mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-02 22:32:38 +00:00
bd5d3dbdbe
- Add debugging info. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@33811 91177308-0d34-0410-b5e6-96231b3b80d8
734 lines
27 KiB
C++
734 lines
27 KiB
C++
//===-- ARMConstantIslandPass.cpp - ARM constant islands --------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by Chris Lattner and is distributed under the
|
|
// University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains a pass that splits the constant pool up into 'islands'
|
|
// which are scattered through-out the function. This is required due to the
|
|
// limited pc-relative displacements that ARM has.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "arm-cp-islands"
|
|
#include "ARM.h"
|
|
#include "ARMMachineFunctionInfo.h"
|
|
#include "ARMInstrInfo.h"
|
|
#include "llvm/CodeGen/MachineConstantPool.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include <iostream>
|
|
using namespace llvm;
|
|
|
|
STATISTIC(NumSplit, "Number of uncond branches inserted");
|
|
STATISTIC(NumCBrFixed, "Number of cond branches fixed");
|
|
STATISTIC(NumUBrFixed, "Number of uncond branches fixed");
|
|
|
|
namespace {
|
|
/// ARMConstantIslands - Due to limited pc-relative displacements, ARM
|
|
/// requires constant pool entries to be scattered among the instructions
|
|
/// inside a function. To do this, it completely ignores the normal LLVM
|
|
/// constant pool, instead, it places constants where-ever it feels like with
|
|
/// special instructions.
|
|
///
|
|
/// The terminology used in this pass includes:
|
|
/// Islands - Clumps of constants placed in the function.
|
|
/// Water - Potential places where an island could be formed.
|
|
/// CPE - A constant pool entry that has been placed somewhere, which
|
|
/// tracks a list of users.
|
|
class VISIBILITY_HIDDEN ARMConstantIslands : public MachineFunctionPass {
|
|
/// NextUID - Assign unique ID's to CPE's.
|
|
unsigned NextUID;
|
|
|
|
/// BBSizes - The size of each MachineBasicBlock in bytes of code, indexed
|
|
/// by MBB Number.
|
|
std::vector<unsigned> BBSizes;
|
|
|
|
/// WaterList - A sorted list of basic blocks where islands could be placed
|
|
/// (i.e. blocks that don't fall through to the following block, due
|
|
/// to a return, unreachable, or unconditional branch).
|
|
std::vector<MachineBasicBlock*> WaterList;
|
|
|
|
/// CPUser - One user of a constant pool, keeping the machine instruction
|
|
/// pointer, the constant pool being referenced, and the max displacement
|
|
/// allowed from the instruction to the CP.
|
|
struct CPUser {
|
|
MachineInstr *MI;
|
|
MachineInstr *CPEMI;
|
|
unsigned MaxDisp;
|
|
CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp)
|
|
: MI(mi), CPEMI(cpemi), MaxDisp(maxdisp) {}
|
|
};
|
|
|
|
/// CPUsers - Keep track of all of the machine instructions that use various
|
|
/// constant pools and their max displacement.
|
|
std::vector<CPUser> CPUsers;
|
|
|
|
/// ImmBranch - One per immediate branch, keeping the machine instruction
|
|
/// pointer, conditional or unconditional, the max displacement,
|
|
/// and (if isCond is true) the corresponding unconditional branch
|
|
/// opcode.
|
|
struct ImmBranch {
|
|
MachineInstr *MI;
|
|
unsigned MaxDisp : 31;
|
|
bool isCond : 1;
|
|
int UncondBr;
|
|
ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr)
|
|
: MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {}
|
|
};
|
|
|
|
/// Branches - Keep track of all the immediate branch instructions.
|
|
///
|
|
std::vector<ImmBranch> ImmBranches;
|
|
|
|
/// PushPopMIs - Keep track of all the Thumb push / pop instructions.
|
|
///
|
|
std::vector<MachineInstr*> PushPopMIs;
|
|
|
|
/// HasFarJump - True if any far jump instruction has been emitted during
|
|
/// the branch fix up pass.
|
|
bool HasFarJump;
|
|
|
|
const TargetInstrInfo *TII;
|
|
const ARMFunctionInfo *AFI;
|
|
public:
|
|
virtual bool runOnMachineFunction(MachineFunction &Fn);
|
|
|
|
virtual const char *getPassName() const {
|
|
return "ARM constant island placement and branch shortening pass";
|
|
}
|
|
|
|
private:
|
|
void DoInitialPlacement(MachineFunction &Fn,
|
|
std::vector<MachineInstr*> &CPEMIs);
|
|
void InitialFunctionScan(MachineFunction &Fn,
|
|
const std::vector<MachineInstr*> &CPEMIs);
|
|
MachineBasicBlock *SplitBlockBeforeInstr(MachineInstr *MI);
|
|
void UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB);
|
|
bool HandleConstantPoolUser(MachineFunction &Fn, CPUser &U);
|
|
bool CPEIsInRange(MachineInstr *MI, MachineInstr *CPEMI, unsigned Disp);
|
|
bool BBIsInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp);
|
|
bool FixUpImmediateBr(MachineFunction &Fn, ImmBranch &Br);
|
|
bool FixUpConditionalBr(MachineFunction &Fn, ImmBranch &Br);
|
|
bool FixUpUnconditionalBr(MachineFunction &Fn, ImmBranch &Br);
|
|
bool UndoLRSpillRestore();
|
|
|
|
unsigned GetOffsetOf(MachineInstr *MI) const;
|
|
unsigned GetOffsetOf(MachineBasicBlock *MBB) const;
|
|
};
|
|
}
|
|
|
|
/// createARMConstantIslandPass - returns an instance of the constpool
|
|
/// island pass.
|
|
FunctionPass *llvm::createARMConstantIslandPass() {
|
|
return new ARMConstantIslands();
|
|
}
|
|
|
|
bool ARMConstantIslands::runOnMachineFunction(MachineFunction &Fn) {
|
|
MachineConstantPool &MCP = *Fn.getConstantPool();
|
|
|
|
TII = Fn.getTarget().getInstrInfo();
|
|
AFI = Fn.getInfo<ARMFunctionInfo>();
|
|
|
|
HasFarJump = false;
|
|
|
|
// Renumber all of the machine basic blocks in the function, guaranteeing that
|
|
// the numbers agree with the position of the block in the function.
|
|
Fn.RenumberBlocks();
|
|
|
|
// Perform the initial placement of the constant pool entries. To start with,
|
|
// we put them all at the end of the function.
|
|
std::vector<MachineInstr*> CPEMIs;
|
|
if (!MCP.isEmpty())
|
|
DoInitialPlacement(Fn, CPEMIs);
|
|
|
|
/// The next UID to take is the first unused one.
|
|
NextUID = CPEMIs.size();
|
|
|
|
// Do the initial scan of the function, building up information about the
|
|
// sizes of each block, the location of all the water, and finding all of the
|
|
// constant pool users.
|
|
InitialFunctionScan(Fn, CPEMIs);
|
|
CPEMIs.clear();
|
|
|
|
// Iteratively place constant pool entries and fix up branches until there
|
|
// is no change.
|
|
bool MadeChange = false;
|
|
while (true) {
|
|
bool Change = false;
|
|
for (unsigned i = 0, e = CPUsers.size(); i != e; ++i)
|
|
Change |= HandleConstantPoolUser(Fn, CPUsers[i]);
|
|
for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i)
|
|
Change |= FixUpImmediateBr(Fn, ImmBranches[i]);
|
|
if (!Change)
|
|
break;
|
|
MadeChange = true;
|
|
}
|
|
|
|
// If LR has been forced spilled and no far jumps (i.e. BL) has been issued.
|
|
// Undo the spill / restore of LR if possible.
|
|
if (!HasFarJump && AFI->isLRForceSpilled() && AFI->isThumbFunction())
|
|
MadeChange |= UndoLRSpillRestore();
|
|
|
|
BBSizes.clear();
|
|
WaterList.clear();
|
|
CPUsers.clear();
|
|
ImmBranches.clear();
|
|
|
|
return MadeChange;
|
|
}
|
|
|
|
/// DoInitialPlacement - Perform the initial placement of the constant pool
|
|
/// entries. To start with, we put them all at the end of the function.
|
|
void ARMConstantIslands::DoInitialPlacement(MachineFunction &Fn,
|
|
std::vector<MachineInstr*> &CPEMIs){
|
|
// Create the basic block to hold the CPE's.
|
|
MachineBasicBlock *BB = new MachineBasicBlock();
|
|
Fn.getBasicBlockList().push_back(BB);
|
|
|
|
// Add all of the constants from the constant pool to the end block, use an
|
|
// identity mapping of CPI's to CPE's.
|
|
const std::vector<MachineConstantPoolEntry> &CPs =
|
|
Fn.getConstantPool()->getConstants();
|
|
|
|
const TargetData &TD = *Fn.getTarget().getTargetData();
|
|
for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
|
|
unsigned Size = TD.getTypeSize(CPs[i].getType());
|
|
// Verify that all constant pool entries are a multiple of 4 bytes. If not,
|
|
// we would have to pad them out or something so that instructions stay
|
|
// aligned.
|
|
assert((Size & 3) == 0 && "CP Entry not multiple of 4 bytes!");
|
|
MachineInstr *CPEMI =
|
|
BuildMI(BB, TII->get(ARM::CONSTPOOL_ENTRY))
|
|
.addImm(i).addConstantPoolIndex(i).addImm(Size);
|
|
CPEMIs.push_back(CPEMI);
|
|
DEBUG(std::cerr << "Moved CPI#" << i << " to end of function as #"
|
|
<< i << "\n");
|
|
}
|
|
}
|
|
|
|
/// BBHasFallthrough - Return true of the specified basic block can fallthrough
|
|
/// into the block immediately after it.
|
|
static bool BBHasFallthrough(MachineBasicBlock *MBB) {
|
|
// Get the next machine basic block in the function.
|
|
MachineFunction::iterator MBBI = MBB;
|
|
if (next(MBBI) == MBB->getParent()->end()) // Can't fall off end of function.
|
|
return false;
|
|
|
|
MachineBasicBlock *NextBB = next(MBBI);
|
|
for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
|
|
E = MBB->succ_end(); I != E; ++I)
|
|
if (*I == NextBB)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// InitialFunctionScan - Do the initial scan of the function, building up
|
|
/// information about the sizes of each block, the location of all the water,
|
|
/// and finding all of the constant pool users.
|
|
void ARMConstantIslands::InitialFunctionScan(MachineFunction &Fn,
|
|
const std::vector<MachineInstr*> &CPEMIs) {
|
|
for (MachineFunction::iterator MBBI = Fn.begin(), E = Fn.end();
|
|
MBBI != E; ++MBBI) {
|
|
MachineBasicBlock &MBB = *MBBI;
|
|
|
|
// If this block doesn't fall through into the next MBB, then this is
|
|
// 'water' that a constant pool island could be placed.
|
|
if (!BBHasFallthrough(&MBB))
|
|
WaterList.push_back(&MBB);
|
|
|
|
unsigned MBBSize = 0;
|
|
for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
|
|
I != E; ++I) {
|
|
// Add instruction size to MBBSize.
|
|
MBBSize += ARM::GetInstSize(I);
|
|
|
|
int Opc = I->getOpcode();
|
|
if (TII->isBranch(Opc)) {
|
|
bool isCond = false;
|
|
unsigned Bits = 0;
|
|
unsigned Scale = 1;
|
|
int UOpc = Opc;
|
|
switch (Opc) {
|
|
default:
|
|
continue; // Ignore JT branches
|
|
case ARM::Bcc:
|
|
isCond = true;
|
|
UOpc = ARM::B;
|
|
// Fallthrough
|
|
case ARM::B:
|
|
Bits = 24;
|
|
Scale = 4;
|
|
break;
|
|
case ARM::tBcc:
|
|
isCond = true;
|
|
UOpc = ARM::tB;
|
|
Bits = 8;
|
|
Scale = 2;
|
|
break;
|
|
case ARM::tB:
|
|
Bits = 11;
|
|
Scale = 2;
|
|
break;
|
|
}
|
|
|
|
// Record this immediate branch.
|
|
unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
|
|
ImmBranches.push_back(ImmBranch(I, MaxOffs, isCond, UOpc));
|
|
}
|
|
|
|
if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET)
|
|
PushPopMIs.push_back(I);
|
|
|
|
// Scan the instructions for constant pool operands.
|
|
for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op)
|
|
if (I->getOperand(op).isConstantPoolIndex()) {
|
|
// We found one. The addressing mode tells us the max displacement
|
|
// from the PC that this instruction permits.
|
|
|
|
// Basic size info comes from the TSFlags field.
|
|
unsigned Bits = 0;
|
|
unsigned Scale = 1;
|
|
unsigned TSFlags = I->getInstrDescriptor()->TSFlags;
|
|
switch (TSFlags & ARMII::AddrModeMask) {
|
|
default:
|
|
// Constant pool entries can reach anything.
|
|
if (I->getOpcode() == ARM::CONSTPOOL_ENTRY)
|
|
continue;
|
|
assert(0 && "Unknown addressing mode for CP reference!");
|
|
case ARMII::AddrMode1: // AM1: 8 bits << 2
|
|
Bits = 8;
|
|
Scale = 4; // Taking the address of a CP entry.
|
|
break;
|
|
case ARMII::AddrMode2:
|
|
Bits = 12; // +-offset_12
|
|
break;
|
|
case ARMII::AddrMode3:
|
|
Bits = 8; // +-offset_8
|
|
break;
|
|
// addrmode4 has no immediate offset.
|
|
case ARMII::AddrMode5:
|
|
Bits = 8;
|
|
Scale = 4; // +-(offset_8*4)
|
|
break;
|
|
case ARMII::AddrModeT1:
|
|
Bits = 5; // +offset_5
|
|
break;
|
|
case ARMII::AddrModeT2:
|
|
Bits = 5;
|
|
Scale = 2; // +(offset_5*2)
|
|
break;
|
|
case ARMII::AddrModeT4:
|
|
Bits = 5;
|
|
Scale = 4; // +(offset_5*4)
|
|
break;
|
|
case ARMII::AddrModeTs:
|
|
Bits = 8;
|
|
Scale = 4; // +(offset_8*4)
|
|
break;
|
|
}
|
|
|
|
// Remember that this is a user of a CP entry.
|
|
MachineInstr *CPEMI =CPEMIs[I->getOperand(op).getConstantPoolIndex()];
|
|
unsigned MaxOffs = ((1 << Bits)-1) * Scale;
|
|
CPUsers.push_back(CPUser(I, CPEMI, MaxOffs));
|
|
|
|
// Instructions can only use one CP entry, don't bother scanning the
|
|
// rest of the operands.
|
|
break;
|
|
}
|
|
}
|
|
|
|
// In thumb mode, if this block is a constpool island, pessmisticly assume
|
|
// it needs to be padded by two byte so it's aligned on 4 byte boundary.
|
|
if (AFI->isThumbFunction() &&
|
|
!MBB.empty() &&
|
|
MBB.begin()->getOpcode() == ARM::CONSTPOOL_ENTRY)
|
|
MBBSize += 2;
|
|
|
|
BBSizes.push_back(MBBSize);
|
|
}
|
|
}
|
|
|
|
/// GetOffsetOf - Return the current offset of the specified machine instruction
|
|
/// from the start of the function. This offset changes as stuff is moved
|
|
/// around inside the function.
|
|
unsigned ARMConstantIslands::GetOffsetOf(MachineInstr *MI) const {
|
|
MachineBasicBlock *MBB = MI->getParent();
|
|
|
|
// The offset is composed of two things: the sum of the sizes of all MBB's
|
|
// before this instruction's block, and the offset from the start of the block
|
|
// it is in.
|
|
unsigned Offset = 0;
|
|
|
|
// Sum block sizes before MBB.
|
|
for (unsigned BB = 0, e = MBB->getNumber(); BB != e; ++BB)
|
|
Offset += BBSizes[BB];
|
|
|
|
// Sum instructions before MI in MBB.
|
|
for (MachineBasicBlock::iterator I = MBB->begin(); ; ++I) {
|
|
assert(I != MBB->end() && "Didn't find MI in its own basic block?");
|
|
if (&*I == MI) return Offset;
|
|
Offset += ARM::GetInstSize(I);
|
|
}
|
|
}
|
|
|
|
/// GetOffsetOf - Return the current offset of the specified machine BB
|
|
/// from the start of the function. This offset changes as stuff is moved
|
|
/// around inside the function.
|
|
unsigned ARMConstantIslands::GetOffsetOf(MachineBasicBlock *MBB) const {
|
|
// Sum block sizes before MBB.
|
|
unsigned Offset = 0;
|
|
for (unsigned BB = 0, e = MBB->getNumber(); BB != e; ++BB)
|
|
Offset += BBSizes[BB];
|
|
|
|
return Offset;
|
|
}
|
|
|
|
/// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
|
|
/// ID.
|
|
static bool CompareMBBNumbers(const MachineBasicBlock *LHS,
|
|
const MachineBasicBlock *RHS) {
|
|
return LHS->getNumber() < RHS->getNumber();
|
|
}
|
|
|
|
/// UpdateForInsertedWaterBlock - When a block is newly inserted into the
|
|
/// machine function, it upsets all of the block numbers. Renumber the blocks
|
|
/// and update the arrays that parallel this numbering.
|
|
void ARMConstantIslands::UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB) {
|
|
// Renumber the MBB's to keep them consequtive.
|
|
NewBB->getParent()->RenumberBlocks(NewBB);
|
|
|
|
// Insert a size into BBSizes to align it properly with the (newly
|
|
// renumbered) block numbers.
|
|
BBSizes.insert(BBSizes.begin()+NewBB->getNumber(), 0);
|
|
|
|
// Next, update WaterList. Specifically, we need to add NewMBB as having
|
|
// available water after it.
|
|
std::vector<MachineBasicBlock*>::iterator IP =
|
|
std::lower_bound(WaterList.begin(), WaterList.end(), NewBB,
|
|
CompareMBBNumbers);
|
|
WaterList.insert(IP, NewBB);
|
|
}
|
|
|
|
|
|
/// Split the basic block containing MI into two blocks, which are joined by
|
|
/// an unconditional branch. Update datastructures and renumber blocks to
|
|
/// account for this change and returns the newly created block.
|
|
MachineBasicBlock *ARMConstantIslands::SplitBlockBeforeInstr(MachineInstr *MI) {
|
|
MachineBasicBlock *OrigBB = MI->getParent();
|
|
bool isThumb = AFI->isThumbFunction();
|
|
|
|
// Create a new MBB for the code after the OrigBB.
|
|
MachineBasicBlock *NewBB = new MachineBasicBlock(OrigBB->getBasicBlock());
|
|
MachineFunction::iterator MBBI = OrigBB; ++MBBI;
|
|
OrigBB->getParent()->getBasicBlockList().insert(MBBI, NewBB);
|
|
|
|
// Splice the instructions starting with MI over to NewBB.
|
|
NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
|
|
|
|
// Add an unconditional branch from OrigBB to NewBB.
|
|
// Note the new unconditional branch is not being recorded.
|
|
BuildMI(OrigBB, TII->get(isThumb ? ARM::tB : ARM::B)).addMBB(NewBB);
|
|
NumSplit++;
|
|
|
|
// Update the CFG. All succs of OrigBB are now succs of NewBB.
|
|
while (!OrigBB->succ_empty()) {
|
|
MachineBasicBlock *Succ = *OrigBB->succ_begin();
|
|
OrigBB->removeSuccessor(Succ);
|
|
NewBB->addSuccessor(Succ);
|
|
|
|
// This pass should be run after register allocation, so there should be no
|
|
// PHI nodes to update.
|
|
assert((Succ->empty() || Succ->begin()->getOpcode() != TargetInstrInfo::PHI)
|
|
&& "PHI nodes should be eliminated by now!");
|
|
}
|
|
|
|
// OrigBB branches to NewBB.
|
|
OrigBB->addSuccessor(NewBB);
|
|
|
|
// Update internal data structures to account for the newly inserted MBB.
|
|
UpdateForInsertedWaterBlock(NewBB);
|
|
|
|
// Figure out how large the first NewMBB is.
|
|
unsigned NewBBSize = 0;
|
|
for (MachineBasicBlock::iterator I = NewBB->begin(), E = NewBB->end();
|
|
I != E; ++I)
|
|
NewBBSize += ARM::GetInstSize(I);
|
|
|
|
// Set the size of NewBB in BBSizes.
|
|
BBSizes[NewBB->getNumber()] = NewBBSize;
|
|
|
|
// We removed instructions from UserMBB, subtract that off from its size.
|
|
// Add 2 or 4 to the block to count the unconditional branch we added to it.
|
|
BBSizes[OrigBB->getNumber()] -= NewBBSize - (isThumb ? 2 : 4);
|
|
|
|
return NewBB;
|
|
}
|
|
|
|
/// CPEIsInRange - Returns true is the distance between specific MI and
|
|
/// specific ConstPool entry instruction can fit in MI's displacement field.
|
|
bool ARMConstantIslands::CPEIsInRange(MachineInstr *MI, MachineInstr *CPEMI,
|
|
unsigned MaxDisp) {
|
|
unsigned PCAdj = AFI->isThumbFunction() ? 4 : 8;
|
|
unsigned UserOffset = GetOffsetOf(MI) + PCAdj;
|
|
// In thumb mode, pessmisticly assumes the .align 2 before the first CPE
|
|
// in the island adds two byte padding.
|
|
unsigned AlignAdj = AFI->isThumbFunction() ? 2 : 0;
|
|
unsigned CPEOffset = GetOffsetOf(CPEMI) + AlignAdj;
|
|
|
|
DEBUG(std::cerr << "User of CPE#" << CPEMI->getOperand(0).getImm()
|
|
<< " max delta=" << MaxDisp
|
|
<< " at offset " << int(CPEOffset-UserOffset) << "\t"
|
|
<< *MI);
|
|
|
|
if (UserOffset <= CPEOffset) {
|
|
// User before the CPE.
|
|
if (CPEOffset-UserOffset <= MaxDisp)
|
|
return true;
|
|
} else if (!AFI->isThumbFunction()) {
|
|
// Thumb LDR cannot encode negative offset.
|
|
if (UserOffset-CPEOffset <= MaxDisp)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// HandleConstantPoolUser - Analyze the specified user, checking to see if it
|
|
/// is out-of-range. If so, pick it up the constant pool value and move it some
|
|
/// place in-range.
|
|
bool ARMConstantIslands::HandleConstantPoolUser(MachineFunction &Fn, CPUser &U){
|
|
MachineInstr *UserMI = U.MI;
|
|
MachineInstr *CPEMI = U.CPEMI;
|
|
|
|
// Check to see if the CPE is already in-range.
|
|
if (CPEIsInRange(UserMI, CPEMI, U.MaxDisp))
|
|
return false;
|
|
|
|
// Solution guaranteed to work: split the user's MBB right after the user and
|
|
// insert a clone the CPE into the newly created water.
|
|
|
|
MachineBasicBlock *UserMBB = UserMI->getParent();
|
|
MachineBasicBlock *NewMBB;
|
|
|
|
// TODO: Search for the best place to split the code. In practice, using
|
|
// loop nesting information to insert these guys outside of loops would be
|
|
// sufficient.
|
|
bool isThumb = AFI->isThumbFunction();
|
|
if (&UserMBB->back() == UserMI) {
|
|
assert(BBHasFallthrough(UserMBB) && "Expected a fallthrough BB!");
|
|
NewMBB = next(MachineFunction::iterator(UserMBB));
|
|
// Add an unconditional branch from UserMBB to fallthrough block.
|
|
// Note the new unconditional branch is not being recorded.
|
|
BuildMI(UserMBB, TII->get(isThumb ? ARM::tB : ARM::B)).addMBB(NewMBB);
|
|
BBSizes[UserMBB->getNumber()] += isThumb ? 2 : 4;
|
|
} else {
|
|
MachineInstr *NextMI = next(MachineBasicBlock::iterator(UserMI));
|
|
NewMBB = SplitBlockBeforeInstr(NextMI);
|
|
}
|
|
|
|
// Okay, we know we can put an island before UserMBB now, do it!
|
|
MachineBasicBlock *NewIsland = new MachineBasicBlock();
|
|
Fn.getBasicBlockList().insert(NewMBB, NewIsland);
|
|
|
|
// Update internal data structures to account for the newly inserted MBB.
|
|
UpdateForInsertedWaterBlock(NewIsland);
|
|
|
|
// Now that we have an island to add the CPE to, clone the original CPE and
|
|
// add it to the island.
|
|
unsigned ID = NextUID++;
|
|
unsigned CPI = CPEMI->getOperand(1).getConstantPoolIndex();
|
|
unsigned Size = CPEMI->getOperand(2).getImm();
|
|
|
|
// Build a new CPE for this user.
|
|
U.CPEMI = BuildMI(NewIsland, TII->get(ARM::CONSTPOOL_ENTRY))
|
|
.addImm(ID).addConstantPoolIndex(CPI).addImm(Size);
|
|
|
|
// Compensate for .align 2 in thumb mode.
|
|
if (isThumb) Size += 2;
|
|
// Increase the size of the island block to account for the new entry.
|
|
BBSizes[NewIsland->getNumber()] += Size;
|
|
|
|
// Finally, change the CPI in the instruction operand to be ID.
|
|
for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i)
|
|
if (UserMI->getOperand(i).isConstantPoolIndex()) {
|
|
UserMI->getOperand(i).setConstantPoolIndex(ID);
|
|
break;
|
|
}
|
|
|
|
DEBUG(std::cerr << " Moved CPE to #" << ID << " CPI=" << CPI << "\t"
|
|
<< *UserMI);
|
|
|
|
return true;
|
|
}
|
|
|
|
/// BBIsInRange - Returns true is the distance between specific MI and
|
|
/// specific BB can fit in MI's displacement field.
|
|
bool ARMConstantIslands::BBIsInRange(MachineInstr *MI,MachineBasicBlock *DestBB,
|
|
unsigned MaxDisp) {
|
|
unsigned PCAdj = AFI->isThumbFunction() ? 4 : 8;
|
|
unsigned BrOffset = GetOffsetOf(MI) + PCAdj;
|
|
unsigned DestOffset = GetOffsetOf(DestBB);
|
|
|
|
DEBUG(std::cerr << "Branch of destination BB#" << DestBB->getNumber()
|
|
<< " from BB#" << MI->getParent()->getNumber()
|
|
<< " max delta=" << MaxDisp
|
|
<< " at offset " << int(DestOffset-BrOffset) << "\t"
|
|
<< *MI);
|
|
|
|
if (BrOffset <= DestOffset) {
|
|
if (DestOffset - BrOffset <= MaxDisp)
|
|
return true;
|
|
} else {
|
|
if (BrOffset - DestOffset <= MaxDisp)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// FixUpImmediateBr - Fix up an immediate branch whose destination is too far
|
|
/// away to fit in its displacement field.
|
|
bool ARMConstantIslands::FixUpImmediateBr(MachineFunction &Fn, ImmBranch &Br) {
|
|
MachineInstr *MI = Br.MI;
|
|
MachineBasicBlock *DestBB = MI->getOperand(0).getMachineBasicBlock();
|
|
|
|
// Check to see if the DestBB is already in-range.
|
|
if (BBIsInRange(MI, DestBB, Br.MaxDisp))
|
|
return false;
|
|
|
|
if (!Br.isCond)
|
|
return FixUpUnconditionalBr(Fn, Br);
|
|
return FixUpConditionalBr(Fn, Br);
|
|
}
|
|
|
|
/// FixUpUnconditionalBr - Fix up an unconditional branches whose destination is
|
|
/// too far away to fit in its displacement field. If LR register has been
|
|
/// spilled in the epilogue, then we can use BL to implement a far jump.
|
|
/// Otherwise, add a intermediate branch instruction to to a branch.
|
|
bool
|
|
ARMConstantIslands::FixUpUnconditionalBr(MachineFunction &Fn, ImmBranch &Br) {
|
|
MachineInstr *MI = Br.MI;
|
|
MachineBasicBlock *MBB = MI->getParent();
|
|
assert(AFI->isThumbFunction() && "Expected a Thumb function!");
|
|
|
|
// Use BL to implement far jump.
|
|
Br.MaxDisp = (1 << 21) * 2;
|
|
MI->setInstrDescriptor(TII->get(ARM::tBfar));
|
|
BBSizes[MBB->getNumber()] += 2;
|
|
HasFarJump = true;
|
|
NumUBrFixed++;
|
|
|
|
DEBUG(std::cerr << " Changed B to long jump " << *MI);
|
|
|
|
return true;
|
|
}
|
|
|
|
/// getUnconditionalBrDisp - Returns the maximum displacement that can fit in the
|
|
/// specific unconditional branch instruction.
|
|
static inline unsigned getUnconditionalBrDisp(int Opc) {
|
|
return (Opc == ARM::tB) ? (1<<10)*2 : (1<<23)*4;
|
|
}
|
|
|
|
/// FixUpConditionalBr - Fix up a conditional branches whose destination is too
|
|
/// far away to fit in its displacement field. It is converted to an inverse
|
|
/// conditional branch + an unconditional branch to the destination.
|
|
bool
|
|
ARMConstantIslands::FixUpConditionalBr(MachineFunction &Fn, ImmBranch &Br) {
|
|
MachineInstr *MI = Br.MI;
|
|
MachineBasicBlock *DestBB = MI->getOperand(0).getMachineBasicBlock();
|
|
|
|
// Add a unconditional branch to the destination and invert the branch
|
|
// condition to jump over it:
|
|
// blt L1
|
|
// =>
|
|
// bge L2
|
|
// b L1
|
|
// L2:
|
|
ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImmedValue();
|
|
CC = ARMCC::getOppositeCondition(CC);
|
|
|
|
// If the branch is at the end of its MBB and that has a fall-through block,
|
|
// direct the updated conditional branch to the fall-through block. Otherwise,
|
|
// split the MBB before the next instruction.
|
|
MachineBasicBlock *MBB = MI->getParent();
|
|
MachineInstr *BMI = &MBB->back();
|
|
bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB);
|
|
|
|
NumCBrFixed++;
|
|
if (BMI != MI) {
|
|
if (next(MachineBasicBlock::iterator(MI)) == MBB->back() &&
|
|
BMI->getOpcode() == Br.UncondBr) {
|
|
// Last MI in the BB is a unconditional branch. Can we simply invert the
|
|
// condition and swap destinations:
|
|
// beq L1
|
|
// b L2
|
|
// =>
|
|
// bne L2
|
|
// b L1
|
|
MachineBasicBlock *NewDest = BMI->getOperand(0).getMachineBasicBlock();
|
|
if (BBIsInRange(MI, NewDest, Br.MaxDisp)) {
|
|
DEBUG(std::cerr << " Invert Bcc condition and swap its destination"
|
|
<< " with " << *BMI);
|
|
|
|
BMI->getOperand(0).setMachineBasicBlock(DestBB);
|
|
MI->getOperand(0).setMachineBasicBlock(NewDest);
|
|
MI->getOperand(1).setImm(CC);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (NeedSplit) {
|
|
SplitBlockBeforeInstr(MI);
|
|
// No need for the branch to the next block. We're adding a unconditional
|
|
// branch to the destination.
|
|
MBB->back().eraseFromParent();
|
|
}
|
|
MachineBasicBlock *NextBB = next(MachineFunction::iterator(MBB));
|
|
|
|
DEBUG(std::cerr << " Insert B to BB#" << DestBB->getNumber()
|
|
<< " also invert condition and change dest. to BB#"
|
|
<< NextBB->getNumber() << "\n");
|
|
|
|
// Insert a unconditional branch and replace the conditional branch.
|
|
// Also update the ImmBranch as well as adding a new entry for the new branch.
|
|
BuildMI(MBB, TII->get(MI->getOpcode())).addMBB(NextBB).addImm(CC);
|
|
Br.MI = &MBB->back();
|
|
BuildMI(MBB, TII->get(Br.UncondBr)).addMBB(DestBB);
|
|
unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr);
|
|
ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr));
|
|
MI->eraseFromParent();
|
|
|
|
// Increase the size of MBB to account for the new unconditional branch.
|
|
BBSizes[MBB->getNumber()] += ARM::GetInstSize(&MBB->back());
|
|
return true;
|
|
}
|
|
|
|
|
|
/// UndoLRSpillRestore - Remove Thumb push / pop instructions that only spills
|
|
/// LR / restores LR to pc.
|
|
bool ARMConstantIslands::UndoLRSpillRestore() {
|
|
bool MadeChange = false;
|
|
for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) {
|
|
MachineInstr *MI = PushPopMIs[i];
|
|
if (MI->getNumOperands() == 1) {
|
|
if (MI->getOpcode() == ARM::tPOP_RET &&
|
|
MI->getOperand(0).getReg() == ARM::PC)
|
|
BuildMI(MI->getParent(), TII->get(ARM::tBX_RET));
|
|
MI->eraseFromParent();
|
|
MadeChange = true;
|
|
}
|
|
}
|
|
return MadeChange;
|
|
}
|