llvm-6502/tools/llvm-upgrade/UpgradeLexer.l
Reid Spencer 49b8b55c29 For PR1187:
Allow @ before identifer names. Recognize the i1, i8, i16, i32, i64 keywords
as type names corresponding to bool, ubyte, ushort, uint, and ulong
respectively. While these aren't LLVM 1.9 constructs, permitting the syntax
allows post-1.9 assembly files to be upgraded.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@34023 91177308-0d34-0410-b5e6-96231b3b80d8
2007-02-08 00:19:40 +00:00

423 lines
15 KiB
C++

/*===-- UpgradeLexer.l - Scanner for 1.9 assembly files --------*- C++ -*--===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Reid Spencer and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the flex scanner for LLVM 1.9 assembly languages files.
//
//===----------------------------------------------------------------------===*/
%option prefix="Upgrade"
%option yylineno
%option nostdinit
%option never-interactive
%option batch
%option noyywrap
%option nodefault
%option 8bit
%option outfile="UpgradeLexer.cpp"
%option ecs
%option noreject
%option noyymore
%{
#include "UpgradeInternals.h"
#include "llvm/Module.h"
#include <list>
#include "UpgradeParser.h"
#include <cctype>
#include <cstdlib>
#define YY_INPUT(buf,result,max_size) \
{ \
if (LexInput->good() && !LexInput->eof()) { \
LexInput->read(buf,max_size); \
result = LexInput->gcount(); \
} else {\
result = YY_NULL; \
} \
}
#define YY_NEVER_INTERACTIVE 1
// Construct a token value for a non-obsolete token
#define RET_TOK(type, Enum, sym) \
Upgradelval.type = Enum; \
return sym
#define RET_TY(sym,NewTY,sign) \
Upgradelval.PrimType.T = NewTY; \
Upgradelval.PrimType.S = sign; \
return sym
namespace llvm {
// TODO: All of the static identifiers are figured out by the lexer,
// these should be hashed to reduce the lexer size
// UnEscapeLexed - Run through the specified buffer and change \xx codes to the
// appropriate character. If AllowNull is set to false, a \00 value will cause
// an exception to be thrown.
//
// If AllowNull is set to true, the return value of the function points to the
// last character of the string in memory.
//
char *UnEscapeLexed(char *Buffer, bool AllowNull) {
char *BOut = Buffer;
for (char *BIn = Buffer; *BIn; ) {
if (BIn[0] == '\\' && isxdigit(BIn[1]) && isxdigit(BIn[2])) {
char Tmp = BIn[3]; BIn[3] = 0; // Terminate string
*BOut = (char)strtol(BIn+1, 0, 16); // Convert to number
if (!AllowNull && !*BOut)
error("String literal cannot accept \\00 escape!");
BIn[3] = Tmp; // Restore character
BIn += 3; // Skip over handled chars
++BOut;
} else {
*BOut++ = *BIn++;
}
}
return BOut;
}
// atoull - Convert an ascii string of decimal digits into the unsigned long
// long representation... this does not have to do input error checking,
// because we know that the input will be matched by a suitable regex...
//
static uint64_t atoull(const char *Buffer) {
uint64_t Result = 0;
for (; *Buffer; Buffer++) {
uint64_t OldRes = Result;
Result *= 10;
Result += *Buffer-'0';
if (Result < OldRes) // Uh, oh, overflow detected!!!
error("constant bigger than 64 bits detected!");
}
return Result;
}
static uint64_t HexIntToVal(const char *Buffer) {
uint64_t Result = 0;
for (; *Buffer; ++Buffer) {
uint64_t OldRes = Result;
Result *= 16;
char C = *Buffer;
if (C >= '0' && C <= '9')
Result += C-'0';
else if (C >= 'A' && C <= 'F')
Result += C-'A'+10;
else if (C >= 'a' && C <= 'f')
Result += C-'a'+10;
if (Result < OldRes) // Uh, oh, overflow detected!!!
error("constant bigger than 64 bits detected!");
}
return Result;
}
// HexToFP - Convert the ascii string in hexidecimal format to the floating
// point representation of it.
//
static double HexToFP(const char *Buffer) {
// Behave nicely in the face of C TBAA rules... see:
// http://www.nullstone.com/htmls/category/aliastyp.htm
union {
uint64_t UI;
double FP;
} UIntToFP;
UIntToFP.UI = HexIntToVal(Buffer);
assert(sizeof(double) == sizeof(uint64_t) &&
"Data sizes incompatible on this target!");
return UIntToFP.FP; // Cast Hex constant to double
}
} // End llvm namespace
using namespace llvm;
%}
/* Comments start with a ; and go till end of line */
Comment ;.*
/* Variable(Value) identifiers start with a % sign */
VarID [%@][-a-zA-Z$._][-a-zA-Z$._0-9]*
/* Label identifiers end with a colon */
Label [-a-zA-Z$._0-9]+:
QuoteLabel \"[^\"]+\":
/* Quoted names can contain any character except " and \ */
StringConstant @?\"[^\"]*\"
/* [PN]Integer: match positive and negative literal integer values that
* are preceeded by a '%' character. These represent unnamed variable slots.
*/
EPInteger %[0-9]+
ENInteger %-[0-9]+
/* E[PN]Integer: match positive and negative literal integer values */
PInteger [0-9]+
NInteger -[0-9]+
/* FPConstant - A Floating point constant.
*/
FPConstant [-+]?[0-9]+[.][0-9]*([eE][-+]?[0-9]+)?
/* HexFPConstant - Floating point constant represented in IEEE format as a
* hexadecimal number for when exponential notation is not precise enough.
*/
HexFPConstant 0x[0-9A-Fa-f]+
/* HexIntConstant - Hexadecimal constant generated by the CFE to avoid forcing
* it to deal with 64 bit numbers.
*/
HexIntConstant [us]0x[0-9A-Fa-f]+
%%
{Comment} { /* Ignore comments for now */ }
begin { return BEGINTOK; }
end { return ENDTOK; }
true { return TRUETOK; }
false { return FALSETOK; }
declare { return DECLARE; }
global { return GLOBAL; }
constant { return CONSTANT; }
internal { return INTERNAL; }
linkonce { return LINKONCE; }
weak { return WEAK; }
appending { return APPENDING; }
dllimport { return DLLIMPORT; }
dllexport { return DLLEXPORT; }
extern_weak { return EXTERN_WEAK; }
uninitialized { return EXTERNAL; } /* Deprecated, turn into external */
external { return EXTERNAL; }
implementation { return IMPLEMENTATION; }
zeroinitializer { return ZEROINITIALIZER; }
\.\.\. { return DOTDOTDOT; }
undef { return UNDEF; }
null { return NULL_TOK; }
to { return TO; }
except { return EXCEPT; }
not { return NOT; } /* Deprecated, turned into XOR */
tail { return TAIL; }
target { return TARGET; }
triple { return TRIPLE; }
deplibs { return DEPLIBS; }
endian { return ENDIAN; }
pointersize { return POINTERSIZE; }
datalayout { return DATALAYOUT; }
little { return LITTLE; }
big { return BIG; }
volatile { return VOLATILE; }
align { return ALIGN; }
section { return SECTION; }
module { return MODULE; }
asm { return ASM_TOK; }
sideeffect { return SIDEEFFECT; }
cc { return CC_TOK; }
ccc { return CCC_TOK; }
csretcc { return CSRETCC_TOK; }
fastcc { return FASTCC_TOK; }
coldcc { return COLDCC_TOK; }
x86_stdcallcc { return X86_STDCALLCC_TOK; }
x86_fastcallcc { return X86_FASTCALLCC_TOK; }
sbyte { RET_TY(SBYTE, Type::Int8Ty, Signed); }
ubyte { RET_TY(UBYTE, Type::Int8Ty, Unsigned); }
i8 { RET_TY(UBYTE, Type::Int8Ty, Unsigned); }
short { RET_TY(SHORT, Type::Int16Ty, Signed); }
ushort { RET_TY(USHORT, Type::Int16Ty, Unsigned); }
i16 { RET_TY(USHORT, Type::Int16Ty, Unsigned); }
int { RET_TY(INT, Type::Int32Ty, Signed); }
uint { RET_TY(UINT, Type::Int32Ty, Unsigned); }
i32 { RET_TY(UINT, Type::Int32Ty, Unsigned); }
long { RET_TY(LONG, Type::Int64Ty, Signed); }
ulong { RET_TY(ULONG, Type::Int64Ty, Unsigned); }
i64 { RET_TY(ULONG, Type::Int64Ty, Unsigned); }
void { RET_TY(VOID, Type::VoidTy, Signless ); }
bool { RET_TY(BOOL, Type::Int1Ty, Unsigned ); }
i1 { RET_TY(BOOL, Type::Int1Ty, Unsigned ); }
float { RET_TY(FLOAT, Type::FloatTy, Signless ); }
double { RET_TY(DOUBLE, Type::DoubleTy,Signless); }
label { RET_TY(LABEL, Type::LabelTy, Signless ); }
type { return TYPE; }
opaque { return OPAQUE; }
add { RET_TOK(BinaryOpVal, AddOp, ADD); }
sub { RET_TOK(BinaryOpVal, SubOp, SUB); }
mul { RET_TOK(BinaryOpVal, MulOp, MUL); }
div { RET_TOK(BinaryOpVal, DivOp, DIV); }
udiv { RET_TOK(BinaryOpVal, UDivOp, UDIV); }
sdiv { RET_TOK(BinaryOpVal, SDivOp, SDIV); }
fdiv { RET_TOK(BinaryOpVal, FDivOp, FDIV); }
rem { RET_TOK(BinaryOpVal, RemOp, REM); }
urem { RET_TOK(BinaryOpVal, URemOp, UREM); }
srem { RET_TOK(BinaryOpVal, SRemOp, SREM); }
frem { RET_TOK(BinaryOpVal, FRemOp, FREM); }
and { RET_TOK(BinaryOpVal, AndOp, AND); }
or { RET_TOK(BinaryOpVal, OrOp , OR ); }
xor { RET_TOK(BinaryOpVal, XorOp, XOR); }
setne { RET_TOK(BinaryOpVal, SetNE, SETNE); }
seteq { RET_TOK(BinaryOpVal, SetEQ, SETEQ); }
setlt { RET_TOK(BinaryOpVal, SetLT, SETLT); }
setgt { RET_TOK(BinaryOpVal, SetGT, SETGT); }
setle { RET_TOK(BinaryOpVal, SetLE, SETLE); }
setge { RET_TOK(BinaryOpVal, SetGE, SETGE); }
shl { RET_TOK(BinaryOpVal, ShlOp, SHL); }
shr { RET_TOK(BinaryOpVal, ShrOp, SHR); }
lshr { RET_TOK(BinaryOpVal, LShrOp, LSHR); }
ashr { RET_TOK(BinaryOpVal, AShrOp, ASHR); }
icmp { RET_TOK(OtherOpVal, ICmpOp, ICMP); }
fcmp { RET_TOK(OtherOpVal, FCmpOp, FCMP); }
eq { return EQ; }
ne { return NE; }
slt { return SLT; }
sgt { return SGT; }
sle { return SLE; }
sge { return SGE; }
ult { return ULT; }
ugt { return UGT; }
ule { return ULE; }
uge { return UGE; }
oeq { return OEQ; }
one { return ONE; }
olt { return OLT; }
ogt { return OGT; }
ole { return OLE; }
oge { return OGE; }
ord { return ORD; }
uno { return UNO; }
ueq { return UEQ; }
une { return UNE; }
phi { RET_TOK(OtherOpVal, PHIOp, PHI_TOK); }
call { RET_TOK(OtherOpVal, CallOp, CALL); }
cast { RET_TOK(CastOpVal, CastOp, CAST); }
trunc { RET_TOK(CastOpVal, TruncOp, TRUNC); }
zext { RET_TOK(CastOpVal, ZExtOp , ZEXT); }
sext { RET_TOK(CastOpVal, SExtOp, SEXT); }
fptrunc { RET_TOK(CastOpVal, FPTruncOp, FPTRUNC); }
fpext { RET_TOK(CastOpVal, FPExtOp, FPEXT); }
fptoui { RET_TOK(CastOpVal, FPToUIOp, FPTOUI); }
fptosi { RET_TOK(CastOpVal, FPToSIOp, FPTOSI); }
uitofp { RET_TOK(CastOpVal, UIToFPOp, UITOFP); }
sitofp { RET_TOK(CastOpVal, SIToFPOp, SITOFP); }
ptrtoint { RET_TOK(CastOpVal, PtrToIntOp, PTRTOINT); }
inttoptr { RET_TOK(CastOpVal, IntToPtrOp, INTTOPTR); }
bitcast { RET_TOK(CastOpVal, BitCastOp, BITCAST); }
select { RET_TOK(OtherOpVal, SelectOp, SELECT); }
vanext { return VANEXT_old; }
vaarg { return VAARG_old; }
va_arg { RET_TOK(OtherOpVal, VAArg , VAARG); }
ret { RET_TOK(TermOpVal, RetOp, RET); }
br { RET_TOK(TermOpVal, BrOp, BR); }
switch { RET_TOK(TermOpVal, SwitchOp, SWITCH); }
invoke { RET_TOK(TermOpVal, InvokeOp, INVOKE); }
unwind { return UNWIND; }
unreachable { RET_TOK(TermOpVal, UnreachableOp, UNREACHABLE); }
malloc { RET_TOK(MemOpVal, MallocOp, MALLOC); }
alloca { RET_TOK(MemOpVal, AllocaOp, ALLOCA); }
free { RET_TOK(MemOpVal, FreeOp, FREE); }
load { RET_TOK(MemOpVal, LoadOp, LOAD); }
store { RET_TOK(MemOpVal, StoreOp, STORE); }
getelementptr { RET_TOK(MemOpVal, GetElementPtrOp, GETELEMENTPTR); }
extractelement { RET_TOK(OtherOpVal, ExtractElementOp, EXTRACTELEMENT); }
insertelement { RET_TOK(OtherOpVal, InsertElementOp, INSERTELEMENT); }
shufflevector { RET_TOK(OtherOpVal, ShuffleVectorOp, SHUFFLEVECTOR); }
{VarID} {
UnEscapeLexed(yytext+1);
Upgradelval.StrVal = strdup(yytext+1); // Skip %
return VAR_ID;
}
{Label} {
yytext[strlen(yytext)-1] = 0; // nuke colon
UnEscapeLexed(yytext);
Upgradelval.StrVal = strdup(yytext);
return LABELSTR;
}
{QuoteLabel} {
yytext[strlen(yytext)-2] = 0; // nuke colon, end quote
UnEscapeLexed(yytext+1);
Upgradelval.StrVal = strdup(yytext+1);
return LABELSTR;
}
{StringConstant} { // Note that we cannot unescape a string constant here! The
// string constant might contain a \00 which would not be
// understood by the string stuff. It is valid to make a
// [sbyte] c"Hello World\00" constant, for example.
//
yytext[strlen(yytext)-1] = 0; // nuke end quote
Upgradelval.StrVal = strdup(yytext+1); // Nuke start quote
return STRINGCONSTANT;
}
{PInteger} { Upgradelval.UInt64Val = atoull(yytext); return EUINT64VAL; }
{NInteger} {
uint64_t Val = atoull(yytext+1);
// +1: we have bigger negative range
if (Val > (uint64_t)INT64_MAX+1)
error("Constant too large for signed 64 bits!");
Upgradelval.SInt64Val = -Val;
return ESINT64VAL;
}
{HexIntConstant} {
Upgradelval.UInt64Val = HexIntToVal(yytext+3);
return yytext[0] == 's' ? ESINT64VAL : EUINT64VAL;
}
{EPInteger} {
uint64_t Val = atoull(yytext+1);
if ((unsigned)Val != Val)
error("Invalid value number (too large)!");
Upgradelval.UIntVal = unsigned(Val);
return UINTVAL;
}
{ENInteger} {
uint64_t Val = atoull(yytext+2);
// +1: we have bigger negative range
if (Val > (uint64_t)INT32_MAX+1)
error("Constant too large for signed 32 bits!");
Upgradelval.SIntVal = (int)-Val;
return SINTVAL;
}
{FPConstant} { Upgradelval.FPVal = atof(yytext); return FPVAL; }
{HexFPConstant} { Upgradelval.FPVal = HexToFP(yytext); return FPVAL; }
<<EOF>> {
/* Make sure to free the internal buffers for flex when we are
* done reading our input!
*/
yy_delete_buffer(YY_CURRENT_BUFFER);
return EOF;
}
[ \r\t\n] { /* Ignore whitespace */ }
. { return yytext[0]; }
%%