mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-11 10:31:40 +00:00
29e4bdbf27
memory intrinsic expansion code. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@49666 91177308-0d34-0410-b5e6-96231b3b80d8
1466 lines
62 KiB
C++
1466 lines
62 KiB
C++
//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file describes how to lower LLVM code to machine code. This has two
|
|
// main components:
|
|
//
|
|
// 1. Which ValueTypes are natively supported by the target.
|
|
// 2. Which operations are supported for supported ValueTypes.
|
|
// 3. Cost thresholds for alternative implementations of certain operations.
|
|
//
|
|
// In addition it has a few other components, like information about FP
|
|
// immediates.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_TARGET_TARGETLOWERING_H
|
|
#define LLVM_TARGET_TARGETLOWERING_H
|
|
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/InlineAsm.h"
|
|
#include "llvm/CodeGen/SelectionDAGNodes.h"
|
|
#include "llvm/CodeGen/RuntimeLibcalls.h"
|
|
#include "llvm/ADT/APFloat.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include <map>
|
|
#include <vector>
|
|
|
|
namespace llvm {
|
|
class Value;
|
|
class Function;
|
|
class TargetMachine;
|
|
class TargetData;
|
|
class TargetRegisterClass;
|
|
class SDNode;
|
|
class SDOperand;
|
|
class SelectionDAG;
|
|
class MachineBasicBlock;
|
|
class MachineInstr;
|
|
class VectorType;
|
|
class TargetSubtarget;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// TargetLowering - This class defines information used to lower LLVM code to
|
|
/// legal SelectionDAG operators that the target instruction selector can accept
|
|
/// natively.
|
|
///
|
|
/// This class also defines callbacks that targets must implement to lower
|
|
/// target-specific constructs to SelectionDAG operators.
|
|
///
|
|
class TargetLowering {
|
|
public:
|
|
/// LegalizeAction - This enum indicates whether operations are valid for a
|
|
/// target, and if not, what action should be used to make them valid.
|
|
enum LegalizeAction {
|
|
Legal, // The target natively supports this operation.
|
|
Promote, // This operation should be executed in a larger type.
|
|
Expand, // Try to expand this to other ops, otherwise use a libcall.
|
|
Custom // Use the LowerOperation hook to implement custom lowering.
|
|
};
|
|
|
|
enum OutOfRangeShiftAmount {
|
|
Undefined, // Oversized shift amounts are undefined (default).
|
|
Mask, // Shift amounts are auto masked (anded) to value size.
|
|
Extend // Oversized shift pulls in zeros or sign bits.
|
|
};
|
|
|
|
enum SetCCResultValue {
|
|
UndefinedSetCCResult, // SetCC returns a garbage/unknown extend.
|
|
ZeroOrOneSetCCResult, // SetCC returns a zero extended result.
|
|
ZeroOrNegativeOneSetCCResult // SetCC returns a sign extended result.
|
|
};
|
|
|
|
enum SchedPreference {
|
|
SchedulingForLatency, // Scheduling for shortest total latency.
|
|
SchedulingForRegPressure // Scheduling for lowest register pressure.
|
|
};
|
|
|
|
explicit TargetLowering(TargetMachine &TM);
|
|
virtual ~TargetLowering();
|
|
|
|
TargetMachine &getTargetMachine() const { return TM; }
|
|
const TargetData *getTargetData() const { return TD; }
|
|
|
|
bool isBigEndian() const { return !IsLittleEndian; }
|
|
bool isLittleEndian() const { return IsLittleEndian; }
|
|
MVT::ValueType getPointerTy() const { return PointerTy; }
|
|
MVT::ValueType getShiftAmountTy() const { return ShiftAmountTy; }
|
|
OutOfRangeShiftAmount getShiftAmountFlavor() const {return ShiftAmtHandling; }
|
|
|
|
/// usesGlobalOffsetTable - Return true if this target uses a GOT for PIC
|
|
/// codegen.
|
|
bool usesGlobalOffsetTable() const { return UsesGlobalOffsetTable; }
|
|
|
|
/// isSelectExpensive - Return true if the select operation is expensive for
|
|
/// this target.
|
|
bool isSelectExpensive() const { return SelectIsExpensive; }
|
|
|
|
/// isIntDivCheap() - Return true if integer divide is usually cheaper than
|
|
/// a sequence of several shifts, adds, and multiplies for this target.
|
|
bool isIntDivCheap() const { return IntDivIsCheap; }
|
|
|
|
/// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
|
|
/// srl/add/sra.
|
|
bool isPow2DivCheap() const { return Pow2DivIsCheap; }
|
|
|
|
/// getSetCCResultType - Return the ValueType of the result of setcc operations.
|
|
virtual MVT::ValueType getSetCCResultType(const SDOperand &) const;
|
|
|
|
/// getSetCCResultContents - For targets without boolean registers, this flag
|
|
/// returns information about the contents of the high-bits in the setcc
|
|
/// result register.
|
|
SetCCResultValue getSetCCResultContents() const { return SetCCResultContents;}
|
|
|
|
/// getSchedulingPreference - Return target scheduling preference.
|
|
SchedPreference getSchedulingPreference() const {
|
|
return SchedPreferenceInfo;
|
|
}
|
|
|
|
/// getRegClassFor - Return the register class that should be used for the
|
|
/// specified value type. This may only be called on legal types.
|
|
TargetRegisterClass *getRegClassFor(MVT::ValueType VT) const {
|
|
assert(VT < array_lengthof(RegClassForVT));
|
|
TargetRegisterClass *RC = RegClassForVT[VT];
|
|
assert(RC && "This value type is not natively supported!");
|
|
return RC;
|
|
}
|
|
|
|
/// isTypeLegal - Return true if the target has native support for the
|
|
/// specified value type. This means that it has a register that directly
|
|
/// holds it without promotions or expansions.
|
|
bool isTypeLegal(MVT::ValueType VT) const {
|
|
assert(MVT::isExtendedVT(VT) || VT < array_lengthof(RegClassForVT));
|
|
return !MVT::isExtendedVT(VT) && RegClassForVT[VT] != 0;
|
|
}
|
|
|
|
class ValueTypeActionImpl {
|
|
/// ValueTypeActions - This is a bitvector that contains two bits for each
|
|
/// value type, where the two bits correspond to the LegalizeAction enum.
|
|
/// This can be queried with "getTypeAction(VT)".
|
|
uint32_t ValueTypeActions[2];
|
|
public:
|
|
ValueTypeActionImpl() {
|
|
ValueTypeActions[0] = ValueTypeActions[1] = 0;
|
|
}
|
|
ValueTypeActionImpl(const ValueTypeActionImpl &RHS) {
|
|
ValueTypeActions[0] = RHS.ValueTypeActions[0];
|
|
ValueTypeActions[1] = RHS.ValueTypeActions[1];
|
|
}
|
|
|
|
LegalizeAction getTypeAction(MVT::ValueType VT) const {
|
|
if (MVT::isExtendedVT(VT)) {
|
|
if (MVT::isVector(VT)) return Expand;
|
|
if (MVT::isInteger(VT))
|
|
// First promote to a power-of-two size, then expand if necessary.
|
|
return VT == MVT::RoundIntegerType(VT) ? Expand : Promote;
|
|
assert(0 && "Unsupported extended type!");
|
|
}
|
|
assert(VT<4*array_lengthof(ValueTypeActions)*sizeof(ValueTypeActions[0]));
|
|
return (LegalizeAction)((ValueTypeActions[VT>>4] >> ((2*VT) & 31)) & 3);
|
|
}
|
|
void setTypeAction(MVT::ValueType VT, LegalizeAction Action) {
|
|
assert(VT<4*array_lengthof(ValueTypeActions)*sizeof(ValueTypeActions[0]));
|
|
ValueTypeActions[VT>>4] |= Action << ((VT*2) & 31);
|
|
}
|
|
};
|
|
|
|
const ValueTypeActionImpl &getValueTypeActions() const {
|
|
return ValueTypeActions;
|
|
}
|
|
|
|
/// getTypeAction - Return how we should legalize values of this type, either
|
|
/// it is already legal (return 'Legal') or we need to promote it to a larger
|
|
/// type (return 'Promote'), or we need to expand it into multiple registers
|
|
/// of smaller integer type (return 'Expand'). 'Custom' is not an option.
|
|
LegalizeAction getTypeAction(MVT::ValueType VT) const {
|
|
return ValueTypeActions.getTypeAction(VT);
|
|
}
|
|
|
|
/// getTypeToTransformTo - For types supported by the target, this is an
|
|
/// identity function. For types that must be promoted to larger types, this
|
|
/// returns the larger type to promote to. For integer types that are larger
|
|
/// than the largest integer register, this contains one step in the expansion
|
|
/// to get to the smaller register. For illegal floating point types, this
|
|
/// returns the integer type to transform to.
|
|
MVT::ValueType getTypeToTransformTo(MVT::ValueType VT) const {
|
|
if (!MVT::isExtendedVT(VT)) {
|
|
assert(VT < array_lengthof(TransformToType));
|
|
MVT::ValueType NVT = TransformToType[VT];
|
|
assert(getTypeAction(NVT) != Promote &&
|
|
"Promote may not follow Expand or Promote");
|
|
return NVT;
|
|
}
|
|
|
|
if (MVT::isVector(VT))
|
|
return MVT::getVectorType(MVT::getVectorElementType(VT),
|
|
MVT::getVectorNumElements(VT) / 2);
|
|
if (MVT::isInteger(VT)) {
|
|
MVT::ValueType NVT = MVT::RoundIntegerType(VT);
|
|
if (NVT == VT)
|
|
// Size is a power of two - expand to half the size.
|
|
return MVT::getIntegerType(MVT::getSizeInBits(VT) / 2);
|
|
else
|
|
// Promote to a power of two size, avoiding multi-step promotion.
|
|
return getTypeAction(NVT) == Promote ? getTypeToTransformTo(NVT) : NVT;
|
|
}
|
|
assert(0 && "Unsupported extended type!");
|
|
return MVT::ValueType(); // Not reached
|
|
}
|
|
|
|
/// getTypeToExpandTo - For types supported by the target, this is an
|
|
/// identity function. For types that must be expanded (i.e. integer types
|
|
/// that are larger than the largest integer register or illegal floating
|
|
/// point types), this returns the largest legal type it will be expanded to.
|
|
MVT::ValueType getTypeToExpandTo(MVT::ValueType VT) const {
|
|
assert(!MVT::isVector(VT));
|
|
while (true) {
|
|
switch (getTypeAction(VT)) {
|
|
case Legal:
|
|
return VT;
|
|
case Expand:
|
|
VT = getTypeToTransformTo(VT);
|
|
break;
|
|
default:
|
|
assert(false && "Type is not legal nor is it to be expanded!");
|
|
return VT;
|
|
}
|
|
}
|
|
return VT;
|
|
}
|
|
|
|
/// getVectorTypeBreakdown - Vector types are broken down into some number of
|
|
/// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32
|
|
/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
|
|
/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
|
|
///
|
|
/// This method returns the number of registers needed, and the VT for each
|
|
/// register. It also returns the VT and quantity of the intermediate values
|
|
/// before they are promoted/expanded.
|
|
///
|
|
unsigned getVectorTypeBreakdown(MVT::ValueType VT,
|
|
MVT::ValueType &IntermediateVT,
|
|
unsigned &NumIntermediates,
|
|
MVT::ValueType &RegisterVT) const;
|
|
|
|
typedef std::vector<APFloat>::const_iterator legal_fpimm_iterator;
|
|
legal_fpimm_iterator legal_fpimm_begin() const {
|
|
return LegalFPImmediates.begin();
|
|
}
|
|
legal_fpimm_iterator legal_fpimm_end() const {
|
|
return LegalFPImmediates.end();
|
|
}
|
|
|
|
/// isShuffleMaskLegal - Targets can use this to indicate that they only
|
|
/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
|
|
/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
|
|
/// are assumed to be legal.
|
|
virtual bool isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const {
|
|
return true;
|
|
}
|
|
|
|
/// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
|
|
/// used by Targets can use this to indicate if there is a suitable
|
|
/// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
|
|
/// pool entry.
|
|
virtual bool isVectorClearMaskLegal(const std::vector<SDOperand> &BVOps,
|
|
MVT::ValueType EVT,
|
|
SelectionDAG &DAG) const {
|
|
return false;
|
|
}
|
|
|
|
/// getOperationAction - Return how this operation should be treated: either
|
|
/// it is legal, needs to be promoted to a larger size, needs to be
|
|
/// expanded to some other code sequence, or the target has a custom expander
|
|
/// for it.
|
|
LegalizeAction getOperationAction(unsigned Op, MVT::ValueType VT) const {
|
|
if (MVT::isExtendedVT(VT)) return Expand;
|
|
assert(Op < array_lengthof(OpActions) &&
|
|
VT < sizeof(OpActions[0])*4 && "Table isn't big enough!");
|
|
return (LegalizeAction)((OpActions[Op] >> (2*VT)) & 3);
|
|
}
|
|
|
|
/// isOperationLegal - Return true if the specified operation is legal on this
|
|
/// target.
|
|
bool isOperationLegal(unsigned Op, MVT::ValueType VT) const {
|
|
return getOperationAction(Op, VT) == Legal ||
|
|
getOperationAction(Op, VT) == Custom;
|
|
}
|
|
|
|
/// getLoadXAction - Return how this load with extension should be treated:
|
|
/// either it is legal, needs to be promoted to a larger size, needs to be
|
|
/// expanded to some other code sequence, or the target has a custom expander
|
|
/// for it.
|
|
LegalizeAction getLoadXAction(unsigned LType, MVT::ValueType VT) const {
|
|
assert(LType < array_lengthof(LoadXActions) &&
|
|
VT < sizeof(LoadXActions[0])*4 && "Table isn't big enough!");
|
|
return (LegalizeAction)((LoadXActions[LType] >> (2*VT)) & 3);
|
|
}
|
|
|
|
/// isLoadXLegal - Return true if the specified load with extension is legal
|
|
/// on this target.
|
|
bool isLoadXLegal(unsigned LType, MVT::ValueType VT) const {
|
|
return !MVT::isExtendedVT(VT) &&
|
|
(getLoadXAction(LType, VT) == Legal ||
|
|
getLoadXAction(LType, VT) == Custom);
|
|
}
|
|
|
|
/// getTruncStoreAction - Return how this store with truncation should be
|
|
/// treated: either it is legal, needs to be promoted to a larger size, needs
|
|
/// to be expanded to some other code sequence, or the target has a custom
|
|
/// expander for it.
|
|
LegalizeAction getTruncStoreAction(MVT::ValueType ValVT,
|
|
MVT::ValueType MemVT) const {
|
|
assert(ValVT < array_lengthof(TruncStoreActions) &&
|
|
MemVT < sizeof(TruncStoreActions[0])*4 && "Table isn't big enough!");
|
|
return (LegalizeAction)((TruncStoreActions[ValVT] >> (2*MemVT)) & 3);
|
|
}
|
|
|
|
/// isTruncStoreLegal - Return true if the specified store with truncation is
|
|
/// legal on this target.
|
|
bool isTruncStoreLegal(MVT::ValueType ValVT, MVT::ValueType MemVT) const {
|
|
return !MVT::isExtendedVT(MemVT) &&
|
|
(getTruncStoreAction(ValVT, MemVT) == Legal ||
|
|
getTruncStoreAction(ValVT, MemVT) == Custom);
|
|
}
|
|
|
|
/// getIndexedLoadAction - Return how the indexed load should be treated:
|
|
/// either it is legal, needs to be promoted to a larger size, needs to be
|
|
/// expanded to some other code sequence, or the target has a custom expander
|
|
/// for it.
|
|
LegalizeAction
|
|
getIndexedLoadAction(unsigned IdxMode, MVT::ValueType VT) const {
|
|
assert(IdxMode < array_lengthof(IndexedModeActions[0]) &&
|
|
VT < sizeof(IndexedModeActions[0][0])*4 &&
|
|
"Table isn't big enough!");
|
|
return (LegalizeAction)((IndexedModeActions[0][IdxMode] >> (2*VT)) & 3);
|
|
}
|
|
|
|
/// isIndexedLoadLegal - Return true if the specified indexed load is legal
|
|
/// on this target.
|
|
bool isIndexedLoadLegal(unsigned IdxMode, MVT::ValueType VT) const {
|
|
return getIndexedLoadAction(IdxMode, VT) == Legal ||
|
|
getIndexedLoadAction(IdxMode, VT) == Custom;
|
|
}
|
|
|
|
/// getIndexedStoreAction - Return how the indexed store should be treated:
|
|
/// either it is legal, needs to be promoted to a larger size, needs to be
|
|
/// expanded to some other code sequence, or the target has a custom expander
|
|
/// for it.
|
|
LegalizeAction
|
|
getIndexedStoreAction(unsigned IdxMode, MVT::ValueType VT) const {
|
|
assert(IdxMode < array_lengthof(IndexedModeActions[1]) &&
|
|
VT < sizeof(IndexedModeActions[1][0])*4 &&
|
|
"Table isn't big enough!");
|
|
return (LegalizeAction)((IndexedModeActions[1][IdxMode] >> (2*VT)) & 3);
|
|
}
|
|
|
|
/// isIndexedStoreLegal - Return true if the specified indexed load is legal
|
|
/// on this target.
|
|
bool isIndexedStoreLegal(unsigned IdxMode, MVT::ValueType VT) const {
|
|
return getIndexedStoreAction(IdxMode, VT) == Legal ||
|
|
getIndexedStoreAction(IdxMode, VT) == Custom;
|
|
}
|
|
|
|
/// getConvertAction - Return how the conversion should be treated:
|
|
/// either it is legal, needs to be promoted to a larger size, needs to be
|
|
/// expanded to some other code sequence, or the target has a custom expander
|
|
/// for it.
|
|
LegalizeAction
|
|
getConvertAction(MVT::ValueType FromVT, MVT::ValueType ToVT) const {
|
|
assert(FromVT < array_lengthof(ConvertActions) &&
|
|
ToVT < sizeof(ConvertActions[0])*4 && "Table isn't big enough!");
|
|
return (LegalizeAction)((ConvertActions[FromVT] >> (2*ToVT)) & 3);
|
|
}
|
|
|
|
/// isConvertLegal - Return true if the specified conversion is legal
|
|
/// on this target.
|
|
bool isConvertLegal(MVT::ValueType FromVT, MVT::ValueType ToVT) const {
|
|
return getConvertAction(FromVT, ToVT) == Legal ||
|
|
getConvertAction(FromVT, ToVT) == Custom;
|
|
}
|
|
|
|
/// getTypeToPromoteTo - If the action for this operation is to promote, this
|
|
/// method returns the ValueType to promote to.
|
|
MVT::ValueType getTypeToPromoteTo(unsigned Op, MVT::ValueType VT) const {
|
|
assert(getOperationAction(Op, VT) == Promote &&
|
|
"This operation isn't promoted!");
|
|
|
|
// See if this has an explicit type specified.
|
|
std::map<std::pair<unsigned, MVT::ValueType>,
|
|
MVT::ValueType>::const_iterator PTTI =
|
|
PromoteToType.find(std::make_pair(Op, VT));
|
|
if (PTTI != PromoteToType.end()) return PTTI->second;
|
|
|
|
assert((MVT::isInteger(VT) || MVT::isFloatingPoint(VT)) &&
|
|
"Cannot autopromote this type, add it with AddPromotedToType.");
|
|
|
|
MVT::ValueType NVT = VT;
|
|
do {
|
|
NVT = (MVT::ValueType)(NVT+1);
|
|
assert(MVT::isInteger(NVT) == MVT::isInteger(VT) && NVT != MVT::isVoid &&
|
|
"Didn't find type to promote to!");
|
|
} while (!isTypeLegal(NVT) ||
|
|
getOperationAction(Op, NVT) == Promote);
|
|
return NVT;
|
|
}
|
|
|
|
/// getValueType - Return the MVT::ValueType corresponding to this LLVM type.
|
|
/// This is fixed by the LLVM operations except for the pointer size. If
|
|
/// AllowUnknown is true, this will return MVT::Other for types with no MVT
|
|
/// counterpart (e.g. structs), otherwise it will assert.
|
|
MVT::ValueType getValueType(const Type *Ty, bool AllowUnknown = false) const {
|
|
MVT::ValueType VT = MVT::getValueType(Ty, AllowUnknown);
|
|
return VT == MVT::iPTR ? PointerTy : VT;
|
|
}
|
|
|
|
/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
|
|
/// function arguments in the caller parameter area. This is the actual
|
|
/// alignment, not its logarithm.
|
|
virtual unsigned getByValTypeAlignment(const Type *Ty) const;
|
|
|
|
/// getRegisterType - Return the type of registers that this ValueType will
|
|
/// eventually require.
|
|
MVT::ValueType getRegisterType(MVT::ValueType VT) const {
|
|
if (!MVT::isExtendedVT(VT)) {
|
|
assert(VT < array_lengthof(RegisterTypeForVT));
|
|
return RegisterTypeForVT[VT];
|
|
}
|
|
if (MVT::isVector(VT)) {
|
|
MVT::ValueType VT1, RegisterVT;
|
|
unsigned NumIntermediates;
|
|
(void)getVectorTypeBreakdown(VT, VT1, NumIntermediates, RegisterVT);
|
|
return RegisterVT;
|
|
}
|
|
if (MVT::isInteger(VT)) {
|
|
return getRegisterType(getTypeToTransformTo(VT));
|
|
}
|
|
assert(0 && "Unsupported extended type!");
|
|
return MVT::ValueType(); // Not reached
|
|
}
|
|
|
|
/// getNumRegisters - Return the number of registers that this ValueType will
|
|
/// eventually require. This is one for any types promoted to live in larger
|
|
/// registers, but may be more than one for types (like i64) that are split
|
|
/// into pieces. For types like i140, which are first promoted then expanded,
|
|
/// it is the number of registers needed to hold all the bits of the original
|
|
/// type. For an i140 on a 32 bit machine this means 5 registers.
|
|
unsigned getNumRegisters(MVT::ValueType VT) const {
|
|
if (!MVT::isExtendedVT(VT)) {
|
|
assert(VT < array_lengthof(NumRegistersForVT));
|
|
return NumRegistersForVT[VT];
|
|
}
|
|
if (MVT::isVector(VT)) {
|
|
MVT::ValueType VT1, VT2;
|
|
unsigned NumIntermediates;
|
|
return getVectorTypeBreakdown(VT, VT1, NumIntermediates, VT2);
|
|
}
|
|
if (MVT::isInteger(VT)) {
|
|
unsigned BitWidth = MVT::getSizeInBits(VT);
|
|
unsigned RegWidth = MVT::getSizeInBits(getRegisterType(VT));
|
|
return (BitWidth + RegWidth - 1) / RegWidth;
|
|
}
|
|
assert(0 && "Unsupported extended type!");
|
|
return 0; // Not reached
|
|
}
|
|
|
|
/// ShouldShrinkFPConstant - If true, then instruction selection should
|
|
/// seek to shrink the FP constant of the specified type to a smaller type
|
|
/// in order to save space and / or reduce runtime.
|
|
virtual bool ShouldShrinkFPConstant(MVT::ValueType VT) const { return true; }
|
|
|
|
/// hasTargetDAGCombine - If true, the target has custom DAG combine
|
|
/// transformations that it can perform for the specified node.
|
|
bool hasTargetDAGCombine(ISD::NodeType NT) const {
|
|
assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
|
|
return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
|
|
}
|
|
|
|
/// This function returns the maximum number of store operations permitted
|
|
/// to replace a call to llvm.memset. The value is set by the target at the
|
|
/// performance threshold for such a replacement.
|
|
/// @brief Get maximum # of store operations permitted for llvm.memset
|
|
unsigned getMaxStoresPerMemset() const { return maxStoresPerMemset; }
|
|
|
|
/// This function returns the maximum number of store operations permitted
|
|
/// to replace a call to llvm.memcpy. The value is set by the target at the
|
|
/// performance threshold for such a replacement.
|
|
/// @brief Get maximum # of store operations permitted for llvm.memcpy
|
|
unsigned getMaxStoresPerMemcpy() const { return maxStoresPerMemcpy; }
|
|
|
|
/// This function returns the maximum number of store operations permitted
|
|
/// to replace a call to llvm.memmove. The value is set by the target at the
|
|
/// performance threshold for such a replacement.
|
|
/// @brief Get maximum # of store operations permitted for llvm.memmove
|
|
unsigned getMaxStoresPerMemmove() const { return maxStoresPerMemmove; }
|
|
|
|
/// This function returns true if the target allows unaligned memory accesses.
|
|
/// This is used, for example, in situations where an array copy/move/set is
|
|
/// converted to a sequence of store operations. It's use helps to ensure that
|
|
/// such replacements don't generate code that causes an alignment error
|
|
/// (trap) on the target machine.
|
|
/// @brief Determine if the target supports unaligned memory accesses.
|
|
bool allowsUnalignedMemoryAccesses() const {
|
|
return allowUnalignedMemoryAccesses;
|
|
}
|
|
|
|
/// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
|
|
/// to implement llvm.setjmp.
|
|
bool usesUnderscoreSetJmp() const {
|
|
return UseUnderscoreSetJmp;
|
|
}
|
|
|
|
/// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp
|
|
/// to implement llvm.longjmp.
|
|
bool usesUnderscoreLongJmp() const {
|
|
return UseUnderscoreLongJmp;
|
|
}
|
|
|
|
/// getStackPointerRegisterToSaveRestore - If a physical register, this
|
|
/// specifies the register that llvm.savestack/llvm.restorestack should save
|
|
/// and restore.
|
|
unsigned getStackPointerRegisterToSaveRestore() const {
|
|
return StackPointerRegisterToSaveRestore;
|
|
}
|
|
|
|
/// getExceptionAddressRegister - If a physical register, this returns
|
|
/// the register that receives the exception address on entry to a landing
|
|
/// pad.
|
|
unsigned getExceptionAddressRegister() const {
|
|
return ExceptionPointerRegister;
|
|
}
|
|
|
|
/// getExceptionSelectorRegister - If a physical register, this returns
|
|
/// the register that receives the exception typeid on entry to a landing
|
|
/// pad.
|
|
unsigned getExceptionSelectorRegister() const {
|
|
return ExceptionSelectorRegister;
|
|
}
|
|
|
|
/// getJumpBufSize - returns the target's jmp_buf size in bytes (if never
|
|
/// set, the default is 200)
|
|
unsigned getJumpBufSize() const {
|
|
return JumpBufSize;
|
|
}
|
|
|
|
/// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes
|
|
/// (if never set, the default is 0)
|
|
unsigned getJumpBufAlignment() const {
|
|
return JumpBufAlignment;
|
|
}
|
|
|
|
/// getIfCvtBlockLimit - returns the target specific if-conversion block size
|
|
/// limit. Any block whose size is greater should not be predicated.
|
|
unsigned getIfCvtBlockSizeLimit() const {
|
|
return IfCvtBlockSizeLimit;
|
|
}
|
|
|
|
/// getIfCvtDupBlockLimit - returns the target specific size limit for a
|
|
/// block to be considered for duplication. Any block whose size is greater
|
|
/// should not be duplicated to facilitate its predication.
|
|
unsigned getIfCvtDupBlockSizeLimit() const {
|
|
return IfCvtDupBlockSizeLimit;
|
|
}
|
|
|
|
/// getPrefLoopAlignment - return the preferred loop alignment.
|
|
///
|
|
unsigned getPrefLoopAlignment() const {
|
|
return PrefLoopAlignment;
|
|
}
|
|
|
|
/// getPreIndexedAddressParts - returns true by value, base pointer and
|
|
/// offset pointer and addressing mode by reference if the node's address
|
|
/// can be legally represented as pre-indexed load / store address.
|
|
virtual bool getPreIndexedAddressParts(SDNode *N, SDOperand &Base,
|
|
SDOperand &Offset,
|
|
ISD::MemIndexedMode &AM,
|
|
SelectionDAG &DAG) {
|
|
return false;
|
|
}
|
|
|
|
/// getPostIndexedAddressParts - returns true by value, base pointer and
|
|
/// offset pointer and addressing mode by reference if this node can be
|
|
/// combined with a load / store to form a post-indexed load / store.
|
|
virtual bool getPostIndexedAddressParts(SDNode *N, SDNode *Op,
|
|
SDOperand &Base, SDOperand &Offset,
|
|
ISD::MemIndexedMode &AM,
|
|
SelectionDAG &DAG) {
|
|
return false;
|
|
}
|
|
|
|
/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
|
|
/// jumptable.
|
|
virtual SDOperand getPICJumpTableRelocBase(SDOperand Table,
|
|
SelectionDAG &DAG) const;
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// TargetLowering Optimization Methods
|
|
//
|
|
|
|
/// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
|
|
/// SDOperands for returning information from TargetLowering to its clients
|
|
/// that want to combine
|
|
struct TargetLoweringOpt {
|
|
SelectionDAG &DAG;
|
|
bool AfterLegalize;
|
|
SDOperand Old;
|
|
SDOperand New;
|
|
|
|
explicit TargetLoweringOpt(SelectionDAG &InDAG, bool afterLegalize)
|
|
: DAG(InDAG), AfterLegalize(afterLegalize) {}
|
|
|
|
bool CombineTo(SDOperand O, SDOperand N) {
|
|
Old = O;
|
|
New = N;
|
|
return true;
|
|
}
|
|
|
|
/// ShrinkDemandedConstant - Check to see if the specified operand of the
|
|
/// specified instruction is a constant integer. If so, check to see if
|
|
/// there are any bits set in the constant that are not demanded. If so,
|
|
/// shrink the constant and return true.
|
|
bool ShrinkDemandedConstant(SDOperand Op, const APInt &Demanded);
|
|
};
|
|
|
|
/// SimplifyDemandedBits - Look at Op. At this point, we know that only the
|
|
/// DemandedMask bits of the result of Op are ever used downstream. If we can
|
|
/// use this information to simplify Op, create a new simplified DAG node and
|
|
/// return true, returning the original and new nodes in Old and New.
|
|
/// Otherwise, analyze the expression and return a mask of KnownOne and
|
|
/// KnownZero bits for the expression (used to simplify the caller).
|
|
/// The KnownZero/One bits may only be accurate for those bits in the
|
|
/// DemandedMask.
|
|
bool SimplifyDemandedBits(SDOperand Op, const APInt &DemandedMask,
|
|
APInt &KnownZero, APInt &KnownOne,
|
|
TargetLoweringOpt &TLO, unsigned Depth = 0) const;
|
|
|
|
/// computeMaskedBitsForTargetNode - Determine which of the bits specified in
|
|
/// Mask are known to be either zero or one and return them in the
|
|
/// KnownZero/KnownOne bitsets.
|
|
virtual void computeMaskedBitsForTargetNode(const SDOperand Op,
|
|
const APInt &Mask,
|
|
APInt &KnownZero,
|
|
APInt &KnownOne,
|
|
const SelectionDAG &DAG,
|
|
unsigned Depth = 0) const;
|
|
|
|
/// ComputeNumSignBitsForTargetNode - This method can be implemented by
|
|
/// targets that want to expose additional information about sign bits to the
|
|
/// DAG Combiner.
|
|
virtual unsigned ComputeNumSignBitsForTargetNode(SDOperand Op,
|
|
unsigned Depth = 0) const;
|
|
|
|
struct DAGCombinerInfo {
|
|
void *DC; // The DAG Combiner object.
|
|
bool BeforeLegalize;
|
|
bool CalledByLegalizer;
|
|
public:
|
|
SelectionDAG &DAG;
|
|
|
|
DAGCombinerInfo(SelectionDAG &dag, bool bl, bool cl, void *dc)
|
|
: DC(dc), BeforeLegalize(bl), CalledByLegalizer(cl), DAG(dag) {}
|
|
|
|
bool isBeforeLegalize() const { return BeforeLegalize; }
|
|
bool isCalledByLegalizer() const { return CalledByLegalizer; }
|
|
|
|
void AddToWorklist(SDNode *N);
|
|
SDOperand CombineTo(SDNode *N, const std::vector<SDOperand> &To);
|
|
SDOperand CombineTo(SDNode *N, SDOperand Res);
|
|
SDOperand CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1);
|
|
};
|
|
|
|
/// SimplifySetCC - Try to simplify a setcc built with the specified operands
|
|
/// and cc. If it is unable to simplify it, return a null SDOperand.
|
|
SDOperand SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1,
|
|
ISD::CondCode Cond, bool foldBooleans,
|
|
DAGCombinerInfo &DCI) const;
|
|
|
|
/// PerformDAGCombine - This method will be invoked for all target nodes and
|
|
/// for any target-independent nodes that the target has registered with
|
|
/// invoke it for.
|
|
///
|
|
/// The semantics are as follows:
|
|
/// Return Value:
|
|
/// SDOperand.Val == 0 - No change was made
|
|
/// SDOperand.Val == N - N was replaced, is dead, and is already handled.
|
|
/// otherwise - N should be replaced by the returned Operand.
|
|
///
|
|
/// In addition, methods provided by DAGCombinerInfo may be used to perform
|
|
/// more complex transformations.
|
|
///
|
|
virtual SDOperand PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// TargetLowering Configuration Methods - These methods should be invoked by
|
|
// the derived class constructor to configure this object for the target.
|
|
//
|
|
|
|
protected:
|
|
/// setUsesGlobalOffsetTable - Specify that this target does or doesn't use a
|
|
/// GOT for PC-relative code.
|
|
void setUsesGlobalOffsetTable(bool V) { UsesGlobalOffsetTable = V; }
|
|
|
|
/// setShiftAmountType - Describe the type that should be used for shift
|
|
/// amounts. This type defaults to the pointer type.
|
|
void setShiftAmountType(MVT::ValueType VT) { ShiftAmountTy = VT; }
|
|
|
|
/// setSetCCResultContents - Specify how the target extends the result of a
|
|
/// setcc operation in a register.
|
|
void setSetCCResultContents(SetCCResultValue Ty) { SetCCResultContents = Ty; }
|
|
|
|
/// setSchedulingPreference - Specify the target scheduling preference.
|
|
void setSchedulingPreference(SchedPreference Pref) {
|
|
SchedPreferenceInfo = Pref;
|
|
}
|
|
|
|
/// setShiftAmountFlavor - Describe how the target handles out of range shift
|
|
/// amounts.
|
|
void setShiftAmountFlavor(OutOfRangeShiftAmount OORSA) {
|
|
ShiftAmtHandling = OORSA;
|
|
}
|
|
|
|
/// setUseUnderscoreSetJmp - Indicate whether this target prefers to
|
|
/// use _setjmp to implement llvm.setjmp or the non _ version.
|
|
/// Defaults to false.
|
|
void setUseUnderscoreSetJmp(bool Val) {
|
|
UseUnderscoreSetJmp = Val;
|
|
}
|
|
|
|
/// setUseUnderscoreLongJmp - Indicate whether this target prefers to
|
|
/// use _longjmp to implement llvm.longjmp or the non _ version.
|
|
/// Defaults to false.
|
|
void setUseUnderscoreLongJmp(bool Val) {
|
|
UseUnderscoreLongJmp = Val;
|
|
}
|
|
|
|
/// setStackPointerRegisterToSaveRestore - If set to a physical register, this
|
|
/// specifies the register that llvm.savestack/llvm.restorestack should save
|
|
/// and restore.
|
|
void setStackPointerRegisterToSaveRestore(unsigned R) {
|
|
StackPointerRegisterToSaveRestore = R;
|
|
}
|
|
|
|
/// setExceptionPointerRegister - If set to a physical register, this sets
|
|
/// the register that receives the exception address on entry to a landing
|
|
/// pad.
|
|
void setExceptionPointerRegister(unsigned R) {
|
|
ExceptionPointerRegister = R;
|
|
}
|
|
|
|
/// setExceptionSelectorRegister - If set to a physical register, this sets
|
|
/// the register that receives the exception typeid on entry to a landing
|
|
/// pad.
|
|
void setExceptionSelectorRegister(unsigned R) {
|
|
ExceptionSelectorRegister = R;
|
|
}
|
|
|
|
/// SelectIsExpensive - Tells the code generator not to expand operations
|
|
/// into sequences that use the select operations if possible.
|
|
void setSelectIsExpensive() { SelectIsExpensive = true; }
|
|
|
|
/// setIntDivIsCheap - Tells the code generator that integer divide is
|
|
/// expensive, and if possible, should be replaced by an alternate sequence
|
|
/// of instructions not containing an integer divide.
|
|
void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
|
|
|
|
/// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
|
|
/// srl/add/sra for a signed divide by power of two, and let the target handle
|
|
/// it.
|
|
void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
|
|
|
|
/// addRegisterClass - Add the specified register class as an available
|
|
/// regclass for the specified value type. This indicates the selector can
|
|
/// handle values of that class natively.
|
|
void addRegisterClass(MVT::ValueType VT, TargetRegisterClass *RC) {
|
|
assert(VT < array_lengthof(RegClassForVT));
|
|
AvailableRegClasses.push_back(std::make_pair(VT, RC));
|
|
RegClassForVT[VT] = RC;
|
|
}
|
|
|
|
/// computeRegisterProperties - Once all of the register classes are added,
|
|
/// this allows us to compute derived properties we expose.
|
|
void computeRegisterProperties();
|
|
|
|
/// setOperationAction - Indicate that the specified operation does not work
|
|
/// with the specified type and indicate what to do about it.
|
|
void setOperationAction(unsigned Op, MVT::ValueType VT,
|
|
LegalizeAction Action) {
|
|
assert(VT < sizeof(OpActions[0])*4 && Op < array_lengthof(OpActions) &&
|
|
"Table isn't big enough!");
|
|
OpActions[Op] &= ~(uint64_t(3UL) << VT*2);
|
|
OpActions[Op] |= (uint64_t)Action << VT*2;
|
|
}
|
|
|
|
/// setLoadXAction - Indicate that the specified load with extension does not
|
|
/// work with the with specified type and indicate what to do about it.
|
|
void setLoadXAction(unsigned ExtType, MVT::ValueType VT,
|
|
LegalizeAction Action) {
|
|
assert(VT < sizeof(LoadXActions[0])*4 &&
|
|
ExtType < array_lengthof(LoadXActions) &&
|
|
"Table isn't big enough!");
|
|
LoadXActions[ExtType] &= ~(uint64_t(3UL) << VT*2);
|
|
LoadXActions[ExtType] |= (uint64_t)Action << VT*2;
|
|
}
|
|
|
|
/// setTruncStoreAction - Indicate that the specified truncating store does
|
|
/// not work with the with specified type and indicate what to do about it.
|
|
void setTruncStoreAction(MVT::ValueType ValVT, MVT::ValueType MemVT,
|
|
LegalizeAction Action) {
|
|
assert(ValVT < array_lengthof(TruncStoreActions) &&
|
|
MemVT < sizeof(TruncStoreActions[0])*4 && "Table isn't big enough!");
|
|
TruncStoreActions[ValVT] &= ~(uint64_t(3UL) << MemVT*2);
|
|
TruncStoreActions[ValVT] |= (uint64_t)Action << MemVT*2;
|
|
}
|
|
|
|
/// setIndexedLoadAction - Indicate that the specified indexed load does or
|
|
/// does not work with the with specified type and indicate what to do abort
|
|
/// it. NOTE: All indexed mode loads are initialized to Expand in
|
|
/// TargetLowering.cpp
|
|
void setIndexedLoadAction(unsigned IdxMode, MVT::ValueType VT,
|
|
LegalizeAction Action) {
|
|
assert(VT < sizeof(IndexedModeActions[0])*4 && IdxMode <
|
|
array_lengthof(IndexedModeActions[0]) &&
|
|
"Table isn't big enough!");
|
|
IndexedModeActions[0][IdxMode] &= ~(uint64_t(3UL) << VT*2);
|
|
IndexedModeActions[0][IdxMode] |= (uint64_t)Action << VT*2;
|
|
}
|
|
|
|
/// setIndexedStoreAction - Indicate that the specified indexed store does or
|
|
/// does not work with the with specified type and indicate what to do about
|
|
/// it. NOTE: All indexed mode stores are initialized to Expand in
|
|
/// TargetLowering.cpp
|
|
void setIndexedStoreAction(unsigned IdxMode, MVT::ValueType VT,
|
|
LegalizeAction Action) {
|
|
assert(VT < sizeof(IndexedModeActions[1][0])*4 &&
|
|
IdxMode < array_lengthof(IndexedModeActions[1]) &&
|
|
"Table isn't big enough!");
|
|
IndexedModeActions[1][IdxMode] &= ~(uint64_t(3UL) << VT*2);
|
|
IndexedModeActions[1][IdxMode] |= (uint64_t)Action << VT*2;
|
|
}
|
|
|
|
/// setConvertAction - Indicate that the specified conversion does or does
|
|
/// not work with the with specified type and indicate what to do about it.
|
|
void setConvertAction(MVT::ValueType FromVT, MVT::ValueType ToVT,
|
|
LegalizeAction Action) {
|
|
assert(FromVT < array_lengthof(ConvertActions) &&
|
|
ToVT < sizeof(ConvertActions[0])*4 && "Table isn't big enough!");
|
|
ConvertActions[FromVT] &= ~(uint64_t(3UL) << ToVT*2);
|
|
ConvertActions[FromVT] |= (uint64_t)Action << ToVT*2;
|
|
}
|
|
|
|
/// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
|
|
/// promotion code defaults to trying a larger integer/fp until it can find
|
|
/// one that works. If that default is insufficient, this method can be used
|
|
/// by the target to override the default.
|
|
void AddPromotedToType(unsigned Opc, MVT::ValueType OrigVT,
|
|
MVT::ValueType DestVT) {
|
|
PromoteToType[std::make_pair(Opc, OrigVT)] = DestVT;
|
|
}
|
|
|
|
/// addLegalFPImmediate - Indicate that this target can instruction select
|
|
/// the specified FP immediate natively.
|
|
void addLegalFPImmediate(const APFloat& Imm) {
|
|
LegalFPImmediates.push_back(Imm);
|
|
}
|
|
|
|
/// setTargetDAGCombine - Targets should invoke this method for each target
|
|
/// independent node that they want to provide a custom DAG combiner for by
|
|
/// implementing the PerformDAGCombine virtual method.
|
|
void setTargetDAGCombine(ISD::NodeType NT) {
|
|
assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
|
|
TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
|
|
}
|
|
|
|
/// setJumpBufSize - Set the target's required jmp_buf buffer size (in
|
|
/// bytes); default is 200
|
|
void setJumpBufSize(unsigned Size) {
|
|
JumpBufSize = Size;
|
|
}
|
|
|
|
/// setJumpBufAlignment - Set the target's required jmp_buf buffer
|
|
/// alignment (in bytes); default is 0
|
|
void setJumpBufAlignment(unsigned Align) {
|
|
JumpBufAlignment = Align;
|
|
}
|
|
|
|
/// setIfCvtBlockSizeLimit - Set the target's if-conversion block size
|
|
/// limit (in number of instructions); default is 2.
|
|
void setIfCvtBlockSizeLimit(unsigned Limit) {
|
|
IfCvtBlockSizeLimit = Limit;
|
|
}
|
|
|
|
/// setIfCvtDupBlockSizeLimit - Set the target's block size limit (in number
|
|
/// of instructions) to be considered for code duplication during
|
|
/// if-conversion; default is 2.
|
|
void setIfCvtDupBlockSizeLimit(unsigned Limit) {
|
|
IfCvtDupBlockSizeLimit = Limit;
|
|
}
|
|
|
|
/// setPrefLoopAlignment - Set the target's preferred loop alignment. Default
|
|
/// alignment is zero, it means the target does not care about loop alignment.
|
|
void setPrefLoopAlignment(unsigned Align) {
|
|
PrefLoopAlignment = Align;
|
|
}
|
|
|
|
public:
|
|
|
|
virtual const TargetSubtarget *getSubtarget() {
|
|
assert(0 && "Not Implemented");
|
|
return NULL; // this is here to silence compiler errors
|
|
}
|
|
//===--------------------------------------------------------------------===//
|
|
// Lowering methods - These methods must be implemented by targets so that
|
|
// the SelectionDAGLowering code knows how to lower these.
|
|
//
|
|
|
|
/// LowerArguments - This hook must be implemented to indicate how we should
|
|
/// lower the arguments for the specified function, into the specified DAG.
|
|
virtual std::vector<SDOperand>
|
|
LowerArguments(Function &F, SelectionDAG &DAG);
|
|
|
|
/// LowerCallTo - This hook lowers an abstract call to a function into an
|
|
/// actual call. This returns a pair of operands. The first element is the
|
|
/// return value for the function (if RetTy is not VoidTy). The second
|
|
/// element is the outgoing token chain.
|
|
struct ArgListEntry {
|
|
SDOperand Node;
|
|
const Type* Ty;
|
|
bool isSExt;
|
|
bool isZExt;
|
|
bool isInReg;
|
|
bool isSRet;
|
|
bool isNest;
|
|
bool isByVal;
|
|
uint16_t Alignment;
|
|
|
|
ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
|
|
isSRet(false), isNest(false), isByVal(false), Alignment(0) { }
|
|
};
|
|
typedef std::vector<ArgListEntry> ArgListTy;
|
|
virtual std::pair<SDOperand, SDOperand>
|
|
LowerCallTo(SDOperand Chain, const Type *RetTy, bool RetSExt, bool RetZExt,
|
|
bool isVarArg, unsigned CallingConv, bool isTailCall,
|
|
SDOperand Callee, ArgListTy &Args, SelectionDAG &DAG);
|
|
|
|
|
|
/// EmitTargetCodeForMemcpy - Emit target-specific code that performs a
|
|
/// memcpy. This can be used by targets to provide code sequences for cases
|
|
/// that don't fit the target's parameters for simple loads/stores and can be
|
|
/// more efficient than using a library call. This function can return a null
|
|
/// SDOperand if the target declines to use custom code and a different
|
|
/// lowering strategy should be used.
|
|
///
|
|
/// If AlwaysInline is true, the size is constant and the target should not
|
|
/// emit any calls and is strongly encouraged to attempt to emit inline code
|
|
/// even if it is beyond the usual threshold because this intrinsic is being
|
|
/// expanded in a place where calls are not feasible (e.g. within the prologue
|
|
/// for another call). If the target chooses to decline an AlwaysInline
|
|
/// request here, legalize will resort to using simple loads and stores.
|
|
virtual SDOperand
|
|
EmitTargetCodeForMemcpy(SelectionDAG &DAG,
|
|
SDOperand Chain,
|
|
SDOperand Op1, SDOperand Op2,
|
|
SDOperand Op3, unsigned Align,
|
|
bool AlwaysInline,
|
|
const Value *DstSV, uint64_t DstOff,
|
|
const Value *SrcSV, uint64_t SrcOff) {
|
|
return SDOperand();
|
|
}
|
|
|
|
/// EmitTargetCodeForMemmove - Emit target-specific code that performs a
|
|
/// memmove. This can be used by targets to provide code sequences for cases
|
|
/// that don't fit the target's parameters for simple loads/stores and can be
|
|
/// more efficient than using a library call. This function can return a null
|
|
/// SDOperand if the target declines to use custom code and a different
|
|
/// lowering strategy should be used.
|
|
virtual SDOperand
|
|
EmitTargetCodeForMemmove(SelectionDAG &DAG,
|
|
SDOperand Chain,
|
|
SDOperand Op1, SDOperand Op2,
|
|
SDOperand Op3, unsigned Align,
|
|
const Value *DstSV, uint64_t DstOff,
|
|
const Value *SrcSV, uint64_t SrcOff) {
|
|
return SDOperand();
|
|
}
|
|
|
|
/// EmitTargetCodeForMemset - Emit target-specific code that performs a
|
|
/// memset. This can be used by targets to provide code sequences for cases
|
|
/// that don't fit the target's parameters for simple stores and can be more
|
|
/// efficient than using a library call. This function can return a null
|
|
/// SDOperand if the target declines to use custom code and a different
|
|
/// lowering strategy should be used.
|
|
virtual SDOperand
|
|
EmitTargetCodeForMemset(SelectionDAG &DAG,
|
|
SDOperand Chain,
|
|
SDOperand Op1, SDOperand Op2,
|
|
SDOperand Op3, unsigned Align,
|
|
const Value *DstSV, uint64_t DstOff) {
|
|
return SDOperand();
|
|
}
|
|
|
|
/// LowerOperation - This callback is invoked for operations that are
|
|
/// unsupported by the target, which are registered to use 'custom' lowering,
|
|
/// and whose defined values are all legal.
|
|
/// If the target has no operations that require custom lowering, it need not
|
|
/// implement this. The default implementation of this aborts.
|
|
virtual SDOperand LowerOperation(SDOperand Op, SelectionDAG &DAG);
|
|
|
|
/// ExpandOperationResult - This callback is invoked for operations that are
|
|
/// unsupported by the target, which are registered to use 'custom' lowering,
|
|
/// and whose result type needs to be expanded. This must return a node whose
|
|
/// results precisely match the results of the input node. This typically
|
|
/// involves a MERGE_VALUES node and/or BUILD_PAIR.
|
|
///
|
|
/// If the target has no operations that require custom lowering, it need not
|
|
/// implement this. The default implementation of this aborts.
|
|
virtual SDNode *ExpandOperationResult(SDNode *N, SelectionDAG &DAG) {
|
|
assert(0 && "ExpandOperationResult not implemented for this target!");
|
|
return 0;
|
|
}
|
|
|
|
/// IsEligibleForTailCallOptimization - Check whether the call is eligible for
|
|
/// tail call optimization. Targets which want to do tail call optimization
|
|
/// should override this function.
|
|
virtual bool IsEligibleForTailCallOptimization(SDOperand Call,
|
|
SDOperand Ret,
|
|
SelectionDAG &DAG) const {
|
|
return false;
|
|
}
|
|
|
|
/// CustomPromoteOperation - This callback is invoked for operations that are
|
|
/// unsupported by the target, are registered to use 'custom' lowering, and
|
|
/// whose type needs to be promoted.
|
|
virtual SDOperand CustomPromoteOperation(SDOperand Op, SelectionDAG &DAG);
|
|
|
|
/// getTargetNodeName() - This method returns the name of a target specific
|
|
/// DAG node.
|
|
virtual const char *getTargetNodeName(unsigned Opcode) const;
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Inline Asm Support hooks
|
|
//
|
|
|
|
enum ConstraintType {
|
|
C_Register, // Constraint represents a single register.
|
|
C_RegisterClass, // Constraint represents one or more registers.
|
|
C_Memory, // Memory constraint.
|
|
C_Other, // Something else.
|
|
C_Unknown // Unsupported constraint.
|
|
};
|
|
|
|
/// AsmOperandInfo - This contains information for each constraint that we are
|
|
/// lowering.
|
|
struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
|
|
/// ConstraintCode - This contains the actual string for the code, like "m".
|
|
std::string ConstraintCode;
|
|
|
|
/// ConstraintType - Information about the constraint code, e.g. Register,
|
|
/// RegisterClass, Memory, Other, Unknown.
|
|
TargetLowering::ConstraintType ConstraintType;
|
|
|
|
/// CallOperandval - If this is the result output operand or a
|
|
/// clobber, this is null, otherwise it is the incoming operand to the
|
|
/// CallInst. This gets modified as the asm is processed.
|
|
Value *CallOperandVal;
|
|
|
|
/// ConstraintVT - The ValueType for the operand value.
|
|
MVT::ValueType ConstraintVT;
|
|
|
|
AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
|
|
: InlineAsm::ConstraintInfo(info),
|
|
ConstraintType(TargetLowering::C_Unknown),
|
|
CallOperandVal(0), ConstraintVT(MVT::Other) {
|
|
}
|
|
|
|
/// getConstraintGenerality - Return an integer indicating how general CT is.
|
|
unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
|
|
switch (CT) {
|
|
default: assert(0 && "Unknown constraint type!");
|
|
case TargetLowering::C_Other:
|
|
case TargetLowering::C_Unknown:
|
|
return 0;
|
|
case TargetLowering::C_Register:
|
|
return 1;
|
|
case TargetLowering::C_RegisterClass:
|
|
return 2;
|
|
case TargetLowering::C_Memory:
|
|
return 3;
|
|
}
|
|
}
|
|
|
|
/// ComputeConstraintToUse - Determines the constraint code and constraint
|
|
/// type to use.
|
|
void ComputeConstraintToUse(const TargetLowering &TLI) {
|
|
assert(!Codes.empty() && "Must have at least one constraint");
|
|
|
|
std::string *Current = &Codes[0];
|
|
TargetLowering::ConstraintType CurType = TLI.getConstraintType(*Current);
|
|
if (Codes.size() == 1) { // Single-letter constraints ('r') are very common.
|
|
ConstraintCode = *Current;
|
|
ConstraintType = CurType;
|
|
} else {
|
|
unsigned CurGenerality = getConstraintGenerality(CurType);
|
|
|
|
// If we have multiple constraints, try to pick the most general one ahead
|
|
// of time. This isn't a wonderful solution, but handles common cases.
|
|
for (unsigned j = 1, e = Codes.size(); j != e; ++j) {
|
|
TargetLowering::ConstraintType ThisType = TLI.getConstraintType(Codes[j]);
|
|
unsigned ThisGenerality = getConstraintGenerality(ThisType);
|
|
if (ThisGenerality > CurGenerality) {
|
|
// This constraint letter is more general than the previous one,
|
|
// use it.
|
|
CurType = ThisType;
|
|
Current = &Codes[j];
|
|
CurGenerality = ThisGenerality;
|
|
}
|
|
}
|
|
|
|
ConstraintCode = *Current;
|
|
ConstraintType = CurType;
|
|
}
|
|
|
|
if (ConstraintCode == "X" && CallOperandVal) {
|
|
if (isa<BasicBlock>(CallOperandVal) || isa<ConstantInt>(CallOperandVal))
|
|
return;
|
|
// This matches anything. Labels and constants we handle elsewhere
|
|
// ('X' is the only thing that matches labels). Otherwise, try to
|
|
// resolve it to something we know about by looking at the actual
|
|
// operand type.
|
|
std::string s = "";
|
|
TLI.lowerXConstraint(ConstraintVT, s);
|
|
if (s!="") {
|
|
ConstraintCode = s;
|
|
ConstraintType = TLI.getConstraintType(ConstraintCode);
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
/// getConstraintType - Given a constraint, return the type of constraint it
|
|
/// is for this target.
|
|
virtual ConstraintType getConstraintType(const std::string &Constraint) const;
|
|
|
|
/// getRegClassForInlineAsmConstraint - Given a constraint letter (e.g. "r"),
|
|
/// return a list of registers that can be used to satisfy the constraint.
|
|
/// This should only be used for C_RegisterClass constraints.
|
|
virtual std::vector<unsigned>
|
|
getRegClassForInlineAsmConstraint(const std::string &Constraint,
|
|
MVT::ValueType VT) const;
|
|
|
|
/// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
|
|
/// {edx}), return the register number and the register class for the
|
|
/// register.
|
|
///
|
|
/// Given a register class constraint, like 'r', if this corresponds directly
|
|
/// to an LLVM register class, return a register of 0 and the register class
|
|
/// pointer.
|
|
///
|
|
/// This should only be used for C_Register constraints. On error,
|
|
/// this returns a register number of 0 and a null register class pointer..
|
|
virtual std::pair<unsigned, const TargetRegisterClass*>
|
|
getRegForInlineAsmConstraint(const std::string &Constraint,
|
|
MVT::ValueType VT) const;
|
|
|
|
/// LowerXConstraint - try to replace an X constraint, which matches anything,
|
|
/// with another that has more specific requirements based on the type of the
|
|
/// corresponding operand.
|
|
virtual void lowerXConstraint(MVT::ValueType ConstraintVT,
|
|
std::string&) const;
|
|
|
|
/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
|
|
/// vector. If it is invalid, don't add anything to Ops.
|
|
virtual void LowerAsmOperandForConstraint(SDOperand Op, char ConstraintLetter,
|
|
std::vector<SDOperand> &Ops,
|
|
SelectionDAG &DAG);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Scheduler hooks
|
|
//
|
|
|
|
// EmitInstrWithCustomInserter - This method should be implemented by targets
|
|
// that mark instructions with the 'usesCustomDAGSchedInserter' flag. These
|
|
// instructions are special in various ways, which require special support to
|
|
// insert. The specified MachineInstr is created but not inserted into any
|
|
// basic blocks, and the scheduler passes ownership of it to this method.
|
|
virtual MachineBasicBlock *EmitInstrWithCustomInserter(MachineInstr *MI,
|
|
MachineBasicBlock *MBB);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Addressing mode description hooks (used by LSR etc).
|
|
//
|
|
|
|
/// AddrMode - This represents an addressing mode of:
|
|
/// BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
|
|
/// If BaseGV is null, there is no BaseGV.
|
|
/// If BaseOffs is zero, there is no base offset.
|
|
/// If HasBaseReg is false, there is no base register.
|
|
/// If Scale is zero, there is no ScaleReg. Scale of 1 indicates a reg with
|
|
/// no scale.
|
|
///
|
|
struct AddrMode {
|
|
GlobalValue *BaseGV;
|
|
int64_t BaseOffs;
|
|
bool HasBaseReg;
|
|
int64_t Scale;
|
|
AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {}
|
|
};
|
|
|
|
/// isLegalAddressingMode - Return true if the addressing mode represented by
|
|
/// AM is legal for this target, for a load/store of the specified type.
|
|
/// TODO: Handle pre/postinc as well.
|
|
virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty) const;
|
|
|
|
/// isTruncateFree - Return true if it's free to truncate a value of
|
|
/// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
|
|
/// register EAX to i16 by referencing its sub-register AX.
|
|
virtual bool isTruncateFree(const Type *Ty1, const Type *Ty2) const {
|
|
return false;
|
|
}
|
|
|
|
virtual bool isTruncateFree(MVT::ValueType VT1, MVT::ValueType VT2) const {
|
|
return false;
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Div utility functions
|
|
//
|
|
SDOperand BuildSDIV(SDNode *N, SelectionDAG &DAG,
|
|
std::vector<SDNode*>* Created) const;
|
|
SDOperand BuildUDIV(SDNode *N, SelectionDAG &DAG,
|
|
std::vector<SDNode*>* Created) const;
|
|
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Runtime Library hooks
|
|
//
|
|
|
|
/// setLibcallName - Rename the default libcall routine name for the specified
|
|
/// libcall.
|
|
void setLibcallName(RTLIB::Libcall Call, const char *Name) {
|
|
LibcallRoutineNames[Call] = Name;
|
|
}
|
|
|
|
/// getLibcallName - Get the libcall routine name for the specified libcall.
|
|
///
|
|
const char *getLibcallName(RTLIB::Libcall Call) const {
|
|
return LibcallRoutineNames[Call];
|
|
}
|
|
|
|
/// setCmpLibcallCC - Override the default CondCode to be used to test the
|
|
/// result of the comparison libcall against zero.
|
|
void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
|
|
CmpLibcallCCs[Call] = CC;
|
|
}
|
|
|
|
/// getCmpLibcallCC - Get the CondCode that's to be used to test the result of
|
|
/// the comparison libcall against zero.
|
|
ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
|
|
return CmpLibcallCCs[Call];
|
|
}
|
|
|
|
private:
|
|
TargetMachine &TM;
|
|
const TargetData *TD;
|
|
|
|
/// IsLittleEndian - True if this is a little endian target.
|
|
///
|
|
bool IsLittleEndian;
|
|
|
|
/// PointerTy - The type to use for pointers, usually i32 or i64.
|
|
///
|
|
MVT::ValueType PointerTy;
|
|
|
|
/// UsesGlobalOffsetTable - True if this target uses a GOT for PIC codegen.
|
|
///
|
|
bool UsesGlobalOffsetTable;
|
|
|
|
/// ShiftAmountTy - The type to use for shift amounts, usually i8 or whatever
|
|
/// PointerTy is.
|
|
MVT::ValueType ShiftAmountTy;
|
|
|
|
OutOfRangeShiftAmount ShiftAmtHandling;
|
|
|
|
/// SelectIsExpensive - Tells the code generator not to expand operations
|
|
/// into sequences that use the select operations if possible.
|
|
bool SelectIsExpensive;
|
|
|
|
/// IntDivIsCheap - Tells the code generator not to expand integer divides by
|
|
/// constants into a sequence of muls, adds, and shifts. This is a hack until
|
|
/// a real cost model is in place. If we ever optimize for size, this will be
|
|
/// set to true unconditionally.
|
|
bool IntDivIsCheap;
|
|
|
|
/// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
|
|
/// srl/add/sra for a signed divide by power of two, and let the target handle
|
|
/// it.
|
|
bool Pow2DivIsCheap;
|
|
|
|
/// SetCCResultContents - Information about the contents of the high-bits in
|
|
/// the result of a setcc comparison operation.
|
|
SetCCResultValue SetCCResultContents;
|
|
|
|
/// SchedPreferenceInfo - The target scheduling preference: shortest possible
|
|
/// total cycles or lowest register usage.
|
|
SchedPreference SchedPreferenceInfo;
|
|
|
|
/// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement
|
|
/// llvm.setjmp. Defaults to false.
|
|
bool UseUnderscoreSetJmp;
|
|
|
|
/// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement
|
|
/// llvm.longjmp. Defaults to false.
|
|
bool UseUnderscoreLongJmp;
|
|
|
|
/// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers
|
|
unsigned JumpBufSize;
|
|
|
|
/// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf
|
|
/// buffers
|
|
unsigned JumpBufAlignment;
|
|
|
|
/// IfCvtBlockSizeLimit - The maximum allowed size for a block to be
|
|
/// if-converted.
|
|
unsigned IfCvtBlockSizeLimit;
|
|
|
|
/// IfCvtDupBlockSizeLimit - The maximum allowed size for a block to be
|
|
/// duplicated during if-conversion.
|
|
unsigned IfCvtDupBlockSizeLimit;
|
|
|
|
/// PrefLoopAlignment - The perferred loop alignment.
|
|
///
|
|
unsigned PrefLoopAlignment;
|
|
|
|
/// StackPointerRegisterToSaveRestore - If set to a physical register, this
|
|
/// specifies the register that llvm.savestack/llvm.restorestack should save
|
|
/// and restore.
|
|
unsigned StackPointerRegisterToSaveRestore;
|
|
|
|
/// ExceptionPointerRegister - If set to a physical register, this specifies
|
|
/// the register that receives the exception address on entry to a landing
|
|
/// pad.
|
|
unsigned ExceptionPointerRegister;
|
|
|
|
/// ExceptionSelectorRegister - If set to a physical register, this specifies
|
|
/// the register that receives the exception typeid on entry to a landing
|
|
/// pad.
|
|
unsigned ExceptionSelectorRegister;
|
|
|
|
/// RegClassForVT - This indicates the default register class to use for
|
|
/// each ValueType the target supports natively.
|
|
TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
|
|
unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
|
|
MVT::ValueType RegisterTypeForVT[MVT::LAST_VALUETYPE];
|
|
|
|
/// TransformToType - For any value types we are promoting or expanding, this
|
|
/// contains the value type that we are changing to. For Expanded types, this
|
|
/// contains one step of the expand (e.g. i64 -> i32), even if there are
|
|
/// multiple steps required (e.g. i64 -> i16). For types natively supported
|
|
/// by the system, this holds the same type (e.g. i32 -> i32).
|
|
MVT::ValueType TransformToType[MVT::LAST_VALUETYPE];
|
|
|
|
/// OpActions - For each operation and each value type, keep a LegalizeAction
|
|
/// that indicates how instruction selection should deal with the operation.
|
|
/// Most operations are Legal (aka, supported natively by the target), but
|
|
/// operations that are not should be described. Note that operations on
|
|
/// non-legal value types are not described here.
|
|
uint64_t OpActions[156];
|
|
|
|
/// LoadXActions - For each load of load extension type and each value type,
|
|
/// keep a LegalizeAction that indicates how instruction selection should deal
|
|
/// with the load.
|
|
uint64_t LoadXActions[ISD::LAST_LOADX_TYPE];
|
|
|
|
/// TruncStoreActions - For each truncating store, keep a LegalizeAction that
|
|
/// indicates how instruction selection should deal with the store.
|
|
uint64_t TruncStoreActions[MVT::LAST_VALUETYPE];
|
|
|
|
/// IndexedModeActions - For each indexed mode and each value type, keep a
|
|
/// pair of LegalizeAction that indicates how instruction selection should
|
|
/// deal with the load / store.
|
|
uint64_t IndexedModeActions[2][ISD::LAST_INDEXED_MODE];
|
|
|
|
/// ConvertActions - For each conversion from source type to destination type,
|
|
/// keep a LegalizeAction that indicates how instruction selection should
|
|
/// deal with the conversion.
|
|
/// Currently, this is used only for floating->floating conversions
|
|
/// (FP_EXTEND and FP_ROUND).
|
|
uint64_t ConvertActions[MVT::LAST_VALUETYPE];
|
|
|
|
ValueTypeActionImpl ValueTypeActions;
|
|
|
|
std::vector<APFloat> LegalFPImmediates;
|
|
|
|
std::vector<std::pair<MVT::ValueType,
|
|
TargetRegisterClass*> > AvailableRegClasses;
|
|
|
|
/// TargetDAGCombineArray - Targets can specify ISD nodes that they would
|
|
/// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
|
|
/// which sets a bit in this array.
|
|
unsigned char TargetDAGCombineArray[160/(sizeof(unsigned char)*8)];
|
|
|
|
/// PromoteToType - For operations that must be promoted to a specific type,
|
|
/// this holds the destination type. This map should be sparse, so don't hold
|
|
/// it as an array.
|
|
///
|
|
/// Targets add entries to this map with AddPromotedToType(..), clients access
|
|
/// this with getTypeToPromoteTo(..).
|
|
std::map<std::pair<unsigned, MVT::ValueType>, MVT::ValueType> PromoteToType;
|
|
|
|
/// LibcallRoutineNames - Stores the name each libcall.
|
|
///
|
|
const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
|
|
|
|
/// CmpLibcallCCs - The ISD::CondCode that should be used to test the result
|
|
/// of each of the comparison libcall against zero.
|
|
ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
|
|
|
|
protected:
|
|
/// When lowering %llvm.memset this field specifies the maximum number of
|
|
/// store operations that may be substituted for the call to memset. Targets
|
|
/// must set this value based on the cost threshold for that target. Targets
|
|
/// should assume that the memset will be done using as many of the largest
|
|
/// store operations first, followed by smaller ones, if necessary, per
|
|
/// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
|
|
/// with 16-bit alignment would result in four 2-byte stores and one 1-byte
|
|
/// store. This only applies to setting a constant array of a constant size.
|
|
/// @brief Specify maximum number of store instructions per memset call.
|
|
unsigned maxStoresPerMemset;
|
|
|
|
/// When lowering %llvm.memcpy this field specifies the maximum number of
|
|
/// store operations that may be substituted for a call to memcpy. Targets
|
|
/// must set this value based on the cost threshold for that target. Targets
|
|
/// should assume that the memcpy will be done using as many of the largest
|
|
/// store operations first, followed by smaller ones, if necessary, per
|
|
/// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
|
|
/// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
|
|
/// and one 1-byte store. This only applies to copying a constant array of
|
|
/// constant size.
|
|
/// @brief Specify maximum bytes of store instructions per memcpy call.
|
|
unsigned maxStoresPerMemcpy;
|
|
|
|
/// When lowering %llvm.memmove this field specifies the maximum number of
|
|
/// store instructions that may be substituted for a call to memmove. Targets
|
|
/// must set this value based on the cost threshold for that target. Targets
|
|
/// should assume that the memmove will be done using as many of the largest
|
|
/// store operations first, followed by smaller ones, if necessary, per
|
|
/// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
|
|
/// with 8-bit alignment would result in nine 1-byte stores. This only
|
|
/// applies to copying a constant array of constant size.
|
|
/// @brief Specify maximum bytes of store instructions per memmove call.
|
|
unsigned maxStoresPerMemmove;
|
|
|
|
/// This field specifies whether the target machine permits unaligned memory
|
|
/// accesses. This is used, for example, to determine the size of store
|
|
/// operations when copying small arrays and other similar tasks.
|
|
/// @brief Indicate whether the target permits unaligned memory accesses.
|
|
bool allowUnalignedMemoryAccesses;
|
|
};
|
|
} // end llvm namespace
|
|
|
|
#endif
|