return CloningDirector::StopCloningBB;
|
|
}
|
|
// If eg.typeid.for is called for any other reason, it can be ignored.
|
|
VMap[Inst] = ConstantInt::get(SelectorIDType, 0);
|
|
return CloningDirector::SkipInstruction;
|
|
}
|
|
|
|
CloningDirector::CloningAction WinEHCleanupDirector::handleInvoke(
|
|
ValueToValueMapTy &VMap, const InvokeInst *Invoke, BasicBlock *NewBB) {
|
|
// All invokes in cleanup handlers can be replaced with calls.
|
|
SmallVector<Value *, 16> CallArgs(Invoke->op_begin(), Invoke->op_end() - 3);
|
|
// Insert a normal call instruction...
|
|
CallInst *NewCall =
|
|
CallInst::Create(const_cast<Value *>(Invoke->getCalledValue()), CallArgs,
|
|
Invoke->getName(), NewBB);
|
|
NewCall->setCallingConv(Invoke->getCallingConv());
|
|
NewCall->setAttributes(Invoke->getAttributes());
|
|
NewCall->setDebugLoc(Invoke->getDebugLoc());
|
|
VMap[Invoke] = NewCall;
|
|
|
|
// Insert an unconditional branch to the normal destination.
|
|
BranchInst::Create(Invoke->getNormalDest(), NewBB);
|
|
|
|
// The unwind destination won't be cloned into the new function, so
|
|
// we don't need to clean up its phi nodes.
|
|
|
|
// We just added a terminator to the cloned block.
|
|
// Tell the caller to stop processing the current basic block.
|
|
return CloningDirector::StopCloningBB;
|
|
}
|
|
|
|
CloningDirector::CloningAction WinEHCleanupDirector::handleResume(
|
|
ValueToValueMapTy &VMap, const ResumeInst *Resume, BasicBlock *NewBB) {
|
|
ReturnInst::Create(NewBB->getContext(), nullptr, NewBB);
|
|
|
|
// We just added a terminator to the cloned block.
|
|
// Tell the caller to stop processing the current basic block so that
|
|
// the branch instruction will be skipped.
|
|
return CloningDirector::StopCloningBB;
|
|
}
|
|
|
|
WinEHFrameVariableMaterializer::WinEHFrameVariableMaterializer(
|
|
Function *OutlinedFn, FrameVarInfoMap &FrameVarInfo)
|
|
: FrameVarInfo(FrameVarInfo), Builder(OutlinedFn->getContext()) {
|
|
Builder.SetInsertPoint(&OutlinedFn->getEntryBlock());
|
|
}
|
|
|
|
Value *WinEHFrameVariableMaterializer::materializeValueFor(Value *V) {
|
|
// If we're asked to materialize a value that is an instruction, we
|
|
// temporarily create an alloca in the outlined function and add this
|
|
// to the FrameVarInfo map. When all the outlining is complete, we'll
|
|
// collect these into a structure, spilling non-alloca values in the
|
|
// parent frame as necessary, and replace these temporary allocas with
|
|
// GEPs referencing the frame allocation block.
|
|
|
|
// If the value is an alloca, the mapping is direct.
|
|
if (auto *AV = dyn_cast<AllocaInst>(V)) {
|
|
AllocaInst *NewAlloca = dyn_cast<AllocaInst>(AV->clone());
|
|
Builder.Insert(NewAlloca, AV->getName());
|
|
FrameVarInfo[AV].push_back(NewAlloca);
|
|
return NewAlloca;
|
|
}
|
|
|
|
// For other types of instructions or arguments, we need an alloca based on
|
|
// the value's type and a load of the alloca. The alloca will be replaced
|
|
// by a GEP, but the load will stay. In the parent function, the value will
|
|
// be spilled to a location in the frame allocation block.
|
|
if (isa<Instruction>(V) || isa<Argument>(V)) {
|
|
AllocaInst *NewAlloca =
|
|
Builder.CreateAlloca(V->getType(), nullptr, "eh.temp.alloca");
|
|
FrameVarInfo[V].push_back(NewAlloca);
|
|
LoadInst *NewLoad = Builder.CreateLoad(NewAlloca, V->getName() + ".reload");
|
|
return NewLoad;
|
|
}
|
|
|
|
// Don't materialize other values.
|
|
return nullptr;
|
|
}
|
|
|
|
// This function maps the catch and cleanup handlers that are reachable from the
|
|
// specified landing pad. The landing pad sequence will have this basic shape:
|
|
//
|
|
// <cleanup handler>
|
|
// <selector comparison>
|
|
// <catch handler>
|
|
// <cleanup handler>
|
|
// <selector comparison>
|
|
// <catch handler>
|
|
// <cleanup handler>
|
|
// ...
|
|
//
|
|
// Any of the cleanup slots may be absent. The cleanup slots may be occupied by
|
|
// any arbitrary control flow, but all paths through the cleanup code must
|
|
// eventually reach the next selector comparison and no path can skip to a
|
|
// different selector comparisons, though some paths may terminate abnormally.
|
|
// Therefore, we will use a depth first search from the start of any given
|
|
// cleanup block and stop searching when we find the next selector comparison.
|
|
//
|
|
// If the landingpad instruction does not have a catch clause, we will assume
|
|
// that any instructions other than selector comparisons and catch handlers can
|
|
// be ignored. In practice, these will only be the boilerplate instructions.
|
|
//
|
|
// The catch handlers may also have any control structure, but we are only
|
|
// interested in the start of the catch handlers, so we don't need to actually
|
|
// follow the flow of the catch handlers. The start of the catch handlers can
|
|
// be located from the compare instructions, but they can be skipped in the
|
|
// flow by following the contrary branch.
|
|
void WinEHPrepare::mapLandingPadBlocks(LandingPadInst *LPad,
|
|
LandingPadActions &Actions) {
|
|
unsigned int NumClauses = LPad->getNumClauses();
|
|
unsigned int HandlersFound = 0;
|
|
BasicBlock *BB = LPad->getParent();
|
|
|
|
DEBUG(dbgs() << "Mapping landing pad: " << BB->getName() << "\n");
|
|
|
|
if (NumClauses == 0) {
|
|
// This landing pad contains only cleanup code.
|
|
CleanupHandler *Action = new CleanupHandler(BB);
|
|
CleanupHandlerMap[BB] = Action;
|
|
Actions.insertCleanupHandler(Action);
|
|
DEBUG(dbgs() << " Assuming cleanup code in block " << BB->getName()
|
|
<< "\n");
|
|
assert(LPad->isCleanup());
|
|
return;
|
|
}
|
|
|
|
VisitedBlockSet VisitedBlocks;
|
|
|
|
while (HandlersFound != NumClauses) {
|
|
BasicBlock *NextBB = nullptr;
|
|
|
|
// See if the clause we're looking for is a catch-all.
|
|
// If so, the catch begins immediately.
|
|
if (isa<ConstantPointerNull>(LPad->getClause(HandlersFound))) {
|
|
// The catch all must occur last.
|
|
assert(HandlersFound == NumClauses - 1);
|
|
|
|
// See if there is any interesting code executed before the catch.
|
|
if (auto *CleanupAction = findCleanupHandler(BB, BB)) {
|
|
// Add a cleanup entry to the list
|
|
Actions.insertCleanupHandler(CleanupAction);
|
|
DEBUG(dbgs() << " Found cleanup code in block "
|
|
<< CleanupAction->getStartBlock()->getName() << "\n");
|
|
}
|
|
|
|
// Add the catch handler to the action list.
|
|
CatchHandler *Action =
|
|
new CatchHandler(BB, LPad->getClause(HandlersFound), nullptr);
|
|
CatchHandlerMap[BB] = Action;
|
|
Actions.insertCatchHandler(Action);
|
|
DEBUG(dbgs() << " Catch all handler at block " << BB->getName() << "\n");
|
|
++HandlersFound;
|
|
continue;
|
|
}
|
|
|
|
CatchHandler *CatchAction = findCatchHandler(BB, NextBB, VisitedBlocks);
|
|
// See if there is any interesting code executed before the dispatch.
|
|
if (auto *CleanupAction =
|
|
findCleanupHandler(BB, CatchAction->getStartBlock())) {
|
|
// Add a cleanup entry to the list
|
|
Actions.insertCleanupHandler(CleanupAction);
|
|
DEBUG(dbgs() << " Found cleanup code in block "
|
|
<< CleanupAction->getStartBlock()->getName() << "\n");
|
|
}
|
|
|
|
assert(CatchAction);
|
|
++HandlersFound;
|
|
|
|
// Add the catch handler to the action list.
|
|
Actions.insertCatchHandler(CatchAction);
|
|
DEBUG(dbgs() << " Found catch dispatch in block "
|
|
<< CatchAction->getStartBlock()->getName() << "\n");
|
|
|
|
// Move on to the block after the catch handler.
|
|
BB = NextBB;
|
|
}
|
|
|
|
// See if there is any interesting code executed before the resume.
|
|
if (auto *CleanupAction = findCleanupHandler(BB, BB)) {
|
|
// Add a cleanup entry to the list
|
|
Actions.insertCleanupHandler(CleanupAction);
|
|
DEBUG(dbgs() << " Found cleanup code in block "
|
|
<< CleanupAction->getStartBlock()->getName() << "\n");
|
|
}
|
|
|
|
// It's possible that some optimization moved code into a landingpad that
|
|
// wasn't
|
|
// previously being used for cleanup. If that happens, we need to execute
|
|
// that
|
|
// extra code from a cleanup handler.
|
|
if (Actions.includesCleanup() && !LPad->isCleanup())
|
|
LPad->setCleanup(true);
|
|
}
|
|
|
|
// This function searches starting with the input block for the next
|
|
// block that terminates with a branch whose condition is based on a selector
|
|
// comparison. This may be the input block. See the mapLandingPadBlocks
|
|
// comments for a discussion of control flow assumptions.
|
|
//
|
|
CatchHandler *WinEHPrepare::findCatchHandler(BasicBlock *BB,
|
|
BasicBlock *&NextBB,
|
|
VisitedBlockSet &VisitedBlocks) {
|
|
// See if we've already found a catch handler use it.
|
|
// Call count() first to avoid creating a null entry for blocks
|
|
// we haven't seen before.
|
|
if (CatchHandlerMap.count(BB) && CatchHandlerMap[BB] != nullptr) {
|
|
CatchHandler *Action = cast<CatchHandler>(CatchHandlerMap[BB]);
|
|
NextBB = Action->getNextBB();
|
|
return Action;
|
|
}
|
|
|
|
// VisitedBlocks applies only to the current search. We still
|
|
// need to consider blocks that we've visited while mapping other
|
|
// landing pads.
|
|
VisitedBlocks.insert(BB);
|
|
|
|
BasicBlock *CatchBlock = nullptr;
|
|
Constant *Selector = nullptr;
|
|
|
|
// If this is the first time we've visited this block from any landing pad
|
|
// look to see if it is a selector dispatch block.
|
|
if (!CatchHandlerMap.count(BB)) {
|
|
if (isSelectorDispatch(BB, CatchBlock, Selector, NextBB)) {
|
|
CatchHandler *Action = new CatchHandler(BB, Selector, NextBB);
|
|
CatchHandlerMap[BB] = Action;
|
|
return Action;
|
|
}
|
|
}
|
|
|
|
// Visit each successor, looking for the dispatch.
|
|
// FIXME: We expect to find the dispatch quickly, so this will probably
|
|
// work better as a breadth first search.
|
|
for (BasicBlock *Succ : successors(BB)) {
|
|
if (VisitedBlocks.count(Succ))
|
|
continue;
|
|
|
|
CatchHandler *Action = findCatchHandler(Succ, NextBB, VisitedBlocks);
|
|
if (Action)
|
|
return Action;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
// These are helper functions to combine repeated code from findCleanupHandler.
|
|
static CleanupHandler *createCleanupHandler(CleanupHandlerMapTy &CleanupHandlerMap,
|
|
BasicBlock *BB) {
|
|
CleanupHandler *Action = new CleanupHandler(BB);
|
|
CleanupHandlerMap[BB] = Action;
|
|
return Action;
|
|
}
|
|
|
|
// This function searches starting with the input block for the next block that
|
|
// contains code that is not part of a catch handler and would not be eliminated
|
|
// during handler outlining.
|
|
//
|
|
CleanupHandler *WinEHPrepare::findCleanupHandler(BasicBlock *StartBB,
|
|
BasicBlock *EndBB) {
|
|
// Here we will skip over the following:
|
|
//
|
|
// landing pad prolog:
|
|
//
|
|
// Unconditional branches
|
|
//
|
|
// Selector dispatch
|
|
//
|
|
// Resume pattern
|
|
//
|
|
// Anything else marks the start of an interesting block
|
|
|
|
BasicBlock *BB = StartBB;
|
|
// Anything other than an unconditional branch will kick us out of this loop
|
|
// one way or another.
|
|
while (BB) {
|
|
// If we've already scanned this block, don't scan it again. If it is
|
|
// a cleanup block, there will be an action in the CleanupHandlerMap.
|
|
// If we've scanned it and it is not a cleanup block, there will be a
|
|
// nullptr in the CleanupHandlerMap. If we have not scanned it, there will
|
|
// be no entry in the CleanupHandlerMap. We must call count() first to
|
|
// avoid creating a null entry for blocks we haven't scanned.
|
|
if (CleanupHandlerMap.count(BB)) {
|
|
if (auto *Action = CleanupHandlerMap[BB]) {
|
|
return cast<CleanupHandler>(Action);
|
|
} else {
|
|
// Here we handle the case where the cleanup handler map contains a
|
|
// value for this block but the value is a nullptr. This means that
|
|
// we have previously analyzed the block and determined that it did
|
|
// not contain any cleanup code. Based on the earlier analysis, we
|
|
// know the the block must end in either an unconditional branch, a
|
|
// resume or a conditional branch that is predicated on a comparison
|
|
// with a selector. Either the resume or the selector dispatch
|
|
// would terminate the search for cleanup code, so the unconditional
|
|
// branch is the only case for which we might need to continue
|
|
// searching.
|
|
if (BB == EndBB)
|
|
return nullptr;
|
|
BasicBlock *SuccBB;
|
|
if (!match(BB->getTerminator(), m_UnconditionalBr(SuccBB)))
|
|
return nullptr;
|
|
BB = SuccBB;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Create an entry in the cleanup handler map for this block. Initially
|
|
// we create an entry that says this isn't a cleanup block. If we find
|
|
// cleanup code, the caller will replace this entry.
|
|
CleanupHandlerMap[BB] = nullptr;
|
|
|
|
TerminatorInst *Terminator = BB->getTerminator();
|
|
|
|
// Landing pad blocks have extra instructions we need to accept.
|
|
LandingPadMap *LPadMap = nullptr;
|
|
if (BB->isLandingPad()) {
|
|
LandingPadInst *LPad = BB->getLandingPadInst();
|
|
LPadMap = &LPadMaps[LPad];
|
|
if (!LPadMap->isInitialized())
|
|
LPadMap->mapLandingPad(LPad);
|
|
}
|
|
|
|
// Look for the bare resume pattern:
|
|
// %exn2 = load i8** %exn.slot
|
|
// %sel2 = load i32* %ehselector.slot
|
|
// %lpad.val1 = insertvalue { i8*, i32 } undef, i8* %exn2, 0
|
|
// %lpad.val2 = insertvalue { i8*, i32 } %lpad.val1, i32 %sel2, 1
|
|
// resume { i8*, i32 } %lpad.val2
|
|
if (auto *Resume = dyn_cast<ResumeInst>(Terminator)) {
|
|
InsertValueInst *Insert1 = nullptr;
|
|
InsertValueInst *Insert2 = nullptr;
|
|
if (!isa<PHINode>(Resume->getOperand(0))) {
|
|
Insert2 = dyn_cast<InsertValueInst>(Resume->getOperand(0));
|
|
if (!Insert2)
|
|
return createCleanupHandler(CleanupHandlerMap, BB);
|
|
Insert1 = dyn_cast<InsertValueInst>(Insert2->getAggregateOperand());
|
|
if (!Insert1)
|
|
return createCleanupHandler(CleanupHandlerMap, BB);
|
|
}
|
|
for (BasicBlock::iterator II = BB->getFirstNonPHIOrDbg(), IE = BB->end();
|
|
II != IE; ++II) {
|
|
Instruction *Inst = II;
|
|
if (LPadMap && LPadMap->isLandingPadSpecificInst(Inst))
|
|
continue;
|
|
if (Inst == Insert1 || Inst == Insert2 || Inst == Resume)
|
|
continue;
|
|
if (!Inst->hasOneUse() ||
|
|
(Inst->user_back() != Insert1 && Inst->user_back() != Insert2)) {
|
|
return createCleanupHandler(CleanupHandlerMap, BB);
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
BranchInst *Branch = dyn_cast<BranchInst>(Terminator);
|
|
if (Branch) {
|
|
if (Branch->isConditional()) {
|
|
// Look for the selector dispatch.
|
|
// %sel = load i32* %ehselector.slot
|
|
// %2 = call i32 @llvm.eh.typeid.for(i8* bitcast (i8** @_ZTIf to i8*))
|
|
// %matches = icmp eq i32 %sel12, %2
|
|
// br i1 %matches, label %catch14, label %eh.resume
|
|
CmpInst *Compare = dyn_cast<CmpInst>(Branch->getCondition());
|
|
if (!Compare || !Compare->isEquality())
|
|
return createCleanupHandler(CleanupHandlerMap, BB);
|
|
for (BasicBlock::iterator II = BB->getFirstNonPHIOrDbg(),
|
|
IE = BB->end();
|
|
II != IE; ++II) {
|
|
Instruction *Inst = II;
|
|
if (LPadMap && LPadMap->isLandingPadSpecificInst(Inst))
|
|
continue;
|
|
if (Inst == Compare || Inst == Branch)
|
|
continue;
|
|
if (!Inst->hasOneUse() || (Inst->user_back() != Compare))
|
|
return createCleanupHandler(CleanupHandlerMap, BB);
|
|
if (match(Inst, m_Intrinsic<Intrinsic::eh_typeid_for>()))
|
|
continue;
|
|
if (!isa<LoadInst>(Inst))
|
|
return createCleanupHandler(CleanupHandlerMap, BB);
|
|
}
|
|
// The selector dispatch block should always terminate our search.
|
|
assert(BB == EndBB);
|
|
return nullptr;
|
|
} else {
|
|
// Look for empty blocks with unconditional branches.
|
|
for (BasicBlock::iterator II = BB->getFirstNonPHIOrDbg(),
|
|
IE = BB->end();
|
|
II != IE; ++II) {
|
|
Instruction *Inst = II;
|
|
if (LPadMap && LPadMap->isLandingPadSpecificInst(Inst))
|
|
continue;
|
|
if (Inst == Branch)
|
|
continue;
|
|
if (match(Inst, m_Intrinsic<Intrinsic::eh_endcatch>()))
|
|
continue;
|
|
// Anything else makes this interesting cleanup code.
|
|
return createCleanupHandler(CleanupHandlerMap, BB);
|
|
}
|
|
if (BB == EndBB)
|
|
return nullptr;
|
|
// The branch was unconditional.
|
|
BB = Branch->getSuccessor(0);
|
|
continue;
|
|
} // End else of if branch was conditional
|
|
} // End if Branch
|
|
|
|
// Anything else makes this interesting cleanup code.
|
|
return createCleanupHandler(CleanupHandlerMap, BB);
|
|
}
|
|
return nullptr;
|
|
}
|