mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-17 03:30:28 +00:00
a59d469e9b
for CellSPU modifications: - SPUInstrInfo.td refactoring: "multiclass" really is _your_ friend. - Other improvements based on refactoring effort in SPUISelLowering.cpp, esp. in SPUISelLowering::PerformDAGCombine(), where zero amount shifts and rotates are now eliminiated, other scalar-to-vector-to-scalar silliness is also eliminated. - 64-bit operations are being implemented, _muldi3.c gcc runtime now compiles and generates the right code. More work still needs to be done. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@47532 91177308-0d34-0410-b5e6-96231b3b80d8
4073 lines
149 KiB
TableGen
4073 lines
149 KiB
TableGen
//==- SPUInstrInfo.td - Describe the Cell SPU Instructions -*- tablegen -*-==//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
// Cell SPU Instructions:
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TODO Items (not urgent today, but would be nice, low priority)
|
|
//
|
|
// ANDBI, ORBI: SPU constructs a 4-byte constant for these instructions by
|
|
// concatenating the byte argument b as "bbbb". Could recognize this bit pattern
|
|
// in 16-bit and 32-bit constants and reduce instruction count.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Pseudo instructions:
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
let hasCtrlDep = 1, Defs = [R1], Uses = [R1] in {
|
|
def ADJCALLSTACKDOWN : Pseudo<(outs), (ins u16imm:$amt),
|
|
"${:comment} ADJCALLSTACKDOWN",
|
|
[(callseq_start imm:$amt)]>;
|
|
def ADJCALLSTACKUP : Pseudo<(outs), (ins u16imm:$amt),
|
|
"${:comment} ADJCALLSTACKUP",
|
|
[(callseq_end imm:$amt)]>;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DWARF debugging Pseudo Instructions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
def DWARF_LOC : Pseudo<(outs), (ins i32imm:$line, i32imm:$col, i32imm:$file),
|
|
"${:comment} .loc $file, $line, $col",
|
|
[(dwarf_loc (i32 imm:$line), (i32 imm:$col),
|
|
(i32 imm:$file))]>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Loads:
|
|
// NB: The ordering is actually important, since the instruction selection
|
|
// will try each of the instructions in sequence, i.e., the D-form first with
|
|
// the 10-bit displacement, then the A-form with the 16 bit displacement, and
|
|
// finally the X-form with the register-register.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
let isSimpleLoad = 1 in {
|
|
class LoadDFormVec<ValueType vectype>
|
|
: RI10Form<0b00101100, (outs VECREG:$rT), (ins memri10:$src),
|
|
"lqd\t$rT, $src",
|
|
LoadStore,
|
|
[(set (vectype VECREG:$rT), (load dform_addr:$src))]>
|
|
{ }
|
|
|
|
class LoadDForm<RegisterClass rclass>
|
|
: RI10Form<0b00101100, (outs rclass:$rT), (ins memri10:$src),
|
|
"lqd\t$rT, $src",
|
|
LoadStore,
|
|
[(set rclass:$rT, (load dform_addr:$src))]>
|
|
{ }
|
|
|
|
multiclass LoadDForms
|
|
{
|
|
def v16i8: LoadDFormVec<v16i8>;
|
|
def v8i16: LoadDFormVec<v8i16>;
|
|
def v4i32: LoadDFormVec<v4i32>;
|
|
def v2i64: LoadDFormVec<v2i64>;
|
|
def v4f32: LoadDFormVec<v4f32>;
|
|
def v2f64: LoadDFormVec<v2f64>;
|
|
|
|
def r128: LoadDForm<GPRC>;
|
|
def r64: LoadDForm<R64C>;
|
|
def r32: LoadDForm<R32C>;
|
|
def f32: LoadDForm<R32FP>;
|
|
def f64: LoadDForm<R64FP>;
|
|
def r16: LoadDForm<R16C>;
|
|
def r8: LoadDForm<R8C>;
|
|
}
|
|
|
|
class LoadAFormVec<ValueType vectype>
|
|
: RI16Form<0b100001100, (outs VECREG:$rT), (ins addr256k:$src),
|
|
"lqa\t$rT, $src",
|
|
LoadStore,
|
|
[(set (vectype VECREG:$rT), (load aform_addr:$src))]>
|
|
{ }
|
|
|
|
class LoadAForm<RegisterClass rclass>
|
|
: RI16Form<0b100001100, (outs rclass:$rT), (ins addr256k:$src),
|
|
"lqa\t$rT, $src",
|
|
LoadStore,
|
|
[(set rclass:$rT, (load aform_addr:$src))]>
|
|
{ }
|
|
|
|
multiclass LoadAForms
|
|
{
|
|
def v16i8: LoadAFormVec<v16i8>;
|
|
def v8i16: LoadAFormVec<v8i16>;
|
|
def v4i32: LoadAFormVec<v4i32>;
|
|
def v2i64: LoadAFormVec<v2i64>;
|
|
def v4f32: LoadAFormVec<v4f32>;
|
|
def v2f64: LoadAFormVec<v2f64>;
|
|
|
|
def r128: LoadAForm<GPRC>;
|
|
def r64: LoadAForm<R64C>;
|
|
def r32: LoadAForm<R32C>;
|
|
def f32: LoadAForm<R32FP>;
|
|
def f64: LoadAForm<R64FP>;
|
|
def r16: LoadAForm<R16C>;
|
|
def r8: LoadAForm<R8C>;
|
|
}
|
|
|
|
class LoadXFormVec<ValueType vectype>
|
|
: RRForm<0b00100011100, (outs VECREG:$rT), (ins memrr:$src),
|
|
"lqx\t$rT, $src",
|
|
LoadStore,
|
|
[(set (vectype VECREG:$rT), (load xform_addr:$src))]>
|
|
{ }
|
|
|
|
class LoadXForm<RegisterClass rclass>
|
|
: RRForm<0b00100011100, (outs rclass:$rT), (ins memrr:$src),
|
|
"lqx\t$rT, $src",
|
|
LoadStore,
|
|
[(set rclass:$rT, (load xform_addr:$src))]>
|
|
{ }
|
|
|
|
multiclass LoadXForms
|
|
{
|
|
def v16i8: LoadXFormVec<v16i8>;
|
|
def v8i16: LoadXFormVec<v8i16>;
|
|
def v4i32: LoadXFormVec<v4i32>;
|
|
def v2i64: LoadXFormVec<v2i64>;
|
|
def v4f32: LoadXFormVec<v4f32>;
|
|
def v2f64: LoadXFormVec<v2f64>;
|
|
|
|
def r128: LoadXForm<GPRC>;
|
|
def r64: LoadXForm<R64C>;
|
|
def r32: LoadXForm<R32C>;
|
|
def f32: LoadXForm<R32FP>;
|
|
def f64: LoadXForm<R64FP>;
|
|
def r16: LoadXForm<R16C>;
|
|
def r8: LoadXForm<R8C>;
|
|
}
|
|
|
|
defm LQA : LoadAForms;
|
|
defm LQD : LoadDForms;
|
|
defm LQX : LoadXForms;
|
|
|
|
/* Load quadword, PC relative: Not much use at this point in time.
|
|
Might be of use later for relocatable code. It's effectively the
|
|
same as LQA, but uses PC-relative addressing.
|
|
def LQR : RI16Form<0b111001100, (outs VECREG:$rT), (ins s16imm:$disp),
|
|
"lqr\t$rT, $disp", LoadStore,
|
|
[(set VECREG:$rT, (load iaddr:$disp))]>;
|
|
*/
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Stores:
|
|
//===----------------------------------------------------------------------===//
|
|
class StoreDFormVec<ValueType vectype>
|
|
: RI10Form<0b00100100, (outs), (ins VECREG:$rT, memri10:$src),
|
|
"stqd\t$rT, $src",
|
|
LoadStore,
|
|
[(store (vectype VECREG:$rT), dform_addr:$src)]>
|
|
{ }
|
|
|
|
class StoreDForm<RegisterClass rclass>
|
|
: RI10Form<0b00100100, (outs), (ins rclass:$rT, memri10:$src),
|
|
"stqd\t$rT, $src",
|
|
LoadStore,
|
|
[(store rclass:$rT, dform_addr:$src)]>
|
|
{ }
|
|
|
|
multiclass StoreDForms
|
|
{
|
|
def v16i8: StoreDFormVec<v16i8>;
|
|
def v8i16: StoreDFormVec<v8i16>;
|
|
def v4i32: StoreDFormVec<v4i32>;
|
|
def v2i64: StoreDFormVec<v2i64>;
|
|
def v4f32: StoreDFormVec<v4f32>;
|
|
def v2f64: StoreDFormVec<v2f64>;
|
|
|
|
def r128: StoreDForm<GPRC>;
|
|
def r64: StoreDForm<R64C>;
|
|
def r32: StoreDForm<R32C>;
|
|
def f32: StoreDForm<R32FP>;
|
|
def f64: StoreDForm<R64FP>;
|
|
def r16: StoreDForm<R16C>;
|
|
def r8: StoreDForm<R8C>;
|
|
}
|
|
|
|
class StoreAFormVec<ValueType vectype>
|
|
: RI16Form<0b0010010, (outs), (ins VECREG:$rT, addr256k:$src),
|
|
"stqa\t$rT, $src",
|
|
LoadStore,
|
|
[(store (vectype VECREG:$rT), aform_addr:$src)]>
|
|
{ }
|
|
|
|
class StoreAForm<RegisterClass rclass>
|
|
: RI16Form<0b001001, (outs), (ins rclass:$rT, addr256k:$src),
|
|
"stqa\t$rT, $src",
|
|
LoadStore,
|
|
[(store rclass:$rT, aform_addr:$src)]>
|
|
{ }
|
|
|
|
multiclass StoreAForms
|
|
{
|
|
def v16i8: StoreAFormVec<v16i8>;
|
|
def v8i16: StoreAFormVec<v8i16>;
|
|
def v4i32: StoreAFormVec<v4i32>;
|
|
def v2i64: StoreAFormVec<v2i64>;
|
|
def v4f32: StoreAFormVec<v4f32>;
|
|
def v2f64: StoreAFormVec<v2f64>;
|
|
|
|
def r128: StoreAForm<GPRC>;
|
|
def r64: StoreAForm<R64C>;
|
|
def r32: StoreAForm<R32C>;
|
|
def f32: StoreAForm<R32FP>;
|
|
def f64: StoreAForm<R64FP>;
|
|
def r16: StoreAForm<R16C>;
|
|
def r8: StoreAForm<R8C>;
|
|
}
|
|
|
|
class StoreXFormVec<ValueType vectype>
|
|
: RRForm<0b00100100, (outs), (ins VECREG:$rT, memrr:$src),
|
|
"stqx\t$rT, $src",
|
|
LoadStore,
|
|
[(store (vectype VECREG:$rT), xform_addr:$src)]>
|
|
{ }
|
|
|
|
class StoreXForm<RegisterClass rclass>
|
|
: RRForm<0b00100100, (outs), (ins rclass:$rT, memrr:$src),
|
|
"stqx\t$rT, $src",
|
|
LoadStore,
|
|
[(store rclass:$rT, xform_addr:$src)]>
|
|
{ }
|
|
|
|
multiclass StoreXForms
|
|
{
|
|
def v16i8: StoreXFormVec<v16i8>;
|
|
def v8i16: StoreXFormVec<v8i16>;
|
|
def v4i32: StoreXFormVec<v4i32>;
|
|
def v2i64: StoreXFormVec<v2i64>;
|
|
def v4f32: StoreXFormVec<v4f32>;
|
|
def v2f64: StoreXFormVec<v2f64>;
|
|
|
|
def r128: StoreXForm<GPRC>;
|
|
def r64: StoreXForm<R64C>;
|
|
def r32: StoreXForm<R32C>;
|
|
def f32: StoreXForm<R32FP>;
|
|
def f64: StoreXForm<R64FP>;
|
|
def r16: StoreXForm<R16C>;
|
|
def r8: StoreXForm<R8C>;
|
|
}
|
|
|
|
defm STQD : StoreDForms;
|
|
defm STQA : StoreAForms;
|
|
defm STQX : StoreXForms;
|
|
|
|
/* Store quadword, PC relative: Not much use at this point in time. Might
|
|
be useful for relocatable code.
|
|
def STQR : RI16Form<0b111000100, (outs), (ins VECREG:$rT, s16imm:$disp),
|
|
"stqr\t$rT, $disp", LoadStore,
|
|
[(store VECREG:$rT, iaddr:$disp)]>;
|
|
*/
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Generate Controls for Insertion:
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
def CBD :
|
|
RI7Form<0b10101111100, (outs VECREG:$rT), (ins memri7:$src),
|
|
"cbd\t$rT, $src", ShuffleOp,
|
|
[(set (v16i8 VECREG:$rT), (SPUvecinsmask dform2_addr:$src))]>;
|
|
|
|
def CBX : RRForm<0b00101011100, (outs VECREG:$rT), (ins memrr:$src),
|
|
"cbx\t$rT, $src", ShuffleOp,
|
|
[(set (v16i8 VECREG:$rT), (SPUvecinsmask xform_addr:$src))]>;
|
|
|
|
def CHD : RI7Form<0b10101111100, (outs VECREG:$rT), (ins memri7:$src),
|
|
"chd\t$rT, $src", ShuffleOp,
|
|
[(set (v8i16 VECREG:$rT), (SPUvecinsmask dform2_addr:$src))]>;
|
|
|
|
def CHX : RRForm<0b10101011100, (outs VECREG:$rT), (ins memrr:$src),
|
|
"chx\t$rT, $src", ShuffleOp,
|
|
[(set (v8i16 VECREG:$rT), (SPUvecinsmask xform_addr:$src))]>;
|
|
|
|
def CWD : RI7Form<0b01101111100, (outs VECREG:$rT), (ins memri7:$src),
|
|
"cwd\t$rT, $src", ShuffleOp,
|
|
[(set (v4i32 VECREG:$rT), (SPUvecinsmask dform2_addr:$src))]>;
|
|
|
|
def CWX : RRForm<0b01101011100, (outs VECREG:$rT), (ins memrr:$src),
|
|
"cwx\t$rT, $src", ShuffleOp,
|
|
[(set (v4i32 VECREG:$rT), (SPUvecinsmask xform_addr:$src))]>;
|
|
|
|
def CDD : RI7Form<0b11101111100, (outs VECREG:$rT), (ins memri7:$src),
|
|
"cdd\t$rT, $src", ShuffleOp,
|
|
[(set (v2i64 VECREG:$rT), (SPUvecinsmask dform2_addr:$src))]>;
|
|
|
|
def CDX : RRForm<0b11101011100, (outs VECREG:$rT), (ins memrr:$src),
|
|
"cdx\t$rT, $src", ShuffleOp,
|
|
[(set (v2i64 VECREG:$rT), (SPUvecinsmask xform_addr:$src))]>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Constant formation:
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
def ILHv8i16:
|
|
RI16Form<0b110000010, (outs VECREG:$rT), (ins s16imm:$val),
|
|
"ilh\t$rT, $val", ImmLoad,
|
|
[(set (v8i16 VECREG:$rT), (v8i16 v8i16SExt16Imm:$val))]>;
|
|
|
|
def ILHr16:
|
|
RI16Form<0b110000010, (outs R16C:$rT), (ins s16imm:$val),
|
|
"ilh\t$rT, $val", ImmLoad,
|
|
[(set R16C:$rT, immSExt16:$val)]>;
|
|
|
|
// Cell SPU doesn't have a native 8-bit immediate load, but ILH works ("with
|
|
// the right constant")
|
|
def ILHr8:
|
|
RI16Form<0b110000010, (outs R8C:$rT), (ins s16imm_i8:$val),
|
|
"ilh\t$rT, $val", ImmLoad,
|
|
[(set R8C:$rT, immSExt8:$val)]>;
|
|
|
|
// IL does sign extension!
|
|
def ILr64:
|
|
RI16Form<0b100000010, (outs R64C:$rT), (ins s16imm_i64:$val),
|
|
"il\t$rT, $val", ImmLoad,
|
|
[(set R64C:$rT, immSExt16:$val)]>;
|
|
|
|
def ILv2i64:
|
|
RI16Form<0b100000010, (outs VECREG:$rT), (ins s16imm_i64:$val),
|
|
"il\t$rT, $val", ImmLoad,
|
|
[(set VECREG:$rT, (v2i64 v2i64SExt16Imm:$val))]>;
|
|
|
|
def ILv4i32:
|
|
RI16Form<0b100000010, (outs VECREG:$rT), (ins s16imm:$val),
|
|
"il\t$rT, $val", ImmLoad,
|
|
[(set VECREG:$rT, (v4i32 v4i32SExt16Imm:$val))]>;
|
|
|
|
def ILr32:
|
|
RI16Form<0b100000010, (outs R32C:$rT), (ins s16imm_i32:$val),
|
|
"il\t$rT, $val", ImmLoad,
|
|
[(set R32C:$rT, immSExt16:$val)]>;
|
|
|
|
def ILf32:
|
|
RI16Form<0b100000010, (outs R32FP:$rT), (ins s16imm_f32:$val),
|
|
"il\t$rT, $val", ImmLoad,
|
|
[(set R32FP:$rT, fpimmSExt16:$val)]>;
|
|
|
|
def ILf64:
|
|
RI16Form<0b100000010, (outs R64FP:$rT), (ins s16imm_f64:$val),
|
|
"il\t$rT, $val", ImmLoad,
|
|
[(set R64FP:$rT, fpimmSExt16:$val)]>;
|
|
|
|
def ILHUv4i32:
|
|
RI16Form<0b010000010, (outs VECREG:$rT), (ins u16imm:$val),
|
|
"ilhu\t$rT, $val", ImmLoad,
|
|
[(set VECREG:$rT, (v4i32 immILHUvec:$val))]>;
|
|
|
|
def ILHUr32:
|
|
RI16Form<0b010000010, (outs R32C:$rT), (ins u16imm:$val),
|
|
"ilhu\t$rT, $val", ImmLoad,
|
|
[(set R32C:$rT, hi16:$val)]>;
|
|
|
|
// ILHUf32: Used to custom lower float constant loads
|
|
def ILHUf32:
|
|
RI16Form<0b010000010, (outs R32FP:$rT), (ins f16imm:$val),
|
|
"ilhu\t$rT, $val", ImmLoad,
|
|
[(set R32FP:$rT, hi16_f32:$val)]>;
|
|
|
|
// ILHUhi: Used for loading high portion of an address. Note the symbolHi
|
|
// printer used for the operand.
|
|
def ILHUhi:
|
|
RI16Form<0b010000010, (outs R32C:$rT), (ins symbolHi:$val),
|
|
"ilhu\t$rT, $val", ImmLoad,
|
|
[(set R32C:$rT, hi16:$val)]>;
|
|
|
|
// Immediate load address (can also be used to load 18-bit unsigned constants,
|
|
// see the zext 16->32 pattern)
|
|
class ILAInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RI18Form<0b1000010, OOL, IOL, "ila\t$rT, $val",
|
|
LoadNOP, pattern>;
|
|
|
|
multiclass ImmLoadAddress
|
|
{
|
|
def v2i64: ILAInst<(outs VECREG:$rT), (ins u18imm:$val),
|
|
[(set (v2i64 VECREG:$rT), v2i64Uns18Imm:$val)]>;
|
|
|
|
def v4i32: ILAInst<(outs VECREG:$rT), (ins u18imm:$val),
|
|
[(set (v4i32 VECREG:$rT), v4i32Uns18Imm:$val)]>;
|
|
|
|
def r64: ILAInst<(outs R64C:$rT), (ins u18imm_i64:$val),
|
|
[(set R64C:$rT, imm18:$val)]>;
|
|
|
|
def r32: ILAInst<(outs R32C:$rT), (ins u18imm:$val),
|
|
[(set R32C:$rT, imm18:$val)]>;
|
|
|
|
def f32: ILAInst<(outs R32FP:$rT), (ins f18imm:$val),
|
|
[(set R32FP:$rT, fpimm18:$val)]>;
|
|
|
|
def f64: ILAInst<(outs R64FP:$rT), (ins f18imm_f64:$val),
|
|
[(set R64FP:$rT, fpimm18:$val)]>;
|
|
|
|
def lo: ILAInst<(outs R32C:$rT), (ins symbolLo:$val),
|
|
[(set R32C:$rT, imm18:$val)]>;
|
|
|
|
def lsa: ILAInst<(outs R32C:$rT), (ins symbolLSA:$val),
|
|
[/* no pattern */]>;
|
|
}
|
|
|
|
defm ILA : ImmLoadAddress;
|
|
|
|
// Immediate OR, Halfword Lower: The "other" part of loading large constants
|
|
// into 32-bit registers. See the anonymous pattern Pat<(i32 imm:$imm), ...>
|
|
// Note that these are really two operand instructions, but they're encoded
|
|
// as three operands with the first two arguments tied-to each other.
|
|
|
|
def IOHLvec:
|
|
RI16Form<0b100000110, (outs VECREG:$rT), (ins VECREG:$rS, u16imm:$val),
|
|
"iohl\t$rT, $val", ImmLoad,
|
|
[/* insert intrinsic here */]>,
|
|
RegConstraint<"$rS = $rT">,
|
|
NoEncode<"$rS">;
|
|
|
|
def IOHLr32:
|
|
RI16Form<0b100000110, (outs R32C:$rT), (ins R32C:$rS, i32imm:$val),
|
|
"iohl\t$rT, $val", ImmLoad,
|
|
[/* insert intrinsic here */]>,
|
|
RegConstraint<"$rS = $rT">,
|
|
NoEncode<"$rS">;
|
|
|
|
def IOHLf32:
|
|
RI16Form<0b100000110, (outs R32FP:$rT), (ins R32FP:$rS, f32imm:$val),
|
|
"iohl\t$rT, $val", ImmLoad,
|
|
[/* insert intrinsic here */]>,
|
|
RegConstraint<"$rS = $rT">,
|
|
NoEncode<"$rS">;
|
|
|
|
def IOHLlo:
|
|
RI16Form<0b100000110, (outs R32C:$rT), (ins R32C:$rS, symbolLo:$val),
|
|
"iohl\t$rT, $val", ImmLoad,
|
|
[/* no pattern */]>,
|
|
RegConstraint<"$rS = $rT">,
|
|
NoEncode<"$rS">;
|
|
|
|
// Form select mask for bytes using immediate, used in conjunction with the
|
|
// SELB instruction:
|
|
|
|
class FSMBIVec<ValueType vectype>
|
|
: RI16Form<0b101001100, (outs VECREG:$rT), (ins u16imm:$val),
|
|
"fsmbi\t$rT, $val",
|
|
SelectOp,
|
|
[(set (vectype VECREG:$rT), (SPUfsmbi immU16:$val))]>
|
|
{ }
|
|
|
|
multiclass FormSelectMaskBytesImm
|
|
{
|
|
def v16i8: FSMBIVec<v16i8>;
|
|
def v8i16: FSMBIVec<v8i16>;
|
|
def v4i32: FSMBIVec<v4i32>;
|
|
def v2i64: FSMBIVec<v2i64>;
|
|
}
|
|
|
|
defm FSMBI : FormSelectMaskBytesImm;
|
|
|
|
// fsmb: Form select mask for bytes. N.B. Input operand, $rA, is 16-bits
|
|
def FSMB:
|
|
RRForm_1<0b01101101100, (outs VECREG:$rT), (ins R16C:$rA),
|
|
"fsmb\t$rT, $rA", SelectOp,
|
|
[]>;
|
|
|
|
// fsmh: Form select mask for halfwords. N.B., Input operand, $rA, is
|
|
// only 8-bits wide (even though it's input as 16-bits here)
|
|
def FSMH:
|
|
RRForm_1<0b10101101100, (outs VECREG:$rT), (ins R16C:$rA),
|
|
"fsmh\t$rT, $rA", SelectOp,
|
|
[]>;
|
|
|
|
// fsm: Form select mask for words. Like the other fsm* instructions,
|
|
// only the lower 4 bits of $rA are significant.
|
|
def FSM:
|
|
RRForm_1<0b00101101100, (outs VECREG:$rT), (ins R16C:$rA),
|
|
"fsm\t$rT, $rA", SelectOp,
|
|
[]>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Integer and Logical Operations:
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
def AHv8i16:
|
|
RRForm<0b00010011000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
"ah\t$rT, $rA, $rB", IntegerOp,
|
|
[(set (v8i16 VECREG:$rT), (int_spu_si_ah VECREG:$rA, VECREG:$rB))]>;
|
|
|
|
def : Pat<(add (v8i16 VECREG:$rA), (v8i16 VECREG:$rB)),
|
|
(AHv8i16 VECREG:$rA, VECREG:$rB)>;
|
|
|
|
def AHr16:
|
|
RRForm<0b00010011000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
|
|
"ah\t$rT, $rA, $rB", IntegerOp,
|
|
[(set R16C:$rT, (add R16C:$rA, R16C:$rB))]>;
|
|
|
|
def AHIvec:
|
|
RI10Form<0b10111000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
|
|
"ahi\t$rT, $rA, $val", IntegerOp,
|
|
[(set (v8i16 VECREG:$rT), (add (v8i16 VECREG:$rA),
|
|
v8i16SExt10Imm:$val))]>;
|
|
|
|
def AHIr16:
|
|
RI10Form<0b10111000, (outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
|
|
"ahi\t$rT, $rA, $val", IntegerOp,
|
|
[(set R16C:$rT, (add R16C:$rA, v8i16SExt10Imm:$val))]>;
|
|
|
|
def Avec:
|
|
RRForm<0b00000011000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
"a\t$rT, $rA, $rB", IntegerOp,
|
|
[(set (v4i32 VECREG:$rT), (add (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>;
|
|
|
|
def : Pat<(add (v16i8 VECREG:$rA), (v16i8 VECREG:$rB)),
|
|
(Avec VECREG:$rA, VECREG:$rB)>;
|
|
|
|
def Ar32:
|
|
RRForm<0b00000011000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
|
|
"a\t$rT, $rA, $rB", IntegerOp,
|
|
[(set R32C:$rT, (add R32C:$rA, R32C:$rB))]>;
|
|
|
|
def Ar8:
|
|
RRForm<0b00000011000, (outs R8C:$rT), (ins R8C:$rA, R8C:$rB),
|
|
"a\t$rT, $rA, $rB", IntegerOp,
|
|
[(set R8C:$rT, (add R8C:$rA, R8C:$rB))]>;
|
|
|
|
def AIvec:
|
|
RI10Form<0b00111000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
|
|
"ai\t$rT, $rA, $val", IntegerOp,
|
|
[(set (v4i32 VECREG:$rT), (add (v4i32 VECREG:$rA),
|
|
v4i32SExt10Imm:$val))]>;
|
|
|
|
def AIr32:
|
|
RI10Form<0b00111000, (outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val),
|
|
"ai\t$rT, $rA, $val", IntegerOp,
|
|
[(set R32C:$rT, (add R32C:$rA, i32ImmSExt10:$val))]>;
|
|
|
|
def SFHvec:
|
|
RRForm<0b00010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
"sfh\t$rT, $rA, $rB", IntegerOp,
|
|
[(set (v8i16 VECREG:$rT), (sub (v8i16 VECREG:$rA),
|
|
(v8i16 VECREG:$rB)))]>;
|
|
|
|
def SFHr16:
|
|
RRForm<0b00010010000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
|
|
"sfh\t$rT, $rA, $rB", IntegerOp,
|
|
[(set R16C:$rT, (sub R16C:$rA, R16C:$rB))]>;
|
|
|
|
def SFHIvec:
|
|
RI10Form<0b10110000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
|
|
"sfhi\t$rT, $rA, $val", IntegerOp,
|
|
[(set (v8i16 VECREG:$rT), (sub v8i16SExt10Imm:$val,
|
|
(v8i16 VECREG:$rA)))]>;
|
|
|
|
def SFHIr16 : RI10Form<0b10110000, (outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
|
|
"sfhi\t$rT, $rA, $val", IntegerOp,
|
|
[(set R16C:$rT, (sub i16ImmSExt10:$val, R16C:$rA))]>;
|
|
|
|
def SFvec : RRForm<0b00000010000, (outs VECREG:$rT),
|
|
(ins VECREG:$rA, VECREG:$rB),
|
|
"sf\t$rT, $rA, $rB", IntegerOp,
|
|
[(set (v4i32 VECREG:$rT), (sub (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>;
|
|
|
|
def SFr32 : RRForm<0b00000010000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
|
|
"sf\t$rT, $rA, $rB", IntegerOp,
|
|
[(set R32C:$rT, (sub R32C:$rA, R32C:$rB))]>;
|
|
|
|
def SFIvec:
|
|
RI10Form<0b00110000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
|
|
"sfi\t$rT, $rA, $val", IntegerOp,
|
|
[(set (v4i32 VECREG:$rT), (sub v4i32SExt10Imm:$val,
|
|
(v4i32 VECREG:$rA)))]>;
|
|
|
|
def SFIr32 : RI10Form<0b00110000, (outs R32C:$rT),
|
|
(ins R32C:$rA, s10imm_i32:$val),
|
|
"sfi\t$rT, $rA, $val", IntegerOp,
|
|
[(set R32C:$rT, (sub i32ImmSExt10:$val, R32C:$rA))]>;
|
|
|
|
// ADDX: only available in vector form, doesn't match a pattern.
|
|
def ADDXvec:
|
|
RRForm<0b00000010110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB,
|
|
VECREG:$rCarry),
|
|
"addx\t$rT, $rA, $rB", IntegerOp,
|
|
[]>,
|
|
RegConstraint<"$rCarry = $rT">,
|
|
NoEncode<"$rCarry">;
|
|
|
|
// CG: only available in vector form, doesn't match a pattern.
|
|
def CGvec:
|
|
RRForm<0b01000011000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB,
|
|
VECREG:$rCarry),
|
|
"cg\t$rT, $rA, $rB", IntegerOp,
|
|
[]>,
|
|
RegConstraint<"$rCarry = $rT">,
|
|
NoEncode<"$rCarry">;
|
|
|
|
// SFX: only available in vector form, doesn't match a pattern
|
|
def SFXvec:
|
|
RRForm<0b10000010110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB,
|
|
VECREG:$rCarry),
|
|
"sfx\t$rT, $rA, $rB", IntegerOp,
|
|
[]>,
|
|
RegConstraint<"$rCarry = $rT">,
|
|
NoEncode<"$rCarry">;
|
|
|
|
// BG: only available in vector form, doesn't match a pattern.
|
|
def BGvec:
|
|
RRForm<0b01000010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB,
|
|
VECREG:$rCarry),
|
|
"bg\t$rT, $rA, $rB", IntegerOp,
|
|
[]>,
|
|
RegConstraint<"$rCarry = $rT">,
|
|
NoEncode<"$rCarry">;
|
|
|
|
// BGX: only available in vector form, doesn't match a pattern.
|
|
def BGXvec:
|
|
RRForm<0b11000010110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB,
|
|
VECREG:$rCarry),
|
|
"bgx\t$rT, $rA, $rB", IntegerOp,
|
|
[]>,
|
|
RegConstraint<"$rCarry = $rT">,
|
|
NoEncode<"$rCarry">;
|
|
|
|
// Halfword multiply variants:
|
|
// N.B: These can be used to build up larger quantities (16x16 -> 32)
|
|
|
|
def MPYv8i16:
|
|
RRForm<0b00100011110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
"mpy\t$rT, $rA, $rB", IntegerMulDiv,
|
|
[(set (v8i16 VECREG:$rT), (SPUmpy_v8i16 (v8i16 VECREG:$rA),
|
|
(v8i16 VECREG:$rB)))]>;
|
|
|
|
def MPYr16:
|
|
RRForm<0b00100011110, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
|
|
"mpy\t$rT, $rA, $rB", IntegerMulDiv,
|
|
[(set R16C:$rT, (mul R16C:$rA, R16C:$rB))]>;
|
|
|
|
def MPYUv4i32:
|
|
RRForm<0b00110011110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
"mpyu\t$rT, $rA, $rB", IntegerMulDiv,
|
|
[(set (v4i32 VECREG:$rT),
|
|
(SPUmpyu_v4i32 (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>;
|
|
|
|
def MPYUr16:
|
|
RRForm<0b00110011110, (outs R32C:$rT), (ins R16C:$rA, R16C:$rB),
|
|
"mpyu\t$rT, $rA, $rB", IntegerMulDiv,
|
|
[(set R32C:$rT, (mul (zext R16C:$rA),
|
|
(zext R16C:$rB)))]>;
|
|
|
|
def MPYUr32:
|
|
RRForm<0b00110011110, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
|
|
"mpyu\t$rT, $rA, $rB", IntegerMulDiv,
|
|
[(set R32C:$rT, (SPUmpyu_i32 R32C:$rA, R32C:$rB))]>;
|
|
|
|
// mpyi: multiply 16 x s10imm -> 32 result (custom lowering for 32 bit result,
|
|
// this only produces the lower 16 bits)
|
|
def MPYIvec:
|
|
RI10Form<0b00101110, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
|
|
"mpyi\t$rT, $rA, $val", IntegerMulDiv,
|
|
[(set (v8i16 VECREG:$rT), (mul (v8i16 VECREG:$rA), v8i16SExt10Imm:$val))]>;
|
|
|
|
def MPYIr16:
|
|
RI10Form<0b00101110, (outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
|
|
"mpyi\t$rT, $rA, $val", IntegerMulDiv,
|
|
[(set R16C:$rT, (mul R16C:$rA, i16ImmSExt10:$val))]>;
|
|
|
|
// mpyui: same issues as other multiplies, plus, this doesn't match a
|
|
// pattern... but may be used during target DAG selection or lowering
|
|
def MPYUIvec:
|
|
RI10Form<0b10101110, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
|
|
"mpyui\t$rT, $rA, $val", IntegerMulDiv,
|
|
[]>;
|
|
|
|
def MPYUIr16:
|
|
RI10Form<0b10101110, (outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
|
|
"mpyui\t$rT, $rA, $val", IntegerMulDiv,
|
|
[]>;
|
|
|
|
// mpya: 16 x 16 + 16 -> 32 bit result
|
|
def MPYAvec:
|
|
RRRForm<0b0011, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
|
|
"mpya\t$rT, $rA, $rB, $rC", IntegerMulDiv,
|
|
[(set (v4i32 VECREG:$rT), (add (v4i32 (bitconvert (mul (v8i16 VECREG:$rA),
|
|
(v8i16 VECREG:$rB)))),
|
|
(v4i32 VECREG:$rC)))]>;
|
|
|
|
def MPYAr32:
|
|
RRRForm<0b0011, (outs R32C:$rT), (ins R16C:$rA, R16C:$rB, R32C:$rC),
|
|
"mpya\t$rT, $rA, $rB, $rC", IntegerMulDiv,
|
|
[(set R32C:$rT, (add (sext (mul R16C:$rA, R16C:$rB)),
|
|
R32C:$rC))]>;
|
|
|
|
def : Pat<(add (mul (sext R16C:$rA), (sext R16C:$rB)), R32C:$rC),
|
|
(MPYAr32 R16C:$rA, R16C:$rB, R32C:$rC)>;
|
|
|
|
def MPYAr32_sextinreg:
|
|
RRRForm<0b0011, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB, R32C:$rC),
|
|
"mpya\t$rT, $rA, $rB, $rC", IntegerMulDiv,
|
|
[(set R32C:$rT, (add (mul (sext_inreg R32C:$rA, i16),
|
|
(sext_inreg R32C:$rB, i16)),
|
|
R32C:$rC))]>;
|
|
|
|
//def MPYAr32:
|
|
// RRRForm<0b0011, (outs R32C:$rT), (ins R16C:$rA, R16C:$rB, R32C:$rC),
|
|
// "mpya\t$rT, $rA, $rB, $rC", IntegerMulDiv,
|
|
// [(set R32C:$rT, (add (sext (mul R16C:$rA, R16C:$rB)),
|
|
// R32C:$rC))]>;
|
|
|
|
// mpyh: multiply high, used to synthesize 32-bit multiplies
|
|
def MPYHv4i32:
|
|
RRForm<0b10100011110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
"mpyh\t$rT, $rA, $rB", IntegerMulDiv,
|
|
[(set (v4i32 VECREG:$rT),
|
|
(SPUmpyh_v4i32 (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>;
|
|
|
|
def MPYHr32:
|
|
RRForm<0b10100011110, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
|
|
"mpyh\t$rT, $rA, $rB", IntegerMulDiv,
|
|
[(set R32C:$rT, (SPUmpyh_i32 R32C:$rA, R32C:$rB))]>;
|
|
|
|
// mpys: multiply high and shift right (returns the top half of
|
|
// a 16-bit multiply, sign extended to 32 bits.)
|
|
def MPYSvec:
|
|
RRForm<0b11100011110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
"mpys\t$rT, $rA, $rB", IntegerMulDiv,
|
|
[]>;
|
|
|
|
def MPYSr16:
|
|
RRForm<0b11100011110, (outs R32C:$rT), (ins R16C:$rA, R16C:$rB),
|
|
"mpys\t$rT, $rA, $rB", IntegerMulDiv,
|
|
[]>;
|
|
|
|
// mpyhh: multiply high-high (returns the 32-bit result from multiplying
|
|
// the top 16 bits of the $rA, $rB)
|
|
def MPYHHv8i16:
|
|
RRForm<0b01100011110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
"mpyhh\t$rT, $rA, $rB", IntegerMulDiv,
|
|
[(set (v8i16 VECREG:$rT),
|
|
(SPUmpyhh_v8i16 (v8i16 VECREG:$rA), (v8i16 VECREG:$rB)))]>;
|
|
|
|
def MPYHHr32:
|
|
RRForm<0b01100011110, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
|
|
"mpyhh\t$rT, $rA, $rB", IntegerMulDiv,
|
|
[]>;
|
|
|
|
// mpyhha: Multiply high-high, add to $rT:
|
|
def MPYHHAvec:
|
|
RRForm<0b01100010110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
"mpyhha\t$rT, $rA, $rB", IntegerMulDiv,
|
|
[]>;
|
|
|
|
def MPYHHAr32:
|
|
RRForm<0b01100010110, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
|
|
"mpyhha\t$rT, $rA, $rB", IntegerMulDiv,
|
|
[]>;
|
|
|
|
// mpyhhu: Multiply high-high, unsigned
|
|
def MPYHHUvec:
|
|
RRForm<0b01110011110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
"mpyhhu\t$rT, $rA, $rB", IntegerMulDiv,
|
|
[]>;
|
|
|
|
def MPYHHUr32:
|
|
RRForm<0b01110011110, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
|
|
"mpyhhu\t$rT, $rA, $rB", IntegerMulDiv,
|
|
[]>;
|
|
|
|
// mpyhhau: Multiply high-high, unsigned
|
|
def MPYHHAUvec:
|
|
RRForm<0b01110010110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
"mpyhhau\t$rT, $rA, $rB", IntegerMulDiv,
|
|
[]>;
|
|
|
|
def MPYHHAUr32:
|
|
RRForm<0b01110010110, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
|
|
"mpyhhau\t$rT, $rA, $rB", IntegerMulDiv,
|
|
[]>;
|
|
|
|
// clz: Count leading zeroes
|
|
def CLZv4i32:
|
|
RRForm_1<0b10100101010, (outs VECREG:$rT), (ins VECREG:$rA),
|
|
"clz\t$rT, $rA", IntegerOp,
|
|
[/* intrinsic */]>;
|
|
|
|
def CLZr32:
|
|
RRForm_1<0b10100101010, (outs R32C:$rT), (ins R32C:$rA),
|
|
"clz\t$rT, $rA", IntegerOp,
|
|
[(set R32C:$rT, (ctlz R32C:$rA))]>;
|
|
|
|
// cntb: Count ones in bytes (aka "population count")
|
|
// NOTE: This instruction is really a vector instruction, but the custom
|
|
// lowering code uses it in unorthodox ways to support CTPOP for other
|
|
// data types!
|
|
def CNTBv16i8:
|
|
RRForm_1<0b00101101010, (outs VECREG:$rT), (ins VECREG:$rA),
|
|
"cntb\t$rT, $rA", IntegerOp,
|
|
[(set (v16i8 VECREG:$rT), (SPUcntb_v16i8 (v16i8 VECREG:$rA)))]>;
|
|
|
|
def CNTBv8i16 :
|
|
RRForm_1<0b00101101010, (outs VECREG:$rT), (ins VECREG:$rA),
|
|
"cntb\t$rT, $rA", IntegerOp,
|
|
[(set (v8i16 VECREG:$rT), (SPUcntb_v8i16 (v8i16 VECREG:$rA)))]>;
|
|
|
|
def CNTBv4i32 :
|
|
RRForm_1<0b00101101010, (outs VECREG:$rT), (ins VECREG:$rA),
|
|
"cntb\t$rT, $rA", IntegerOp,
|
|
[(set (v4i32 VECREG:$rT), (SPUcntb_v4i32 (v4i32 VECREG:$rA)))]>;
|
|
|
|
// gbb: Gather all low order bits from each byte in $rA into a single 16-bit
|
|
// quantity stored into $rT
|
|
def GBB:
|
|
RRForm_1<0b01001101100, (outs R16C:$rT), (ins VECREG:$rA),
|
|
"gbb\t$rT, $rA", GatherOp,
|
|
[]>;
|
|
|
|
// gbh: Gather all low order bits from each halfword in $rA into a single
|
|
// 8-bit quantity stored in $rT
|
|
def GBH:
|
|
RRForm_1<0b10001101100, (outs R16C:$rT), (ins VECREG:$rA),
|
|
"gbh\t$rT, $rA", GatherOp,
|
|
[]>;
|
|
|
|
// gb: Gather all low order bits from each word in $rA into a single
|
|
// 4-bit quantity stored in $rT
|
|
def GB:
|
|
RRForm_1<0b00001101100, (outs R16C:$rT), (ins VECREG:$rA),
|
|
"gb\t$rT, $rA", GatherOp,
|
|
[]>;
|
|
|
|
// avgb: average bytes
|
|
def AVGB:
|
|
RRForm<0b11001011000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
"avgb\t$rT, $rA, $rB", ByteOp,
|
|
[]>;
|
|
|
|
// absdb: absolute difference of bytes
|
|
def ABSDB:
|
|
RRForm<0b11001010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
"absdb\t$rT, $rA, $rB", ByteOp,
|
|
[]>;
|
|
|
|
// sumb: sum bytes into halfwords
|
|
def SUMB:
|
|
RRForm<0b11001010010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
"sumb\t$rT, $rA, $rB", ByteOp,
|
|
[]>;
|
|
|
|
// Sign extension operations:
|
|
def XSBHvec:
|
|
RRForm_1<0b01101101010, (outs VECREG:$rDst), (ins VECREG:$rSrc),
|
|
"xsbh\t$rDst, $rSrc", IntegerOp,
|
|
[(set (v8i16 VECREG:$rDst), (sext (v16i8 VECREG:$rSrc)))]>;
|
|
|
|
// Ordinary form for XSBH
|
|
def XSBHr16:
|
|
RRForm_1<0b01101101010, (outs R16C:$rDst), (ins R16C:$rSrc),
|
|
"xsbh\t$rDst, $rSrc", IntegerOp,
|
|
[(set R16C:$rDst, (sext_inreg R16C:$rSrc, i8))]>;
|
|
|
|
def XSBHr8:
|
|
RRForm_1<0b01101101010, (outs R16C:$rDst), (ins R8C:$rSrc),
|
|
"xsbh\t$rDst, $rSrc", IntegerOp,
|
|
[(set R16C:$rDst, (sext R8C:$rSrc))]>;
|
|
|
|
// 32-bit form for XSBH: used to sign extend 8-bit quantities to 16-bit
|
|
// quantities to 32-bit quantities via a 32-bit register (see the sext 8->32
|
|
// pattern below). Intentionally doesn't match a pattern because we want the
|
|
// sext 8->32 pattern to do the work for us, namely because we need the extra
|
|
// XSHWr32.
|
|
def XSBHr32:
|
|
RRForm_1<0b01101101010, (outs R32C:$rDst), (ins R32C:$rSrc),
|
|
"xsbh\t$rDst, $rSrc", IntegerOp,
|
|
[(set R32C:$rDst, (sext_inreg R32C:$rSrc, i8))]>;
|
|
|
|
// Sign extend halfwords to words:
|
|
def XSHWvec:
|
|
RRForm_1<0b01101101010, (outs VECREG:$rDest), (ins VECREG:$rSrc),
|
|
"xshw\t$rDest, $rSrc", IntegerOp,
|
|
[(set (v4i32 VECREG:$rDest), (sext (v8i16 VECREG:$rSrc)))]>;
|
|
|
|
def XSHWr32:
|
|
RRForm_1<0b01101101010, (outs R32C:$rDst), (ins R32C:$rSrc),
|
|
"xshw\t$rDst, $rSrc", IntegerOp,
|
|
[(set R32C:$rDst, (sext_inreg R32C:$rSrc, i16))]>;
|
|
|
|
def XSHWr16:
|
|
RRForm_1<0b01101101010, (outs R32C:$rDst), (ins R16C:$rSrc),
|
|
"xshw\t$rDst, $rSrc", IntegerOp,
|
|
[(set R32C:$rDst, (sext R16C:$rSrc))]>;
|
|
|
|
def XSWDvec:
|
|
RRForm_1<0b01100101010, (outs VECREG:$rDst), (ins VECREG:$rSrc),
|
|
"xswd\t$rDst, $rSrc", IntegerOp,
|
|
[(set (v2i64 VECREG:$rDst), (sext (v4i32 VECREG:$rSrc)))]>;
|
|
|
|
def XSWDr64:
|
|
RRForm_1<0b01100101010, (outs R64C:$rDst), (ins R64C:$rSrc),
|
|
"xswd\t$rDst, $rSrc", IntegerOp,
|
|
[(set R64C:$rDst, (sext_inreg R64C:$rSrc, i32))]>;
|
|
|
|
def XSWDr32:
|
|
RRForm_1<0b01100101010, (outs R64C:$rDst), (ins R32C:$rSrc),
|
|
"xswd\t$rDst, $rSrc", IntegerOp,
|
|
[(set R64C:$rDst, (SPUsext32_to_64 R32C:$rSrc))]>;
|
|
|
|
def : Pat<(sext R32C:$inp),
|
|
(XSWDr32 R32C:$inp)>;
|
|
|
|
// AND operations
|
|
|
|
class ANDInst<dag OOL, dag IOL, list<dag> pattern> :
|
|
RRForm<0b10000011000, OOL, IOL, "and\t$rT, $rA, $rB",
|
|
IntegerOp, pattern>;
|
|
|
|
class ANDVecInst<ValueType vectype>:
|
|
ANDInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
[(set (vectype VECREG:$rT), (and (vectype VECREG:$rA),
|
|
(vectype VECREG:$rB)))]>;
|
|
|
|
multiclass BitwiseAnd
|
|
{
|
|
def v16i8: ANDVecInst<v16i8>;
|
|
def v8i16: ANDVecInst<v8i16>;
|
|
def v4i32: ANDVecInst<v4i32>;
|
|
def v2i64: ANDVecInst<v2i64>;
|
|
|
|
def r64: ANDInst<(outs R64C:$rT), (ins R64C:$rA, R64C:$rB),
|
|
[(set R64C:$rT, (and R64C:$rA, R64C:$rB))]>;
|
|
|
|
def r32: ANDInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
|
|
[(set R32C:$rT, (and R32C:$rA, R32C:$rB))]>;
|
|
|
|
def r16: ANDInst<(outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
|
|
[(set R16C:$rT, (and R16C:$rA, R16C:$rB))]>;
|
|
|
|
def r8: ANDInst<(outs R8C:$rT), (ins R8C:$rA, R8C:$rB),
|
|
[(set R8C:$rT, (and R8C:$rA, R8C:$rB))]>;
|
|
|
|
//===---------------------------------------------
|
|
// Special instructions to perform the fabs instruction
|
|
def fabs32: ANDInst<(outs R32FP:$rT), (ins R32FP:$rA, R32C:$rB),
|
|
[/* Intentionally does not match a pattern */]>;
|
|
|
|
def fabs64: ANDInst<(outs R64FP:$rT), (ins R64FP:$rA, VECREG:$rB),
|
|
[/* Intentionally does not match a pattern */]>;
|
|
|
|
// Could use v4i32, but won't for clarity
|
|
def fabsvec: ANDInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
[/* Intentionally does not match a pattern */]>;
|
|
|
|
//===---------------------------------------------
|
|
|
|
// Hacked form of AND to zero-extend 16-bit quantities to 32-bit
|
|
// quantities -- see 16->32 zext pattern.
|
|
//
|
|
// This pattern is somewhat artificial, since it might match some
|
|
// compiler generated pattern but it is unlikely to do so.
|
|
|
|
def i16i32: ANDInst<(outs R32C:$rT), (ins R16C:$rA, R32C:$rB),
|
|
[(set R32C:$rT, (and (zext R16C:$rA), R32C:$rB))]>;
|
|
}
|
|
|
|
defm AND : BitwiseAnd;
|
|
|
|
// N.B.: vnot_conv is one of those special target selection pattern fragments,
|
|
// in which we expect there to be a bit_convert on the constant. Bear in mind
|
|
// that llvm translates "not <reg>" to "xor <reg>, -1" (or in this case, a
|
|
// constant -1 vector.)
|
|
|
|
class ANDCInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RRForm<0b10000011010, OOL, IOL, "andc\t$rT, $rA, $rB",
|
|
IntegerOp, pattern>;
|
|
|
|
class ANDCVecInst<ValueType vectype>:
|
|
ANDCInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
[(set (vectype VECREG:$rT), (and (vectype VECREG:$rA),
|
|
(vnot (vectype VECREG:$rB))))]>;
|
|
|
|
class ANDCRegInst<RegisterClass rclass>:
|
|
ANDCInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
|
|
[(set rclass:$rT, (and rclass:$rA, (not rclass:$rB)))]>;
|
|
|
|
multiclass AndComplement
|
|
{
|
|
def v16i8: ANDCVecInst<v16i8>;
|
|
def v8i16: ANDCVecInst<v8i16>;
|
|
def v4i32: ANDCVecInst<v4i32>;
|
|
def v2i64: ANDCVecInst<v2i64>;
|
|
|
|
def r128: ANDCRegInst<GPRC>;
|
|
def r64: ANDCRegInst<R64C>;
|
|
def r32: ANDCRegInst<R32C>;
|
|
def r16: ANDCRegInst<R16C>;
|
|
def r8: ANDCRegInst<R8C>;
|
|
}
|
|
|
|
defm ANDC : AndComplement;
|
|
|
|
class ANDBIInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RI10Form<0b01101000, OOL, IOL, "andbi\t$rT, $rA, $val",
|
|
IntegerOp, pattern>;
|
|
|
|
multiclass AndByteImm
|
|
{
|
|
def v16i8: ANDBIInst<(outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val),
|
|
[(set (v16i8 VECREG:$rT),
|
|
(and (v16i8 VECREG:$rA),
|
|
(v16i8 v16i8U8Imm:$val)))]>;
|
|
|
|
def r8: ANDBIInst<(outs R8C:$rT), (ins R8C:$rA, u10imm_i8:$val),
|
|
[(set R8C:$rT, (and R8C:$rA, immU8:$val))]>;
|
|
}
|
|
|
|
defm ANDBI : AndByteImm;
|
|
|
|
class ANDHIInst<dag OOL, dag IOL, list<dag> pattern> :
|
|
RI10Form<0b10101000, OOL, IOL, "andhi\t$rT, $rA, $val",
|
|
IntegerOp, pattern>;
|
|
|
|
multiclass AndHalfwordImm
|
|
{
|
|
def v8i16: ANDHIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
|
|
[(set (v8i16 VECREG:$rT),
|
|
(and (v8i16 VECREG:$rA), v8i16SExt10Imm:$val))]>;
|
|
|
|
def r16: ANDHIInst<(outs R16C:$rT), (ins R16C:$rA, u10imm:$val),
|
|
[(set R16C:$rT, (and R16C:$rA, i16ImmUns10:$val))]>;
|
|
|
|
// Zero-extend i8 to i16:
|
|
def i8i16: ANDHIInst<(outs R16C:$rT), (ins R8C:$rA, u10imm:$val),
|
|
[(set R16C:$rT, (and (zext R8C:$rA), i16ImmUns10:$val))]>;
|
|
}
|
|
|
|
defm ANDHI : AndHalfwordImm;
|
|
|
|
class ANDIInst<dag OOL, dag IOL, list<dag> pattern> :
|
|
RI10Form<0b00101000, OOL, IOL, "andi\t$rT, $rA, $val",
|
|
IntegerOp, pattern>;
|
|
|
|
multiclass AndWordImm
|
|
{
|
|
def v4i32: ANDIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
|
|
[(set (v4i32 VECREG:$rT),
|
|
(and (v4i32 VECREG:$rA), v4i32SExt10Imm:$val))]>;
|
|
|
|
def r32: ANDIInst<(outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val),
|
|
[(set R32C:$rT, (and R32C:$rA, i32ImmSExt10:$val))]>;
|
|
|
|
// Hacked form of ANDI to zero-extend i8 quantities to i32. See the zext 8->32
|
|
// pattern below.
|
|
def i8i32: ANDIInst<(outs R32C:$rT), (ins R8C:$rA, s10imm_i32:$val),
|
|
[(set R32C:$rT,
|
|
(and (zext R8C:$rA), i32ImmSExt10:$val))]>;
|
|
|
|
// Hacked form of ANDI to zero-extend i16 quantities to i32. See the
|
|
// zext 16->32 pattern below.
|
|
//
|
|
// Note that this pattern is somewhat artificial, since it might match
|
|
// something the compiler generates but is unlikely to occur in practice.
|
|
def i16i32: ANDIInst<(outs R32C:$rT), (ins R16C:$rA, s10imm_i32:$val),
|
|
[(set R32C:$rT,
|
|
(and (zext R16C:$rA), i32ImmSExt10:$val))]>;
|
|
}
|
|
|
|
defm ANDI : AndWordImm;
|
|
|
|
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
|
|
// Bitwise OR group:
|
|
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
|
|
|
|
// Bitwise "or" (N.B.: These are also register-register copy instructions...)
|
|
class ORInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RRForm<0b10000010000, OOL, IOL, "or\t$rT, $rA, $rB",
|
|
IntegerOp, pattern>;
|
|
|
|
class ORVecInst<ValueType vectype>:
|
|
ORInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
[(set (vectype VECREG:$rT), (or (vectype VECREG:$rA),
|
|
(vectype VECREG:$rB)))]>;
|
|
|
|
class ORRegInst<RegisterClass rclass>:
|
|
ORInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
|
|
[(set rclass:$rT, (or rclass:$rA, rclass:$rB))]>;
|
|
|
|
class ORPromoteScalar<RegisterClass rclass>:
|
|
ORInst<(outs VECREG:$rT), (ins rclass:$rA, rclass:$rB),
|
|
[/* no pattern */]>;
|
|
|
|
class ORExtractElt<RegisterClass rclass>:
|
|
ORInst<(outs rclass:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
[/* no pattern */]>;
|
|
|
|
multiclass BitwiseOr
|
|
{
|
|
def v16i8: ORVecInst<v16i8>;
|
|
def v8i16: ORVecInst<v8i16>;
|
|
def v4i32: ORVecInst<v4i32>;
|
|
def v2i64: ORVecInst<v2i64>;
|
|
|
|
def v4f32: ORInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
[(set (v4f32 VECREG:$rT),
|
|
(v4f32 (bitconvert (or (v4i32 VECREG:$rA),
|
|
(v4i32 VECREG:$rB)))))]>;
|
|
|
|
def v2f64: ORInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
[(set (v2f64 VECREG:$rT),
|
|
(v2f64 (bitconvert (or (v2i64 VECREG:$rA),
|
|
(v2i64 VECREG:$rB)))))]>;
|
|
|
|
def r64: ORRegInst<R64C>;
|
|
def r32: ORRegInst<R32C>;
|
|
def r16: ORRegInst<R16C>;
|
|
def r8: ORRegInst<R8C>;
|
|
|
|
// OR instructions used to copy f32 and f64 registers.
|
|
def f32: ORInst<(outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB),
|
|
[/* no pattern */]>;
|
|
|
|
def f64: ORInst<(outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB),
|
|
[/* no pattern */]>;
|
|
|
|
// scalar->vector promotion:
|
|
def v16i8_i8: ORPromoteScalar<R8C>;
|
|
def v8i16_i16: ORPromoteScalar<R16C>;
|
|
def v4i32_i32: ORPromoteScalar<R32C>;
|
|
def v2i64_i64: ORPromoteScalar<R64C>;
|
|
def v4f32_f32: ORPromoteScalar<R32FP>;
|
|
def v2f64_f64: ORPromoteScalar<R64FP>;
|
|
|
|
// extract element 0:
|
|
def i8_v16i8: ORExtractElt<R8C>;
|
|
def i16_v8i16: ORExtractElt<R16C>;
|
|
def i32_v4i32: ORExtractElt<R32C>;
|
|
def i64_v2i64: ORExtractElt<R64C>;
|
|
def f32_v4f32: ORExtractElt<R32FP>;
|
|
def f64_v2f64: ORExtractElt<R64FP>;
|
|
}
|
|
|
|
defm OR : BitwiseOr;
|
|
|
|
// scalar->vector promotion patterns:
|
|
def : Pat<(v16i8 (SPUpromote_scalar R8C:$rA)),
|
|
(ORv16i8_i8 R8C:$rA, R8C:$rA)>;
|
|
|
|
def : Pat<(v8i16 (SPUpromote_scalar R16C:$rA)),
|
|
(ORv8i16_i16 R16C:$rA, R16C:$rA)>;
|
|
|
|
def : Pat<(v4i32 (SPUpromote_scalar R32C:$rA)),
|
|
(ORv4i32_i32 R32C:$rA, R32C:$rA)>;
|
|
|
|
def : Pat<(v2i64 (SPUpromote_scalar R64C:$rA)),
|
|
(ORv2i64_i64 R64C:$rA, R64C:$rA)>;
|
|
|
|
def : Pat<(v4f32 (SPUpromote_scalar R32FP:$rA)),
|
|
(ORv4f32_f32 R32FP:$rA, R32FP:$rA)>;
|
|
|
|
def : Pat<(v2f64 (SPUpromote_scalar R64FP:$rA)),
|
|
(ORv2f64_f64 R64FP:$rA, R64FP:$rA)>;
|
|
|
|
// ORi*_v*: Used to extract vector element 0 (the preferred slot)
|
|
|
|
def : Pat<(SPUextract_elt0 (v16i8 VECREG:$rA)),
|
|
(ORi8_v16i8 VECREG:$rA, VECREG:$rA)>;
|
|
|
|
def : Pat<(SPUextract_elt0_chained (v16i8 VECREG:$rA)),
|
|
(ORi8_v16i8 VECREG:$rA, VECREG:$rA)>;
|
|
|
|
def : Pat<(SPUextract_elt0 (v8i16 VECREG:$rA)),
|
|
(ORi16_v8i16 VECREG:$rA, VECREG:$rA)>;
|
|
|
|
def : Pat<(SPUextract_elt0_chained (v8i16 VECREG:$rA)),
|
|
(ORi16_v8i16 VECREG:$rA, VECREG:$rA)>;
|
|
|
|
def : Pat<(SPUextract_elt0 (v4i32 VECREG:$rA)),
|
|
(ORi32_v4i32 VECREG:$rA, VECREG:$rA)>;
|
|
|
|
def : Pat<(SPUextract_elt0_chained (v4i32 VECREG:$rA)),
|
|
(ORi32_v4i32 VECREG:$rA, VECREG:$rA)>;
|
|
|
|
def : Pat<(SPUextract_elt0 (v2i64 VECREG:$rA)),
|
|
(ORi64_v2i64 VECREG:$rA, VECREG:$rA)>;
|
|
|
|
def : Pat<(SPUextract_elt0_chained (v2i64 VECREG:$rA)),
|
|
(ORi64_v2i64 VECREG:$rA, VECREG:$rA)>;
|
|
|
|
def : Pat<(SPUextract_elt0 (v4f32 VECREG:$rA)),
|
|
(ORf32_v4f32 VECREG:$rA, VECREG:$rA)>;
|
|
|
|
def : Pat<(SPUextract_elt0_chained (v4f32 VECREG:$rA)),
|
|
(ORf32_v4f32 VECREG:$rA, VECREG:$rA)>;
|
|
|
|
def : Pat<(SPUextract_elt0 (v2f64 VECREG:$rA)),
|
|
(ORf64_v2f64 VECREG:$rA, VECREG:$rA)>;
|
|
|
|
def : Pat<(SPUextract_elt0_chained (v2f64 VECREG:$rA)),
|
|
(ORf64_v2f64 VECREG:$rA, VECREG:$rA)>;
|
|
|
|
// ORC: Bitwise "or" with complement (c = a | ~b)
|
|
|
|
class ORCInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RRForm<0b10010010000, OOL, IOL, "orc\t$rT, $rA, $rB",
|
|
IntegerOp, pattern>;
|
|
|
|
class ORCVecInst<ValueType vectype>:
|
|
ORCInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
[(set (vectype VECREG:$rT), (or (vectype VECREG:$rA),
|
|
(vnot (vectype VECREG:$rB))))]>;
|
|
|
|
class ORCRegInst<RegisterClass rclass>:
|
|
ORCInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
|
|
[(set rclass:$rT, (or rclass:$rA, (not rclass:$rB)))]>;
|
|
|
|
multiclass BitwiseOrComplement
|
|
{
|
|
def v16i8: ORCVecInst<v16i8>;
|
|
def v8i16: ORCVecInst<v8i16>;
|
|
def v4i32: ORCVecInst<v4i32>;
|
|
def v2i64: ORCVecInst<v2i64>;
|
|
|
|
def r64: ORCRegInst<R64C>;
|
|
def r32: ORCRegInst<R32C>;
|
|
def r16: ORCRegInst<R16C>;
|
|
def r8: ORCRegInst<R8C>;
|
|
}
|
|
|
|
defm ORC : BitwiseOrComplement;
|
|
|
|
// OR byte immediate
|
|
class ORBIInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RI10Form<0b01100000, OOL, IOL, "orbi\t$rT, $rA, $val",
|
|
IntegerOp, pattern>;
|
|
|
|
class ORBIVecInst<ValueType vectype, PatLeaf immpred>:
|
|
ORBIInst<(outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val),
|
|
[(set (v16i8 VECREG:$rT), (or (vectype VECREG:$rA),
|
|
(vectype immpred:$val)))]>;
|
|
|
|
multiclass BitwiseOrByteImm
|
|
{
|
|
def v16i8: ORBIVecInst<v16i8, v16i8U8Imm>;
|
|
|
|
def r8: ORBIInst<(outs R8C:$rT), (ins R8C:$rA, u10imm_i8:$val),
|
|
[(set R8C:$rT, (or R8C:$rA, immU8:$val))]>;
|
|
}
|
|
|
|
defm ORBI : BitwiseOrByteImm;
|
|
|
|
// OR halfword immediate
|
|
class ORHIInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RI10Form<0b10100000, OOL, IOL, "orhi\t$rT, $rA, $val",
|
|
IntegerOp, pattern>;
|
|
|
|
class ORHIVecInst<ValueType vectype, PatLeaf immpred>:
|
|
ORHIInst<(outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val),
|
|
[(set (vectype VECREG:$rT), (or (vectype VECREG:$rA),
|
|
immpred:$val))]>;
|
|
|
|
multiclass BitwiseOrHalfwordImm
|
|
{
|
|
def v8i16: ORHIVecInst<v8i16, v8i16Uns10Imm>;
|
|
|
|
def r16: ORHIInst<(outs R16C:$rT), (ins R16C:$rA, u10imm:$val),
|
|
[(set R16C:$rT, (or R16C:$rA, i16ImmUns10:$val))]>;
|
|
|
|
// Specialized ORHI form used to promote 8-bit registers to 16-bit
|
|
def i8i16: ORHIInst<(outs R16C:$rT), (ins R8C:$rA, s10imm:$val),
|
|
[(set R16C:$rT, (or (anyext R8C:$rA),
|
|
i16ImmSExt10:$val))]>;
|
|
}
|
|
|
|
defm ORHI : BitwiseOrHalfwordImm;
|
|
|
|
class ORIInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RI10Form<0b00100000, OOL, IOL, "ori\t$rT, $rA, $val",
|
|
IntegerOp, pattern>;
|
|
|
|
class ORIVecInst<ValueType vectype, PatLeaf immpred>:
|
|
ORIInst<(outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val),
|
|
[(set (vectype VECREG:$rT), (or (vectype VECREG:$rA),
|
|
immpred:$val))]>;
|
|
|
|
// Bitwise "or" with immediate
|
|
multiclass BitwiseOrImm
|
|
{
|
|
def v4i32: ORIVecInst<v4i32, v4i32Uns10Imm>;
|
|
|
|
def r32: ORIInst<(outs R32C:$rT), (ins R32C:$rA, u10imm_i32:$val),
|
|
[(set R32C:$rT, (or R32C:$rA, i32ImmUns10:$val))]>;
|
|
|
|
// i16i32: hacked version of the ori instruction to extend 16-bit quantities
|
|
// to 32-bit quantities. used exclusively to match "anyext" conversions (vide
|
|
// infra "anyext 16->32" pattern.)
|
|
def i16i32: ORIInst<(outs R32C:$rT), (ins R16C:$rA, s10imm_i32:$val),
|
|
[(set R32C:$rT, (or (anyext R16C:$rA),
|
|
i32ImmSExt10:$val))]>;
|
|
|
|
// i8i32: Hacked version of the ORI instruction to extend 16-bit quantities
|
|
// to 32-bit quantities. Used exclusively to match "anyext" conversions (vide
|
|
// infra "anyext 16->32" pattern.)
|
|
def i8i32: ORIInst<(outs R32C:$rT), (ins R8C:$rA, s10imm_i32:$val),
|
|
[(set R32C:$rT, (or (anyext R8C:$rA),
|
|
i32ImmSExt10:$val))]>;
|
|
}
|
|
|
|
defm ORI : BitwiseOrImm;
|
|
|
|
// ORX: "or" across the vector: or's $rA's word slots leaving the result in
|
|
// $rT[0], slots 1-3 are zeroed.
|
|
//
|
|
// FIXME: Needs to match an intrinsic pattern.
|
|
def ORXv4i32:
|
|
RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
"orx\t$rT, $rA, $rB", IntegerOp,
|
|
[]>;
|
|
|
|
// XOR:
|
|
def XORv16i8:
|
|
RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
"xor\t$rT, $rA, $rB", IntegerOp,
|
|
[(set (v16i8 VECREG:$rT), (xor (v16i8 VECREG:$rA), (v16i8 VECREG:$rB)))]>;
|
|
|
|
def XORv8i16:
|
|
RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
"xor\t$rT, $rA, $rB", IntegerOp,
|
|
[(set (v8i16 VECREG:$rT), (xor (v8i16 VECREG:$rA), (v8i16 VECREG:$rB)))]>;
|
|
|
|
def XORv4i32:
|
|
RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
"xor\t$rT, $rA, $rB", IntegerOp,
|
|
[(set (v4i32 VECREG:$rT), (xor (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>;
|
|
|
|
def XORr32:
|
|
RRForm<0b10010010000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
|
|
"xor\t$rT, $rA, $rB", IntegerOp,
|
|
[(set R32C:$rT, (xor R32C:$rA, R32C:$rB))]>;
|
|
|
|
//==----------------------------------------------------------
|
|
// Special forms for floating point instructions.
|
|
// Bitwise ORs and ANDs don't make sense for normal floating
|
|
// point numbers. These operations (fneg and fabs), however,
|
|
// require bitwise logical ops to manipulate the sign bit.
|
|
def XORfneg32:
|
|
RRForm<0b10010010000, (outs R32FP:$rT), (ins R32FP:$rA, R32C:$rB),
|
|
"xor\t$rT, $rA, $rB", IntegerOp,
|
|
[/* Intentionally does not match a pattern, see fneg32 */]>;
|
|
|
|
// KLUDGY! Better way to do this without a VECREG? bitconvert?
|
|
// VECREG is assumed to contain two identical 64-bit masks, so
|
|
// it doesn't matter which word we select for the xor
|
|
def XORfneg64:
|
|
RRForm<0b10010010000, (outs R64FP:$rT), (ins R64FP:$rA, VECREG:$rB),
|
|
"xor\t$rT, $rA, $rB", IntegerOp,
|
|
[/* Intentionally does not match a pattern, see fneg64 */]>;
|
|
|
|
// Could use XORv4i32, but will use this for clarity
|
|
def XORfnegvec:
|
|
RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
"xor\t$rT, $rA, $rB", IntegerOp,
|
|
[/* Intentionally does not match a pattern, see fneg{32,64} */]>;
|
|
|
|
//==----------------------------------------------------------
|
|
|
|
def XORr16:
|
|
RRForm<0b10010010000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
|
|
"xor\t$rT, $rA, $rB", IntegerOp,
|
|
[(set R16C:$rT, (xor R16C:$rA, R16C:$rB))]>;
|
|
|
|
def XORr8:
|
|
RRForm<0b10010010000, (outs R8C:$rT), (ins R8C:$rA, R8C:$rB),
|
|
"xor\t$rT, $rA, $rB", IntegerOp,
|
|
[(set R8C:$rT, (xor R8C:$rA, R8C:$rB))]>;
|
|
|
|
class XORBIInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RI10Form<0b01100000, OOL, IOL, "xorbi\t$rT, $rA, $val",
|
|
IntegerOp, pattern>;
|
|
|
|
multiclass XorByteImm
|
|
{
|
|
def v16i8:
|
|
XORBIInst<(outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val),
|
|
[(set (v16i8 VECREG:$rT), (xor (v16i8 VECREG:$rA), v16i8U8Imm:$val))]>;
|
|
|
|
def r8:
|
|
XORBIInst<(outs R8C:$rT), (ins R8C:$rA, u10imm_i8:$val),
|
|
[(set R8C:$rT, (xor R8C:$rA, immU8:$val))]>;
|
|
}
|
|
|
|
defm XORBI : XorByteImm;
|
|
|
|
def XORHIv8i16:
|
|
RI10Form<0b10100000, (outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val),
|
|
"xorhi\t$rT, $rA, $val", IntegerOp,
|
|
[(set (v8i16 VECREG:$rT), (xor (v8i16 VECREG:$rA),
|
|
v8i16SExt10Imm:$val))]>;
|
|
|
|
def XORHIr16:
|
|
RI10Form<0b10100000, (outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
|
|
"xorhi\t$rT, $rA, $val", IntegerOp,
|
|
[(set R16C:$rT, (xor R16C:$rA, i16ImmSExt10:$val))]>;
|
|
|
|
def XORIv4i32:
|
|
RI10Form<0b00100000, (outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val),
|
|
"xori\t$rT, $rA, $val", IntegerOp,
|
|
[(set (v4i32 VECREG:$rT), (xor (v4i32 VECREG:$rA),
|
|
v4i32SExt10Imm:$val))]>;
|
|
|
|
def XORIr32:
|
|
RI10Form<0b00100000, (outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val),
|
|
"xori\t$rT, $rA, $val", IntegerOp,
|
|
[(set R32C:$rT, (xor R32C:$rA, i32ImmSExt10:$val))]>;
|
|
|
|
// NAND:
|
|
def NANDv16i8:
|
|
RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
"nand\t$rT, $rA, $rB", IntegerOp,
|
|
[(set (v16i8 VECREG:$rT), (vnot (and (v16i8 VECREG:$rA),
|
|
(v16i8 VECREG:$rB))))]>;
|
|
|
|
def NANDv8i16:
|
|
RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
"nand\t$rT, $rA, $rB", IntegerOp,
|
|
[(set (v8i16 VECREG:$rT), (vnot (and (v8i16 VECREG:$rA),
|
|
(v8i16 VECREG:$rB))))]>;
|
|
|
|
def NANDv4i32:
|
|
RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
"nand\t$rT, $rA, $rB", IntegerOp,
|
|
[(set (v4i32 VECREG:$rT), (vnot (and (v4i32 VECREG:$rA),
|
|
(v4i32 VECREG:$rB))))]>;
|
|
|
|
def NANDr32:
|
|
RRForm<0b10010010000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
|
|
"nand\t$rT, $rA, $rB", IntegerOp,
|
|
[(set R32C:$rT, (not (and R32C:$rA, R32C:$rB)))]>;
|
|
|
|
def NANDr16:
|
|
RRForm<0b10010010000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
|
|
"nand\t$rT, $rA, $rB", IntegerOp,
|
|
[(set R16C:$rT, (not (and R16C:$rA, R16C:$rB)))]>;
|
|
|
|
def NANDr8:
|
|
RRForm<0b10010010000, (outs R8C:$rT), (ins R8C:$rA, R8C:$rB),
|
|
"nand\t$rT, $rA, $rB", IntegerOp,
|
|
[(set R8C:$rT, (not (and R8C:$rA, R8C:$rB)))]>;
|
|
|
|
// NOR:
|
|
def NORv16i8:
|
|
RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
"nor\t$rT, $rA, $rB", IntegerOp,
|
|
[(set (v16i8 VECREG:$rT), (vnot (or (v16i8 VECREG:$rA),
|
|
(v16i8 VECREG:$rB))))]>;
|
|
|
|
def NORv8i16:
|
|
RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
"nor\t$rT, $rA, $rB", IntegerOp,
|
|
[(set (v8i16 VECREG:$rT), (vnot (or (v8i16 VECREG:$rA),
|
|
(v8i16 VECREG:$rB))))]>;
|
|
|
|
def NORv4i32:
|
|
RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
"nor\t$rT, $rA, $rB", IntegerOp,
|
|
[(set (v4i32 VECREG:$rT), (vnot (or (v4i32 VECREG:$rA),
|
|
(v4i32 VECREG:$rB))))]>;
|
|
|
|
def NORr32:
|
|
RRForm<0b10010010000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
|
|
"nor\t$rT, $rA, $rB", IntegerOp,
|
|
[(set R32C:$rT, (not (or R32C:$rA, R32C:$rB)))]>;
|
|
|
|
def NORr16:
|
|
RRForm<0b10010010000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
|
|
"nor\t$rT, $rA, $rB", IntegerOp,
|
|
[(set R16C:$rT, (not (or R16C:$rA, R16C:$rB)))]>;
|
|
|
|
def NORr8:
|
|
RRForm<0b10010010000, (outs R8C:$rT), (ins R8C:$rA, R8C:$rB),
|
|
"nor\t$rT, $rA, $rB", IntegerOp,
|
|
[(set R8C:$rT, (not (or R8C:$rA, R8C:$rB)))]>;
|
|
|
|
// EQV: Equivalence (1 for each same bit, otherwise 0)
|
|
def EQVv16i8:
|
|
RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
"eqv\t$rT, $rA, $rB", IntegerOp,
|
|
[(set (v16i8 VECREG:$rT), (or (and (v16i8 VECREG:$rA),
|
|
(v16i8 VECREG:$rB)),
|
|
(and (vnot (v16i8 VECREG:$rA)),
|
|
(vnot (v16i8 VECREG:$rB)))))]>;
|
|
|
|
def : Pat<(xor (v16i8 VECREG:$rA), (vnot (v16i8 VECREG:$rB))),
|
|
(EQVv16i8 VECREG:$rA, VECREG:$rB)>;
|
|
|
|
def : Pat<(xor (vnot (v16i8 VECREG:$rA)), (v16i8 VECREG:$rB)),
|
|
(EQVv16i8 VECREG:$rA, VECREG:$rB)>;
|
|
|
|
def EQVv8i16:
|
|
RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
"eqv\t$rT, $rA, $rB", IntegerOp,
|
|
[(set (v8i16 VECREG:$rT), (or (and (v8i16 VECREG:$rA),
|
|
(v8i16 VECREG:$rB)),
|
|
(and (vnot (v8i16 VECREG:$rA)),
|
|
(vnot (v8i16 VECREG:$rB)))))]>;
|
|
|
|
def : Pat<(xor (v8i16 VECREG:$rA), (vnot (v8i16 VECREG:$rB))),
|
|
(EQVv8i16 VECREG:$rA, VECREG:$rB)>;
|
|
|
|
def : Pat<(xor (vnot (v8i16 VECREG:$rA)), (v8i16 VECREG:$rB)),
|
|
(EQVv8i16 VECREG:$rA, VECREG:$rB)>;
|
|
|
|
def EQVv4i32:
|
|
RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
"eqv\t$rT, $rA, $rB", IntegerOp,
|
|
[(set (v4i32 VECREG:$rT), (or (and (v4i32 VECREG:$rA),
|
|
(v4i32 VECREG:$rB)),
|
|
(and (vnot (v4i32 VECREG:$rA)),
|
|
(vnot (v4i32 VECREG:$rB)))))]>;
|
|
|
|
def : Pat<(xor (v4i32 VECREG:$rA), (vnot (v4i32 VECREG:$rB))),
|
|
(EQVv4i32 VECREG:$rA, VECREG:$rB)>;
|
|
|
|
def : Pat<(xor (vnot (v4i32 VECREG:$rA)), (v4i32 VECREG:$rB)),
|
|
(EQVv4i32 VECREG:$rA, VECREG:$rB)>;
|
|
|
|
def EQVr32:
|
|
RRForm<0b10010010000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
|
|
"eqv\t$rT, $rA, $rB", IntegerOp,
|
|
[(set R32C:$rT, (or (and R32C:$rA, R32C:$rB),
|
|
(and (not R32C:$rA), (not R32C:$rB))))]>;
|
|
|
|
def : Pat<(xor R32C:$rA, (not R32C:$rB)),
|
|
(EQVr32 R32C:$rA, R32C:$rB)>;
|
|
|
|
def : Pat<(xor (not R32C:$rA), R32C:$rB),
|
|
(EQVr32 R32C:$rA, R32C:$rB)>;
|
|
|
|
def EQVr16:
|
|
RRForm<0b10010010000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
|
|
"eqv\t$rT, $rA, $rB", IntegerOp,
|
|
[(set R16C:$rT, (or (and R16C:$rA, R16C:$rB),
|
|
(and (not R16C:$rA), (not R16C:$rB))))]>;
|
|
|
|
def : Pat<(xor R16C:$rA, (not R16C:$rB)),
|
|
(EQVr16 R16C:$rA, R16C:$rB)>;
|
|
|
|
def : Pat<(xor (not R16C:$rA), R16C:$rB),
|
|
(EQVr16 R16C:$rA, R16C:$rB)>;
|
|
|
|
def EQVr8:
|
|
RRForm<0b10010010000, (outs R8C:$rT), (ins R8C:$rA, R8C:$rB),
|
|
"eqv\t$rT, $rA, $rB", IntegerOp,
|
|
[(set R8C:$rT, (or (and R8C:$rA, R8C:$rB),
|
|
(and (not R8C:$rA), (not R8C:$rB))))]>;
|
|
|
|
def : Pat<(xor R8C:$rA, (not R8C:$rB)),
|
|
(EQVr8 R8C:$rA, R8C:$rB)>;
|
|
|
|
def : Pat<(xor (not R8C:$rA), R8C:$rB),
|
|
(EQVr8 R8C:$rA, R8C:$rB)>;
|
|
|
|
// gcc optimizes (p & q) | (~p & ~q) -> ~(p | q) | (p & q), so match that
|
|
// pattern also:
|
|
def : Pat<(or (vnot (or (v16i8 VECREG:$rA), (v16i8 VECREG:$rB))),
|
|
(and (v16i8 VECREG:$rA), (v16i8 VECREG:$rB))),
|
|
(EQVv16i8 VECREG:$rA, VECREG:$rB)>;
|
|
|
|
def : Pat<(or (vnot (or (v8i16 VECREG:$rA), (v8i16 VECREG:$rB))),
|
|
(and (v8i16 VECREG:$rA), (v8i16 VECREG:$rB))),
|
|
(EQVv8i16 VECREG:$rA, VECREG:$rB)>;
|
|
|
|
def : Pat<(or (vnot (or (v4i32 VECREG:$rA), (v4i32 VECREG:$rB))),
|
|
(and (v4i32 VECREG:$rA), (v4i32 VECREG:$rB))),
|
|
(EQVv4i32 VECREG:$rA, VECREG:$rB)>;
|
|
|
|
def : Pat<(or (not (or R32C:$rA, R32C:$rB)), (and R32C:$rA, R32C:$rB)),
|
|
(EQVr32 R32C:$rA, R32C:$rB)>;
|
|
|
|
def : Pat<(or (not (or R16C:$rA, R16C:$rB)), (and R16C:$rA, R16C:$rB)),
|
|
(EQVr16 R16C:$rA, R16C:$rB)>;
|
|
|
|
def : Pat<(or (not (or R8C:$rA, R8C:$rB)), (and R8C:$rA, R8C:$rB)),
|
|
(EQVr8 R8C:$rA, R8C:$rB)>;
|
|
|
|
// Select bits:
|
|
def SELBv16i8:
|
|
RRRForm<0b1000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
|
|
"selb\t$rT, $rA, $rB, $rC", IntegerOp,
|
|
[(set (v16i8 VECREG:$rT),
|
|
(SPUselb (v16i8 VECREG:$rA), (v16i8 VECREG:$rB),
|
|
(v16i8 VECREG:$rC)))]>;
|
|
|
|
def : Pat<(or (and (v16i8 VECREG:$rA), (v16i8 VECREG:$rC)),
|
|
(and (v16i8 VECREG:$rB), (vnot (v16i8 VECREG:$rC)))),
|
|
(SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
|
|
|
|
def : Pat<(or (and (v16i8 VECREG:$rC), (v16i8 VECREG:$rA)),
|
|
(and (v16i8 VECREG:$rB), (vnot (v16i8 VECREG:$rC)))),
|
|
(SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
|
|
|
|
def : Pat<(or (and (v16i8 VECREG:$rA), (v16i8 VECREG:$rC)),
|
|
(and (vnot (v16i8 VECREG:$rC)), (v16i8 VECREG:$rB))),
|
|
(SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
|
|
|
|
def : Pat<(or (and (v16i8 VECREG:$rC), (v16i8 VECREG:$rA)),
|
|
(and (vnot (v16i8 VECREG:$rC)), (v16i8 VECREG:$rB))),
|
|
(SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
|
|
|
|
def : Pat<(or (and (v16i8 VECREG:$rA), (vnot (v16i8 VECREG:$rC))),
|
|
(and (v16i8 VECREG:$rB), (v16i8 VECREG:$rC))),
|
|
(SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
|
|
|
|
def : Pat<(or (and (v16i8 VECREG:$rA), (vnot (v16i8 VECREG:$rC))),
|
|
(and (v16i8 VECREG:$rC), (v16i8 VECREG:$rB))),
|
|
(SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
|
|
|
|
def : Pat<(or (and (vnot (v16i8 VECREG:$rC)), (v16i8 VECREG:$rA)),
|
|
(and (v16i8 VECREG:$rB), (v16i8 VECREG:$rC))),
|
|
(SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
|
|
|
|
def : Pat<(or (and (vnot (v16i8 VECREG:$rC)), (v16i8 VECREG:$rA)),
|
|
(and (v16i8 VECREG:$rC), (v16i8 VECREG:$rB))),
|
|
(SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
|
|
|
|
def : Pat<(or (and (v16i8 VECREG:$rA), (v16i8 VECREG:$rC)),
|
|
(and (v16i8 VECREG:$rB), (vnot (v16i8 VECREG:$rC)))),
|
|
(SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
|
|
|
|
def : Pat<(or (and (v16i8 VECREG:$rC), (v16i8 VECREG:$rA)),
|
|
(and (v16i8 VECREG:$rB), (vnot (v16i8 VECREG:$rC)))),
|
|
(SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
|
|
|
|
def : Pat<(or (and (v16i8 VECREG:$rA), (v16i8 VECREG:$rC)),
|
|
(and (vnot (v16i8 VECREG:$rC)), (v16i8 VECREG:$rB))),
|
|
(SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
|
|
|
|
def : Pat<(or (and (v16i8 VECREG:$rC), (v16i8 VECREG:$rA)),
|
|
(and (vnot (v16i8 VECREG:$rC)), (v16i8 VECREG:$rB))),
|
|
(SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
|
|
|
|
def : Pat<(or (and (v16i8 VECREG:$rA), (vnot (v16i8 VECREG:$rC))),
|
|
(and (v16i8 VECREG:$rB), (v16i8 VECREG:$rC))),
|
|
(SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
|
|
|
|
def : Pat<(or (and (v16i8 VECREG:$rA), (vnot (v16i8 VECREG:$rC))),
|
|
(and (v16i8 VECREG:$rC), (v16i8 VECREG:$rB))),
|
|
(SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
|
|
|
|
def : Pat<(or (and (vnot (v16i8 VECREG:$rC)), (v16i8 VECREG:$rA)),
|
|
(and (v16i8 VECREG:$rB), (v16i8 VECREG:$rC))),
|
|
(SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
|
|
|
|
def : Pat<(or (and (vnot (v16i8 VECREG:$rC)), (v16i8 VECREG:$rA)),
|
|
(and (v16i8 VECREG:$rC), (v16i8 VECREG:$rB))),
|
|
(SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
|
|
|
|
def SELBv8i16:
|
|
RRRForm<0b1000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
|
|
"selb\t$rT, $rA, $rB, $rC", IntegerOp,
|
|
[(set (v8i16 VECREG:$rT),
|
|
(SPUselb (v8i16 VECREG:$rA), (v8i16 VECREG:$rB),
|
|
(v8i16 VECREG:$rC)))]>;
|
|
|
|
def : Pat<(or (and (v8i16 VECREG:$rA), (v8i16 VECREG:$rC)),
|
|
(and (v8i16 VECREG:$rB), (vnot (v8i16 VECREG:$rC)))),
|
|
(SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
|
|
|
|
def : Pat<(or (and (v8i16 VECREG:$rC), (v8i16 VECREG:$rA)),
|
|
(and (v8i16 VECREG:$rB), (vnot (v8i16 VECREG:$rC)))),
|
|
(SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
|
|
|
|
def : Pat<(or (and (v8i16 VECREG:$rA), (v8i16 VECREG:$rC)),
|
|
(and (vnot (v8i16 VECREG:$rC)), (v8i16 VECREG:$rB))),
|
|
(SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
|
|
|
|
def : Pat<(or (and (v8i16 VECREG:$rC), (v8i16 VECREG:$rA)),
|
|
(and (vnot (v8i16 VECREG:$rC)), (v8i16 VECREG:$rB))),
|
|
(SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
|
|
|
|
def : Pat<(or (and (v8i16 VECREG:$rA), (vnot (v8i16 VECREG:$rC))),
|
|
(and (v8i16 VECREG:$rB), (v8i16 VECREG:$rC))),
|
|
(SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
|
|
|
|
def : Pat<(or (and (v8i16 VECREG:$rA), (vnot (v8i16 VECREG:$rC))),
|
|
(and (v8i16 VECREG:$rC), (v8i16 VECREG:$rB))),
|
|
(SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
|
|
|
|
def : Pat<(or (and (vnot (v8i16 VECREG:$rC)), (v8i16 VECREG:$rA)),
|
|
(and (v8i16 VECREG:$rB), (v8i16 VECREG:$rC))),
|
|
(SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
|
|
|
|
def : Pat<(or (and (vnot (v8i16 VECREG:$rC)), (v8i16 VECREG:$rA)),
|
|
(and (v8i16 VECREG:$rC), (v8i16 VECREG:$rB))),
|
|
(SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
|
|
|
|
def : Pat<(or (and (v8i16 VECREG:$rA), (v8i16 VECREG:$rC)),
|
|
(and (v8i16 VECREG:$rB), (vnot (v8i16 VECREG:$rC)))),
|
|
(SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
|
|
|
|
def : Pat<(or (and (v8i16 VECREG:$rC), (v8i16 VECREG:$rA)),
|
|
(and (v8i16 VECREG:$rB), (vnot (v8i16 VECREG:$rC)))),
|
|
(SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
|
|
|
|
def : Pat<(or (and (v8i16 VECREG:$rA), (v8i16 VECREG:$rC)),
|
|
(and (vnot (v8i16 VECREG:$rC)), (v8i16 VECREG:$rB))),
|
|
(SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
|
|
|
|
def : Pat<(or (and (v8i16 VECREG:$rC), (v8i16 VECREG:$rA)),
|
|
(and (vnot (v8i16 VECREG:$rC)), (v8i16 VECREG:$rB))),
|
|
(SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
|
|
|
|
def : Pat<(or (and (v8i16 VECREG:$rA), (vnot (v8i16 VECREG:$rC))),
|
|
(and (v8i16 VECREG:$rB), (v8i16 VECREG:$rC))),
|
|
(SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
|
|
|
|
def : Pat<(or (and (v8i16 VECREG:$rA), (vnot (v8i16 VECREG:$rC))),
|
|
(and (v8i16 VECREG:$rC), (v8i16 VECREG:$rB))),
|
|
(SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
|
|
|
|
def : Pat<(or (and (vnot (v8i16 VECREG:$rC)), (v8i16 VECREG:$rA)),
|
|
(and (v8i16 VECREG:$rB), (v8i16 VECREG:$rC))),
|
|
(SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
|
|
|
|
def : Pat<(or (and (vnot (v8i16 VECREG:$rC)), (v8i16 VECREG:$rA)),
|
|
(and (v8i16 VECREG:$rC), (v8i16 VECREG:$rB))),
|
|
(SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
|
|
|
|
def SELBv4i32:
|
|
RRRForm<0b1000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
|
|
"selb\t$rT, $rA, $rB, $rC", IntegerOp,
|
|
[(set (v4i32 VECREG:$rT),
|
|
(SPUselb (v4i32 VECREG:$rA), (v4i32 VECREG:$rB),
|
|
(v4i32 VECREG:$rC)))]>;
|
|
|
|
def : Pat<(or (and (v4i32 VECREG:$rA), (v4i32 VECREG:$rC)),
|
|
(and (v4i32 VECREG:$rB), (vnot (v4i32 VECREG:$rC)))),
|
|
(SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
|
|
|
|
def : Pat<(or (and (v4i32 VECREG:$rC), (v4i32 VECREG:$rA)),
|
|
(and (v4i32 VECREG:$rB), (vnot (v4i32 VECREG:$rC)))),
|
|
(SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
|
|
|
|
def : Pat<(or (and (v4i32 VECREG:$rA), (v4i32 VECREG:$rC)),
|
|
(and (vnot (v4i32 VECREG:$rC)), (v4i32 VECREG:$rB))),
|
|
(SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
|
|
|
|
def : Pat<(or (and (v4i32 VECREG:$rC), (v4i32 VECREG:$rA)),
|
|
(and (vnot (v4i32 VECREG:$rC)), (v4i32 VECREG:$rB))),
|
|
(SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
|
|
|
|
def : Pat<(or (and (v4i32 VECREG:$rA), (vnot (v4i32 VECREG:$rC))),
|
|
(and (v4i32 VECREG:$rB), (v4i32 VECREG:$rC))),
|
|
(SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
|
|
|
|
def : Pat<(or (and (v4i32 VECREG:$rA), (vnot (v4i32 VECREG:$rC))),
|
|
(and (v4i32 VECREG:$rC), (v4i32 VECREG:$rB))),
|
|
(SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
|
|
|
|
def : Pat<(or (and (vnot (v4i32 VECREG:$rC)), (v4i32 VECREG:$rA)),
|
|
(and (v4i32 VECREG:$rB), (v4i32 VECREG:$rC))),
|
|
(SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
|
|
|
|
def : Pat<(or (and (vnot (v4i32 VECREG:$rC)), (v4i32 VECREG:$rA)),
|
|
(and (v4i32 VECREG:$rC), (v4i32 VECREG:$rB))),
|
|
(SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
|
|
|
|
def : Pat<(or (and (v4i32 VECREG:$rA), (v4i32 VECREG:$rC)),
|
|
(and (v4i32 VECREG:$rB), (vnot (v4i32 VECREG:$rC)))),
|
|
(SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
|
|
|
|
def : Pat<(or (and (v4i32 VECREG:$rC), (v4i32 VECREG:$rA)),
|
|
(and (v4i32 VECREG:$rB), (vnot (v4i32 VECREG:$rC)))),
|
|
(SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
|
|
|
|
def : Pat<(or (and (v4i32 VECREG:$rA), (v4i32 VECREG:$rC)),
|
|
(and (vnot (v4i32 VECREG:$rC)), (v4i32 VECREG:$rB))),
|
|
(SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
|
|
|
|
def : Pat<(or (and (v4i32 VECREG:$rC), (v4i32 VECREG:$rA)),
|
|
(and (vnot (v4i32 VECREG:$rC)), (v4i32 VECREG:$rB))),
|
|
(SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
|
|
|
|
def : Pat<(or (and (v4i32 VECREG:$rA), (vnot (v4i32 VECREG:$rC))),
|
|
(and (v4i32 VECREG:$rB), (v4i32 VECREG:$rC))),
|
|
(SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
|
|
|
|
def : Pat<(or (and (v4i32 VECREG:$rA), (vnot (v4i32 VECREG:$rC))),
|
|
(and (v4i32 VECREG:$rC), (v4i32 VECREG:$rB))),
|
|
(SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
|
|
|
|
def : Pat<(or (and (vnot (v4i32 VECREG:$rC)), (v4i32 VECREG:$rA)),
|
|
(and (v4i32 VECREG:$rB), (v4i32 VECREG:$rC))),
|
|
(SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
|
|
|
|
def : Pat<(or (and (vnot (v4i32 VECREG:$rC)), (v4i32 VECREG:$rA)),
|
|
(and (v4i32 VECREG:$rC), (v4i32 VECREG:$rB))),
|
|
(SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
|
|
|
|
def SELBr32:
|
|
RRRForm<0b1000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB, R32C:$rC),
|
|
"selb\t$rT, $rA, $rB, $rC", IntegerOp,
|
|
[]>;
|
|
|
|
// And the various patterns that can be matched... (all 8 of them :-)
|
|
def : Pat<(or (and R32C:$rA, R32C:$rC),
|
|
(and R32C:$rB, (not R32C:$rC))),
|
|
(SELBr32 R32C:$rA, R32C:$rB, R32C:$rC)>;
|
|
|
|
def : Pat<(or (and R32C:$rC, R32C:$rA),
|
|
(and R32C:$rB, (not R32C:$rC))),
|
|
(SELBr32 R32C:$rA, R32C:$rB, R32C:$rC)>;
|
|
|
|
def : Pat<(or (and R32C:$rA, R32C:$rC),
|
|
(and (not R32C:$rC), R32C:$rB)),
|
|
(SELBr32 R32C:$rA, R32C:$rB, R32C:$rC)>;
|
|
|
|
def : Pat<(or (and R32C:$rC, R32C:$rA),
|
|
(and (not R32C:$rC), R32C:$rB)),
|
|
(SELBr32 R32C:$rA, R32C:$rB, R32C:$rC)>;
|
|
|
|
def : Pat<(or (and R32C:$rA, (not R32C:$rC)),
|
|
(and R32C:$rB, R32C:$rC)),
|
|
(SELBr32 R32C:$rA, R32C:$rB, R32C:$rC)>;
|
|
|
|
def : Pat<(or (and R32C:$rA, (not R32C:$rC)),
|
|
(and R32C:$rC, R32C:$rB)),
|
|
(SELBr32 R32C:$rA, R32C:$rB, R32C:$rC)>;
|
|
|
|
def : Pat<(or (and (not R32C:$rC), R32C:$rA),
|
|
(and R32C:$rB, R32C:$rC)),
|
|
(SELBr32 R32C:$rA, R32C:$rB, R32C:$rC)>;
|
|
|
|
def : Pat<(or (and (not R32C:$rC), R32C:$rA),
|
|
(and R32C:$rC, R32C:$rB)),
|
|
(SELBr32 R32C:$rA, R32C:$rB, R32C:$rC)>;
|
|
|
|
def SELBr16:
|
|
RRRForm<0b1000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB, R16C:$rC),
|
|
"selb\t$rT, $rA, $rB, $rC", IntegerOp,
|
|
[]>;
|
|
|
|
def : Pat<(or (and R16C:$rA, R16C:$rC),
|
|
(and R16C:$rB, (not R16C:$rC))),
|
|
(SELBr16 R16C:$rA, R16C:$rB, R16C:$rC)>;
|
|
|
|
def : Pat<(or (and R16C:$rC, R16C:$rA),
|
|
(and R16C:$rB, (not R16C:$rC))),
|
|
(SELBr16 R16C:$rA, R16C:$rB, R16C:$rC)>;
|
|
|
|
def : Pat<(or (and R16C:$rA, R16C:$rC),
|
|
(and (not R16C:$rC), R16C:$rB)),
|
|
(SELBr16 R16C:$rA, R16C:$rB, R16C:$rC)>;
|
|
|
|
def : Pat<(or (and R16C:$rC, R16C:$rA),
|
|
(and (not R16C:$rC), R16C:$rB)),
|
|
(SELBr16 R16C:$rA, R16C:$rB, R16C:$rC)>;
|
|
|
|
def : Pat<(or (and R16C:$rA, (not R16C:$rC)),
|
|
(and R16C:$rB, R16C:$rC)),
|
|
(SELBr16 R16C:$rA, R16C:$rB, R16C:$rC)>;
|
|
|
|
def : Pat<(or (and R16C:$rA, (not R16C:$rC)),
|
|
(and R16C:$rC, R16C:$rB)),
|
|
(SELBr16 R16C:$rA, R16C:$rB, R16C:$rC)>;
|
|
|
|
def : Pat<(or (and (not R16C:$rC), R16C:$rA),
|
|
(and R16C:$rB, R16C:$rC)),
|
|
(SELBr16 R16C:$rA, R16C:$rB, R16C:$rC)>;
|
|
|
|
def : Pat<(or (and (not R16C:$rC), R16C:$rA),
|
|
(and R16C:$rC, R16C:$rB)),
|
|
(SELBr16 R16C:$rA, R16C:$rB, R16C:$rC)>;
|
|
|
|
def SELBr8:
|
|
RRRForm<0b1000, (outs R8C:$rT), (ins R8C:$rA, R8C:$rB, R8C:$rC),
|
|
"selb\t$rT, $rA, $rB, $rC", IntegerOp,
|
|
[]>;
|
|
|
|
def : Pat<(or (and R8C:$rA, R8C:$rC),
|
|
(and R8C:$rB, (not R8C:$rC))),
|
|
(SELBr8 R8C:$rA, R8C:$rB, R8C:$rC)>;
|
|
|
|
def : Pat<(or (and R8C:$rC, R8C:$rA),
|
|
(and R8C:$rB, (not R8C:$rC))),
|
|
(SELBr8 R8C:$rA, R8C:$rB, R8C:$rC)>;
|
|
|
|
def : Pat<(or (and R8C:$rA, R8C:$rC),
|
|
(and (not R8C:$rC), R8C:$rB)),
|
|
(SELBr8 R8C:$rA, R8C:$rB, R8C:$rC)>;
|
|
|
|
def : Pat<(or (and R8C:$rC, R8C:$rA),
|
|
(and (not R8C:$rC), R8C:$rB)),
|
|
(SELBr8 R8C:$rA, R8C:$rB, R8C:$rC)>;
|
|
|
|
def : Pat<(or (and R8C:$rA, (not R8C:$rC)),
|
|
(and R8C:$rB, R8C:$rC)),
|
|
(SELBr8 R8C:$rA, R8C:$rB, R8C:$rC)>;
|
|
|
|
def : Pat<(or (and R8C:$rA, (not R8C:$rC)),
|
|
(and R8C:$rC, R8C:$rB)),
|
|
(SELBr8 R8C:$rA, R8C:$rB, R8C:$rC)>;
|
|
|
|
def : Pat<(or (and (not R8C:$rC), R8C:$rA),
|
|
(and R8C:$rB, R8C:$rC)),
|
|
(SELBr8 R8C:$rA, R8C:$rB, R8C:$rC)>;
|
|
|
|
def : Pat<(or (and (not R8C:$rC), R8C:$rA),
|
|
(and R8C:$rC, R8C:$rB)),
|
|
(SELBr8 R8C:$rA, R8C:$rB, R8C:$rC)>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Vector shuffle...
|
|
//===----------------------------------------------------------------------===//
|
|
// SPUshuffle is generated in LowerVECTOR_SHUFFLE and gets replaced with SHUFB.
|
|
// See the SPUshuffle SDNode operand above, which sets up the DAG pattern
|
|
// matcher to emit something when the LowerVECTOR_SHUFFLE generates a node with
|
|
// the SPUISD::SHUFB opcode.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
class SHUFBInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RRRForm<0b1000, OOL, IOL, "shufb\t$rT, $rA, $rB, $rC",
|
|
IntegerOp, pattern>;
|
|
|
|
class SHUFBVecInst<ValueType vectype>:
|
|
SHUFBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
|
|
[(set (vectype VECREG:$rT), (SPUshuffle (vectype VECREG:$rA),
|
|
(vectype VECREG:$rB),
|
|
(vectype VECREG:$rC)))]>;
|
|
|
|
// It's this pattern that's probably the most useful, since SPUISelLowering
|
|
// methods create a v16i8 vector for $rC:
|
|
class SHUFBVecPat1<ValueType vectype, SPUInstr inst>:
|
|
Pat<(SPUshuffle (vectype VECREG:$rA), (vectype VECREG:$rB),
|
|
(v16i8 VECREG:$rC)),
|
|
(inst VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
|
|
|
|
multiclass ShuffleBytes
|
|
{
|
|
def v16i8 : SHUFBVecInst<v16i8>;
|
|
def v8i16 : SHUFBVecInst<v8i16>;
|
|
def v4i32 : SHUFBVecInst<v4i32>;
|
|
def v2i64 : SHUFBVecInst<v2i64>;
|
|
|
|
def v4f32 : SHUFBVecInst<v4f32>;
|
|
def v2f64 : SHUFBVecInst<v2f64>;
|
|
}
|
|
|
|
defm SHUFB : ShuffleBytes;
|
|
|
|
def : SHUFBVecPat1<v8i16, SHUFBv16i8>;
|
|
def : SHUFBVecPat1<v4i32, SHUFBv16i8>;
|
|
def : SHUFBVecPat1<v2i64, SHUFBv16i8>;
|
|
def : SHUFBVecPat1<v4f32, SHUFBv16i8>;
|
|
def : SHUFBVecPat1<v2f64, SHUFBv16i8>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Shift and rotate group:
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
class SHLHInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RRForm<0b11111010000, OOL, IOL, "shlh\t$rT, $rA, $rB",
|
|
RotateShift, pattern>;
|
|
|
|
class SHLHVecInst<ValueType vectype>:
|
|
SHLHInst<(outs VECREG:$rT), (ins VECREG:$rA, R16C:$rB),
|
|
[(set (vectype VECREG:$rT),
|
|
(SPUvec_shl (vectype VECREG:$rA), R16C:$rB))]>;
|
|
|
|
// $rB gets promoted to 32-bit register type when confronted with
|
|
// this llvm assembly code:
|
|
//
|
|
// define i16 @shlh_i16_1(i16 %arg1, i16 %arg2) {
|
|
// %A = shl i16 %arg1, %arg2
|
|
// ret i16 %A
|
|
// }
|
|
|
|
multiclass ShiftLeftHalfword
|
|
{
|
|
def v8i16: SHLHVecInst<v8i16>;
|
|
def r16: SHLHInst<(outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
|
|
[(set R16C:$rT, (shl R16C:$rA, R16C:$rB))]>;
|
|
def r16_r32: SHLHInst<(outs R16C:$rT), (ins R16C:$rA, R32C:$rB),
|
|
[(set R16C:$rT, (shl R16C:$rA, R32C:$rB))]>;
|
|
}
|
|
|
|
defm SHLH : ShiftLeftHalfword;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
class SHLHIInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RI7Form<0b11111010000, OOL, IOL, "shlhi\t$rT, $rA, $val",
|
|
RotateShift, pattern>;
|
|
|
|
class SHLHIVecInst<ValueType vectype>:
|
|
SHLHIInst<(outs VECREG:$rT), (ins VECREG:$rA, u7imm:$val),
|
|
[(set (vectype VECREG:$rT),
|
|
(SPUvec_shl (vectype VECREG:$rA), (i16 uimm7:$val)))]>;
|
|
|
|
multiclass ShiftLeftHalfwordImm
|
|
{
|
|
def v8i16: SHLHIVecInst<v8i16>;
|
|
def r16: SHLHIInst<(outs R16C:$rT), (ins R16C:$rA, u7imm:$val),
|
|
[(set R16C:$rT, (shl R16C:$rA, (i16 uimm7:$val)))]>;
|
|
}
|
|
|
|
defm SHLHI : ShiftLeftHalfwordImm;
|
|
|
|
def : Pat<(SPUvec_shl (v8i16 VECREG:$rA), (i32 uimm7:$val)),
|
|
(SHLHIv8i16 VECREG:$rA, uimm7:$val)>;
|
|
|
|
def : Pat<(shl R16C:$rA, (i32 uimm7:$val)),
|
|
(SHLHIr16 R16C:$rA, uimm7:$val)>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
class SHLInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RRForm<0b11111010000, OOL, IOL, "shl\t$rT, $rA, $rB",
|
|
RotateShift, pattern>;
|
|
|
|
multiclass ShiftLeftWord
|
|
{
|
|
def v4i32:
|
|
SHLInst<(outs VECREG:$rT), (ins VECREG:$rA, R16C:$rB),
|
|
[(set (v4i32 VECREG:$rT),
|
|
(SPUvec_shl (v4i32 VECREG:$rA), R16C:$rB))]>;
|
|
def r32:
|
|
SHLInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
|
|
[(set R32C:$rT, (shl R32C:$rA, R32C:$rB))]>;
|
|
}
|
|
|
|
defm SHL: ShiftLeftWord;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
class SHLIInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RI7Form<0b11111010000, OOL, IOL, "shli\t$rT, $rA, $val",
|
|
RotateShift, pattern>;
|
|
|
|
multiclass ShiftLeftWordImm
|
|
{
|
|
def v4i32:
|
|
SHLIInst<(outs VECREG:$rT), (ins VECREG:$rA, u7imm_i32:$val),
|
|
[(set (v4i32 VECREG:$rT),
|
|
(SPUvec_shl (v4i32 VECREG:$rA), (i32 uimm7:$val)))]>;
|
|
|
|
def r32:
|
|
SHLIInst<(outs R32C:$rT), (ins R32C:$rA, u7imm_i32:$val),
|
|
[(set R32C:$rT, (shl R32C:$rA, (i32 uimm7:$val)))]>;
|
|
}
|
|
|
|
defm SHLI : ShiftLeftWordImm;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SHLQBI vec form: Note that this will shift the entire vector (the 128-bit
|
|
// register) to the left. Vector form is here to ensure type correctness.
|
|
//
|
|
// The shift count is in the lowest 3 bits (29-31) of $rB, so only a bit shift
|
|
// of 7 bits is actually possible.
|
|
//
|
|
// Note also that SHLQBI/SHLQBII are used in conjunction with SHLQBY/SHLQBYI
|
|
// to shift i64 and i128. SHLQBI is the residual left over after shifting by
|
|
// bytes with SHLQBY.
|
|
|
|
class SHLQBIInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RRForm<0b11011011100, OOL, IOL, "shlqbi\t$rT, $rA, $rB",
|
|
RotateShift, pattern>;
|
|
|
|
class SHLQBIVecInst<ValueType vectype>:
|
|
SHLQBIInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
|
|
[(set (vectype VECREG:$rT),
|
|
(SPUshlquad_l_bits (vectype VECREG:$rA), R32C:$rB))]>;
|
|
|
|
multiclass ShiftLeftQuadByBits
|
|
{
|
|
def v16i8: SHLQBIVecInst<v16i8>;
|
|
def v8i16: SHLQBIVecInst<v8i16>;
|
|
def v4i32: SHLQBIVecInst<v4i32>;
|
|
def v2i64: SHLQBIVecInst<v2i64>;
|
|
}
|
|
|
|
defm SHLQBI : ShiftLeftQuadByBits;
|
|
|
|
// See note above on SHLQBI. In this case, the predicate actually does then
|
|
// enforcement, whereas with SHLQBI, we have to "take it on faith."
|
|
class SHLQBIIInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RI7Form<0b11011111100, OOL, IOL, "shlqbii\t$rT, $rA, $val",
|
|
RotateShift, pattern>;
|
|
|
|
class SHLQBIIVecInst<ValueType vectype>:
|
|
SHLQBIIInst<(outs VECREG:$rT), (ins VECREG:$rA, u7imm_i32:$val),
|
|
[(set (vectype VECREG:$rT),
|
|
(SPUshlquad_l_bits (vectype VECREG:$rA), (i32 bitshift:$val)))]>;
|
|
|
|
multiclass ShiftLeftQuadByBitsImm
|
|
{
|
|
def v16i8 : SHLQBIIVecInst<v16i8>;
|
|
def v8i16 : SHLQBIIVecInst<v8i16>;
|
|
def v4i32 : SHLQBIIVecInst<v4i32>;
|
|
def v2i64 : SHLQBIIVecInst<v2i64>;
|
|
}
|
|
|
|
defm SHLQBII : ShiftLeftQuadByBitsImm;
|
|
|
|
// SHLQBY, SHLQBYI vector forms: Shift the entire vector to the left by bytes,
|
|
// not by bits. See notes above on SHLQBI.
|
|
|
|
class SHLQBYInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RI7Form<0b11111011100, OOL, IOL, "shlqbyi\t$rT, $rA, $rB",
|
|
RotateShift, pattern>;
|
|
|
|
class SHLQBYVecInst<ValueType vectype>:
|
|
SHLQBYInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
|
|
[(set (vectype VECREG:$rT),
|
|
(SPUshlquad_l_bytes (vectype VECREG:$rA), R32C:$rB))]>;
|
|
|
|
multiclass ShiftLeftQuadBytes
|
|
{
|
|
def v16i8: SHLQBYVecInst<v16i8>;
|
|
def v8i16: SHLQBYVecInst<v8i16>;
|
|
def v4i32: SHLQBYVecInst<v4i32>;
|
|
def v2i64: SHLQBYVecInst<v2i64>;
|
|
def r128: SHLQBYInst<(outs GPRC:$rT), (ins GPRC:$rA, R32C:$rB),
|
|
[(set GPRC:$rT, (SPUshlquad_l_bytes GPRC:$rA, R32C:$rB))]>;
|
|
}
|
|
|
|
defm SHLQBY: ShiftLeftQuadBytes;
|
|
|
|
class SHLQBYIInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RI7Form<0b11111111100, OOL, IOL, "shlqbyi\t$rT, $rA, $val",
|
|
RotateShift, pattern>;
|
|
|
|
class SHLQBYIVecInst<ValueType vectype>:
|
|
SHLQBYIInst<(outs VECREG:$rT), (ins VECREG:$rA, u7imm_i32:$val),
|
|
[(set (vectype VECREG:$rT),
|
|
(SPUshlquad_l_bytes (vectype VECREG:$rA), (i32 uimm7:$val)))]>;
|
|
|
|
multiclass ShiftLeftQuadBytesImm
|
|
{
|
|
def v16i8: SHLQBYIVecInst<v16i8>;
|
|
def v8i16: SHLQBYIVecInst<v8i16>;
|
|
def v4i32: SHLQBYIVecInst<v4i32>;
|
|
def v2i64: SHLQBYIVecInst<v2i64>;
|
|
def r128: SHLQBYIInst<(outs GPRC:$rT), (ins GPRC:$rA, u7imm_i32:$val),
|
|
[(set GPRC:$rT,
|
|
(SPUshlquad_l_bytes GPRC:$rA, (i32 uimm7:$val)))]>;
|
|
}
|
|
|
|
defm SHLQBYI : ShiftLeftQuadBytesImm;
|
|
|
|
// Special form for truncating i64 to i32:
|
|
def SHLQBYItrunc64: SHLQBYIInst<(outs R32C:$rT), (ins R64C:$rA, u7imm_i32:$val),
|
|
[/* no pattern, see below */]>;
|
|
|
|
def : Pat<(trunc R64C:$rSrc),
|
|
(SHLQBYItrunc64 R64C:$rSrc, 4)>;
|
|
|
|
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
|
|
// Rotate halfword:
|
|
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
|
|
class ROTHInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RRForm<0b00111010000, OOL, IOL, "roth\t$rT, $rA, $rB",
|
|
RotateShift, pattern>;
|
|
|
|
class ROTHVecInst<ValueType vectype>:
|
|
ROTHInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
[(set (vectype VECREG:$rT),
|
|
(SPUvec_rotl VECREG:$rA, VECREG:$rB))]>;
|
|
|
|
class ROTHRegInst<RegisterClass rclass>:
|
|
ROTHInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
|
|
[(set rclass:$rT, (rotl rclass:$rA, rclass:$rB))]>;
|
|
|
|
multiclass RotateLeftHalfword
|
|
{
|
|
def v8i16: ROTHVecInst<v8i16>;
|
|
def r16: ROTHRegInst<R16C>;
|
|
}
|
|
|
|
defm ROTH: RotateLeftHalfword;
|
|
|
|
def ROTHr16_r32: ROTHInst<(outs R16C:$rT), (ins R16C:$rA, R32C:$rB),
|
|
[(set R16C:$rT, (rotl R16C:$rA, R32C:$rB))]>;
|
|
|
|
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
|
|
// Rotate halfword, immediate:
|
|
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
|
|
class ROTHIInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RI7Form<0b00111110000, OOL, IOL, "rothi\t$rT, $rA, $val",
|
|
RotateShift, pattern>;
|
|
|
|
class ROTHIVecInst<ValueType vectype>:
|
|
ROTHIInst<(outs VECREG:$rT), (ins VECREG:$rA, u7imm:$val),
|
|
[(set (vectype VECREG:$rT),
|
|
(SPUvec_rotl VECREG:$rA, (i16 uimm7:$val)))]>;
|
|
|
|
multiclass RotateLeftHalfwordImm
|
|
{
|
|
def v8i16: ROTHIVecInst<v8i16>;
|
|
def r16: ROTHIInst<(outs R16C:$rT), (ins R16C:$rA, u7imm:$val),
|
|
[(set R16C:$rT, (rotl R16C:$rA, (i16 uimm7:$val)))]>;
|
|
def r16_r32: ROTHIInst<(outs R16C:$rT), (ins R16C:$rA, u7imm_i32:$val),
|
|
[(set R16C:$rT, (rotl R16C:$rA, (i32 uimm7:$val)))]>;
|
|
}
|
|
|
|
defm ROTHI: RotateLeftHalfwordImm;
|
|
|
|
def : Pat<(SPUvec_rotl VECREG:$rA, (i32 uimm7:$val)),
|
|
(ROTHIv8i16 VECREG:$rA, imm:$val)>;
|
|
|
|
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
|
|
// Rotate word:
|
|
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
|
|
|
|
class ROTInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RRForm<0b00011010000, OOL, IOL, "rot\t$rT, $rA, $rB",
|
|
RotateShift, pattern>;
|
|
|
|
class ROTVecInst<ValueType vectype>:
|
|
ROTInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
|
|
[(set (vectype VECREG:$rT),
|
|
(SPUvec_rotl (vectype VECREG:$rA), R32C:$rB))]>;
|
|
|
|
class ROTRegInst<RegisterClass rclass>:
|
|
ROTInst<(outs rclass:$rT), (ins rclass:$rA, R32C:$rB),
|
|
[(set rclass:$rT,
|
|
(rotl rclass:$rA, R32C:$rB))]>;
|
|
|
|
multiclass RotateLeftWord
|
|
{
|
|
def v4i32: ROTVecInst<v4i32>;
|
|
def r32: ROTRegInst<R32C>;
|
|
}
|
|
|
|
defm ROT: RotateLeftWord;
|
|
|
|
// The rotate amount is in the same bits whether we've got an 8-bit, 16-bit or
|
|
// 32-bit register
|
|
def ROTr32_r16_anyext:
|
|
ROTInst<(outs R32C:$rT), (ins R32C:$rA, R16C:$rB),
|
|
[(set R32C:$rT, (rotl R32C:$rA, (i32 (anyext R16C:$rB))))]>;
|
|
|
|
def : Pat<(rotl R32C:$rA, (i32 (zext R16C:$rB))),
|
|
(ROTr32_r16_anyext R32C:$rA, R16C:$rB)>;
|
|
|
|
def : Pat<(rotl R32C:$rA, (i32 (sext R16C:$rB))),
|
|
(ROTr32_r16_anyext R32C:$rA, R16C:$rB)>;
|
|
|
|
def ROTr32_r8_anyext:
|
|
ROTInst<(outs R32C:$rT), (ins R32C:$rA, R8C:$rB),
|
|
[(set R32C:$rT, (rotl R32C:$rA, (i32 (anyext R8C:$rB))))]>;
|
|
|
|
def : Pat<(rotl R32C:$rA, (i32 (zext R8C:$rB))),
|
|
(ROTr32_r8_anyext R32C:$rA, R8C:$rB)>;
|
|
|
|
def : Pat<(rotl R32C:$rA, (i32 (sext R8C:$rB))),
|
|
(ROTr32_r8_anyext R32C:$rA, R8C:$rB)>;
|
|
|
|
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
|
|
// Rotate word, immediate
|
|
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
|
|
|
|
class ROTIInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RI7Form<0b00011110000, OOL, IOL, "roti\t$rT, $rA, $val",
|
|
RotateShift, pattern>;
|
|
|
|
class ROTIVecInst<ValueType vectype, Operand optype, ValueType inttype, PatLeaf pred>:
|
|
ROTIInst<(outs VECREG:$rT), (ins VECREG:$rA, optype:$val),
|
|
[(set (vectype VECREG:$rT),
|
|
(SPUvec_rotl (vectype VECREG:$rA), (inttype pred:$val)))]>;
|
|
|
|
class ROTIRegInst<RegisterClass rclass, Operand optype, ValueType inttype, PatLeaf pred>:
|
|
ROTIInst<(outs rclass:$rT), (ins rclass:$rA, optype:$val),
|
|
[(set rclass:$rT, (rotl rclass:$rA, (inttype pred:$val)))]>;
|
|
|
|
multiclass RotateLeftWordImm
|
|
{
|
|
def v4i32: ROTIVecInst<v4i32, u7imm_i32, i32, uimm7>;
|
|
def v4i32_i16: ROTIVecInst<v4i32, u7imm, i16, uimm7>;
|
|
def v4i32_i8: ROTIVecInst<v4i32, u7imm_i8, i8, uimm7>;
|
|
|
|
def r32: ROTIRegInst<R32C, u7imm_i32, i32, uimm7>;
|
|
def r32_i16: ROTIRegInst<R32C, u7imm, i16, uimm7>;
|
|
def r32_i8: ROTIRegInst<R32C, u7imm_i8, i8, uimm7>;
|
|
}
|
|
|
|
defm ROTI : RotateLeftWordImm;
|
|
|
|
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
|
|
// Rotate quad by byte (count)
|
|
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
|
|
|
|
class ROTQBYInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RRForm<0b00111011100, OOL, IOL, "rotqby\t$rT, $rA, $rB",
|
|
RotateShift, pattern>;
|
|
|
|
class ROTQBYVecInst<ValueType vectype>:
|
|
ROTQBYInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
|
|
[(set (vectype VECREG:$rT),
|
|
(SPUrotbytes_left (vectype VECREG:$rA), R32C:$rB))]>;
|
|
|
|
multiclass RotateQuadLeftByBytes
|
|
{
|
|
def v16i8: ROTQBYVecInst<v16i8>;
|
|
def v8i16: ROTQBYVecInst<v8i16>;
|
|
def v4i32: ROTQBYVecInst<v4i32>;
|
|
def v2i64: ROTQBYVecInst<v2i64>;
|
|
}
|
|
|
|
defm ROTQBY: RotateQuadLeftByBytes;
|
|
|
|
def : Pat<(SPUrotbytes_left_chained (v16i8 VECREG:$rA), R32C:$rB),
|
|
(ROTQBYv16i8 VECREG:$rA, R32C:$rB)>;
|
|
def : Pat<(SPUrotbytes_left_chained (v8i16 VECREG:$rA), R32C:$rB),
|
|
(ROTQBYv8i16 VECREG:$rA, R32C:$rB)>;
|
|
def : Pat<(SPUrotbytes_left_chained (v4i32 VECREG:$rA), R32C:$rB),
|
|
(ROTQBYv4i32 VECREG:$rA, R32C:$rB)>;
|
|
def : Pat<(SPUrotbytes_left_chained (v2i64 VECREG:$rA), R32C:$rB),
|
|
(ROTQBYv2i64 VECREG:$rA, R32C:$rB)>;
|
|
|
|
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
|
|
// Rotate quad by byte (count), immediate
|
|
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
|
|
|
|
class ROTQBYIInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RI7Form<0b00111111100, OOL, IOL, "rotqbyi\t$rT, $rA, $val",
|
|
RotateShift, pattern>;
|
|
|
|
class ROTQBYIVecInst<ValueType vectype>:
|
|
ROTQBYIInst<(outs VECREG:$rT), (ins VECREG:$rA, u7imm:$val),
|
|
[(set (vectype VECREG:$rT),
|
|
(SPUrotbytes_left (vectype VECREG:$rA), (i16 uimm7:$val)))]>;
|
|
|
|
multiclass RotateQuadByBytesImm
|
|
{
|
|
def v16i8: ROTQBYIVecInst<v16i8>;
|
|
def v8i16: ROTQBYIVecInst<v8i16>;
|
|
def v4i32: ROTQBYIVecInst<v4i32>;
|
|
def v2i64: ROTQBYIVecInst<v2i64>;
|
|
}
|
|
|
|
defm ROTQBYI: RotateQuadByBytesImm;
|
|
|
|
def : Pat<(SPUrotbytes_left_chained (v16i8 VECREG:$rA), (i16 uimm7:$val)),
|
|
(ROTQBYIv16i8 VECREG:$rA, uimm7:$val)>;
|
|
def : Pat<(SPUrotbytes_left_chained (v8i16 VECREG:$rA), (i16 uimm7:$val)),
|
|
(ROTQBYIv8i16 VECREG:$rA, uimm7:$val)>;
|
|
def : Pat<(SPUrotbytes_left_chained (v4i32 VECREG:$rA), (i16 uimm7:$val)),
|
|
(ROTQBYIv4i32 VECREG:$rA, uimm7:$val)>;
|
|
def : Pat<(SPUrotbytes_left_chained (v2i64 VECREG:$rA), (i16 uimm7:$val)),
|
|
(ROTQBYIv2i64 VECREG:$rA, uimm7:$val)>;
|
|
|
|
// See ROTQBY note above.
|
|
def ROTQBYBIvec:
|
|
RI7Form<0b00110011100, (outs VECREG:$rT), (ins VECREG:$rA, u7imm:$val),
|
|
"rotqbybi\t$rT, $rA, $val", RotateShift,
|
|
[/* intrinsic */]>;
|
|
|
|
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
|
|
// See ROTQBY note above.
|
|
//
|
|
// Assume that the user of this instruction knows to shift the rotate count
|
|
// into bit 29
|
|
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
|
|
|
|
class ROTQBIInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RRForm<0b00011011100, OOL, IOL, "rotqbi\t$rT, $rA, $rB",
|
|
RotateShift, pattern>;
|
|
|
|
class ROTQBIVecInst<ValueType vectype>:
|
|
ROTQBIInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
[/* no pattern yet */]>;
|
|
|
|
class ROTQBIRegInst<RegisterClass rclass>:
|
|
ROTQBIInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
|
|
[/* no pattern yet */]>;
|
|
|
|
multiclass RotateQuadByBitCount
|
|
{
|
|
def v16i8: ROTQBIVecInst<v16i8>;
|
|
def v8i16: ROTQBIVecInst<v8i16>;
|
|
def v4i32: ROTQBIVecInst<v4i32>;
|
|
def v2i64: ROTQBIVecInst<v2i64>;
|
|
|
|
def r128: ROTQBIRegInst<GPRC>;
|
|
def r64: ROTQBIRegInst<R64C>;
|
|
}
|
|
|
|
defm ROTQBI: RotateQuadByBitCount;
|
|
|
|
class ROTQBIIInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RI7Form<0b00011111100, OOL, IOL, "rotqbii\t$rT, $rA, $val",
|
|
RotateShift, pattern>;
|
|
|
|
class ROTQBIIVecInst<ValueType vectype, Operand optype, ValueType inttype,
|
|
PatLeaf pred>:
|
|
ROTQBIIInst<(outs VECREG:$rT), (ins VECREG:$rA, optype:$val),
|
|
[/* no pattern yet */]>;
|
|
|
|
class ROTQBIIRegInst<RegisterClass rclass, Operand optype, ValueType inttype,
|
|
PatLeaf pred>:
|
|
ROTQBIIInst<(outs rclass:$rT), (ins rclass:$rA, optype:$val),
|
|
[/* no pattern yet */]>;
|
|
|
|
multiclass RotateQuadByBitCountImm
|
|
{
|
|
def v16i8: ROTQBIIVecInst<v16i8, u7imm_i32, i32, uimm7>;
|
|
def v8i16: ROTQBIIVecInst<v8i16, u7imm_i32, i32, uimm7>;
|
|
def v4i32: ROTQBIIVecInst<v4i32, u7imm_i32, i32, uimm7>;
|
|
def v2i64: ROTQBIIVecInst<v2i64, u7imm_i32, i32, uimm7>;
|
|
|
|
def r128: ROTQBIIRegInst<GPRC, u7imm_i32, i32, uimm7>;
|
|
def r64: ROTQBIIRegInst<R64C, u7imm_i32, i32, uimm7>;
|
|
}
|
|
|
|
defm ROTQBII : RotateQuadByBitCountImm;
|
|
|
|
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
|
|
// ROTHM v8i16 form:
|
|
// NOTE(1): No vector rotate is generated by the C/C++ frontend (today),
|
|
// so this only matches a synthetically generated/lowered code
|
|
// fragment.
|
|
// NOTE(2): $rB must be negated before the right rotate!
|
|
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
|
|
|
|
class ROTHMInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RRForm<0b10111010000, OOL, IOL, "rothm\t$rT, $rA, $rB",
|
|
RotateShift, pattern>;
|
|
|
|
def ROTHMv8i16:
|
|
ROTHMInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
|
|
[/* see patterns below - $rB must be negated */]>;
|
|
|
|
def : Pat<(SPUvec_srl (v8i16 VECREG:$rA), R32C:$rB),
|
|
(ROTHMv8i16 VECREG:$rA, (SFIr32 R32C:$rB, 0))>;
|
|
|
|
def : Pat<(SPUvec_srl (v8i16 VECREG:$rA), R16C:$rB),
|
|
(ROTHMv8i16 VECREG:$rA,
|
|
(SFIr32 (XSHWr16 R16C:$rB), 0))>;
|
|
|
|
def : Pat<(SPUvec_srl (v8i16 VECREG:$rA), R8C:$rB),
|
|
(ROTHMv8i16 VECREG:$rA,
|
|
(SFIr32 (XSHWr16 (XSBHr8 R8C:$rB) ), 0))>;
|
|
|
|
// ROTHM r16 form: Rotate 16-bit quantity to right, zero fill at the left
|
|
// Note: This instruction doesn't match a pattern because rB must be negated
|
|
// for the instruction to work. Thus, the pattern below the instruction!
|
|
|
|
def ROTHMr16:
|
|
ROTHMInst<(outs R16C:$rT), (ins R16C:$rA, R32C:$rB),
|
|
[/* see patterns below - $rB must be negated! */]>;
|
|
|
|
def : Pat<(srl R16C:$rA, R32C:$rB),
|
|
(ROTHMr16 R16C:$rA, (SFIr32 R32C:$rB, 0))>;
|
|
|
|
def : Pat<(srl R16C:$rA, R16C:$rB),
|
|
(ROTHMr16 R16C:$rA,
|
|
(SFIr32 (XSHWr16 R16C:$rB), 0))>;
|
|
|
|
def : Pat<(srl R16C:$rA, R8C:$rB),
|
|
(ROTHMr16 R16C:$rA,
|
|
(SFIr32 (XSHWr16 (XSBHr8 R8C:$rB) ), 0))>;
|
|
|
|
// ROTHMI v8i16 form: See the comment for ROTHM v8i16. The difference here is
|
|
// that the immediate can be complemented, so that the user doesn't have to
|
|
// worry about it.
|
|
|
|
class ROTHMIInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RI7Form<0b10111110000, OOL, IOL, "rothmi\t$rT, $rA, $val",
|
|
RotateShift, pattern>;
|
|
|
|
def ROTHMIv8i16:
|
|
ROTHMIInst<(outs VECREG:$rT), (ins VECREG:$rA, rothNeg7imm:$val),
|
|
[/* no pattern */]>;
|
|
|
|
def : Pat<(SPUvec_srl (v8i16 VECREG:$rA), (i32 imm:$val)),
|
|
(ROTHMIv8i16 VECREG:$rA, imm:$val)>;
|
|
|
|
def: Pat<(SPUvec_srl (v8i16 VECREG:$rA), (i16 imm:$val)),
|
|
(ROTHMIv8i16 VECREG:$rA, imm:$val)>;
|
|
|
|
def: Pat<(SPUvec_srl (v8i16 VECREG:$rA), (i8 imm:$val)),
|
|
(ROTHMIv8i16 VECREG:$rA, imm:$val)>;
|
|
|
|
def ROTHMIr16:
|
|
ROTHMIInst<(outs R16C:$rT), (ins R16C:$rA, rothNeg7imm:$val),
|
|
[/* no pattern */]>;
|
|
|
|
def: Pat<(srl R16C:$rA, (i32 uimm7:$val)),
|
|
(ROTHMIr16 R16C:$rA, uimm7:$val)>;
|
|
|
|
def: Pat<(srl R16C:$rA, (i16 uimm7:$val)),
|
|
(ROTHMIr16 R16C:$rA, uimm7:$val)>;
|
|
|
|
def: Pat<(srl R16C:$rA, (i8 uimm7:$val)),
|
|
(ROTHMIr16 R16C:$rA, uimm7:$val)>;
|
|
|
|
// ROTM v4i32 form: See the ROTHM v8i16 comments.
|
|
class ROTMInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RRForm<0b10011010000, OOL, IOL, "rotm\t$rT, $rA, $rB",
|
|
RotateShift, pattern>;
|
|
|
|
def ROTMv4i32:
|
|
ROTMInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
|
|
[/* see patterns below - $rB must be negated */]>;
|
|
|
|
def : Pat<(SPUvec_srl VECREG:$rA, R32C:$rB),
|
|
(ROTMv4i32 VECREG:$rA, (SFIr32 R32C:$rB, 0))>;
|
|
|
|
def : Pat<(SPUvec_srl VECREG:$rA, R16C:$rB),
|
|
(ROTMv4i32 VECREG:$rA,
|
|
(SFIr32 (XSHWr16 R16C:$rB), 0))>;
|
|
|
|
def : Pat<(SPUvec_srl VECREG:$rA, R8C:$rB),
|
|
(ROTMv4i32 VECREG:$rA,
|
|
(SFIr32 (XSHWr16 (XSBHr8 R8C:$rB)), 0))>;
|
|
|
|
def ROTMr32:
|
|
ROTMInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
|
|
[/* see patterns below - $rB must be negated */]>;
|
|
|
|
def : Pat<(srl R32C:$rA, R32C:$rB),
|
|
(ROTMr32 R32C:$rA, (SFIr32 R32C:$rB, 0))>;
|
|
|
|
def : Pat<(srl R32C:$rA, R16C:$rB),
|
|
(ROTMr32 R32C:$rA,
|
|
(SFIr32 (XSHWr16 R16C:$rB), 0))>;
|
|
|
|
def : Pat<(srl R32C:$rA, R8C:$rB),
|
|
(ROTMr32 R32C:$rA,
|
|
(SFIr32 (XSHWr16 (XSBHr8 R8C:$rB)), 0))>;
|
|
|
|
// ROTMI v4i32 form: See the comment for ROTHM v8i16.
|
|
def ROTMIv4i32:
|
|
RI7Form<0b10011110000, (outs VECREG:$rT), (ins VECREG:$rA, rotNeg7imm:$val),
|
|
"rotmi\t$rT, $rA, $val", RotateShift,
|
|
[(set (v4i32 VECREG:$rT),
|
|
(SPUvec_srl VECREG:$rA, (i32 uimm7:$val)))]>;
|
|
|
|
def : Pat<(SPUvec_srl VECREG:$rA, (i16 uimm7:$val)),
|
|
(ROTMIv4i32 VECREG:$rA, uimm7:$val)>;
|
|
|
|
def : Pat<(SPUvec_srl VECREG:$rA, (i8 uimm7:$val)),
|
|
(ROTMIv4i32 VECREG:$rA, uimm7:$val)>;
|
|
|
|
// ROTMI r32 form: know how to complement the immediate value.
|
|
def ROTMIr32:
|
|
RI7Form<0b10011110000, (outs R32C:$rT), (ins R32C:$rA, rotNeg7imm:$val),
|
|
"rotmi\t$rT, $rA, $val", RotateShift,
|
|
[(set R32C:$rT, (srl R32C:$rA, (i32 uimm7:$val)))]>;
|
|
|
|
def : Pat<(srl R32C:$rA, (i16 imm:$val)),
|
|
(ROTMIr32 R32C:$rA, uimm7:$val)>;
|
|
|
|
def : Pat<(srl R32C:$rA, (i8 imm:$val)),
|
|
(ROTMIr32 R32C:$rA, uimm7:$val)>;
|
|
|
|
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
|
|
// ROTQMBYvec: This is a vector form merely so that when used in an
|
|
// instruction pattern, type checking will succeed. This instruction assumes
|
|
// that the user knew to negate $rB.
|
|
//
|
|
// Using the SPUrotquad_rz_bytes target-specific DAG node, the patterns
|
|
// ensure that $rB is negated.
|
|
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
|
|
|
|
class ROTQMBYInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RRForm<0b10111011100, OOL, IOL, "rotqmby\t$rT, $rA, $rB",
|
|
RotateShift, pattern>;
|
|
|
|
class ROTQMBYVecInst<ValueType vectype>:
|
|
ROTQMBYInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
|
|
[/* no pattern, $rB must be negated */]>;
|
|
|
|
class ROTQMBYRegInst<RegisterClass rclass>:
|
|
ROTQMBYInst<(outs rclass:$rT), (ins rclass:$rA, R32C:$rB),
|
|
[(set rclass:$rT,
|
|
(SPUrotquad_rz_bytes rclass:$rA, R32C:$rB))]>;
|
|
|
|
multiclass RotateQuadBytes
|
|
{
|
|
def v16i8: ROTQMBYVecInst<v16i8>;
|
|
def v8i16: ROTQMBYVecInst<v8i16>;
|
|
def v4i32: ROTQMBYVecInst<v4i32>;
|
|
def v2i64: ROTQMBYVecInst<v2i64>;
|
|
|
|
def r128: ROTQMBYRegInst<GPRC>;
|
|
def r64: ROTQMBYRegInst<R64C>;
|
|
}
|
|
|
|
defm ROTQMBY : RotateQuadBytes;
|
|
|
|
def : Pat<(SPUrotquad_rz_bytes (v16i8 VECREG:$rA), R32C:$rB),
|
|
(ROTQMBYv16i8 VECREG:$rA, (SFIr32 R32C:$rB, 0))>;
|
|
def : Pat<(SPUrotquad_rz_bytes (v8i16 VECREG:$rA), R32C:$rB),
|
|
(ROTQMBYv8i16 VECREG:$rA, (SFIr32 R32C:$rB, 0))>;
|
|
def : Pat<(SPUrotquad_rz_bytes (v4i32 VECREG:$rA), R32C:$rB),
|
|
(ROTQMBYv4i32 VECREG:$rA, (SFIr32 R32C:$rB, 0))>;
|
|
def : Pat<(SPUrotquad_rz_bytes (v2i64 VECREG:$rA), R32C:$rB),
|
|
(ROTQMBYv2i64 VECREG:$rA, (SFIr32 R32C:$rB, 0))>;
|
|
def : Pat<(SPUrotquad_rz_bytes GPRC:$rA, R32C:$rB),
|
|
(ROTQMBYr128 GPRC:$rA, (SFIr32 R32C:$rB, 0))>;
|
|
def : Pat<(SPUrotquad_rz_bytes R64C:$rA, R32C:$rB),
|
|
(ROTQMBYr64 R64C:$rA, (SFIr32 R32C:$rB, 0))>;
|
|
|
|
class ROTQMBYIInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RI7Form<0b10111111100, OOL, IOL, "rotqmbyi\t$rT, $rA, $val",
|
|
RotateShift, pattern>;
|
|
|
|
class ROTQMBYIVecInst<ValueType vectype>:
|
|
ROTQMBYIInst<(outs VECREG:$rT), (ins VECREG:$rA, rotNeg7imm:$val),
|
|
[(set (vectype VECREG:$rT),
|
|
(SPUrotquad_rz_bytes (vectype VECREG:$rA), (i32 uimm7:$val)))]>;
|
|
|
|
class ROTQMBYIRegInst<RegisterClass rclass, Operand optype, ValueType inttype, PatLeaf pred>:
|
|
ROTQMBYIInst<(outs rclass:$rT), (ins rclass:$rA, optype:$val),
|
|
[(set rclass:$rT,
|
|
(SPUrotquad_rz_bytes rclass:$rA, (inttype pred:$val)))]>;
|
|
|
|
multiclass RotateQuadBytesImm
|
|
{
|
|
def v16i8: ROTQMBYIVecInst<v16i8>;
|
|
def v8i16: ROTQMBYIVecInst<v8i16>;
|
|
def v4i32: ROTQMBYIVecInst<v4i32>;
|
|
def v2i64: ROTQMBYIVecInst<v2i64>;
|
|
|
|
def r128: ROTQMBYIRegInst<GPRC, rotNeg7imm, i32, uimm7>;
|
|
def r64: ROTQMBYIRegInst<R64C, rotNeg7imm, i32, uimm7>;
|
|
}
|
|
|
|
defm ROTQMBYI : RotateQuadBytesImm;
|
|
|
|
|
|
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
|
|
// Rotate right and mask by bit count
|
|
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
|
|
|
|
class ROTQMBYBIInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RRForm<0b10110011100, OOL, IOL, "rotqmbybi\t$rT, $rA, $rB",
|
|
RotateShift, pattern>;
|
|
|
|
class ROTQMBYBIVecInst<ValueType vectype>:
|
|
ROTQMBYBIInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
[/* no pattern, intrinsic? */]>;
|
|
|
|
multiclass RotateMaskQuadByBitCount
|
|
{
|
|
def v16i8: ROTQMBYBIVecInst<v16i8>;
|
|
def v8i16: ROTQMBYBIVecInst<v8i16>;
|
|
def v4i32: ROTQMBYBIVecInst<v4i32>;
|
|
def v2i64: ROTQMBYBIVecInst<v2i64>;
|
|
}
|
|
|
|
defm ROTQMBYBI: RotateMaskQuadByBitCount;
|
|
|
|
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
|
|
// Rotate quad and mask by bits
|
|
// Note that the rotate amount has to be negated
|
|
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
|
|
|
|
class ROTQMBIInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RRForm<0b10011011100, OOL, IOL, "rotqmbi\t$rT, $rA, $rB",
|
|
RotateShift, pattern>;
|
|
|
|
class ROTQMBIVecInst<ValueType vectype>:
|
|
ROTQMBIInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
|
|
[/* no pattern */]>;
|
|
|
|
class ROTQMBIRegInst<RegisterClass rclass>:
|
|
ROTQMBIInst<(outs rclass:$rT), (ins rclass:$rA, R32C:$rB),
|
|
[/* no pattern */]>;
|
|
|
|
multiclass RotateMaskQuadByBits
|
|
{
|
|
def v16i8: ROTQMBIVecInst<v16i8>;
|
|
def v8i16: ROTQMBIVecInst<v8i16>;
|
|
def v4i32: ROTQMBIVecInst<v4i32>;
|
|
def v2i64: ROTQMBIVecInst<v2i64>;
|
|
|
|
def r128: ROTQMBIRegInst<GPRC>;
|
|
def r64: ROTQMBIRegInst<R64C>;
|
|
}
|
|
|
|
defm ROTQMBI: RotateMaskQuadByBits;
|
|
|
|
def : Pat<(SPUrotquad_rz_bits (v16i8 VECREG:$rA), R32C:$rB),
|
|
(ROTQMBIv16i8 VECREG:$rA, (SFIr32 R32C:$rB, 0))>;
|
|
def : Pat<(SPUrotquad_rz_bits (v8i16 VECREG:$rA), R32C:$rB),
|
|
(ROTQMBIv8i16 VECREG:$rA, (SFIr32 R32C:$rB, 0))>;
|
|
def : Pat<(SPUrotquad_rz_bits (v4i32 VECREG:$rA), R32C:$rB),
|
|
(ROTQMBIv4i32 VECREG:$rA, (SFIr32 R32C:$rB, 0))>;
|
|
def : Pat<(SPUrotquad_rz_bits (v2i64 VECREG:$rA), R32C:$rB),
|
|
(ROTQMBIv2i64 VECREG:$rA, (SFIr32 R32C:$rB, 0))>;
|
|
def : Pat<(SPUrotquad_rz_bits GPRC:$rA, R32C:$rB),
|
|
(ROTQMBIr128 GPRC:$rA, (SFIr32 R32C:$rB, 0))>;
|
|
def : Pat<(SPUrotquad_rz_bits R64C:$rA, R32C:$rB),
|
|
(ROTQMBIr64 R64C:$rA, (SFIr32 R32C:$rB, 0))>;
|
|
|
|
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
|
|
// Rotate quad and mask by bits, immediate
|
|
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
|
|
|
|
class ROTQMBIIInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RI7Form<0b10011111100, OOL, IOL, "rotqmbii\t$rT, $rA, $val",
|
|
RotateShift, pattern>;
|
|
|
|
class ROTQMBIIVecInst<ValueType vectype>:
|
|
ROTQMBIIInst<(outs VECREG:$rT), (ins VECREG:$rA, rotNeg7imm:$val),
|
|
[(set (vectype VECREG:$rT),
|
|
(SPUrotquad_rz_bits (vectype VECREG:$rA), (i32 uimm7:$val)))]>;
|
|
|
|
class ROTQMBIIRegInst<RegisterClass rclass>:
|
|
ROTQMBIIInst<(outs rclass:$rT), (ins rclass:$rA, rotNeg7imm:$val),
|
|
[(set rclass:$rT,
|
|
(SPUrotquad_rz_bits rclass:$rA, (i32 uimm7:$val)))]>;
|
|
|
|
multiclass RotateMaskQuadByBitsImm
|
|
{
|
|
def v16i8: ROTQMBIIVecInst<v16i8>;
|
|
def v8i16: ROTQMBIIVecInst<v8i16>;
|
|
def v4i32: ROTQMBIIVecInst<v4i32>;
|
|
def v2i64: ROTQMBIIVecInst<v2i64>;
|
|
|
|
def r128: ROTQMBIIRegInst<GPRC>;
|
|
def r64: ROTQMBIIRegInst<R64C>;
|
|
}
|
|
|
|
defm ROTQMBII: RotateMaskQuadByBitsImm;
|
|
|
|
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
|
|
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
|
|
|
|
def ROTMAHv8i16:
|
|
RRForm<0b01111010000, (outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
|
|
"rotmah\t$rT, $rA, $rB", RotateShift,
|
|
[/* see patterns below - $rB must be negated */]>;
|
|
|
|
def : Pat<(SPUvec_sra VECREG:$rA, R32C:$rB),
|
|
(ROTMAHv8i16 VECREG:$rA, (SFIr32 R32C:$rB, 0))>;
|
|
|
|
def : Pat<(SPUvec_sra VECREG:$rA, R16C:$rB),
|
|
(ROTMAHv8i16 VECREG:$rA,
|
|
(SFIr32 (XSHWr16 R16C:$rB), 0))>;
|
|
|
|
def : Pat<(SPUvec_sra VECREG:$rA, R8C:$rB),
|
|
(ROTMAHv8i16 VECREG:$rA,
|
|
(SFIr32 (XSHWr16 (XSBHr8 R8C:$rB)), 0))>;
|
|
|
|
def ROTMAHr16:
|
|
RRForm<0b01111010000, (outs R16C:$rT), (ins R16C:$rA, R32C:$rB),
|
|
"rotmah\t$rT, $rA, $rB", RotateShift,
|
|
[/* see patterns below - $rB must be negated */]>;
|
|
|
|
def : Pat<(sra R16C:$rA, R32C:$rB),
|
|
(ROTMAHr16 R16C:$rA, (SFIr32 R32C:$rB, 0))>;
|
|
|
|
def : Pat<(sra R16C:$rA, R16C:$rB),
|
|
(ROTMAHr16 R16C:$rA,
|
|
(SFIr32 (XSHWr16 R16C:$rB), 0))>;
|
|
|
|
def : Pat<(sra R16C:$rA, R8C:$rB),
|
|
(ROTMAHr16 R16C:$rA,
|
|
(SFIr32 (XSHWr16 (XSBHr8 R8C:$rB)), 0))>;
|
|
|
|
def ROTMAHIv8i16:
|
|
RRForm<0b01111110000, (outs VECREG:$rT), (ins VECREG:$rA, rothNeg7imm:$val),
|
|
"rotmahi\t$rT, $rA, $val", RotateShift,
|
|
[(set (v8i16 VECREG:$rT),
|
|
(SPUvec_sra (v8i16 VECREG:$rA), (i32 uimm7:$val)))]>;
|
|
|
|
def : Pat<(SPUvec_sra (v8i16 VECREG:$rA), (i16 uimm7:$val)),
|
|
(ROTMAHIv8i16 (v8i16 VECREG:$rA), (i32 uimm7:$val))>;
|
|
|
|
def : Pat<(SPUvec_sra (v8i16 VECREG:$rA), (i8 uimm7:$val)),
|
|
(ROTMAHIv8i16 (v8i16 VECREG:$rA), (i32 uimm7:$val))>;
|
|
|
|
def ROTMAHIr16:
|
|
RRForm<0b01111110000, (outs R16C:$rT), (ins R16C:$rA, rothNeg7imm_i16:$val),
|
|
"rotmahi\t$rT, $rA, $val", RotateShift,
|
|
[(set R16C:$rT, (sra R16C:$rA, (i16 uimm7:$val)))]>;
|
|
|
|
def : Pat<(sra R16C:$rA, (i32 imm:$val)),
|
|
(ROTMAHIr16 R16C:$rA, uimm7:$val)>;
|
|
|
|
def : Pat<(sra R16C:$rA, (i8 imm:$val)),
|
|
(ROTMAHIr16 R16C:$rA, uimm7:$val)>;
|
|
|
|
def ROTMAv4i32:
|
|
RRForm<0b01011010000, (outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
|
|
"rotma\t$rT, $rA, $rB", RotateShift,
|
|
[/* see patterns below - $rB must be negated */]>;
|
|
|
|
def : Pat<(SPUvec_sra VECREG:$rA, R32C:$rB),
|
|
(ROTMAv4i32 (v4i32 VECREG:$rA), (SFIr32 R32C:$rB, 0))>;
|
|
|
|
def : Pat<(SPUvec_sra VECREG:$rA, R16C:$rB),
|
|
(ROTMAv4i32 (v4i32 VECREG:$rA),
|
|
(SFIr32 (XSHWr16 R16C:$rB), 0))>;
|
|
|
|
def : Pat<(SPUvec_sra VECREG:$rA, R8C:$rB),
|
|
(ROTMAv4i32 (v4i32 VECREG:$rA),
|
|
(SFIr32 (XSHWr16 (XSBHr8 R8C:$rB)), 0))>;
|
|
|
|
def ROTMAr32:
|
|
RRForm<0b01011010000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
|
|
"rotma\t$rT, $rA, $rB", RotateShift,
|
|
[/* see patterns below - $rB must be negated */]>;
|
|
|
|
def : Pat<(sra R32C:$rA, R32C:$rB),
|
|
(ROTMAr32 R32C:$rA, (SFIr32 R32C:$rB, 0))>;
|
|
|
|
def : Pat<(sra R32C:$rA, R16C:$rB),
|
|
(ROTMAr32 R32C:$rA,
|
|
(SFIr32 (XSHWr16 R16C:$rB), 0))>;
|
|
|
|
def : Pat<(sra R32C:$rA, R8C:$rB),
|
|
(ROTMAr32 R32C:$rA,
|
|
(SFIr32 (XSHWr16 (XSBHr8 R8C:$rB)), 0))>;
|
|
|
|
def ROTMAIv4i32:
|
|
RRForm<0b01011110000, (outs VECREG:$rT), (ins VECREG:$rA, rotNeg7imm:$val),
|
|
"rotmai\t$rT, $rA, $val", RotateShift,
|
|
[(set (v4i32 VECREG:$rT),
|
|
(SPUvec_sra VECREG:$rA, (i32 uimm7:$val)))]>;
|
|
|
|
def : Pat<(SPUvec_sra VECREG:$rA, (i16 uimm7:$val)),
|
|
(ROTMAIv4i32 VECREG:$rA, uimm7:$val)>;
|
|
|
|
def ROTMAIr32:
|
|
RRForm<0b01011110000, (outs R32C:$rT), (ins R32C:$rA, rotNeg7imm:$val),
|
|
"rotmai\t$rT, $rA, $val", RotateShift,
|
|
[(set R32C:$rT, (sra R32C:$rA, (i32 uimm7:$val)))]>;
|
|
|
|
def : Pat<(sra R32C:$rA, (i16 uimm7:$val)),
|
|
(ROTMAIr32 R32C:$rA, uimm7:$val)>;
|
|
|
|
def : Pat<(sra R32C:$rA, (i8 uimm7:$val)),
|
|
(ROTMAIr32 R32C:$rA, uimm7:$val)>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Branch and conditionals:
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
let isTerminator = 1, isBarrier = 1 in {
|
|
// Halt If Equal (r32 preferred slot only, no vector form)
|
|
def HEQr32:
|
|
RRForm_3<0b00011011110, (outs), (ins R32C:$rA, R32C:$rB),
|
|
"heq\t$rA, $rB", BranchResolv,
|
|
[/* no pattern to match */]>;
|
|
|
|
def HEQIr32 :
|
|
RI10Form_2<0b11111110, (outs), (ins R32C:$rA, s10imm:$val),
|
|
"heqi\t$rA, $val", BranchResolv,
|
|
[/* no pattern to match */]>;
|
|
|
|
// HGT/HGTI: These instructions use signed arithmetic for the comparison,
|
|
// contrasting with HLGT/HLGTI, which use unsigned comparison:
|
|
def HGTr32:
|
|
RRForm_3<0b00011010010, (outs), (ins R32C:$rA, R32C:$rB),
|
|
"hgt\t$rA, $rB", BranchResolv,
|
|
[/* no pattern to match */]>;
|
|
|
|
def HGTIr32:
|
|
RI10Form_2<0b11110010, (outs), (ins R32C:$rA, s10imm:$val),
|
|
"hgti\t$rA, $val", BranchResolv,
|
|
[/* no pattern to match */]>;
|
|
|
|
def HLGTr32:
|
|
RRForm_3<0b00011011010, (outs), (ins R32C:$rA, R32C:$rB),
|
|
"hlgt\t$rA, $rB", BranchResolv,
|
|
[/* no pattern to match */]>;
|
|
|
|
def HLGTIr32:
|
|
RI10Form_2<0b11111010, (outs), (ins R32C:$rA, s10imm:$val),
|
|
"hlgti\t$rA, $val", BranchResolv,
|
|
[/* no pattern to match */]>;
|
|
}
|
|
|
|
//------------------------------------------------------------------------
|
|
// Comparison operators:
|
|
//------------------------------------------------------------------------
|
|
|
|
class CEQBInst<dag OOL, dag IOL, list<dag> pattern> :
|
|
RRForm<0b00001011110, OOL, IOL, "ceqb\t$rT, $rA, $rB",
|
|
ByteOp, pattern>;
|
|
|
|
multiclass CmpEqualByte
|
|
{
|
|
def v16i8 :
|
|
CEQBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
[(set (v16i8 VECREG:$rT), (seteq (v8i16 VECREG:$rA),
|
|
(v8i16 VECREG:$rB)))]>;
|
|
|
|
def r8 :
|
|
CEQBInst<(outs R8C:$rT), (ins R8C:$rA, R8C:$rB),
|
|
[(set R8C:$rT, (seteq R8C:$rA, R8C:$rB))]>;
|
|
}
|
|
|
|
class CEQBIInst<dag OOL, dag IOL, list<dag> pattern> :
|
|
RI10Form<0b01111110, OOL, IOL, "ceqbi\t$rT, $rA, $val",
|
|
ByteOp, pattern>;
|
|
|
|
multiclass CmpEqualByteImm
|
|
{
|
|
def v16i8 :
|
|
CEQBIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm_i8:$val),
|
|
[(set (v16i8 VECREG:$rT), (seteq (v16i8 VECREG:$rA),
|
|
v16i8SExt8Imm:$val))]>;
|
|
def r8:
|
|
CEQBIInst<(outs R8C:$rT), (ins R8C:$rA, s10imm_i8:$val),
|
|
[(set R8C:$rT, (seteq R8C:$rA, immSExt8:$val))]>;
|
|
}
|
|
|
|
class CEQHInst<dag OOL, dag IOL, list<dag> pattern> :
|
|
RRForm<0b00010011110, OOL, IOL, "ceqh\t$rT, $rA, $rB",
|
|
ByteOp, pattern>;
|
|
|
|
multiclass CmpEqualHalfword
|
|
{
|
|
def v8i16 : CEQHInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
[(set (v8i16 VECREG:$rT), (seteq (v8i16 VECREG:$rA),
|
|
(v8i16 VECREG:$rB)))]>;
|
|
|
|
def r16 : CEQHInst<(outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
|
|
[(set R16C:$rT, (seteq R16C:$rA, R16C:$rB))]>;
|
|
}
|
|
|
|
class CEQHIInst<dag OOL, dag IOL, list<dag> pattern> :
|
|
RI10Form<0b10111110, OOL, IOL, "ceqhi\t$rT, $rA, $val",
|
|
ByteOp, pattern>;
|
|
|
|
multiclass CmpEqualHalfwordImm
|
|
{
|
|
def v8i16 : CEQHIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
|
|
[(set (v8i16 VECREG:$rT),
|
|
(seteq (v8i16 VECREG:$rA),
|
|
(v8i16 v8i16SExt10Imm:$val)))]>;
|
|
def r16 : CEQHIInst<(outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
|
|
[(set R16C:$rT, (seteq R16C:$rA, i16ImmSExt10:$val))]>;
|
|
}
|
|
|
|
class CEQInst<dag OOL, dag IOL, list<dag> pattern> :
|
|
RRForm<0b00000011110, OOL, IOL, "ceq\t$rT, $rA, $rB",
|
|
ByteOp, pattern>;
|
|
|
|
multiclass CmpEqualWord
|
|
{
|
|
def v4i32 : CEQInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
[(set (v4i32 VECREG:$rT),
|
|
(seteq (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>;
|
|
|
|
def r32 : CEQInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
|
|
[(set R32C:$rT, (seteq R32C:$rA, R32C:$rB))]>;
|
|
}
|
|
|
|
class CEQIInst<dag OOL, dag IOL, list<dag> pattern> :
|
|
RI10Form<0b00111110, OOL, IOL, "ceqi\t$rT, $rA, $val",
|
|
ByteOp, pattern>;
|
|
|
|
multiclass CmpEqualWordImm
|
|
{
|
|
def v4i32 : CEQIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
|
|
[(set (v4i32 VECREG:$rT),
|
|
(seteq (v4i32 VECREG:$rA),
|
|
(v4i32 v4i32SExt16Imm:$val)))]>;
|
|
|
|
def r32: CEQIInst<(outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val),
|
|
[(set R32C:$rT, (seteq R32C:$rA, i32ImmSExt10:$val))]>;
|
|
}
|
|
|
|
class CGTBInst<dag OOL, dag IOL, list<dag> pattern> :
|
|
RRForm<0b00001010010, OOL, IOL, "cgtb\t$rT, $rA, $rB",
|
|
ByteOp, pattern>;
|
|
|
|
multiclass CmpGtrByte
|
|
{
|
|
def v16i8 :
|
|
CGTBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
[(set (v16i8 VECREG:$rT), (setgt (v8i16 VECREG:$rA),
|
|
(v8i16 VECREG:$rB)))]>;
|
|
|
|
def r8 :
|
|
CGTBInst<(outs R8C:$rT), (ins R8C:$rA, R8C:$rB),
|
|
[(set R8C:$rT, (setgt R8C:$rA, R8C:$rB))]>;
|
|
}
|
|
|
|
class CGTBIInst<dag OOL, dag IOL, list<dag> pattern> :
|
|
RI10Form<0b01110010, OOL, IOL, "cgtbi\t$rT, $rA, $val",
|
|
ByteOp, pattern>;
|
|
|
|
multiclass CmpGtrByteImm
|
|
{
|
|
def v16i8 :
|
|
CGTBIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm_i8:$val),
|
|
[(set (v16i8 VECREG:$rT), (setgt (v16i8 VECREG:$rA),
|
|
v16i8SExt8Imm:$val))]>;
|
|
def r8:
|
|
CGTBIInst<(outs R8C:$rT), (ins R8C:$rA, s10imm_i8:$val),
|
|
[(set R8C:$rT, (setgt R8C:$rA, immSExt8:$val))]>;
|
|
}
|
|
|
|
class CGTHInst<dag OOL, dag IOL, list<dag> pattern> :
|
|
RRForm<0b00010010010, OOL, IOL, "cgth\t$rT, $rA, $rB",
|
|
ByteOp, pattern>;
|
|
|
|
multiclass CmpGtrHalfword
|
|
{
|
|
def v8i16 : CGTHInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
[(set (v8i16 VECREG:$rT), (setgt (v8i16 VECREG:$rA),
|
|
(v8i16 VECREG:$rB)))]>;
|
|
|
|
def r16 : CGTHInst<(outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
|
|
[(set R16C:$rT, (setgt R16C:$rA, R16C:$rB))]>;
|
|
}
|
|
|
|
class CGTHIInst<dag OOL, dag IOL, list<dag> pattern> :
|
|
RI10Form<0b10110010, OOL, IOL, "cgthi\t$rT, $rA, $val",
|
|
ByteOp, pattern>;
|
|
|
|
multiclass CmpGtrHalfwordImm
|
|
{
|
|
def v8i16 : CGTHIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
|
|
[(set (v8i16 VECREG:$rT),
|
|
(setgt (v8i16 VECREG:$rA),
|
|
(v8i16 v8i16SExt10Imm:$val)))]>;
|
|
def r16 : CGTHIInst<(outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
|
|
[(set R16C:$rT, (setgt R16C:$rA, i16ImmSExt10:$val))]>;
|
|
}
|
|
|
|
class CGTInst<dag OOL, dag IOL, list<dag> pattern> :
|
|
RRForm<0b00000010010, OOL, IOL, "cgt\t$rT, $rA, $rB",
|
|
ByteOp, pattern>;
|
|
|
|
multiclass CmpGtrWord
|
|
{
|
|
def v4i32 : CGTInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
[(set (v4i32 VECREG:$rT),
|
|
(setgt (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>;
|
|
|
|
def r32 : CGTInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
|
|
[(set R32C:$rT, (setgt R32C:$rA, R32C:$rB))]>;
|
|
}
|
|
|
|
class CGTIInst<dag OOL, dag IOL, list<dag> pattern> :
|
|
RI10Form<0b00110010, OOL, IOL, "cgti\t$rT, $rA, $val",
|
|
ByteOp, pattern>;
|
|
|
|
multiclass CmpGtrWordImm
|
|
{
|
|
def v4i32 : CGTIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
|
|
[(set (v4i32 VECREG:$rT),
|
|
(setgt (v4i32 VECREG:$rA),
|
|
(v4i32 v4i32SExt16Imm:$val)))]>;
|
|
|
|
def r32: CGTIInst<(outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val),
|
|
[(set R32C:$rT, (setgt R32C:$rA, i32ImmSExt10:$val))]>;
|
|
}
|
|
|
|
class CLGTBInst<dag OOL, dag IOL, list<dag> pattern> :
|
|
RRForm<0b00001011010, OOL, IOL, "cgtb\t$rT, $rA, $rB",
|
|
ByteOp, pattern>;
|
|
|
|
multiclass CmpLGtrByte
|
|
{
|
|
def v16i8 :
|
|
CLGTBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
[(set (v16i8 VECREG:$rT), (setugt (v8i16 VECREG:$rA),
|
|
(v8i16 VECREG:$rB)))]>;
|
|
|
|
def r8 :
|
|
CLGTBInst<(outs R8C:$rT), (ins R8C:$rA, R8C:$rB),
|
|
[(set R8C:$rT, (setugt R8C:$rA, R8C:$rB))]>;
|
|
}
|
|
|
|
class CLGTBIInst<dag OOL, dag IOL, list<dag> pattern> :
|
|
RI10Form<0b01111010, OOL, IOL, "cgtbi\t$rT, $rA, $val",
|
|
ByteOp, pattern>;
|
|
|
|
multiclass CmpLGtrByteImm
|
|
{
|
|
def v16i8 :
|
|
CLGTBIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm_i8:$val),
|
|
[(set (v16i8 VECREG:$rT), (setugt (v16i8 VECREG:$rA),
|
|
v16i8SExt8Imm:$val))]>;
|
|
def r8:
|
|
CLGTBIInst<(outs R8C:$rT), (ins R8C:$rA, s10imm_i8:$val),
|
|
[(set R8C:$rT, (setugt R8C:$rA, immSExt8:$val))]>;
|
|
}
|
|
|
|
class CLGTHInst<dag OOL, dag IOL, list<dag> pattern> :
|
|
RRForm<0b00010011010, OOL, IOL, "cgth\t$rT, $rA, $rB",
|
|
ByteOp, pattern>;
|
|
|
|
multiclass CmpLGtrHalfword
|
|
{
|
|
def v8i16 : CLGTHInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
[(set (v8i16 VECREG:$rT), (setugt (v8i16 VECREG:$rA),
|
|
(v8i16 VECREG:$rB)))]>;
|
|
|
|
def r16 : CLGTHInst<(outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
|
|
[(set R16C:$rT, (setugt R16C:$rA, R16C:$rB))]>;
|
|
}
|
|
|
|
class CLGTHIInst<dag OOL, dag IOL, list<dag> pattern> :
|
|
RI10Form<0b10111010, OOL, IOL, "cgthi\t$rT, $rA, $val",
|
|
ByteOp, pattern>;
|
|
|
|
multiclass CmpLGtrHalfwordImm
|
|
{
|
|
def v8i16 : CLGTHIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
|
|
[(set (v8i16 VECREG:$rT),
|
|
(setugt (v8i16 VECREG:$rA),
|
|
(v8i16 v8i16SExt10Imm:$val)))]>;
|
|
def r16 : CLGTHIInst<(outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
|
|
[(set R16C:$rT, (setugt R16C:$rA, i16ImmSExt10:$val))]>;
|
|
}
|
|
|
|
class CLGTInst<dag OOL, dag IOL, list<dag> pattern> :
|
|
RRForm<0b00000011010, OOL, IOL, "cgt\t$rT, $rA, $rB",
|
|
ByteOp, pattern>;
|
|
|
|
multiclass CmpLGtrWord
|
|
{
|
|
def v4i32 : CLGTInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
[(set (v4i32 VECREG:$rT),
|
|
(setugt (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>;
|
|
|
|
def r32 : CLGTInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
|
|
[(set R32C:$rT, (setugt R32C:$rA, R32C:$rB))]>;
|
|
}
|
|
|
|
class CLGTIInst<dag OOL, dag IOL, list<dag> pattern> :
|
|
RI10Form<0b00111010, OOL, IOL, "cgti\t$rT, $rA, $val",
|
|
ByteOp, pattern>;
|
|
|
|
multiclass CmpLGtrWordImm
|
|
{
|
|
def v4i32 : CLGTIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
|
|
[(set (v4i32 VECREG:$rT),
|
|
(setugt (v4i32 VECREG:$rA),
|
|
(v4i32 v4i32SExt16Imm:$val)))]>;
|
|
|
|
def r32: CLGTIInst<(outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val),
|
|
[(set R32C:$rT, (setugt R32C:$rA, i32ImmSExt10:$val))]>;
|
|
}
|
|
|
|
defm CEQB : CmpEqualByte;
|
|
defm CEQBI : CmpEqualByteImm;
|
|
defm CEQH : CmpEqualHalfword;
|
|
defm CEQHI : CmpEqualHalfwordImm;
|
|
defm CEQ : CmpEqualWord;
|
|
defm CEQI : CmpEqualWordImm;
|
|
defm CGTB : CmpGtrByte;
|
|
defm CGTBI : CmpGtrByteImm;
|
|
defm CGTH : CmpGtrHalfword;
|
|
defm CGTHI : CmpGtrHalfwordImm;
|
|
defm CGT : CmpGtrWord;
|
|
defm CGTI : CmpGtrWordImm;
|
|
defm CLGTB : CmpLGtrByte;
|
|
defm CLGTBI : CmpLGtrByteImm;
|
|
defm CLGTH : CmpLGtrHalfword;
|
|
defm CLGTHI : CmpLGtrHalfwordImm;
|
|
defm CLGT : CmpLGtrWord;
|
|
defm CLGTI : CmpLGtrWordImm;
|
|
|
|
// For SETCC primitives not supported above (setlt, setle, setge, etc.)
|
|
// define a pattern to generate the right code, as a binary operator
|
|
// (in a manner of speaking.)
|
|
|
|
class SETCCNegCond<PatFrag cond, RegisterClass rclass, dag pattern>:
|
|
Pat<(cond rclass:$rA, rclass:$rB), pattern>;
|
|
|
|
class SETCCBinOpReg<PatFrag cond, RegisterClass rclass,
|
|
SPUInstr binop, SPUInstr cmpOp1, SPUInstr cmpOp2>:
|
|
Pat<(cond rclass:$rA, rclass:$rB),
|
|
(binop (cmpOp1 rclass:$rA, rclass:$rB),
|
|
(cmpOp2 rclass:$rA, rclass:$rB))>;
|
|
|
|
class SETCCBinOpImm<PatFrag cond, RegisterClass rclass, PatLeaf immpred,
|
|
ValueType immtype,
|
|
SPUInstr binop, SPUInstr cmpOp1, SPUInstr cmpOp2>:
|
|
Pat<(cond rclass:$rA, (immtype immpred:$imm)),
|
|
(binop (cmpOp1 rclass:$rA, (immtype immpred:$imm)),
|
|
(cmpOp2 rclass:$rA, (immtype immpred:$imm)))>;
|
|
|
|
def CGTEQBr8: SETCCBinOpReg<setge, R8C, ORr8, CGTBr8, CEQBr8>;
|
|
def CGTEQBIr8: SETCCBinOpImm<setge, R8C, immSExt8, i8, ORr8, CGTBIr8, CEQBIr8>;
|
|
def CLTBr8: SETCCBinOpReg<setlt, R8C, NORr8, CGTBr8, CEQBr8>;
|
|
def CLTBIr8: SETCCBinOpImm<setlt, R8C, immSExt8, i8, NORr8, CGTBIr8, CEQBIr8>;
|
|
def CLTEQr8: Pat<(setle R8C:$rA, R8C:$rB),
|
|
(XORBIr8 (CGTBIr8 R8C:$rA, R8C:$rB), 0xff)>;
|
|
def CLTEQIr8: Pat<(setle R8C:$rA, immU8:$imm),
|
|
(XORBIr8 (CGTBIr8 R8C:$rA, immU8:$imm), 0xff)>;
|
|
|
|
def CGTEQHr16: SETCCBinOpReg<setge, R16C, ORr16, CGTHr16, CEQHr16>;
|
|
def CGTEQHIr16: SETCCBinOpImm<setge, R16C, i16ImmUns10, i16,
|
|
ORr16, CGTHIr16, CEQHIr16>;
|
|
def CLTEQr16: Pat<(setle R16C:$rA, R16C:$rB),
|
|
(XORHIr16 (CGTHIr16 R16C:$rA, R16C:$rB), 0xffff)>;
|
|
def CLTEQIr16: Pat<(setle R16C:$rA, i16ImmUns10:$imm),
|
|
(XORHIr16 (CGTHIr16 R16C:$rA, i16ImmSExt10:$imm), 0xffff)>;
|
|
|
|
|
|
def CGTEQHr32: SETCCBinOpReg<setge, R32C, ORr32, CGTr32, CEQr32>;
|
|
def CGTEQHIr32: SETCCBinOpImm<setge, R32C, i32ImmUns10, i32,
|
|
ORr32, CGTIr32, CEQIr32>;
|
|
def CLTEQr32: Pat<(setle R32C:$rA, R32C:$rB),
|
|
(XORIr32 (CGTIr32 R32C:$rA, R32C:$rB), 0xffffffff)>;
|
|
def CLTEQIr32: Pat<(setle R32C:$rA, i32ImmUns10:$imm),
|
|
(XORIr32 (CGTIr32 R32C:$rA, i32ImmSExt10:$imm), 0xffffffff)>;
|
|
|
|
def CLGTEQBr8: SETCCBinOpReg<setuge, R8C, ORr8, CLGTBr8, CEQBr8>;
|
|
def CLGTEQBIr8: SETCCBinOpImm<setuge, R8C, immSExt8, i8, ORr8, CLGTBIr8, CEQBIr8>;
|
|
def CLLTBr8: SETCCBinOpReg<setult, R8C, NORr8, CLGTBr8, CEQBr8>;
|
|
def CLLTBIr8: SETCCBinOpImm<setult, R8C, immSExt8, i8, NORr8, CLGTBIr8, CEQBIr8>;
|
|
def CLLTEQr8: Pat<(setule R8C:$rA, R8C:$rB),
|
|
(XORBIr8 (CLGTBIr8 R8C:$rA, R8C:$rB), 0xff)>;
|
|
def CLLTEQIr8: Pat<(setule R8C:$rA, immU8:$imm),
|
|
(XORBIr8 (CLGTBIr8 R8C:$rA, immU8:$imm), 0xff)>;
|
|
|
|
def CLGTEQHr16: SETCCBinOpReg<setuge, R16C, ORr16, CLGTHr16, CEQHr16>;
|
|
def CLGTEQHIr16: SETCCBinOpImm<setuge, R16C, i16ImmUns10, i16,
|
|
ORr16, CLGTHIr16, CEQHIr16>;
|
|
def CLLTEQr16: Pat<(setule R16C:$rA, R16C:$rB),
|
|
(XORHIr16 (CLGTHIr16 R16C:$rA, R16C:$rB), 0xffff)>;
|
|
def CLLTEQIr16: Pat<(setule R16C:$rA, i16ImmUns10:$imm),
|
|
(XORHIr16 (CLGTHIr16 R16C:$rA, i16ImmSExt10:$imm), 0xffff)>;
|
|
|
|
|
|
def CLGTEQHr32: SETCCBinOpReg<setuge, R32C, ORr32, CLGTr32, CEQr32>;
|
|
def CLGTEQHIr32: SETCCBinOpImm<setuge, R32C, i32ImmUns10, i32,
|
|
ORr32, CLGTIr32, CEQIr32>;
|
|
def CLLTEQr32: Pat<(setule R32C:$rA, R32C:$rB),
|
|
(XORIr32 (CLGTIr32 R32C:$rA, R32C:$rB), 0xffffffff)>;
|
|
def CLLTEQIr32: Pat<(setule R32C:$rA, i32ImmUns10:$imm),
|
|
(XORIr32 (CLGTIr32 R32C:$rA, i32ImmSExt10:$imm), 0xffffffff)>;
|
|
|
|
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
|
|
|
|
let isCall = 1,
|
|
// All calls clobber the non-callee-saved registers:
|
|
Defs = [R0, R1, R2, R3, R4, R5, R6, R7, R8, R9,
|
|
R10,R11,R12,R13,R14,R15,R16,R17,R18,R19,
|
|
R20,R21,R22,R23,R24,R25,R26,R27,R28,R29,
|
|
R30,R31,R32,R33,R34,R35,R36,R37,R38,R39,
|
|
R40,R41,R42,R43,R44,R45,R46,R47,R48,R49,
|
|
R50,R51,R52,R53,R54,R55,R56,R57,R58,R59,
|
|
R60,R61,R62,R63,R64,R65,R66,R67,R68,R69,
|
|
R70,R71,R72,R73,R74,R75,R76,R77,R78,R79],
|
|
// All of these instructions use $lr (aka $0)
|
|
Uses = [R0] in {
|
|
// Branch relative and set link: Used if we actually know that the target
|
|
// is within [-32768, 32767] bytes of the target
|
|
def BRSL:
|
|
BranchSetLink<0b011001100, (outs), (ins relcalltarget:$func, variable_ops),
|
|
"brsl\t$$lr, $func",
|
|
[(SPUcall (SPUpcrel tglobaladdr:$func, 0))]>;
|
|
|
|
// Branch absolute and set link: Used if we actually know that the target
|
|
// is an absolute address
|
|
def BRASL:
|
|
BranchSetLink<0b011001100, (outs), (ins calltarget:$func, variable_ops),
|
|
"brasl\t$$lr, $func",
|
|
[(SPUcall (SPUaform tglobaladdr:$func, 0))]>;
|
|
|
|
// Branch indirect and set link if external data. These instructions are not
|
|
// actually generated, matched by an intrinsic:
|
|
def BISLED_00: BISLEDForm<0b11, "bisled\t$$lr, $func", [/* empty pattern */]>;
|
|
def BISLED_E0: BISLEDForm<0b10, "bisled\t$$lr, $func", [/* empty pattern */]>;
|
|
def BISLED_0D: BISLEDForm<0b01, "bisled\t$$lr, $func", [/* empty pattern */]>;
|
|
def BISLED_ED: BISLEDForm<0b00, "bisled\t$$lr, $func", [/* empty pattern */]>;
|
|
|
|
// Branch indirect and set link. This is the "X-form" address version of a
|
|
// function call
|
|
def BISL:
|
|
BIForm<0b10010101100, "bisl\t$$lr, $func", [(SPUcall R32C:$func)]>;
|
|
}
|
|
|
|
// Unconditional branches:
|
|
let isBranch = 1, isTerminator = 1, hasCtrlDep = 1, isBarrier = 1 in {
|
|
def BR :
|
|
UncondBranch<0b001001100, (outs), (ins brtarget:$dest),
|
|
"br\t$dest",
|
|
[(br bb:$dest)]>;
|
|
|
|
// Unconditional, absolute address branch
|
|
def BRA:
|
|
UncondBranch<0b001100000, (outs), (ins brtarget:$dest),
|
|
"bra\t$dest",
|
|
[/* no pattern */]>;
|
|
|
|
// Indirect branch
|
|
def BI:
|
|
BIForm<0b00010101100, "bi\t$func", [(brind R32C:$func)]>;
|
|
|
|
// Various branches:
|
|
def BRNZ:
|
|
RI16Form<0b010000100, (outs), (ins R32C:$rCond, brtarget:$dest),
|
|
"brnz\t$rCond,$dest",
|
|
BranchResolv,
|
|
[(brcond R32C:$rCond, bb:$dest)]>;
|
|
|
|
def BRZ:
|
|
RI16Form<0b000000100, (outs), (ins R32C:$rT, brtarget:$dest),
|
|
"brz\t$rT,$dest",
|
|
BranchResolv,
|
|
[/* no pattern */]>;
|
|
|
|
def BRHNZ:
|
|
RI16Form<0b011000100, (outs), (ins R16C:$rCond, brtarget:$dest),
|
|
"brhnz\t$rCond,$dest",
|
|
BranchResolv,
|
|
[(brcond R16C:$rCond, bb:$dest)]>;
|
|
|
|
def BRHZ:
|
|
RI16Form<0b001000100, (outs), (ins R16C:$rT, brtarget:$dest),
|
|
"brhz\t$rT,$dest",
|
|
BranchResolv,
|
|
[/* no pattern */]>;
|
|
|
|
/*
|
|
def BINZ:
|
|
BICondForm<0b10010100100, "binz\t$rA, $func",
|
|
[(SPUbinz R32C:$rA, R32C:$func)]>;
|
|
|
|
def BIZ:
|
|
BICondForm<0b00010100100, "biz\t$rA, $func",
|
|
[(SPUbiz R32C:$rA, R32C:$func)]>;
|
|
*/
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// setcc and brcond patterns:
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
def : Pat<(brcond (i16 (seteq R16C:$rA, 0)), bb:$dest),
|
|
(BRHZ R16C:$rA, bb:$dest)>;
|
|
def : Pat<(brcond (i16 (setne R16C:$rA, 0)), bb:$dest),
|
|
(BRHNZ R16C:$rA, bb:$dest)>;
|
|
|
|
def : Pat<(brcond (i32 (seteq R32C:$rA, 0)), bb:$dest),
|
|
(BRZ R32C:$rA, bb:$dest)>;
|
|
def : Pat<(brcond (i32 (setne R32C:$rA, 0)), bb:$dest),
|
|
(BRNZ R32C:$rA, bb:$dest)>;
|
|
|
|
multiclass BranchCondEQ<PatFrag cond, SPUInstr brinst16, SPUInstr brinst32>
|
|
{
|
|
def r16imm: Pat<(brcond (i16 (cond R16C:$rA, i16ImmSExt10:$val)), bb:$dest),
|
|
(brinst16 (CEQHIr16 R16C:$rA, i16ImmSExt10:$val), bb:$dest)>;
|
|
|
|
def r16 : Pat<(brcond (i16 (cond R16C:$rA, R16C:$rB)), bb:$dest),
|
|
(brinst16 (CEQHr16 R16C:$rA, R16:$rB), bb:$dest)>;
|
|
|
|
def r32imm : Pat<(brcond (i32 (cond R32C:$rA, i32ImmSExt10:$val)), bb:$dest),
|
|
(brinst32 (CEQIr32 R32C:$rA, i32ImmSExt10:$val), bb:$dest)>;
|
|
|
|
def r32 : Pat<(brcond (i32 (cond R32C:$rA, R32C:$rB)), bb:$dest),
|
|
(brinst32 (CEQr32 R32C:$rA, R32C:$rB), bb:$dest)>;
|
|
}
|
|
|
|
defm BRCONDeq : BranchCondEQ<seteq, BRHZ, BRZ>;
|
|
defm BRCONDne : BranchCondEQ<setne, BRHNZ, BRNZ>;
|
|
|
|
multiclass BranchCondLGT<PatFrag cond, SPUInstr brinst16, SPUInstr brinst32>
|
|
{
|
|
def r16imm : Pat<(brcond (i16 (cond R16C:$rA, i16ImmSExt10:$val)), bb:$dest),
|
|
(brinst16 (CLGTHIr16 R16C:$rA, i16ImmSExt10:$val), bb:$dest)>;
|
|
|
|
def r16 : Pat<(brcond (i16 (cond R16C:$rA, R16C:$rB)), bb:$dest),
|
|
(brinst16 (CLGTHr16 R16C:$rA, R16:$rB), bb:$dest)>;
|
|
|
|
def r32imm : Pat<(brcond (i32 (cond R32C:$rA, i32ImmSExt10:$val)), bb:$dest),
|
|
(brinst32 (CLGTIr32 R32C:$rA, i32ImmSExt10:$val), bb:$dest)>;
|
|
|
|
def r32 : Pat<(brcond (i32 (cond R32C:$rA, R32C:$rB)), bb:$dest),
|
|
(brinst32 (CLGTr32 R32C:$rA, R32C:$rB), bb:$dest)>;
|
|
}
|
|
|
|
defm BRCONDugt : BranchCondLGT<setugt, BRHNZ, BRNZ>;
|
|
defm BRCONDule : BranchCondLGT<setule, BRHZ, BRZ>;
|
|
|
|
multiclass BranchCondLGTEQ<PatFrag cond, SPUInstr orinst16, SPUInstr brinst16,
|
|
SPUInstr orinst32, SPUInstr brinst32>
|
|
{
|
|
def r16imm: Pat<(brcond (i16 (cond R16C:$rA, i16ImmSExt10:$val)), bb:$dest),
|
|
(brinst16 (orinst16 (CLGTHIr16 R16C:$rA, i16ImmSExt10:$val),
|
|
(CEQHIr16 R16C:$rA, i16ImmSExt10:$val)),
|
|
bb:$dest)>;
|
|
|
|
def r16: Pat<(brcond (i16 (cond R16C:$rA, R16C:$rB)), bb:$dest),
|
|
(brinst16 (orinst16 (CLGTHr16 R16C:$rA, R16:$rB),
|
|
(CEQHr16 R16C:$rA, R16:$rB)),
|
|
bb:$dest)>;
|
|
|
|
def r32imm : Pat<(brcond (i32 (cond R32C:$rA, i32ImmSExt10:$val)), bb:$dest),
|
|
(brinst32 (orinst32 (CLGTIr32 R32C:$rA, i32ImmSExt10:$val),
|
|
(CEQIr32 R32C:$rA, i32ImmSExt10:$val)),
|
|
bb:$dest)>;
|
|
|
|
def r32 : Pat<(brcond (i32 (cond R32C:$rA, R32C:$rB)), bb:$dest),
|
|
(brinst32 (orinst32 (CLGTr32 R32C:$rA, R32C:$rB),
|
|
(CEQr32 R32C:$rA, R32C:$rB)),
|
|
bb:$dest)>;
|
|
}
|
|
|
|
defm BRCONDuge : BranchCondLGTEQ<setuge, ORr16, BRHNZ, ORr32, BRNZ>;
|
|
defm BRCONDult : BranchCondLGTEQ<setult, ORr16, BRHZ, ORr32, BRZ>;
|
|
|
|
multiclass BranchCondGT<PatFrag cond, SPUInstr brinst16, SPUInstr brinst32>
|
|
{
|
|
def r16imm : Pat<(brcond (i16 (cond R16C:$rA, i16ImmSExt10:$val)), bb:$dest),
|
|
(brinst16 (CGTHIr16 R16C:$rA, i16ImmSExt10:$val), bb:$dest)>;
|
|
|
|
def r16 : Pat<(brcond (i16 (cond R16C:$rA, R16C:$rB)), bb:$dest),
|
|
(brinst16 (CGTHr16 R16C:$rA, R16:$rB), bb:$dest)>;
|
|
|
|
def r32imm : Pat<(brcond (i32 (cond R32C:$rA, i32ImmSExt10:$val)), bb:$dest),
|
|
(brinst32 (CGTIr32 R32C:$rA, i32ImmSExt10:$val), bb:$dest)>;
|
|
|
|
def r32 : Pat<(brcond (i32 (cond R32C:$rA, R32C:$rB)), bb:$dest),
|
|
(brinst32 (CGTr32 R32C:$rA, R32C:$rB), bb:$dest)>;
|
|
}
|
|
|
|
defm BRCONDgt : BranchCondGT<setgt, BRHNZ, BRNZ>;
|
|
defm BRCONDle : BranchCondGT<setle, BRHZ, BRZ>;
|
|
|
|
multiclass BranchCondGTEQ<PatFrag cond, SPUInstr orinst16, SPUInstr brinst16,
|
|
SPUInstr orinst32, SPUInstr brinst32>
|
|
{
|
|
def r16imm: Pat<(brcond (i16 (cond R16C:$rA, i16ImmSExt10:$val)), bb:$dest),
|
|
(brinst16 (orinst16 (CGTHIr16 R16C:$rA, i16ImmSExt10:$val),
|
|
(CEQHIr16 R16C:$rA, i16ImmSExt10:$val)),
|
|
bb:$dest)>;
|
|
|
|
def r16: Pat<(brcond (i16 (cond R16C:$rA, R16C:$rB)), bb:$dest),
|
|
(brinst16 (orinst16 (CGTHr16 R16C:$rA, R16:$rB),
|
|
(CEQHr16 R16C:$rA, R16:$rB)),
|
|
bb:$dest)>;
|
|
|
|
def r32imm : Pat<(brcond (i32 (cond R32C:$rA, i32ImmSExt10:$val)), bb:$dest),
|
|
(brinst32 (orinst32 (CGTIr32 R32C:$rA, i32ImmSExt10:$val),
|
|
(CEQIr32 R32C:$rA, i32ImmSExt10:$val)),
|
|
bb:$dest)>;
|
|
|
|
def r32 : Pat<(brcond (i32 (cond R32C:$rA, R32C:$rB)), bb:$dest),
|
|
(brinst32 (orinst32 (CGTr32 R32C:$rA, R32C:$rB),
|
|
(CEQr32 R32C:$rA, R32C:$rB)),
|
|
bb:$dest)>;
|
|
}
|
|
|
|
defm BRCONDge : BranchCondGTEQ<setge, ORr16, BRHNZ, ORr32, BRNZ>;
|
|
defm BRCONDlt : BranchCondGTEQ<setlt, ORr16, BRHZ, ORr32, BRZ>;
|
|
|
|
let isTerminator = 1, isBarrier = 1 in {
|
|
let isReturn = 1 in {
|
|
def RET:
|
|
RETForm<"bi\t$$lr", [(retflag)]>;
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Single precision floating point instructions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
def FAv4f32:
|
|
RRForm<0b00100011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
"fa\t$rT, $rA, $rB", SPrecFP,
|
|
[(set (v4f32 VECREG:$rT), (fadd (v4f32 VECREG:$rA), (v4f32 VECREG:$rB)))]>;
|
|
|
|
def FAf32 :
|
|
RRForm<0b00100011010, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB),
|
|
"fa\t$rT, $rA, $rB", SPrecFP,
|
|
[(set R32FP:$rT, (fadd R32FP:$rA, R32FP:$rB))]>;
|
|
|
|
def FSv4f32:
|
|
RRForm<0b00100011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
"fs\t$rT, $rA, $rB", SPrecFP,
|
|
[(set (v4f32 VECREG:$rT), (fsub (v4f32 VECREG:$rA), (v4f32 VECREG:$rB)))]>;
|
|
|
|
def FSf32 :
|
|
RRForm<0b10100011010, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB),
|
|
"fs\t$rT, $rA, $rB", SPrecFP,
|
|
[(set R32FP:$rT, (fsub R32FP:$rA, R32FP:$rB))]>;
|
|
|
|
// Floating point reciprocal estimate
|
|
def FREv4f32 :
|
|
RRForm_1<0b00011101100, (outs VECREG:$rT), (ins VECREG:$rA),
|
|
"frest\t$rT, $rA", SPrecFP,
|
|
[(set (v4f32 VECREG:$rT), (SPUreciprocalEst (v4f32 VECREG:$rA)))]>;
|
|
|
|
def FREf32 :
|
|
RRForm_1<0b00011101100, (outs R32FP:$rT), (ins R32FP:$rA),
|
|
"frest\t$rT, $rA", SPrecFP,
|
|
[(set R32FP:$rT, (SPUreciprocalEst R32FP:$rA))]>;
|
|
|
|
// Floating point interpolate (used in conjunction with reciprocal estimate)
|
|
def FIv4f32 :
|
|
RRForm<0b00101011110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
"fi\t$rT, $rA, $rB", SPrecFP,
|
|
[(set (v4f32 VECREG:$rT), (SPUinterpolate (v4f32 VECREG:$rA),
|
|
(v4f32 VECREG:$rB)))]>;
|
|
|
|
def FIf32 :
|
|
RRForm<0b00101011110, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB),
|
|
"fi\t$rT, $rA, $rB", SPrecFP,
|
|
[(set R32FP:$rT, (SPUinterpolate R32FP:$rA, R32FP:$rB))]>;
|
|
|
|
// Floating Compare Equal
|
|
def FCEQf32 :
|
|
RRForm<0b01000011110, (outs R32C:$rT), (ins R32FP:$rA, R32FP:$rB),
|
|
"fceq\t$rT, $rA, $rB", SPrecFP,
|
|
[(set R32C:$rT, (setoeq R32FP:$rA, R32FP:$rB))]>;
|
|
|
|
def FCMEQf32 :
|
|
RRForm<0b01010011110, (outs R32C:$rT), (ins R32FP:$rA, R32FP:$rB),
|
|
"fcmeq\t$rT, $rA, $rB", SPrecFP,
|
|
[(set R32C:$rT, (setoeq (fabs R32FP:$rA), (fabs R32FP:$rB)))]>;
|
|
|
|
def FCGTf32 :
|
|
RRForm<0b01000011010, (outs R32C:$rT), (ins R32FP:$rA, R32FP:$rB),
|
|
"fcgt\t$rT, $rA, $rB", SPrecFP,
|
|
[(set R32C:$rT, (setogt R32FP:$rA, R32FP:$rB))]>;
|
|
|
|
def FCMGTf32 :
|
|
RRForm<0b01010011010, (outs R32C:$rT), (ins R32FP:$rA, R32FP:$rB),
|
|
"fcmgt\t$rT, $rA, $rB", SPrecFP,
|
|
[(set R32C:$rT, (setogt (fabs R32FP:$rA), (fabs R32FP:$rB)))]>;
|
|
|
|
// FP Status and Control Register Write
|
|
// Why isn't rT a don't care in the ISA?
|
|
// Should we create a special RRForm_3 for this guy and zero out the rT?
|
|
def FSCRWf32 :
|
|
RRForm_1<0b01011101110, (outs R32FP:$rT), (ins R32FP:$rA),
|
|
"fscrwr\t$rA", SPrecFP,
|
|
[/* This instruction requires an intrinsic. Note: rT is unused. */]>;
|
|
|
|
// FP Status and Control Register Read
|
|
def FSCRRf32 :
|
|
RRForm_2<0b01011101110, (outs R32FP:$rT), (ins),
|
|
"fscrrd\t$rT", SPrecFP,
|
|
[/* This instruction requires an intrinsic */]>;
|
|
|
|
// llvm instruction space
|
|
// How do these map onto cell instructions?
|
|
// fdiv rA rB
|
|
// frest rC rB # c = 1/b (both lines)
|
|
// fi rC rB rC
|
|
// fm rD rA rC # d = a * 1/b
|
|
// fnms rB rD rB rA # b = - (d * b - a) --should == 0 in a perfect world
|
|
// fma rB rB rC rD # b = b * c + d
|
|
// = -(d *b -a) * c + d
|
|
// = a * c - c ( a *b *c - a)
|
|
|
|
// fcopysign (???)
|
|
|
|
// Library calls:
|
|
// These llvm instructions will actually map to library calls.
|
|
// All that's needed, then, is to check that the appropriate library is
|
|
// imported and do a brsl to the proper function name.
|
|
// frem # fmod(x, y): x - (x/y) * y
|
|
// (Note: fmod(double, double), fmodf(float,float)
|
|
// fsqrt?
|
|
// fsin?
|
|
// fcos?
|
|
// Unimplemented SPU instruction space
|
|
// floating reciprocal absolute square root estimate (frsqest)
|
|
|
|
// The following are probably just intrinsics
|
|
// status and control register write
|
|
// status and control register read
|
|
|
|
//--------------------------------------
|
|
// Floating point multiply instructions
|
|
//--------------------------------------
|
|
|
|
def FMv4f32:
|
|
RRForm<0b00100011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
"fm\t$rT, $rA, $rB", SPrecFP,
|
|
[(set (v4f32 VECREG:$rT), (fmul (v4f32 VECREG:$rA),
|
|
(v4f32 VECREG:$rB)))]>;
|
|
|
|
def FMf32 :
|
|
RRForm<0b01100011010, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB),
|
|
"fm\t$rT, $rA, $rB", SPrecFP,
|
|
[(set R32FP:$rT, (fmul R32FP:$rA, R32FP:$rB))]>;
|
|
|
|
// Floating point multiply and add
|
|
// e.g. d = c + (a * b)
|
|
def FMAv4f32:
|
|
RRRForm<0b0111, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
|
|
"fma\t$rT, $rA, $rB, $rC", SPrecFP,
|
|
[(set (v4f32 VECREG:$rT),
|
|
(fadd (v4f32 VECREG:$rC),
|
|
(fmul (v4f32 VECREG:$rA), (v4f32 VECREG:$rB))))]>;
|
|
|
|
def FMAf32:
|
|
RRRForm<0b0111, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB, R32FP:$rC),
|
|
"fma\t$rT, $rA, $rB, $rC", SPrecFP,
|
|
[(set R32FP:$rT, (fadd R32FP:$rC, (fmul R32FP:$rA, R32FP:$rB)))]>;
|
|
|
|
// FP multiply and subtract
|
|
// Subtracts value in rC from product
|
|
// res = a * b - c
|
|
def FMSv4f32 :
|
|
RRRForm<0b0111, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
|
|
"fms\t$rT, $rA, $rB, $rC", SPrecFP,
|
|
[(set (v4f32 VECREG:$rT),
|
|
(fsub (fmul (v4f32 VECREG:$rA), (v4f32 VECREG:$rB)),
|
|
(v4f32 VECREG:$rC)))]>;
|
|
|
|
def FMSf32 :
|
|
RRRForm<0b0111, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB, R32FP:$rC),
|
|
"fms\t$rT, $rA, $rB, $rC", SPrecFP,
|
|
[(set R32FP:$rT,
|
|
(fsub (fmul R32FP:$rA, R32FP:$rB), R32FP:$rC))]>;
|
|
|
|
// Floating Negative Mulitply and Subtract
|
|
// Subtracts product from value in rC
|
|
// res = fneg(fms a b c)
|
|
// = - (a * b - c)
|
|
// = c - a * b
|
|
// NOTE: subtraction order
|
|
// fsub a b = a - b
|
|
// fs a b = b - a?
|
|
def FNMSf32 :
|
|
RRRForm<0b1101, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB, R32FP:$rC),
|
|
"fnms\t$rT, $rA, $rB, $rC", SPrecFP,
|
|
[(set R32FP:$rT, (fsub R32FP:$rC, (fmul R32FP:$rA, R32FP:$rB)))]>;
|
|
|
|
def FNMSv4f32 :
|
|
RRRForm<0b1101, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
|
|
"fnms\t$rT, $rA, $rB, $rC", SPrecFP,
|
|
[(set (v4f32 VECREG:$rT),
|
|
(fsub (v4f32 VECREG:$rC),
|
|
(fmul (v4f32 VECREG:$rA),
|
|
(v4f32 VECREG:$rB))))]>;
|
|
|
|
//--------------------------------------
|
|
// Floating Point Conversions
|
|
// Signed conversions:
|
|
def CSiFv4f32:
|
|
CVTIntFPForm<0b0101101110, (outs VECREG:$rT), (ins VECREG:$rA),
|
|
"csflt\t$rT, $rA, 0", SPrecFP,
|
|
[(set (v4f32 VECREG:$rT), (sint_to_fp (v4i32 VECREG:$rA)))]>;
|
|
|
|
// Convert signed integer to floating point
|
|
def CSiFf32 :
|
|
CVTIntFPForm<0b0101101110, (outs R32FP:$rT), (ins R32C:$rA),
|
|
"csflt\t$rT, $rA, 0", SPrecFP,
|
|
[(set R32FP:$rT, (sint_to_fp R32C:$rA))]>;
|
|
|
|
// Convert unsigned into to float
|
|
def CUiFv4f32 :
|
|
CVTIntFPForm<0b1101101110, (outs VECREG:$rT), (ins VECREG:$rA),
|
|
"cuflt\t$rT, $rA, 0", SPrecFP,
|
|
[(set (v4f32 VECREG:$rT), (uint_to_fp (v4i32 VECREG:$rA)))]>;
|
|
|
|
def CUiFf32 :
|
|
CVTIntFPForm<0b1101101110, (outs R32FP:$rT), (ins R32C:$rA),
|
|
"cuflt\t$rT, $rA, 0", SPrecFP,
|
|
[(set R32FP:$rT, (uint_to_fp R32C:$rA))]>;
|
|
|
|
// Convert float to unsigned int
|
|
// Assume that scale = 0
|
|
|
|
def CFUiv4f32 :
|
|
CVTIntFPForm<0b1101101110, (outs VECREG:$rT), (ins VECREG:$rA),
|
|
"cfltu\t$rT, $rA, 0", SPrecFP,
|
|
[(set (v4i32 VECREG:$rT), (fp_to_uint (v4f32 VECREG:$rA)))]>;
|
|
|
|
def CFUif32 :
|
|
CVTIntFPForm<0b1101101110, (outs R32C:$rT), (ins R32FP:$rA),
|
|
"cfltu\t$rT, $rA, 0", SPrecFP,
|
|
[(set R32C:$rT, (fp_to_uint R32FP:$rA))]>;
|
|
|
|
// Convert float to signed int
|
|
// Assume that scale = 0
|
|
|
|
def CFSiv4f32 :
|
|
CVTIntFPForm<0b1101101110, (outs VECREG:$rT), (ins VECREG:$rA),
|
|
"cflts\t$rT, $rA, 0", SPrecFP,
|
|
[(set (v4i32 VECREG:$rT), (fp_to_sint (v4f32 VECREG:$rA)))]>;
|
|
|
|
def CFSif32 :
|
|
CVTIntFPForm<0b1101101110, (outs R32C:$rT), (ins R32FP:$rA),
|
|
"cflts\t$rT, $rA, 0", SPrecFP,
|
|
[(set R32C:$rT, (fp_to_sint R32FP:$rA))]>;
|
|
|
|
//===----------------------------------------------------------------------==//
|
|
// Single<->Double precision conversions
|
|
//===----------------------------------------------------------------------==//
|
|
|
|
// NOTE: We use "vec" name suffix here to avoid confusion (e.g. input is a
|
|
// v4f32, output is v2f64--which goes in the name?)
|
|
|
|
// Floating point extend single to double
|
|
// NOTE: Not sure if passing in v4f32 to FESDvec is correct since it
|
|
// operates on two double-word slots (i.e. 1st and 3rd fp numbers
|
|
// are ignored).
|
|
def FESDvec :
|
|
RRForm_1<0b00011101110, (outs VECREG:$rT), (ins VECREG:$rA),
|
|
"fesd\t$rT, $rA", SPrecFP,
|
|
[(set (v2f64 VECREG:$rT), (fextend (v4f32 VECREG:$rA)))]>;
|
|
|
|
def FESDf32 :
|
|
RRForm_1<0b00011101110, (outs R64FP:$rT), (ins R32FP:$rA),
|
|
"fesd\t$rT, $rA", SPrecFP,
|
|
[(set R64FP:$rT, (fextend R32FP:$rA))]>;
|
|
|
|
// Floating point round double to single
|
|
//def FRDSvec :
|
|
// RRForm_1<0b10011101110, (outs VECREG:$rT), (ins VECREG:$rA),
|
|
// "frds\t$rT, $rA,", SPrecFP,
|
|
// [(set (v4f32 R32FP:$rT), (fround (v2f64 R64FP:$rA)))]>;
|
|
|
|
def FRDSf64 :
|
|
RRForm_1<0b10011101110, (outs R32FP:$rT), (ins R64FP:$rA),
|
|
"frds\t$rT, $rA", SPrecFP,
|
|
[(set R32FP:$rT, (fround R64FP:$rA))]>;
|
|
|
|
//ToDo include anyextend?
|
|
|
|
//===----------------------------------------------------------------------==//
|
|
// Double precision floating point instructions
|
|
//===----------------------------------------------------------------------==//
|
|
def FAf64 :
|
|
RRForm<0b00110011010, (outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB),
|
|
"dfa\t$rT, $rA, $rB", DPrecFP,
|
|
[(set R64FP:$rT, (fadd R64FP:$rA, R64FP:$rB))]>;
|
|
|
|
def FAv2f64 :
|
|
RRForm<0b00110011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
"dfa\t$rT, $rA, $rB", DPrecFP,
|
|
[(set (v2f64 VECREG:$rT), (fadd (v2f64 VECREG:$rA), (v2f64 VECREG:$rB)))]>;
|
|
|
|
def FSf64 :
|
|
RRForm<0b10100011010, (outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB),
|
|
"dfs\t$rT, $rA, $rB", DPrecFP,
|
|
[(set R64FP:$rT, (fsub R64FP:$rA, R64FP:$rB))]>;
|
|
|
|
def FSv2f64 :
|
|
RRForm<0b10100011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
"dfs\t$rT, $rA, $rB", DPrecFP,
|
|
[(set (v2f64 VECREG:$rT),
|
|
(fsub (v2f64 VECREG:$rA), (v2f64 VECREG:$rB)))]>;
|
|
|
|
def FMf64 :
|
|
RRForm<0b01100011010, (outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB),
|
|
"dfm\t$rT, $rA, $rB", DPrecFP,
|
|
[(set R64FP:$rT, (fmul R64FP:$rA, R64FP:$rB))]>;
|
|
|
|
def FMv2f64:
|
|
RRForm<0b00100011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
"dfm\t$rT, $rA, $rB", DPrecFP,
|
|
[(set (v2f64 VECREG:$rT),
|
|
(fmul (v2f64 VECREG:$rA), (v2f64 VECREG:$rB)))]>;
|
|
|
|
def FMAf64:
|
|
RRForm<0b00111010110, (outs R64FP:$rT),
|
|
(ins R64FP:$rA, R64FP:$rB, R64FP:$rC),
|
|
"dfma\t$rT, $rA, $rB", DPrecFP,
|
|
[(set R64FP:$rT, (fadd R64FP:$rC, (fmul R64FP:$rA, R64FP:$rB)))]>,
|
|
RegConstraint<"$rC = $rT">,
|
|
NoEncode<"$rC">;
|
|
|
|
def FMAv2f64:
|
|
RRForm<0b00111010110, (outs VECREG:$rT),
|
|
(ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
|
|
"dfma\t$rT, $rA, $rB", DPrecFP,
|
|
[(set (v2f64 VECREG:$rT),
|
|
(fadd (v2f64 VECREG:$rC),
|
|
(fmul (v2f64 VECREG:$rA), (v2f64 VECREG:$rB))))]>,
|
|
RegConstraint<"$rC = $rT">,
|
|
NoEncode<"$rC">;
|
|
|
|
def FMSf64 :
|
|
RRForm<0b10111010110, (outs R64FP:$rT),
|
|
(ins R64FP:$rA, R64FP:$rB, R64FP:$rC),
|
|
"dfms\t$rT, $rA, $rB", DPrecFP,
|
|
[(set R64FP:$rT, (fsub (fmul R64FP:$rA, R64FP:$rB), R64FP:$rC))]>,
|
|
RegConstraint<"$rC = $rT">,
|
|
NoEncode<"$rC">;
|
|
|
|
def FMSv2f64 :
|
|
RRForm<0b10111010110, (outs VECREG:$rT),
|
|
(ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
|
|
"dfms\t$rT, $rA, $rB", DPrecFP,
|
|
[(set (v2f64 VECREG:$rT),
|
|
(fsub (fmul (v2f64 VECREG:$rA), (v2f64 VECREG:$rB)),
|
|
(v2f64 VECREG:$rC)))]>;
|
|
|
|
// FNMS: - (a * b - c)
|
|
// - (a * b) + c => c - (a * b)
|
|
def FNMSf64 :
|
|
RRForm<0b01111010110, (outs R64FP:$rT),
|
|
(ins R64FP:$rA, R64FP:$rB, R64FP:$rC),
|
|
"dfnms\t$rT, $rA, $rB", DPrecFP,
|
|
[(set R64FP:$rT, (fsub R64FP:$rC, (fmul R64FP:$rA, R64FP:$rB)))]>,
|
|
RegConstraint<"$rC = $rT">,
|
|
NoEncode<"$rC">;
|
|
|
|
def : Pat<(fneg (fsub (fmul R64FP:$rA, R64FP:$rB), R64FP:$rC)),
|
|
(FNMSf64 R64FP:$rA, R64FP:$rB, R64FP:$rC)>;
|
|
|
|
def FNMSv2f64 :
|
|
RRForm<0b01111010110, (outs VECREG:$rT),
|
|
(ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
|
|
"dfnms\t$rT, $rA, $rB", DPrecFP,
|
|
[(set (v2f64 VECREG:$rT),
|
|
(fsub (v2f64 VECREG:$rC),
|
|
(fmul (v2f64 VECREG:$rA),
|
|
(v2f64 VECREG:$rB))))]>,
|
|
RegConstraint<"$rC = $rT">,
|
|
NoEncode<"$rC">;
|
|
|
|
def : Pat<(fneg (fsub (fmul (v2f64 VECREG:$rA), (v2f64 VECREG:$rB)),
|
|
(v2f64 VECREG:$rC))),
|
|
(FNMSv2f64 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
|
|
|
|
// - (a * b + c)
|
|
// - (a * b) - c
|
|
def FNMAf64 :
|
|
RRForm<0b11111010110, (outs R64FP:$rT),
|
|
(ins R64FP:$rA, R64FP:$rB, R64FP:$rC),
|
|
"dfnma\t$rT, $rA, $rB", DPrecFP,
|
|
[(set R64FP:$rT, (fneg (fadd R64FP:$rC, (fmul R64FP:$rA, R64FP:$rB))))]>,
|
|
RegConstraint<"$rC = $rT">,
|
|
NoEncode<"$rC">;
|
|
|
|
def FNMAv2f64 :
|
|
RRForm<0b11111010110, (outs VECREG:$rT),
|
|
(ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
|
|
"dfnma\t$rT, $rA, $rB", DPrecFP,
|
|
[(set (v2f64 VECREG:$rT),
|
|
(fneg (fadd (v2f64 VECREG:$rC),
|
|
(fmul (v2f64 VECREG:$rA),
|
|
(v2f64 VECREG:$rB)))))]>,
|
|
RegConstraint<"$rC = $rT">,
|
|
NoEncode<"$rC">;
|
|
|
|
//===----------------------------------------------------------------------==//
|
|
// Floating point negation and absolute value
|
|
//===----------------------------------------------------------------------==//
|
|
|
|
def : Pat<(fneg (v4f32 VECREG:$rA)),
|
|
(XORfnegvec (v4f32 VECREG:$rA),
|
|
(v4f32 (ILHUv4i32 0x8000)))>;
|
|
|
|
def : Pat<(fneg R32FP:$rA),
|
|
(XORfneg32 R32FP:$rA, (ILHUr32 0x8000))>;
|
|
|
|
def : Pat<(fneg (v2f64 VECREG:$rA)),
|
|
(XORfnegvec (v2f64 VECREG:$rA),
|
|
(v2f64 (ANDBIv16i8 (FSMBIv16i8 0x8080), 0x80)))>;
|
|
|
|
def : Pat<(fneg R64FP:$rA),
|
|
(XORfneg64 R64FP:$rA,
|
|
(ANDBIv16i8 (FSMBIv16i8 0x8080), 0x80))>;
|
|
|
|
// Floating point absolute value
|
|
|
|
def : Pat<(fabs R32FP:$rA),
|
|
(ANDfabs32 R32FP:$rA, (IOHLr32 (ILHUr32 0x7fff), 0xffff))>;
|
|
|
|
def : Pat<(fabs (v4f32 VECREG:$rA)),
|
|
(ANDfabsvec (v4f32 VECREG:$rA),
|
|
(v4f32 (ANDBIv16i8 (FSMBIv16i8 0xffff), 0x7f)))>;
|
|
|
|
def : Pat<(fabs R64FP:$rA),
|
|
(ANDfabs64 R64FP:$rA, (ANDBIv16i8 (FSMBIv16i8 0xffff), 0x7f))>;
|
|
|
|
def : Pat<(fabs (v2f64 VECREG:$rA)),
|
|
(ANDfabsvec (v2f64 VECREG:$rA),
|
|
(v2f64 (ANDBIv16i8 (FSMBIv16i8 0xffff), 0x7f)))>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Execution, Load NOP (execute NOPs belong in even pipeline, load NOPs belong
|
|
// in the odd pipeline)
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
def ENOP : SPUInstr<(outs), (ins), "enop", ExecNOP> {
|
|
let Pattern = [];
|
|
|
|
let Inst{0-10} = 0b10000000010;
|
|
let Inst{11-17} = 0;
|
|
let Inst{18-24} = 0;
|
|
let Inst{25-31} = 0;
|
|
}
|
|
|
|
def LNOP : SPUInstr<(outs), (ins), "lnop", LoadNOP> {
|
|
let Pattern = [];
|
|
|
|
let Inst{0-10} = 0b10000000000;
|
|
let Inst{11-17} = 0;
|
|
let Inst{18-24} = 0;
|
|
let Inst{25-31} = 0;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Bit conversions (type conversions between vector/packed types)
|
|
// NOTE: Promotions are handled using the XS* instructions. Truncation
|
|
// is not handled.
|
|
//===----------------------------------------------------------------------===//
|
|
def : Pat<(v16i8 (bitconvert (v8i16 VECREG:$src))), (v16i8 VECREG:$src)>;
|
|
def : Pat<(v16i8 (bitconvert (v4i32 VECREG:$src))), (v16i8 VECREG:$src)>;
|
|
def : Pat<(v16i8 (bitconvert (v2i64 VECREG:$src))), (v16i8 VECREG:$src)>;
|
|
def : Pat<(v16i8 (bitconvert (v4f32 VECREG:$src))), (v16i8 VECREG:$src)>;
|
|
def : Pat<(v16i8 (bitconvert (v2f64 VECREG:$src))), (v16i8 VECREG:$src)>;
|
|
|
|
def : Pat<(v8i16 (bitconvert (v16i8 VECREG:$src))), (v8i16 VECREG:$src)>;
|
|
def : Pat<(v8i16 (bitconvert (v4i32 VECREG:$src))), (v8i16 VECREG:$src)>;
|
|
def : Pat<(v8i16 (bitconvert (v2i64 VECREG:$src))), (v8i16 VECREG:$src)>;
|
|
def : Pat<(v8i16 (bitconvert (v4f32 VECREG:$src))), (v8i16 VECREG:$src)>;
|
|
def : Pat<(v8i16 (bitconvert (v2f64 VECREG:$src))), (v8i16 VECREG:$src)>;
|
|
|
|
def : Pat<(v4i32 (bitconvert (v16i8 VECREG:$src))), (v4i32 VECREG:$src)>;
|
|
def : Pat<(v4i32 (bitconvert (v8i16 VECREG:$src))), (v4i32 VECREG:$src)>;
|
|
def : Pat<(v4i32 (bitconvert (v2i64 VECREG:$src))), (v4i32 VECREG:$src)>;
|
|
def : Pat<(v4i32 (bitconvert (v4f32 VECREG:$src))), (v4i32 VECREG:$src)>;
|
|
def : Pat<(v4i32 (bitconvert (v2f64 VECREG:$src))), (v4i32 VECREG:$src)>;
|
|
|
|
def : Pat<(v2i64 (bitconvert (v16i8 VECREG:$src))), (v2i64 VECREG:$src)>;
|
|
def : Pat<(v2i64 (bitconvert (v8i16 VECREG:$src))), (v2i64 VECREG:$src)>;
|
|
def : Pat<(v2i64 (bitconvert (v4i32 VECREG:$src))), (v2i64 VECREG:$src)>;
|
|
def : Pat<(v2i64 (bitconvert (v4f32 VECREG:$src))), (v2i64 VECREG:$src)>;
|
|
def : Pat<(v2i64 (bitconvert (v2f64 VECREG:$src))), (v2i64 VECREG:$src)>;
|
|
|
|
def : Pat<(v4f32 (bitconvert (v16i8 VECREG:$src))), (v4f32 VECREG:$src)>;
|
|
def : Pat<(v4f32 (bitconvert (v8i16 VECREG:$src))), (v4f32 VECREG:$src)>;
|
|
def : Pat<(v4f32 (bitconvert (v2i64 VECREG:$src))), (v4f32 VECREG:$src)>;
|
|
def : Pat<(v4f32 (bitconvert (v4i32 VECREG:$src))), (v4f32 VECREG:$src)>;
|
|
def : Pat<(v4f32 (bitconvert (v2f64 VECREG:$src))), (v4f32 VECREG:$src)>;
|
|
|
|
def : Pat<(v2f64 (bitconvert (v16i8 VECREG:$src))), (v2f64 VECREG:$src)>;
|
|
def : Pat<(v2f64 (bitconvert (v8i16 VECREG:$src))), (v2f64 VECREG:$src)>;
|
|
def : Pat<(v2f64 (bitconvert (v4i32 VECREG:$src))), (v2f64 VECREG:$src)>;
|
|
def : Pat<(v2f64 (bitconvert (v2i64 VECREG:$src))), (v2f64 VECREG:$src)>;
|
|
def : Pat<(v2f64 (bitconvert (v2f64 VECREG:$src))), (v2f64 VECREG:$src)>;
|
|
|
|
def : Pat<(f32 (bitconvert (i32 R32C:$src))), (f32 R32FP:$src)>;
|
|
def : Pat<(f64 (bitconvert (i64 R64C:$src))), (f64 R64FP:$src)>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Instruction patterns:
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// General 32-bit constants:
|
|
def : Pat<(i32 imm:$imm),
|
|
(IOHLr32 (ILHUr32 (HI16 imm:$imm)), (LO16 imm:$imm))>;
|
|
|
|
// Single precision float constants:
|
|
def : Pat<(f32 fpimm:$imm),
|
|
(IOHLf32 (ILHUf32 (HI16_f32 fpimm:$imm)), (LO16_f32 fpimm:$imm))>;
|
|
|
|
// General constant 32-bit vectors
|
|
def : Pat<(v4i32 v4i32Imm:$imm),
|
|
(IOHLvec (v4i32 (ILHUv4i32 (HI16_vec v4i32Imm:$imm))),
|
|
(LO16_vec v4i32Imm:$imm))>;
|
|
|
|
// 8-bit constants
|
|
def : Pat<(i8 imm:$imm),
|
|
(ILHr8 imm:$imm)>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Call instruction patterns:
|
|
//===----------------------------------------------------------------------===//
|
|
// Return void
|
|
def : Pat<(ret),
|
|
(RET)>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Zero/Any/Sign extensions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// zext 1->32: Zero extend i1 to i32
|
|
def : Pat<(SPUextract_i1_zext R32C:$rSrc),
|
|
(ANDIr32 R32C:$rSrc, 0x1)>;
|
|
|
|
// sext 8->32: Sign extend bytes to words
|
|
def : Pat<(sext_inreg R32C:$rSrc, i8),
|
|
(XSHWr32 (XSBHr32 R32C:$rSrc))>;
|
|
|
|
def : Pat<(i32 (sext R8C:$rSrc)),
|
|
(XSHWr16 (XSBHr8 R8C:$rSrc))>;
|
|
|
|
def : Pat<(SPUextract_i8_sext VECREG:$rSrc),
|
|
(XSHWr32 (XSBHr32 (ORi32_v4i32 (v4i32 VECREG:$rSrc),
|
|
(v4i32 VECREG:$rSrc))))>;
|
|
|
|
// zext 8->16: Zero extend bytes to halfwords
|
|
def : Pat<(i16 (zext R8C:$rSrc)),
|
|
(ANDHIi8i16 R8C:$rSrc, 0xff)>;
|
|
|
|
// zext 8->32 from preferred slot in load/store
|
|
def : Pat<(SPUextract_i8_zext VECREG:$rSrc),
|
|
(ANDIr32 (ORi32_v4i32 (v4i32 VECREG:$rSrc), (v4i32 VECREG:$rSrc)),
|
|
0xff)>;
|
|
|
|
// zext 8->32: Zero extend bytes to words
|
|
def : Pat<(i32 (zext R8C:$rSrc)),
|
|
(ANDIi8i32 R8C:$rSrc, 0xff)>;
|
|
|
|
// anyext 8->16: Extend 8->16 bits, irrespective of sign
|
|
def : Pat<(i16 (anyext R8C:$rSrc)),
|
|
(ORHIi8i16 R8C:$rSrc, 0)>;
|
|
|
|
// anyext 8->32: Extend 8->32 bits, irrespective of sign
|
|
def : Pat<(i32 (anyext R8C:$rSrc)),
|
|
(ORIi8i32 R8C:$rSrc, 0)>;
|
|
|
|
// zext 16->32: Zero extend halfwords to words
|
|
def : Pat<(i32 (zext R16C:$rSrc)),
|
|
(ANDi16i32 R16C:$rSrc, (ILAr32 0xffff))>;
|
|
|
|
def : Pat<(i32 (zext (and R16C:$rSrc, 0xf))),
|
|
(ANDIi16i32 R16C:$rSrc, 0xf)>;
|
|
|
|
def : Pat<(i32 (zext (and R16C:$rSrc, 0xff))),
|
|
(ANDIi16i32 R16C:$rSrc, 0xff)>;
|
|
|
|
def : Pat<(i32 (zext (and R16C:$rSrc, 0xfff))),
|
|
(ANDIi16i32 R16C:$rSrc, 0xfff)>;
|
|
|
|
// anyext 16->32: Extend 16->32 bits, irrespective of sign
|
|
def : Pat<(i32 (anyext R16C:$rSrc)),
|
|
(ORIi16i32 R16C:$rSrc, 0)>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Address generation: SPU, like PPC, has to split addresses into high and
|
|
// low parts in order to load them into a register.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
def : Pat<(SPUaform tglobaladdr:$in, 0), (ILAlsa tglobaladdr:$in)>;
|
|
def : Pat<(SPUaform texternalsym:$in, 0), (ILAlsa texternalsym:$in)>;
|
|
def : Pat<(SPUaform tjumptable:$in, 0), (ILAlsa tjumptable:$in)>;
|
|
def : Pat<(SPUaform tconstpool:$in, 0), (ILAlsa tconstpool:$in)>;
|
|
|
|
def : Pat<(SPUindirect (SPUhi tglobaladdr:$in, 0),
|
|
(SPUlo tglobaladdr:$in, 0)),
|
|
(IOHLlo (ILHUhi tglobaladdr:$in), tglobaladdr:$in)>;
|
|
|
|
def : Pat<(SPUindirect (SPUhi texternalsym:$in, 0),
|
|
(SPUlo texternalsym:$in, 0)),
|
|
(IOHLlo (ILHUhi texternalsym:$in), texternalsym:$in)>;
|
|
|
|
def : Pat<(SPUindirect (SPUhi tjumptable:$in, 0),
|
|
(SPUlo tjumptable:$in, 0)),
|
|
(IOHLlo (ILHUhi tjumptable:$in), tjumptable:$in)>;
|
|
|
|
def : Pat<(SPUindirect (SPUhi tconstpool:$in, 0),
|
|
(SPUlo tconstpool:$in, 0)),
|
|
(IOHLlo (ILHUhi tconstpool:$in), tconstpool:$in)>;
|
|
|
|
def : Pat<(add (SPUhi tglobaladdr:$in, 0), (SPUlo tglobaladdr:$in, 0)),
|
|
(IOHLlo (ILHUhi tglobaladdr:$in), tglobaladdr:$in)>;
|
|
|
|
def : Pat<(add (SPUhi texternalsym:$in, 0), (SPUlo texternalsym:$in, 0)),
|
|
(IOHLlo (ILHUhi texternalsym:$in), texternalsym:$in)>;
|
|
|
|
def : Pat<(add (SPUhi tjumptable:$in, 0), (SPUlo tjumptable:$in, 0)),
|
|
(IOHLlo (ILHUhi tjumptable:$in), tjumptable:$in)>;
|
|
|
|
def : Pat<(add (SPUhi tconstpool:$in, 0), (SPUlo tconstpool:$in, 0)),
|
|
(IOHLlo (ILHUhi tconstpool:$in), tconstpool:$in)>;
|
|
|
|
// Instrinsics:
|
|
include "CellSDKIntrinsics.td"
|