mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-20 12:31:40 +00:00
4b77e07165
This appears to have broken at least the windows build bots due to compile errors in the predicate that didn't simply supress the overload. I'm not sure what the fix is, and the bots have been broken for a long time now so I'm just reverting until Michael can figure out a fix. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225064 91177308-0d34-0410-b5e6-96231b3b80d8
409 lines
13 KiB
C++
409 lines
13 KiB
C++
//===--- ArrayRef.h - Array Reference Wrapper -------------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_ADT_ARRAYREF_H
|
|
#define LLVM_ADT_ARRAYREF_H
|
|
|
|
#include "llvm/ADT/None.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include <vector>
|
|
|
|
namespace llvm {
|
|
|
|
/// ArrayRef - Represent a constant reference to an array (0 or more elements
|
|
/// consecutively in memory), i.e. a start pointer and a length. It allows
|
|
/// various APIs to take consecutive elements easily and conveniently.
|
|
///
|
|
/// This class does not own the underlying data, it is expected to be used in
|
|
/// situations where the data resides in some other buffer, whose lifetime
|
|
/// extends past that of the ArrayRef. For this reason, it is not in general
|
|
/// safe to store an ArrayRef.
|
|
///
|
|
/// This is intended to be trivially copyable, so it should be passed by
|
|
/// value.
|
|
template<typename T>
|
|
class ArrayRef {
|
|
public:
|
|
typedef const T *iterator;
|
|
typedef const T *const_iterator;
|
|
typedef size_t size_type;
|
|
|
|
typedef std::reverse_iterator<iterator> reverse_iterator;
|
|
|
|
private:
|
|
/// The start of the array, in an external buffer.
|
|
const T *Data;
|
|
|
|
/// The number of elements.
|
|
size_type Length;
|
|
|
|
/// \brief A dummy "optional" type that is only created by implicit
|
|
/// conversion from a reference to T.
|
|
///
|
|
/// This type must *only* be used in a function argument or as a copy of
|
|
/// a function argument, as otherwise it will hold a pointer to a temporary
|
|
/// past that temporaries' lifetime.
|
|
struct TRefOrNothing {
|
|
const T *TPtr;
|
|
|
|
TRefOrNothing() : TPtr(nullptr) {}
|
|
TRefOrNothing(const T &TRef) : TPtr(&TRef) {}
|
|
};
|
|
|
|
public:
|
|
/// @name Constructors
|
|
/// @{
|
|
|
|
/// Construct an empty ArrayRef.
|
|
/*implicit*/ ArrayRef() : Data(nullptr), Length(0) {}
|
|
|
|
/// Construct an empty ArrayRef from None.
|
|
/*implicit*/ ArrayRef(NoneType) : Data(nullptr), Length(0) {}
|
|
|
|
/// Construct an ArrayRef from a single element.
|
|
/*implicit*/ ArrayRef(const T &OneElt)
|
|
: Data(&OneElt), Length(1) {}
|
|
|
|
/// Construct an ArrayRef from a pointer and length.
|
|
/*implicit*/ ArrayRef(const T *data, size_t length)
|
|
: Data(data), Length(length) {}
|
|
|
|
/// Construct an ArrayRef from a range.
|
|
ArrayRef(const T *begin, const T *end)
|
|
: Data(begin), Length(end - begin) {}
|
|
|
|
/// Construct an ArrayRef from a SmallVector. This is templated in order to
|
|
/// avoid instantiating SmallVectorTemplateCommon<T> whenever we
|
|
/// copy-construct an ArrayRef.
|
|
template<typename U>
|
|
/*implicit*/ ArrayRef(const SmallVectorTemplateCommon<T, U> &Vec)
|
|
: Data(Vec.data()), Length(Vec.size()) {
|
|
}
|
|
|
|
/// Construct an ArrayRef from a std::vector.
|
|
template<typename A>
|
|
/*implicit*/ ArrayRef(const std::vector<T, A> &Vec)
|
|
: Data(Vec.data()), Length(Vec.size()) {}
|
|
|
|
/// Construct an ArrayRef from a C array.
|
|
template <size_t N>
|
|
/*implicit*/ LLVM_CONSTEXPR ArrayRef(const T (&Arr)[N])
|
|
: Data(Arr), Length(N) {}
|
|
|
|
#if LLVM_HAS_INITIALIZER_LISTS
|
|
/// Construct an ArrayRef from a std::initializer_list.
|
|
/*implicit*/ ArrayRef(const std::initializer_list<T> &Vec)
|
|
: Data(Vec.begin() == Vec.end() ? (T*)0 : Vec.begin()),
|
|
Length(Vec.size()) {}
|
|
#endif
|
|
|
|
/// Construct an ArrayRef<const T*> from ArrayRef<T*>. This uses SFINAE to
|
|
/// ensure that only ArrayRefs of pointers can be converted.
|
|
template <typename U>
|
|
ArrayRef(const ArrayRef<U *> &A,
|
|
typename std::enable_if<
|
|
std::is_convertible<U *const *, T const *>::value>::type* = 0)
|
|
: Data(A.data()), Length(A.size()) {}
|
|
|
|
/// @}
|
|
/// @name Simple Operations
|
|
/// @{
|
|
|
|
iterator begin() const { return Data; }
|
|
iterator end() const { return Data + Length; }
|
|
|
|
reverse_iterator rbegin() const { return reverse_iterator(end()); }
|
|
reverse_iterator rend() const { return reverse_iterator(begin()); }
|
|
|
|
/// empty - Check if the array is empty.
|
|
bool empty() const { return Length == 0; }
|
|
|
|
const T *data() const { return Data; }
|
|
|
|
/// size - Get the array size.
|
|
size_t size() const { return Length; }
|
|
|
|
/// front - Get the first element.
|
|
const T &front() const {
|
|
assert(!empty());
|
|
return Data[0];
|
|
}
|
|
|
|
/// back - Get the last element.
|
|
const T &back() const {
|
|
assert(!empty());
|
|
return Data[Length-1];
|
|
}
|
|
|
|
// copy - Allocate copy in Allocator and return ArrayRef<T> to it.
|
|
template <typename Allocator> ArrayRef<T> copy(Allocator &A) {
|
|
T *Buff = A.template Allocate<T>(Length);
|
|
std::copy(begin(), end(), Buff);
|
|
return ArrayRef<T>(Buff, Length);
|
|
}
|
|
|
|
/// equals - Check for element-wise equality.
|
|
bool equals(ArrayRef RHS) const {
|
|
if (Length != RHS.Length)
|
|
return false;
|
|
// Don't use std::equal(), since it asserts in MSVC on nullptr iterators.
|
|
for (auto L = begin(), LE = end(), R = RHS.begin(); L != LE; ++L, ++R)
|
|
// Match std::equal() in using == (instead of !=) to minimize API
|
|
// requirements of ArrayRef'ed types.
|
|
if (!(*L == *R))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// slice(n) - Chop off the first N elements of the array.
|
|
ArrayRef<T> slice(unsigned N) const {
|
|
assert(N <= size() && "Invalid specifier");
|
|
return ArrayRef<T>(data()+N, size()-N);
|
|
}
|
|
|
|
/// slice(n, m) - Chop off the first N elements of the array, and keep M
|
|
/// elements in the array.
|
|
ArrayRef<T> slice(unsigned N, unsigned M) const {
|
|
assert(N+M <= size() && "Invalid specifier");
|
|
return ArrayRef<T>(data()+N, M);
|
|
}
|
|
|
|
// \brief Drop the last \p N elements of the array.
|
|
ArrayRef<T> drop_back(unsigned N = 1) const {
|
|
assert(size() >= N && "Dropping more elements than exist");
|
|
return slice(0, size() - N);
|
|
}
|
|
|
|
/// @}
|
|
/// @name Operator Overloads
|
|
/// @{
|
|
const T &operator[](size_t Index) const {
|
|
assert(Index < Length && "Invalid index!");
|
|
return Data[Index];
|
|
}
|
|
|
|
/// @}
|
|
/// @name Expensive Operations
|
|
/// @{
|
|
std::vector<T> vec() const {
|
|
return std::vector<T>(Data, Data+Length);
|
|
}
|
|
|
|
/// @}
|
|
/// @name Conversion operators
|
|
/// @{
|
|
operator std::vector<T>() const {
|
|
return std::vector<T>(Data, Data+Length);
|
|
}
|
|
|
|
/// @}
|
|
/// @{
|
|
/// @name Convenience methods
|
|
|
|
/// @brief Predicate for testing that the array equals the exact sequence of
|
|
/// arguments.
|
|
///
|
|
/// Will return false if the size is not equal to the exact number of
|
|
/// arguments given or if the array elements don't equal the argument
|
|
/// elements in order. Currently supports up to 16 arguments, but can
|
|
/// easily be extended.
|
|
bool equals(TRefOrNothing Arg0 = TRefOrNothing(),
|
|
TRefOrNothing Arg1 = TRefOrNothing(),
|
|
TRefOrNothing Arg2 = TRefOrNothing(),
|
|
TRefOrNothing Arg3 = TRefOrNothing(),
|
|
TRefOrNothing Arg4 = TRefOrNothing(),
|
|
TRefOrNothing Arg5 = TRefOrNothing(),
|
|
TRefOrNothing Arg6 = TRefOrNothing(),
|
|
TRefOrNothing Arg7 = TRefOrNothing(),
|
|
TRefOrNothing Arg8 = TRefOrNothing(),
|
|
TRefOrNothing Arg9 = TRefOrNothing(),
|
|
TRefOrNothing Arg10 = TRefOrNothing(),
|
|
TRefOrNothing Arg11 = TRefOrNothing(),
|
|
TRefOrNothing Arg12 = TRefOrNothing(),
|
|
TRefOrNothing Arg13 = TRefOrNothing(),
|
|
TRefOrNothing Arg14 = TRefOrNothing(),
|
|
TRefOrNothing Arg15 = TRefOrNothing()) {
|
|
TRefOrNothing Args[] = {Arg0, Arg1, Arg2, Arg3, Arg4, Arg5,
|
|
Arg6, Arg7, Arg8, Arg9, Arg10, Arg11,
|
|
Arg12, Arg13, Arg14, Arg15};
|
|
if (size() > array_lengthof(Args))
|
|
return false;
|
|
|
|
for (unsigned i = 0, e = size(); i != e; ++i)
|
|
if (Args[i].TPtr == nullptr || (*this)[i] != *Args[i].TPtr)
|
|
return false;
|
|
|
|
// Either the size is exactly as many args, or the next arg must be null.
|
|
return size() == array_lengthof(Args) || Args[size()].TPtr == nullptr;
|
|
}
|
|
|
|
/// @}
|
|
};
|
|
|
|
/// MutableArrayRef - Represent a mutable reference to an array (0 or more
|
|
/// elements consecutively in memory), i.e. a start pointer and a length. It
|
|
/// allows various APIs to take and modify consecutive elements easily and
|
|
/// conveniently.
|
|
///
|
|
/// This class does not own the underlying data, it is expected to be used in
|
|
/// situations where the data resides in some other buffer, whose lifetime
|
|
/// extends past that of the MutableArrayRef. For this reason, it is not in
|
|
/// general safe to store a MutableArrayRef.
|
|
///
|
|
/// This is intended to be trivially copyable, so it should be passed by
|
|
/// value.
|
|
template<typename T>
|
|
class MutableArrayRef : public ArrayRef<T> {
|
|
public:
|
|
typedef T *iterator;
|
|
|
|
typedef std::reverse_iterator<iterator> reverse_iterator;
|
|
|
|
/// Construct an empty MutableArrayRef.
|
|
/*implicit*/ MutableArrayRef() : ArrayRef<T>() {}
|
|
|
|
/// Construct an empty MutableArrayRef from None.
|
|
/*implicit*/ MutableArrayRef(NoneType) : ArrayRef<T>() {}
|
|
|
|
/// Construct an MutableArrayRef from a single element.
|
|
/*implicit*/ MutableArrayRef(T &OneElt) : ArrayRef<T>(OneElt) {}
|
|
|
|
/// Construct an MutableArrayRef from a pointer and length.
|
|
/*implicit*/ MutableArrayRef(T *data, size_t length)
|
|
: ArrayRef<T>(data, length) {}
|
|
|
|
/// Construct an MutableArrayRef from a range.
|
|
MutableArrayRef(T *begin, T *end) : ArrayRef<T>(begin, end) {}
|
|
|
|
/// Construct an MutableArrayRef from a SmallVector.
|
|
/*implicit*/ MutableArrayRef(SmallVectorImpl<T> &Vec)
|
|
: ArrayRef<T>(Vec) {}
|
|
|
|
/// Construct a MutableArrayRef from a std::vector.
|
|
/*implicit*/ MutableArrayRef(std::vector<T> &Vec)
|
|
: ArrayRef<T>(Vec) {}
|
|
|
|
/// Construct an MutableArrayRef from a C array.
|
|
template <size_t N>
|
|
/*implicit*/ LLVM_CONSTEXPR MutableArrayRef(T (&Arr)[N])
|
|
: ArrayRef<T>(Arr) {}
|
|
|
|
T *data() const { return const_cast<T*>(ArrayRef<T>::data()); }
|
|
|
|
iterator begin() const { return data(); }
|
|
iterator end() const { return data() + this->size(); }
|
|
|
|
reverse_iterator rbegin() const { return reverse_iterator(end()); }
|
|
reverse_iterator rend() const { return reverse_iterator(begin()); }
|
|
|
|
/// front - Get the first element.
|
|
T &front() const {
|
|
assert(!this->empty());
|
|
return data()[0];
|
|
}
|
|
|
|
/// back - Get the last element.
|
|
T &back() const {
|
|
assert(!this->empty());
|
|
return data()[this->size()-1];
|
|
}
|
|
|
|
/// slice(n) - Chop off the first N elements of the array.
|
|
MutableArrayRef<T> slice(unsigned N) const {
|
|
assert(N <= this->size() && "Invalid specifier");
|
|
return MutableArrayRef<T>(data()+N, this->size()-N);
|
|
}
|
|
|
|
/// slice(n, m) - Chop off the first N elements of the array, and keep M
|
|
/// elements in the array.
|
|
MutableArrayRef<T> slice(unsigned N, unsigned M) const {
|
|
assert(N+M <= this->size() && "Invalid specifier");
|
|
return MutableArrayRef<T>(data()+N, M);
|
|
}
|
|
|
|
/// @}
|
|
/// @name Operator Overloads
|
|
/// @{
|
|
T &operator[](size_t Index) const {
|
|
assert(Index < this->size() && "Invalid index!");
|
|
return data()[Index];
|
|
}
|
|
};
|
|
|
|
/// @name ArrayRef Convenience constructors
|
|
/// @{
|
|
|
|
/// Construct an ArrayRef from a single element.
|
|
template<typename T>
|
|
ArrayRef<T> makeArrayRef(const T &OneElt) {
|
|
return OneElt;
|
|
}
|
|
|
|
/// Construct an ArrayRef from a pointer and length.
|
|
template<typename T>
|
|
ArrayRef<T> makeArrayRef(const T *data, size_t length) {
|
|
return ArrayRef<T>(data, length);
|
|
}
|
|
|
|
/// Construct an ArrayRef from a range.
|
|
template<typename T>
|
|
ArrayRef<T> makeArrayRef(const T *begin, const T *end) {
|
|
return ArrayRef<T>(begin, end);
|
|
}
|
|
|
|
/// Construct an ArrayRef from a SmallVector.
|
|
template <typename T>
|
|
ArrayRef<T> makeArrayRef(const SmallVectorImpl<T> &Vec) {
|
|
return Vec;
|
|
}
|
|
|
|
/// Construct an ArrayRef from a SmallVector.
|
|
template <typename T, unsigned N>
|
|
ArrayRef<T> makeArrayRef(const SmallVector<T, N> &Vec) {
|
|
return Vec;
|
|
}
|
|
|
|
/// Construct an ArrayRef from a std::vector.
|
|
template<typename T>
|
|
ArrayRef<T> makeArrayRef(const std::vector<T> &Vec) {
|
|
return Vec;
|
|
}
|
|
|
|
/// Construct an ArrayRef from a C array.
|
|
template<typename T, size_t N>
|
|
ArrayRef<T> makeArrayRef(const T (&Arr)[N]) {
|
|
return ArrayRef<T>(Arr);
|
|
}
|
|
|
|
/// @}
|
|
/// @name ArrayRef Comparison Operators
|
|
/// @{
|
|
|
|
template<typename T>
|
|
inline bool operator==(ArrayRef<T> LHS, ArrayRef<T> RHS) {
|
|
return LHS.equals(RHS);
|
|
}
|
|
|
|
template<typename T>
|
|
inline bool operator!=(ArrayRef<T> LHS, ArrayRef<T> RHS) {
|
|
return !(LHS == RHS);
|
|
}
|
|
|
|
/// @}
|
|
|
|
// ArrayRefs can be treated like a POD type.
|
|
template <typename T> struct isPodLike;
|
|
template <typename T> struct isPodLike<ArrayRef<T> > {
|
|
static const bool value = true;
|
|
};
|
|
}
|
|
|
|
#endif
|