mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-15 04:30:12 +00:00
92948b04c3
Differential Revision: http://reviews.llvm.org/D9774 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237703 91177308-0d34-0410-b5e6-96231b3b80d8
2503 lines
96 KiB
C++
2503 lines
96 KiB
C++
//===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Rewrite an existing set of gc.statepoints such that they make potential
|
|
// relocations performed by the garbage collector explicit in the IR.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Analysis/CFG.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/ADT/SetOperations.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/CallSite.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/InstIterator.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Statepoint.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/IR/Verifier.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/Cloning.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
|
|
|
|
#define DEBUG_TYPE "rewrite-statepoints-for-gc"
|
|
|
|
using namespace llvm;
|
|
|
|
// Print tracing output
|
|
static cl::opt<bool> TraceLSP("trace-rewrite-statepoints", cl::Hidden,
|
|
cl::init(false));
|
|
|
|
// Print the liveset found at the insert location
|
|
static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
|
|
cl::init(false));
|
|
static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden,
|
|
cl::init(false));
|
|
// Print out the base pointers for debugging
|
|
static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden,
|
|
cl::init(false));
|
|
|
|
// Cost threshold measuring when it is profitable to rematerialize value instead
|
|
// of relocating it
|
|
static cl::opt<unsigned>
|
|
RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden,
|
|
cl::init(6));
|
|
|
|
#ifdef XDEBUG
|
|
static bool ClobberNonLive = true;
|
|
#else
|
|
static bool ClobberNonLive = false;
|
|
#endif
|
|
static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live",
|
|
cl::location(ClobberNonLive),
|
|
cl::Hidden);
|
|
|
|
namespace {
|
|
struct RewriteStatepointsForGC : public FunctionPass {
|
|
static char ID; // Pass identification, replacement for typeid
|
|
|
|
RewriteStatepointsForGC() : FunctionPass(ID) {
|
|
initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
bool runOnFunction(Function &F) override;
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
// We add and rewrite a bunch of instructions, but don't really do much
|
|
// else. We could in theory preserve a lot more analyses here.
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
AU.addRequired<TargetTransformInfoWrapperPass>();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
char RewriteStatepointsForGC::ID = 0;
|
|
|
|
FunctionPass *llvm::createRewriteStatepointsForGCPass() {
|
|
return new RewriteStatepointsForGC();
|
|
}
|
|
|
|
INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
|
|
"Make relocations explicit at statepoints", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
|
|
"Make relocations explicit at statepoints", false, false)
|
|
|
|
namespace {
|
|
struct GCPtrLivenessData {
|
|
/// Values defined in this block.
|
|
DenseMap<BasicBlock *, DenseSet<Value *>> KillSet;
|
|
/// Values used in this block (and thus live); does not included values
|
|
/// killed within this block.
|
|
DenseMap<BasicBlock *, DenseSet<Value *>> LiveSet;
|
|
|
|
/// Values live into this basic block (i.e. used by any
|
|
/// instruction in this basic block or ones reachable from here)
|
|
DenseMap<BasicBlock *, DenseSet<Value *>> LiveIn;
|
|
|
|
/// Values live out of this basic block (i.e. live into
|
|
/// any successor block)
|
|
DenseMap<BasicBlock *, DenseSet<Value *>> LiveOut;
|
|
};
|
|
|
|
// The type of the internal cache used inside the findBasePointers family
|
|
// of functions. From the callers perspective, this is an opaque type and
|
|
// should not be inspected.
|
|
//
|
|
// In the actual implementation this caches two relations:
|
|
// - The base relation itself (i.e. this pointer is based on that one)
|
|
// - The base defining value relation (i.e. before base_phi insertion)
|
|
// Generally, after the execution of a full findBasePointer call, only the
|
|
// base relation will remain. Internally, we add a mixture of the two
|
|
// types, then update all the second type to the first type
|
|
typedef DenseMap<Value *, Value *> DefiningValueMapTy;
|
|
typedef DenseSet<llvm::Value *> StatepointLiveSetTy;
|
|
typedef DenseMap<Instruction *, Value *> RematerializedValueMapTy;
|
|
|
|
struct PartiallyConstructedSafepointRecord {
|
|
/// The set of values known to be live accross this safepoint
|
|
StatepointLiveSetTy liveset;
|
|
|
|
/// Mapping from live pointers to a base-defining-value
|
|
DenseMap<llvm::Value *, llvm::Value *> PointerToBase;
|
|
|
|
/// The *new* gc.statepoint instruction itself. This produces the token
|
|
/// that normal path gc.relocates and the gc.result are tied to.
|
|
Instruction *StatepointToken;
|
|
|
|
/// Instruction to which exceptional gc relocates are attached
|
|
/// Makes it easier to iterate through them during relocationViaAlloca.
|
|
Instruction *UnwindToken;
|
|
|
|
/// Record live values we are rematerialized instead of relocating.
|
|
/// They are not included into 'liveset' field.
|
|
/// Maps rematerialized copy to it's original value.
|
|
RematerializedValueMapTy RematerializedValues;
|
|
};
|
|
}
|
|
|
|
/// Compute the live-in set for every basic block in the function
|
|
static void computeLiveInValues(DominatorTree &DT, Function &F,
|
|
GCPtrLivenessData &Data);
|
|
|
|
/// Given results from the dataflow liveness computation, find the set of live
|
|
/// Values at a particular instruction.
|
|
static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data,
|
|
StatepointLiveSetTy &out);
|
|
|
|
// TODO: Once we can get to the GCStrategy, this becomes
|
|
// Optional<bool> isGCManagedPointer(const Value *V) const override {
|
|
|
|
static bool isGCPointerType(const Type *T) {
|
|
if (const PointerType *PT = dyn_cast<PointerType>(T))
|
|
// For the sake of this example GC, we arbitrarily pick addrspace(1) as our
|
|
// GC managed heap. We know that a pointer into this heap needs to be
|
|
// updated and that no other pointer does.
|
|
return (1 == PT->getAddressSpace());
|
|
return false;
|
|
}
|
|
|
|
// Return true if this type is one which a) is a gc pointer or contains a GC
|
|
// pointer and b) is of a type this code expects to encounter as a live value.
|
|
// (The insertion code will assert that a type which matches (a) and not (b)
|
|
// is not encountered.)
|
|
static bool isHandledGCPointerType(Type *T) {
|
|
// We fully support gc pointers
|
|
if (isGCPointerType(T))
|
|
return true;
|
|
// We partially support vectors of gc pointers. The code will assert if it
|
|
// can't handle something.
|
|
if (auto VT = dyn_cast<VectorType>(T))
|
|
if (isGCPointerType(VT->getElementType()))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
/// Returns true if this type contains a gc pointer whether we know how to
|
|
/// handle that type or not.
|
|
static bool containsGCPtrType(Type *Ty) {
|
|
if (isGCPointerType(Ty))
|
|
return true;
|
|
if (VectorType *VT = dyn_cast<VectorType>(Ty))
|
|
return isGCPointerType(VT->getScalarType());
|
|
if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
|
|
return containsGCPtrType(AT->getElementType());
|
|
if (StructType *ST = dyn_cast<StructType>(Ty))
|
|
return std::any_of(
|
|
ST->subtypes().begin(), ST->subtypes().end(),
|
|
[](Type *SubType) { return containsGCPtrType(SubType); });
|
|
return false;
|
|
}
|
|
|
|
// Returns true if this is a type which a) is a gc pointer or contains a GC
|
|
// pointer and b) is of a type which the code doesn't expect (i.e. first class
|
|
// aggregates). Used to trip assertions.
|
|
static bool isUnhandledGCPointerType(Type *Ty) {
|
|
return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty);
|
|
}
|
|
#endif
|
|
|
|
static bool order_by_name(llvm::Value *a, llvm::Value *b) {
|
|
if (a->hasName() && b->hasName()) {
|
|
return -1 == a->getName().compare(b->getName());
|
|
} else if (a->hasName() && !b->hasName()) {
|
|
return true;
|
|
} else if (!a->hasName() && b->hasName()) {
|
|
return false;
|
|
} else {
|
|
// Better than nothing, but not stable
|
|
return a < b;
|
|
}
|
|
}
|
|
|
|
// Conservatively identifies any definitions which might be live at the
|
|
// given instruction. The analysis is performed immediately before the
|
|
// given instruction. Values defined by that instruction are not considered
|
|
// live. Values used by that instruction are considered live.
|
|
static void analyzeParsePointLiveness(
|
|
DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData,
|
|
const CallSite &CS, PartiallyConstructedSafepointRecord &result) {
|
|
Instruction *inst = CS.getInstruction();
|
|
|
|
StatepointLiveSetTy liveset;
|
|
findLiveSetAtInst(inst, OriginalLivenessData, liveset);
|
|
|
|
if (PrintLiveSet) {
|
|
// Note: This output is used by several of the test cases
|
|
// The order of elemtns in a set is not stable, put them in a vec and sort
|
|
// by name
|
|
SmallVector<Value *, 64> temp;
|
|
temp.insert(temp.end(), liveset.begin(), liveset.end());
|
|
std::sort(temp.begin(), temp.end(), order_by_name);
|
|
errs() << "Live Variables:\n";
|
|
for (Value *V : temp) {
|
|
errs() << " " << V->getName(); // no newline
|
|
V->dump();
|
|
}
|
|
}
|
|
if (PrintLiveSetSize) {
|
|
errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n";
|
|
errs() << "Number live values: " << liveset.size() << "\n";
|
|
}
|
|
result.liveset = liveset;
|
|
}
|
|
|
|
static Value *findBaseDefiningValue(Value *I);
|
|
|
|
/// If we can trivially determine that the index specified in the given vector
|
|
/// is a base pointer, return it. In cases where the entire vector is known to
|
|
/// consist of base pointers, the entire vector will be returned. This
|
|
/// indicates that the relevant extractelement is a valid base pointer and
|
|
/// should be used directly.
|
|
static Value *findBaseOfVector(Value *I, Value *Index) {
|
|
assert(I->getType()->isVectorTy() &&
|
|
cast<VectorType>(I->getType())->getElementType()->isPointerTy() &&
|
|
"Illegal to ask for the base pointer of a non-pointer type");
|
|
|
|
// Each case parallels findBaseDefiningValue below, see that code for
|
|
// detailed motivation.
|
|
|
|
if (isa<Argument>(I))
|
|
// An incoming argument to the function is a base pointer
|
|
return I;
|
|
|
|
// We shouldn't see the address of a global as a vector value?
|
|
assert(!isa<GlobalVariable>(I) &&
|
|
"unexpected global variable found in base of vector");
|
|
|
|
// inlining could possibly introduce phi node that contains
|
|
// undef if callee has multiple returns
|
|
if (isa<UndefValue>(I))
|
|
// utterly meaningless, but useful for dealing with partially optimized
|
|
// code.
|
|
return I;
|
|
|
|
// Due to inheritance, this must be _after_ the global variable and undef
|
|
// checks
|
|
if (Constant *Con = dyn_cast<Constant>(I)) {
|
|
assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) &&
|
|
"order of checks wrong!");
|
|
assert(Con->isNullValue() && "null is the only case which makes sense");
|
|
return Con;
|
|
}
|
|
|
|
if (isa<LoadInst>(I))
|
|
return I;
|
|
|
|
// For an insert element, we might be able to look through it if we know
|
|
// something about the indexes, but if the indices are arbitrary values, we
|
|
// can't without much more extensive scalarization.
|
|
if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(I)) {
|
|
Value *InsertIndex = IEI->getOperand(2);
|
|
// This index is inserting the value, look for it's base
|
|
if (InsertIndex == Index)
|
|
return findBaseDefiningValue(IEI->getOperand(1));
|
|
// Both constant, and can't be equal per above. This insert is definitely
|
|
// not relevant, look back at the rest of the vector and keep trying.
|
|
if (isa<ConstantInt>(Index) && isa<ConstantInt>(InsertIndex))
|
|
return findBaseOfVector(IEI->getOperand(0), Index);
|
|
}
|
|
|
|
// Note: This code is currently rather incomplete. We are essentially only
|
|
// handling cases where the vector element is trivially a base pointer. We
|
|
// need to update the entire base pointer construction algorithm to know how
|
|
// to track vector elements and potentially scalarize, but the case which
|
|
// would motivate the work hasn't shown up in real workloads yet.
|
|
llvm_unreachable("no base found for vector element");
|
|
}
|
|
|
|
/// Helper function for findBasePointer - Will return a value which either a)
|
|
/// defines the base pointer for the input or b) blocks the simple search
|
|
/// (i.e. a PHI or Select of two derived pointers)
|
|
static Value *findBaseDefiningValue(Value *I) {
|
|
assert(I->getType()->isPointerTy() &&
|
|
"Illegal to ask for the base pointer of a non-pointer type");
|
|
|
|
// This case is a bit of a hack - it only handles extracts from vectors which
|
|
// trivially contain only base pointers or cases where we can directly match
|
|
// the index of the original extract element to an insertion into the vector.
|
|
// See note inside the function for how to improve this.
|
|
if (auto *EEI = dyn_cast<ExtractElementInst>(I)) {
|
|
Value *VectorOperand = EEI->getVectorOperand();
|
|
Value *Index = EEI->getIndexOperand();
|
|
Value *VectorBase = findBaseOfVector(VectorOperand, Index);
|
|
// If the result returned is a vector, we know the entire vector must
|
|
// contain base pointers. In that case, the extractelement is a valid base
|
|
// for this value.
|
|
if (VectorBase->getType()->isVectorTy())
|
|
return EEI;
|
|
// Otherwise, we needed to look through the vector to find the base for
|
|
// this particular element.
|
|
assert(VectorBase->getType()->isPointerTy());
|
|
return VectorBase;
|
|
}
|
|
|
|
if (isa<Argument>(I))
|
|
// An incoming argument to the function is a base pointer
|
|
// We should have never reached here if this argument isn't an gc value
|
|
return I;
|
|
|
|
if (isa<GlobalVariable>(I))
|
|
// base case
|
|
return I;
|
|
|
|
// inlining could possibly introduce phi node that contains
|
|
// undef if callee has multiple returns
|
|
if (isa<UndefValue>(I))
|
|
// utterly meaningless, but useful for dealing with
|
|
// partially optimized code.
|
|
return I;
|
|
|
|
// Due to inheritance, this must be _after_ the global variable and undef
|
|
// checks
|
|
if (Constant *Con = dyn_cast<Constant>(I)) {
|
|
assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) &&
|
|
"order of checks wrong!");
|
|
// Note: Finding a constant base for something marked for relocation
|
|
// doesn't really make sense. The most likely case is either a) some
|
|
// screwed up the address space usage or b) your validating against
|
|
// compiled C++ code w/o the proper separation. The only real exception
|
|
// is a null pointer. You could have generic code written to index of
|
|
// off a potentially null value and have proven it null. We also use
|
|
// null pointers in dead paths of relocation phis (which we might later
|
|
// want to find a base pointer for).
|
|
assert(isa<ConstantPointerNull>(Con) &&
|
|
"null is the only case which makes sense");
|
|
return Con;
|
|
}
|
|
|
|
if (CastInst *CI = dyn_cast<CastInst>(I)) {
|
|
Value *Def = CI->stripPointerCasts();
|
|
// If we find a cast instruction here, it means we've found a cast which is
|
|
// not simply a pointer cast (i.e. an inttoptr). We don't know how to
|
|
// handle int->ptr conversion.
|
|
assert(!isa<CastInst>(Def) && "shouldn't find another cast here");
|
|
return findBaseDefiningValue(Def);
|
|
}
|
|
|
|
if (isa<LoadInst>(I))
|
|
return I; // The value loaded is an gc base itself
|
|
|
|
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
|
|
// The base of this GEP is the base
|
|
return findBaseDefiningValue(GEP->getPointerOperand());
|
|
|
|
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
|
|
switch (II->getIntrinsicID()) {
|
|
case Intrinsic::experimental_gc_result_ptr:
|
|
default:
|
|
// fall through to general call handling
|
|
break;
|
|
case Intrinsic::experimental_gc_statepoint:
|
|
case Intrinsic::experimental_gc_result_float:
|
|
case Intrinsic::experimental_gc_result_int:
|
|
llvm_unreachable("these don't produce pointers");
|
|
case Intrinsic::experimental_gc_relocate: {
|
|
// Rerunning safepoint insertion after safepoints are already
|
|
// inserted is not supported. It could probably be made to work,
|
|
// but why are you doing this? There's no good reason.
|
|
llvm_unreachable("repeat safepoint insertion is not supported");
|
|
}
|
|
case Intrinsic::gcroot:
|
|
// Currently, this mechanism hasn't been extended to work with gcroot.
|
|
// There's no reason it couldn't be, but I haven't thought about the
|
|
// implications much.
|
|
llvm_unreachable(
|
|
"interaction with the gcroot mechanism is not supported");
|
|
}
|
|
}
|
|
// We assume that functions in the source language only return base
|
|
// pointers. This should probably be generalized via attributes to support
|
|
// both source language and internal functions.
|
|
if (isa<CallInst>(I) || isa<InvokeInst>(I))
|
|
return I;
|
|
|
|
// I have absolutely no idea how to implement this part yet. It's not
|
|
// neccessarily hard, I just haven't really looked at it yet.
|
|
assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");
|
|
|
|
if (isa<AtomicCmpXchgInst>(I))
|
|
// A CAS is effectively a atomic store and load combined under a
|
|
// predicate. From the perspective of base pointers, we just treat it
|
|
// like a load.
|
|
return I;
|
|
|
|
assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are "
|
|
"binary ops which don't apply to pointers");
|
|
|
|
// The aggregate ops. Aggregates can either be in the heap or on the
|
|
// stack, but in either case, this is simply a field load. As a result,
|
|
// this is a defining definition of the base just like a load is.
|
|
if (isa<ExtractValueInst>(I))
|
|
return I;
|
|
|
|
// We should never see an insert vector since that would require we be
|
|
// tracing back a struct value not a pointer value.
|
|
assert(!isa<InsertValueInst>(I) &&
|
|
"Base pointer for a struct is meaningless");
|
|
|
|
// The last two cases here don't return a base pointer. Instead, they
|
|
// return a value which dynamically selects from amoung several base
|
|
// derived pointers (each with it's own base potentially). It's the job of
|
|
// the caller to resolve these.
|
|
assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
|
|
"missing instruction case in findBaseDefiningValing");
|
|
return I;
|
|
}
|
|
|
|
/// Returns the base defining value for this value.
|
|
static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) {
|
|
Value *&Cached = Cache[I];
|
|
if (!Cached) {
|
|
Cached = findBaseDefiningValue(I);
|
|
}
|
|
assert(Cache[I] != nullptr);
|
|
|
|
if (TraceLSP) {
|
|
dbgs() << "fBDV-cached: " << I->getName() << " -> " << Cached->getName()
|
|
<< "\n";
|
|
}
|
|
return Cached;
|
|
}
|
|
|
|
/// Return a base pointer for this value if known. Otherwise, return it's
|
|
/// base defining value.
|
|
static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) {
|
|
Value *Def = findBaseDefiningValueCached(I, Cache);
|
|
auto Found = Cache.find(Def);
|
|
if (Found != Cache.end()) {
|
|
// Either a base-of relation, or a self reference. Caller must check.
|
|
return Found->second;
|
|
}
|
|
// Only a BDV available
|
|
return Def;
|
|
}
|
|
|
|
/// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV,
|
|
/// is it known to be a base pointer? Or do we need to continue searching.
|
|
static bool isKnownBaseResult(Value *V) {
|
|
if (!isa<PHINode>(V) && !isa<SelectInst>(V)) {
|
|
// no recursion possible
|
|
return true;
|
|
}
|
|
if (isa<Instruction>(V) &&
|
|
cast<Instruction>(V)->getMetadata("is_base_value")) {
|
|
// This is a previously inserted base phi or select. We know
|
|
// that this is a base value.
|
|
return true;
|
|
}
|
|
|
|
// We need to keep searching
|
|
return false;
|
|
}
|
|
|
|
// TODO: find a better name for this
|
|
namespace {
|
|
class PhiState {
|
|
public:
|
|
enum Status { Unknown, Base, Conflict };
|
|
|
|
PhiState(Status s, Value *b = nullptr) : status(s), base(b) {
|
|
assert(status != Base || b);
|
|
}
|
|
PhiState(Value *b) : status(Base), base(b) {}
|
|
PhiState() : status(Unknown), base(nullptr) {}
|
|
|
|
Status getStatus() const { return status; }
|
|
Value *getBase() const { return base; }
|
|
|
|
bool isBase() const { return getStatus() == Base; }
|
|
bool isUnknown() const { return getStatus() == Unknown; }
|
|
bool isConflict() const { return getStatus() == Conflict; }
|
|
|
|
bool operator==(const PhiState &other) const {
|
|
return base == other.base && status == other.status;
|
|
}
|
|
|
|
bool operator!=(const PhiState &other) const { return !(*this == other); }
|
|
|
|
void dump() {
|
|
errs() << status << " (" << base << " - "
|
|
<< (base ? base->getName() : "nullptr") << "): ";
|
|
}
|
|
|
|
private:
|
|
Status status;
|
|
Value *base; // non null only if status == base
|
|
};
|
|
|
|
typedef DenseMap<Value *, PhiState> ConflictStateMapTy;
|
|
// Values of type PhiState form a lattice, and this is a helper
|
|
// class that implementes the meet operation. The meat of the meet
|
|
// operation is implemented in MeetPhiStates::pureMeet
|
|
class MeetPhiStates {
|
|
public:
|
|
// phiStates is a mapping from PHINodes and SelectInst's to PhiStates.
|
|
explicit MeetPhiStates(const ConflictStateMapTy &phiStates)
|
|
: phiStates(phiStates) {}
|
|
|
|
// Destructively meet the current result with the base V. V can
|
|
// either be a merge instruction (SelectInst / PHINode), in which
|
|
// case its status is looked up in the phiStates map; or a regular
|
|
// SSA value, in which case it is assumed to be a base.
|
|
void meetWith(Value *V) {
|
|
PhiState otherState = getStateForBDV(V);
|
|
assert((MeetPhiStates::pureMeet(otherState, currentResult) ==
|
|
MeetPhiStates::pureMeet(currentResult, otherState)) &&
|
|
"math is wrong: meet does not commute!");
|
|
currentResult = MeetPhiStates::pureMeet(otherState, currentResult);
|
|
}
|
|
|
|
PhiState getResult() const { return currentResult; }
|
|
|
|
private:
|
|
const ConflictStateMapTy &phiStates;
|
|
PhiState currentResult;
|
|
|
|
/// Return a phi state for a base defining value. We'll generate a new
|
|
/// base state for known bases and expect to find a cached state otherwise
|
|
PhiState getStateForBDV(Value *baseValue) {
|
|
if (isKnownBaseResult(baseValue)) {
|
|
return PhiState(baseValue);
|
|
} else {
|
|
return lookupFromMap(baseValue);
|
|
}
|
|
}
|
|
|
|
PhiState lookupFromMap(Value *V) {
|
|
auto I = phiStates.find(V);
|
|
assert(I != phiStates.end() && "lookup failed!");
|
|
return I->second;
|
|
}
|
|
|
|
static PhiState pureMeet(const PhiState &stateA, const PhiState &stateB) {
|
|
switch (stateA.getStatus()) {
|
|
case PhiState::Unknown:
|
|
return stateB;
|
|
|
|
case PhiState::Base:
|
|
assert(stateA.getBase() && "can't be null");
|
|
if (stateB.isUnknown())
|
|
return stateA;
|
|
|
|
if (stateB.isBase()) {
|
|
if (stateA.getBase() == stateB.getBase()) {
|
|
assert(stateA == stateB && "equality broken!");
|
|
return stateA;
|
|
}
|
|
return PhiState(PhiState::Conflict);
|
|
}
|
|
assert(stateB.isConflict() && "only three states!");
|
|
return PhiState(PhiState::Conflict);
|
|
|
|
case PhiState::Conflict:
|
|
return stateA;
|
|
}
|
|
llvm_unreachable("only three states!");
|
|
}
|
|
};
|
|
}
|
|
/// For a given value or instruction, figure out what base ptr it's derived
|
|
/// from. For gc objects, this is simply itself. On success, returns a value
|
|
/// which is the base pointer. (This is reliable and can be used for
|
|
/// relocation.) On failure, returns nullptr.
|
|
static Value *findBasePointer(Value *I, DefiningValueMapTy &cache) {
|
|
Value *def = findBaseOrBDV(I, cache);
|
|
|
|
if (isKnownBaseResult(def)) {
|
|
return def;
|
|
}
|
|
|
|
// Here's the rough algorithm:
|
|
// - For every SSA value, construct a mapping to either an actual base
|
|
// pointer or a PHI which obscures the base pointer.
|
|
// - Construct a mapping from PHI to unknown TOP state. Use an
|
|
// optimistic algorithm to propagate base pointer information. Lattice
|
|
// looks like:
|
|
// UNKNOWN
|
|
// b1 b2 b3 b4
|
|
// CONFLICT
|
|
// When algorithm terminates, all PHIs will either have a single concrete
|
|
// base or be in a conflict state.
|
|
// - For every conflict, insert a dummy PHI node without arguments. Add
|
|
// these to the base[Instruction] = BasePtr mapping. For every
|
|
// non-conflict, add the actual base.
|
|
// - For every conflict, add arguments for the base[a] of each input
|
|
// arguments.
|
|
//
|
|
// Note: A simpler form of this would be to add the conflict form of all
|
|
// PHIs without running the optimistic algorithm. This would be
|
|
// analougous to pessimistic data flow and would likely lead to an
|
|
// overall worse solution.
|
|
|
|
ConflictStateMapTy states;
|
|
states[def] = PhiState();
|
|
// Recursively fill in all phis & selects reachable from the initial one
|
|
// for which we don't already know a definite base value for
|
|
// TODO: This should be rewritten with a worklist
|
|
bool done = false;
|
|
while (!done) {
|
|
done = true;
|
|
// Since we're adding elements to 'states' as we run, we can't keep
|
|
// iterators into the set.
|
|
SmallVector<Value *, 16> Keys;
|
|
Keys.reserve(states.size());
|
|
for (auto Pair : states) {
|
|
Value *V = Pair.first;
|
|
Keys.push_back(V);
|
|
}
|
|
for (Value *v : Keys) {
|
|
assert(!isKnownBaseResult(v) && "why did it get added?");
|
|
if (PHINode *phi = dyn_cast<PHINode>(v)) {
|
|
assert(phi->getNumIncomingValues() > 0 &&
|
|
"zero input phis are illegal");
|
|
for (Value *InVal : phi->incoming_values()) {
|
|
Value *local = findBaseOrBDV(InVal, cache);
|
|
if (!isKnownBaseResult(local) && states.find(local) == states.end()) {
|
|
states[local] = PhiState();
|
|
done = false;
|
|
}
|
|
}
|
|
} else if (SelectInst *sel = dyn_cast<SelectInst>(v)) {
|
|
Value *local = findBaseOrBDV(sel->getTrueValue(), cache);
|
|
if (!isKnownBaseResult(local) && states.find(local) == states.end()) {
|
|
states[local] = PhiState();
|
|
done = false;
|
|
}
|
|
local = findBaseOrBDV(sel->getFalseValue(), cache);
|
|
if (!isKnownBaseResult(local) && states.find(local) == states.end()) {
|
|
states[local] = PhiState();
|
|
done = false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (TraceLSP) {
|
|
errs() << "States after initialization:\n";
|
|
for (auto Pair : states) {
|
|
Instruction *v = cast<Instruction>(Pair.first);
|
|
PhiState state = Pair.second;
|
|
state.dump();
|
|
v->dump();
|
|
}
|
|
}
|
|
|
|
// TODO: come back and revisit the state transitions around inputs which
|
|
// have reached conflict state. The current version seems too conservative.
|
|
|
|
bool progress = true;
|
|
while (progress) {
|
|
#ifndef NDEBUG
|
|
size_t oldSize = states.size();
|
|
#endif
|
|
progress = false;
|
|
// We're only changing keys in this loop, thus safe to keep iterators
|
|
for (auto Pair : states) {
|
|
MeetPhiStates calculateMeet(states);
|
|
Value *v = Pair.first;
|
|
assert(!isKnownBaseResult(v) && "why did it get added?");
|
|
if (SelectInst *select = dyn_cast<SelectInst>(v)) {
|
|
calculateMeet.meetWith(findBaseOrBDV(select->getTrueValue(), cache));
|
|
calculateMeet.meetWith(findBaseOrBDV(select->getFalseValue(), cache));
|
|
} else
|
|
for (Value *Val : cast<PHINode>(v)->incoming_values())
|
|
calculateMeet.meetWith(findBaseOrBDV(Val, cache));
|
|
|
|
PhiState oldState = states[v];
|
|
PhiState newState = calculateMeet.getResult();
|
|
if (oldState != newState) {
|
|
progress = true;
|
|
states[v] = newState;
|
|
}
|
|
}
|
|
|
|
assert(oldSize <= states.size());
|
|
assert(oldSize == states.size() || progress);
|
|
}
|
|
|
|
if (TraceLSP) {
|
|
errs() << "States after meet iteration:\n";
|
|
for (auto Pair : states) {
|
|
Instruction *v = cast<Instruction>(Pair.first);
|
|
PhiState state = Pair.second;
|
|
state.dump();
|
|
v->dump();
|
|
}
|
|
}
|
|
|
|
// Insert Phis for all conflicts
|
|
// We want to keep naming deterministic in the loop that follows, so
|
|
// sort the keys before iteration. This is useful in allowing us to
|
|
// write stable tests. Note that there is no invalidation issue here.
|
|
SmallVector<Value *, 16> Keys;
|
|
Keys.reserve(states.size());
|
|
for (auto Pair : states) {
|
|
Value *V = Pair.first;
|
|
Keys.push_back(V);
|
|
}
|
|
std::sort(Keys.begin(), Keys.end(), order_by_name);
|
|
// TODO: adjust naming patterns to avoid this order of iteration dependency
|
|
for (Value *V : Keys) {
|
|
Instruction *v = cast<Instruction>(V);
|
|
PhiState state = states[V];
|
|
assert(!isKnownBaseResult(v) && "why did it get added?");
|
|
assert(!state.isUnknown() && "Optimistic algorithm didn't complete!");
|
|
if (!state.isConflict())
|
|
continue;
|
|
|
|
if (isa<PHINode>(v)) {
|
|
int num_preds =
|
|
std::distance(pred_begin(v->getParent()), pred_end(v->getParent()));
|
|
assert(num_preds > 0 && "how did we reach here");
|
|
PHINode *phi = PHINode::Create(v->getType(), num_preds, "base_phi", v);
|
|
// Add metadata marking this as a base value
|
|
auto *const_1 = ConstantInt::get(
|
|
Type::getInt32Ty(
|
|
v->getParent()->getParent()->getParent()->getContext()),
|
|
1);
|
|
auto MDConst = ConstantAsMetadata::get(const_1);
|
|
MDNode *md = MDNode::get(
|
|
v->getParent()->getParent()->getParent()->getContext(), MDConst);
|
|
phi->setMetadata("is_base_value", md);
|
|
states[v] = PhiState(PhiState::Conflict, phi);
|
|
} else {
|
|
SelectInst *sel = cast<SelectInst>(v);
|
|
// The undef will be replaced later
|
|
UndefValue *undef = UndefValue::get(sel->getType());
|
|
SelectInst *basesel = SelectInst::Create(sel->getCondition(), undef,
|
|
undef, "base_select", sel);
|
|
// Add metadata marking this as a base value
|
|
auto *const_1 = ConstantInt::get(
|
|
Type::getInt32Ty(
|
|
v->getParent()->getParent()->getParent()->getContext()),
|
|
1);
|
|
auto MDConst = ConstantAsMetadata::get(const_1);
|
|
MDNode *md = MDNode::get(
|
|
v->getParent()->getParent()->getParent()->getContext(), MDConst);
|
|
basesel->setMetadata("is_base_value", md);
|
|
states[v] = PhiState(PhiState::Conflict, basesel);
|
|
}
|
|
}
|
|
|
|
// Fixup all the inputs of the new PHIs
|
|
for (auto Pair : states) {
|
|
Instruction *v = cast<Instruction>(Pair.first);
|
|
PhiState state = Pair.second;
|
|
|
|
assert(!isKnownBaseResult(v) && "why did it get added?");
|
|
assert(!state.isUnknown() && "Optimistic algorithm didn't complete!");
|
|
if (!state.isConflict())
|
|
continue;
|
|
|
|
if (PHINode *basephi = dyn_cast<PHINode>(state.getBase())) {
|
|
PHINode *phi = cast<PHINode>(v);
|
|
unsigned NumPHIValues = phi->getNumIncomingValues();
|
|
for (unsigned i = 0; i < NumPHIValues; i++) {
|
|
Value *InVal = phi->getIncomingValue(i);
|
|
BasicBlock *InBB = phi->getIncomingBlock(i);
|
|
|
|
// If we've already seen InBB, add the same incoming value
|
|
// we added for it earlier. The IR verifier requires phi
|
|
// nodes with multiple entries from the same basic block
|
|
// to have the same incoming value for each of those
|
|
// entries. If we don't do this check here and basephi
|
|
// has a different type than base, we'll end up adding two
|
|
// bitcasts (and hence two distinct values) as incoming
|
|
// values for the same basic block.
|
|
|
|
int blockIndex = basephi->getBasicBlockIndex(InBB);
|
|
if (blockIndex != -1) {
|
|
Value *oldBase = basephi->getIncomingValue(blockIndex);
|
|
basephi->addIncoming(oldBase, InBB);
|
|
#ifndef NDEBUG
|
|
Value *base = findBaseOrBDV(InVal, cache);
|
|
if (!isKnownBaseResult(base)) {
|
|
// Either conflict or base.
|
|
assert(states.count(base));
|
|
base = states[base].getBase();
|
|
assert(base != nullptr && "unknown PhiState!");
|
|
}
|
|
|
|
// In essense this assert states: the only way two
|
|
// values incoming from the same basic block may be
|
|
// different is by being different bitcasts of the same
|
|
// value. A cleanup that remains TODO is changing
|
|
// findBaseOrBDV to return an llvm::Value of the correct
|
|
// type (and still remain pure). This will remove the
|
|
// need to add bitcasts.
|
|
assert(base->stripPointerCasts() == oldBase->stripPointerCasts() &&
|
|
"sanity -- findBaseOrBDV should be pure!");
|
|
#endif
|
|
continue;
|
|
}
|
|
|
|
// Find either the defining value for the PHI or the normal base for
|
|
// a non-phi node
|
|
Value *base = findBaseOrBDV(InVal, cache);
|
|
if (!isKnownBaseResult(base)) {
|
|
// Either conflict or base.
|
|
assert(states.count(base));
|
|
base = states[base].getBase();
|
|
assert(base != nullptr && "unknown PhiState!");
|
|
}
|
|
assert(base && "can't be null");
|
|
// Must use original input BB since base may not be Instruction
|
|
// The cast is needed since base traversal may strip away bitcasts
|
|
if (base->getType() != basephi->getType()) {
|
|
base = new BitCastInst(base, basephi->getType(), "cast",
|
|
InBB->getTerminator());
|
|
}
|
|
basephi->addIncoming(base, InBB);
|
|
}
|
|
assert(basephi->getNumIncomingValues() == NumPHIValues);
|
|
} else {
|
|
SelectInst *basesel = cast<SelectInst>(state.getBase());
|
|
SelectInst *sel = cast<SelectInst>(v);
|
|
// Operand 1 & 2 are true, false path respectively. TODO: refactor to
|
|
// something more safe and less hacky.
|
|
for (int i = 1; i <= 2; i++) {
|
|
Value *InVal = sel->getOperand(i);
|
|
// Find either the defining value for the PHI or the normal base for
|
|
// a non-phi node
|
|
Value *base = findBaseOrBDV(InVal, cache);
|
|
if (!isKnownBaseResult(base)) {
|
|
// Either conflict or base.
|
|
assert(states.count(base));
|
|
base = states[base].getBase();
|
|
assert(base != nullptr && "unknown PhiState!");
|
|
}
|
|
assert(base && "can't be null");
|
|
// Must use original input BB since base may not be Instruction
|
|
// The cast is needed since base traversal may strip away bitcasts
|
|
if (base->getType() != basesel->getType()) {
|
|
base = new BitCastInst(base, basesel->getType(), "cast", basesel);
|
|
}
|
|
basesel->setOperand(i, base);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Cache all of our results so we can cheaply reuse them
|
|
// NOTE: This is actually two caches: one of the base defining value
|
|
// relation and one of the base pointer relation! FIXME
|
|
for (auto item : states) {
|
|
Value *v = item.first;
|
|
Value *base = item.second.getBase();
|
|
assert(v && base);
|
|
assert(!isKnownBaseResult(v) && "why did it get added?");
|
|
|
|
if (TraceLSP) {
|
|
std::string fromstr =
|
|
cache.count(v) ? (cache[v]->hasName() ? cache[v]->getName() : "")
|
|
: "none";
|
|
errs() << "Updating base value cache"
|
|
<< " for: " << (v->hasName() ? v->getName() : "")
|
|
<< " from: " << fromstr
|
|
<< " to: " << (base->hasName() ? base->getName() : "") << "\n";
|
|
}
|
|
|
|
assert(isKnownBaseResult(base) &&
|
|
"must be something we 'know' is a base pointer");
|
|
if (cache.count(v)) {
|
|
// Once we transition from the BDV relation being store in the cache to
|
|
// the base relation being stored, it must be stable
|
|
assert((!isKnownBaseResult(cache[v]) || cache[v] == base) &&
|
|
"base relation should be stable");
|
|
}
|
|
cache[v] = base;
|
|
}
|
|
assert(cache.find(def) != cache.end());
|
|
return cache[def];
|
|
}
|
|
|
|
// For a set of live pointers (base and/or derived), identify the base
|
|
// pointer of the object which they are derived from. This routine will
|
|
// mutate the IR graph as needed to make the 'base' pointer live at the
|
|
// definition site of 'derived'. This ensures that any use of 'derived' can
|
|
// also use 'base'. This may involve the insertion of a number of
|
|
// additional PHI nodes.
|
|
//
|
|
// preconditions: live is a set of pointer type Values
|
|
//
|
|
// side effects: may insert PHI nodes into the existing CFG, will preserve
|
|
// CFG, will not remove or mutate any existing nodes
|
|
//
|
|
// post condition: PointerToBase contains one (derived, base) pair for every
|
|
// pointer in live. Note that derived can be equal to base if the original
|
|
// pointer was a base pointer.
|
|
static void
|
|
findBasePointers(const StatepointLiveSetTy &live,
|
|
DenseMap<llvm::Value *, llvm::Value *> &PointerToBase,
|
|
DominatorTree *DT, DefiningValueMapTy &DVCache) {
|
|
// For the naming of values inserted to be deterministic - which makes for
|
|
// much cleaner and more stable tests - we need to assign an order to the
|
|
// live values. DenseSets do not provide a deterministic order across runs.
|
|
SmallVector<Value *, 64> Temp;
|
|
Temp.insert(Temp.end(), live.begin(), live.end());
|
|
std::sort(Temp.begin(), Temp.end(), order_by_name);
|
|
for (Value *ptr : Temp) {
|
|
Value *base = findBasePointer(ptr, DVCache);
|
|
assert(base && "failed to find base pointer");
|
|
PointerToBase[ptr] = base;
|
|
assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
|
|
DT->dominates(cast<Instruction>(base)->getParent(),
|
|
cast<Instruction>(ptr)->getParent())) &&
|
|
"The base we found better dominate the derived pointer");
|
|
|
|
// If you see this trip and like to live really dangerously, the code should
|
|
// be correct, just with idioms the verifier can't handle. You can try
|
|
// disabling the verifier at your own substaintial risk.
|
|
assert(!isa<ConstantPointerNull>(base) &&
|
|
"the relocation code needs adjustment to handle the relocation of "
|
|
"a null pointer constant without causing false positives in the "
|
|
"safepoint ir verifier.");
|
|
}
|
|
}
|
|
|
|
/// Find the required based pointers (and adjust the live set) for the given
|
|
/// parse point.
|
|
static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
|
|
const CallSite &CS,
|
|
PartiallyConstructedSafepointRecord &result) {
|
|
DenseMap<llvm::Value *, llvm::Value *> PointerToBase;
|
|
findBasePointers(result.liveset, PointerToBase, &DT, DVCache);
|
|
|
|
if (PrintBasePointers) {
|
|
// Note: Need to print these in a stable order since this is checked in
|
|
// some tests.
|
|
errs() << "Base Pairs (w/o Relocation):\n";
|
|
SmallVector<Value *, 64> Temp;
|
|
Temp.reserve(PointerToBase.size());
|
|
for (auto Pair : PointerToBase) {
|
|
Temp.push_back(Pair.first);
|
|
}
|
|
std::sort(Temp.begin(), Temp.end(), order_by_name);
|
|
for (Value *Ptr : Temp) {
|
|
Value *Base = PointerToBase[Ptr];
|
|
errs() << " derived %" << Ptr->getName() << " base %" << Base->getName()
|
|
<< "\n";
|
|
}
|
|
}
|
|
|
|
result.PointerToBase = PointerToBase;
|
|
}
|
|
|
|
/// Given an updated version of the dataflow liveness results, update the
|
|
/// liveset and base pointer maps for the call site CS.
|
|
static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
|
|
const CallSite &CS,
|
|
PartiallyConstructedSafepointRecord &result);
|
|
|
|
static void recomputeLiveInValues(
|
|
Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate,
|
|
MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
|
|
// TODO-PERF: reuse the original liveness, then simply run the dataflow
|
|
// again. The old values are still live and will help it stablize quickly.
|
|
GCPtrLivenessData RevisedLivenessData;
|
|
computeLiveInValues(DT, F, RevisedLivenessData);
|
|
for (size_t i = 0; i < records.size(); i++) {
|
|
struct PartiallyConstructedSafepointRecord &info = records[i];
|
|
const CallSite &CS = toUpdate[i];
|
|
recomputeLiveInValues(RevisedLivenessData, CS, info);
|
|
}
|
|
}
|
|
|
|
// When inserting gc.relocate calls, we need to ensure there are no uses
|
|
// of the original value between the gc.statepoint and the gc.relocate call.
|
|
// One case which can arise is a phi node starting one of the successor blocks.
|
|
// We also need to be able to insert the gc.relocates only on the path which
|
|
// goes through the statepoint. We might need to split an edge to make this
|
|
// possible.
|
|
static BasicBlock *
|
|
normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, Pass *P) {
|
|
DominatorTree *DT = nullptr;
|
|
if (auto *DTP = P->getAnalysisIfAvailable<DominatorTreeWrapperPass>())
|
|
DT = &DTP->getDomTree();
|
|
|
|
BasicBlock *Ret = BB;
|
|
if (!BB->getUniquePredecessor()) {
|
|
Ret = SplitBlockPredecessors(BB, InvokeParent, "", nullptr, DT);
|
|
}
|
|
|
|
// Now that 'ret' has unique predecessor we can safely remove all phi nodes
|
|
// from it
|
|
FoldSingleEntryPHINodes(Ret);
|
|
assert(!isa<PHINode>(Ret->begin()));
|
|
|
|
// At this point, we can safely insert a gc.relocate as the first instruction
|
|
// in Ret if needed.
|
|
return Ret;
|
|
}
|
|
|
|
static int find_index(ArrayRef<Value *> livevec, Value *val) {
|
|
auto itr = std::find(livevec.begin(), livevec.end(), val);
|
|
assert(livevec.end() != itr);
|
|
size_t index = std::distance(livevec.begin(), itr);
|
|
assert(index < livevec.size());
|
|
return index;
|
|
}
|
|
|
|
// Create new attribute set containing only attributes which can be transfered
|
|
// from original call to the safepoint.
|
|
static AttributeSet legalizeCallAttributes(AttributeSet AS) {
|
|
AttributeSet ret;
|
|
|
|
for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) {
|
|
unsigned index = AS.getSlotIndex(Slot);
|
|
|
|
if (index == AttributeSet::ReturnIndex ||
|
|
index == AttributeSet::FunctionIndex) {
|
|
|
|
for (auto it = AS.begin(Slot), it_end = AS.end(Slot); it != it_end;
|
|
++it) {
|
|
Attribute attr = *it;
|
|
|
|
// Do not allow certain attributes - just skip them
|
|
// Safepoint can not be read only or read none.
|
|
if (attr.hasAttribute(Attribute::ReadNone) ||
|
|
attr.hasAttribute(Attribute::ReadOnly))
|
|
continue;
|
|
|
|
ret = ret.addAttributes(
|
|
AS.getContext(), index,
|
|
AttributeSet::get(AS.getContext(), index, AttrBuilder(attr)));
|
|
}
|
|
}
|
|
|
|
// Just skip parameter attributes for now
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/// Helper function to place all gc relocates necessary for the given
|
|
/// statepoint.
|
|
/// Inputs:
|
|
/// liveVariables - list of variables to be relocated.
|
|
/// liveStart - index of the first live variable.
|
|
/// basePtrs - base pointers.
|
|
/// statepointToken - statepoint instruction to which relocates should be
|
|
/// bound.
|
|
/// Builder - Llvm IR builder to be used to construct new calls.
|
|
static void CreateGCRelocates(ArrayRef<llvm::Value *> LiveVariables,
|
|
const int LiveStart,
|
|
ArrayRef<llvm::Value *> BasePtrs,
|
|
Instruction *StatepointToken,
|
|
IRBuilder<> Builder) {
|
|
SmallVector<Instruction *, 64> NewDefs;
|
|
NewDefs.reserve(LiveVariables.size());
|
|
|
|
Module *M = StatepointToken->getParent()->getParent()->getParent();
|
|
|
|
for (unsigned i = 0; i < LiveVariables.size(); i++) {
|
|
// We generate a (potentially) unique declaration for every pointer type
|
|
// combination. This results is some blow up the function declarations in
|
|
// the IR, but removes the need for argument bitcasts which shrinks the IR
|
|
// greatly and makes it much more readable.
|
|
SmallVector<Type *, 1> Types; // one per 'any' type
|
|
// All gc_relocate are set to i8 addrspace(1)* type. This could help avoid
|
|
// cases where the actual value's type mangling is not supported by llvm. A
|
|
// bitcast is added later to convert gc_relocate to the actual value's type.
|
|
Types.push_back(Type::getInt8PtrTy(M->getContext(), 1));
|
|
Value *GCRelocateDecl = Intrinsic::getDeclaration(
|
|
M, Intrinsic::experimental_gc_relocate, Types);
|
|
|
|
// Generate the gc.relocate call and save the result
|
|
Value *BaseIdx =
|
|
ConstantInt::get(Type::getInt32Ty(M->getContext()),
|
|
LiveStart + find_index(LiveVariables, BasePtrs[i]));
|
|
Value *LiveIdx = ConstantInt::get(
|
|
Type::getInt32Ty(M->getContext()),
|
|
LiveStart + find_index(LiveVariables, LiveVariables[i]));
|
|
|
|
// only specify a debug name if we can give a useful one
|
|
Value *Reloc = Builder.CreateCall(
|
|
GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx},
|
|
LiveVariables[i]->hasName() ? LiveVariables[i]->getName() + ".relocated"
|
|
: "");
|
|
// Trick CodeGen into thinking there are lots of free registers at this
|
|
// fake call.
|
|
cast<CallInst>(Reloc)->setCallingConv(CallingConv::Cold);
|
|
|
|
NewDefs.push_back(cast<Instruction>(Reloc));
|
|
}
|
|
assert(NewDefs.size() == LiveVariables.size() &&
|
|
"missing or extra redefinition at safepoint");
|
|
}
|
|
|
|
static void
|
|
makeStatepointExplicitImpl(const CallSite &CS, /* to replace */
|
|
const SmallVectorImpl<llvm::Value *> &basePtrs,
|
|
const SmallVectorImpl<llvm::Value *> &liveVariables,
|
|
Pass *P,
|
|
PartiallyConstructedSafepointRecord &result) {
|
|
assert(basePtrs.size() == liveVariables.size());
|
|
assert(isStatepoint(CS) &&
|
|
"This method expects to be rewriting a statepoint");
|
|
|
|
BasicBlock *BB = CS.getInstruction()->getParent();
|
|
assert(BB);
|
|
Function *F = BB->getParent();
|
|
assert(F && "must be set");
|
|
Module *M = F->getParent();
|
|
(void)M;
|
|
assert(M && "must be set");
|
|
|
|
// We're not changing the function signature of the statepoint since the gc
|
|
// arguments go into the var args section.
|
|
Function *gc_statepoint_decl = CS.getCalledFunction();
|
|
|
|
// Then go ahead and use the builder do actually do the inserts. We insert
|
|
// immediately before the previous instruction under the assumption that all
|
|
// arguments will be available here. We can't insert afterwards since we may
|
|
// be replacing a terminator.
|
|
Instruction *insertBefore = CS.getInstruction();
|
|
IRBuilder<> Builder(insertBefore);
|
|
// Copy all of the arguments from the original statepoint - this includes the
|
|
// target, call args, and deopt args
|
|
SmallVector<llvm::Value *, 64> args;
|
|
args.insert(args.end(), CS.arg_begin(), CS.arg_end());
|
|
// TODO: Clear the 'needs rewrite' flag
|
|
|
|
// add all the pointers to be relocated (gc arguments)
|
|
// Capture the start of the live variable list for use in the gc_relocates
|
|
const int live_start = args.size();
|
|
args.insert(args.end(), liveVariables.begin(), liveVariables.end());
|
|
|
|
// Create the statepoint given all the arguments
|
|
Instruction *token = nullptr;
|
|
AttributeSet return_attributes;
|
|
if (CS.isCall()) {
|
|
CallInst *toReplace = cast<CallInst>(CS.getInstruction());
|
|
CallInst *call =
|
|
Builder.CreateCall(gc_statepoint_decl, args, "safepoint_token");
|
|
call->setTailCall(toReplace->isTailCall());
|
|
call->setCallingConv(toReplace->getCallingConv());
|
|
|
|
// Currently we will fail on parameter attributes and on certain
|
|
// function attributes.
|
|
AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes());
|
|
// In case if we can handle this set of sttributes - set up function attrs
|
|
// directly on statepoint and return attrs later for gc_result intrinsic.
|
|
call->setAttributes(new_attrs.getFnAttributes());
|
|
return_attributes = new_attrs.getRetAttributes();
|
|
|
|
token = call;
|
|
|
|
// Put the following gc_result and gc_relocate calls immediately after the
|
|
// the old call (which we're about to delete)
|
|
BasicBlock::iterator next(toReplace);
|
|
assert(BB->end() != next && "not a terminator, must have next");
|
|
next++;
|
|
Instruction *IP = &*(next);
|
|
Builder.SetInsertPoint(IP);
|
|
Builder.SetCurrentDebugLocation(IP->getDebugLoc());
|
|
|
|
} else {
|
|
InvokeInst *toReplace = cast<InvokeInst>(CS.getInstruction());
|
|
|
|
// Insert the new invoke into the old block. We'll remove the old one in a
|
|
// moment at which point this will become the new terminator for the
|
|
// original block.
|
|
InvokeInst *invoke = InvokeInst::Create(
|
|
gc_statepoint_decl, toReplace->getNormalDest(),
|
|
toReplace->getUnwindDest(), args, "", toReplace->getParent());
|
|
invoke->setCallingConv(toReplace->getCallingConv());
|
|
|
|
// Currently we will fail on parameter attributes and on certain
|
|
// function attributes.
|
|
AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes());
|
|
// In case if we can handle this set of sttributes - set up function attrs
|
|
// directly on statepoint and return attrs later for gc_result intrinsic.
|
|
invoke->setAttributes(new_attrs.getFnAttributes());
|
|
return_attributes = new_attrs.getRetAttributes();
|
|
|
|
token = invoke;
|
|
|
|
// Generate gc relocates in exceptional path
|
|
BasicBlock *unwindBlock = toReplace->getUnwindDest();
|
|
assert(!isa<PHINode>(unwindBlock->begin()) &&
|
|
unwindBlock->getUniquePredecessor() &&
|
|
"can't safely insert in this block!");
|
|
|
|
Instruction *IP = &*(unwindBlock->getFirstInsertionPt());
|
|
Builder.SetInsertPoint(IP);
|
|
Builder.SetCurrentDebugLocation(toReplace->getDebugLoc());
|
|
|
|
// Extract second element from landingpad return value. We will attach
|
|
// exceptional gc relocates to it.
|
|
const unsigned idx = 1;
|
|
Instruction *exceptional_token =
|
|
cast<Instruction>(Builder.CreateExtractValue(
|
|
unwindBlock->getLandingPadInst(), idx, "relocate_token"));
|
|
result.UnwindToken = exceptional_token;
|
|
|
|
// Just throw away return value. We will use the one we got for normal
|
|
// block.
|
|
(void)CreateGCRelocates(liveVariables, live_start, basePtrs,
|
|
exceptional_token, Builder);
|
|
|
|
// Generate gc relocates and returns for normal block
|
|
BasicBlock *normalDest = toReplace->getNormalDest();
|
|
assert(!isa<PHINode>(normalDest->begin()) &&
|
|
normalDest->getUniquePredecessor() &&
|
|
"can't safely insert in this block!");
|
|
|
|
IP = &*(normalDest->getFirstInsertionPt());
|
|
Builder.SetInsertPoint(IP);
|
|
|
|
// gc relocates will be generated later as if it were regular call
|
|
// statepoint
|
|
}
|
|
assert(token);
|
|
|
|
// Take the name of the original value call if it had one.
|
|
token->takeName(CS.getInstruction());
|
|
|
|
// The GCResult is already inserted, we just need to find it
|
|
#ifndef NDEBUG
|
|
Instruction *toReplace = CS.getInstruction();
|
|
assert((toReplace->hasNUses(0) || toReplace->hasNUses(1)) &&
|
|
"only valid use before rewrite is gc.result");
|
|
assert(!toReplace->hasOneUse() ||
|
|
isGCResult(cast<Instruction>(*toReplace->user_begin())));
|
|
#endif
|
|
|
|
// Update the gc.result of the original statepoint (if any) to use the newly
|
|
// inserted statepoint. This is safe to do here since the token can't be
|
|
// considered a live reference.
|
|
CS.getInstruction()->replaceAllUsesWith(token);
|
|
|
|
result.StatepointToken = token;
|
|
|
|
// Second, create a gc.relocate for every live variable
|
|
CreateGCRelocates(liveVariables, live_start, basePtrs, token, Builder);
|
|
}
|
|
|
|
namespace {
|
|
struct name_ordering {
|
|
Value *base;
|
|
Value *derived;
|
|
bool operator()(name_ordering const &a, name_ordering const &b) {
|
|
return -1 == a.derived->getName().compare(b.derived->getName());
|
|
}
|
|
};
|
|
}
|
|
static void stablize_order(SmallVectorImpl<Value *> &basevec,
|
|
SmallVectorImpl<Value *> &livevec) {
|
|
assert(basevec.size() == livevec.size());
|
|
|
|
SmallVector<name_ordering, 64> temp;
|
|
for (size_t i = 0; i < basevec.size(); i++) {
|
|
name_ordering v;
|
|
v.base = basevec[i];
|
|
v.derived = livevec[i];
|
|
temp.push_back(v);
|
|
}
|
|
std::sort(temp.begin(), temp.end(), name_ordering());
|
|
for (size_t i = 0; i < basevec.size(); i++) {
|
|
basevec[i] = temp[i].base;
|
|
livevec[i] = temp[i].derived;
|
|
}
|
|
}
|
|
|
|
// Replace an existing gc.statepoint with a new one and a set of gc.relocates
|
|
// which make the relocations happening at this safepoint explicit.
|
|
//
|
|
// WARNING: Does not do any fixup to adjust users of the original live
|
|
// values. That's the callers responsibility.
|
|
static void
|
|
makeStatepointExplicit(DominatorTree &DT, const CallSite &CS, Pass *P,
|
|
PartiallyConstructedSafepointRecord &result) {
|
|
auto liveset = result.liveset;
|
|
auto PointerToBase = result.PointerToBase;
|
|
|
|
// Convert to vector for efficient cross referencing.
|
|
SmallVector<Value *, 64> basevec, livevec;
|
|
livevec.reserve(liveset.size());
|
|
basevec.reserve(liveset.size());
|
|
for (Value *L : liveset) {
|
|
livevec.push_back(L);
|
|
|
|
assert(PointerToBase.find(L) != PointerToBase.end());
|
|
Value *base = PointerToBase[L];
|
|
basevec.push_back(base);
|
|
}
|
|
assert(livevec.size() == basevec.size());
|
|
|
|
// To make the output IR slightly more stable (for use in diffs), ensure a
|
|
// fixed order of the values in the safepoint (by sorting the value name).
|
|
// The order is otherwise meaningless.
|
|
stablize_order(basevec, livevec);
|
|
|
|
// Do the actual rewriting and delete the old statepoint
|
|
makeStatepointExplicitImpl(CS, basevec, livevec, P, result);
|
|
CS.getInstruction()->eraseFromParent();
|
|
}
|
|
|
|
// Helper function for the relocationViaAlloca.
|
|
// It receives iterator to the statepoint gc relocates and emits store to the
|
|
// assigned
|
|
// location (via allocaMap) for the each one of them.
|
|
// Add visited values into the visitedLiveValues set we will later use them
|
|
// for sanity check.
|
|
static void
|
|
insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs,
|
|
DenseMap<Value *, Value *> &AllocaMap,
|
|
DenseSet<Value *> &VisitedLiveValues) {
|
|
|
|
for (User *U : GCRelocs) {
|
|
if (!isa<IntrinsicInst>(U))
|
|
continue;
|
|
|
|
IntrinsicInst *RelocatedValue = cast<IntrinsicInst>(U);
|
|
|
|
// We only care about relocates
|
|
if (RelocatedValue->getIntrinsicID() !=
|
|
Intrinsic::experimental_gc_relocate) {
|
|
continue;
|
|
}
|
|
|
|
GCRelocateOperands RelocateOperands(RelocatedValue);
|
|
Value *OriginalValue =
|
|
const_cast<Value *>(RelocateOperands.getDerivedPtr());
|
|
assert(AllocaMap.count(OriginalValue));
|
|
Value *Alloca = AllocaMap[OriginalValue];
|
|
|
|
// Emit store into the related alloca
|
|
// All gc_relocate are i8 addrspace(1)* typed, and it must be bitcasted to
|
|
// the correct type according to alloca.
|
|
assert(RelocatedValue->getNextNode() && "Should always have one since it's not a terminator");
|
|
IRBuilder<> Builder(RelocatedValue->getNextNode());
|
|
Value *CastedRelocatedValue =
|
|
Builder.CreateBitCast(RelocatedValue, cast<AllocaInst>(Alloca)->getAllocatedType(),
|
|
RelocatedValue->hasName() ? RelocatedValue->getName() + ".casted" : "");
|
|
|
|
StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca);
|
|
Store->insertAfter(cast<Instruction>(CastedRelocatedValue));
|
|
|
|
#ifndef NDEBUG
|
|
VisitedLiveValues.insert(OriginalValue);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
// Helper function for the "relocationViaAlloca". Similar to the
|
|
// "insertRelocationStores" but works for rematerialized values.
|
|
static void
|
|
insertRematerializationStores(
|
|
RematerializedValueMapTy RematerializedValues,
|
|
DenseMap<Value *, Value *> &AllocaMap,
|
|
DenseSet<Value *> &VisitedLiveValues) {
|
|
|
|
for (auto RematerializedValuePair: RematerializedValues) {
|
|
Instruction *RematerializedValue = RematerializedValuePair.first;
|
|
Value *OriginalValue = RematerializedValuePair.second;
|
|
|
|
assert(AllocaMap.count(OriginalValue) &&
|
|
"Can not find alloca for rematerialized value");
|
|
Value *Alloca = AllocaMap[OriginalValue];
|
|
|
|
StoreInst *Store = new StoreInst(RematerializedValue, Alloca);
|
|
Store->insertAfter(RematerializedValue);
|
|
|
|
#ifndef NDEBUG
|
|
VisitedLiveValues.insert(OriginalValue);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/// do all the relocation update via allocas and mem2reg
|
|
static void relocationViaAlloca(
|
|
Function &F, DominatorTree &DT, ArrayRef<Value *> Live,
|
|
ArrayRef<struct PartiallyConstructedSafepointRecord> Records) {
|
|
#ifndef NDEBUG
|
|
// record initial number of (static) allocas; we'll check we have the same
|
|
// number when we get done.
|
|
int InitialAllocaNum = 0;
|
|
for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E;
|
|
I++)
|
|
if (isa<AllocaInst>(*I))
|
|
InitialAllocaNum++;
|
|
#endif
|
|
|
|
// TODO-PERF: change data structures, reserve
|
|
DenseMap<Value *, Value *> AllocaMap;
|
|
SmallVector<AllocaInst *, 200> PromotableAllocas;
|
|
// Used later to chack that we have enough allocas to store all values
|
|
std::size_t NumRematerializedValues = 0;
|
|
PromotableAllocas.reserve(Live.size());
|
|
|
|
// Emit alloca for "LiveValue" and record it in "allocaMap" and
|
|
// "PromotableAllocas"
|
|
auto emitAllocaFor = [&](Value *LiveValue) {
|
|
AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), "",
|
|
F.getEntryBlock().getFirstNonPHI());
|
|
AllocaMap[LiveValue] = Alloca;
|
|
PromotableAllocas.push_back(Alloca);
|
|
};
|
|
|
|
// emit alloca for each live gc pointer
|
|
for (unsigned i = 0; i < Live.size(); i++) {
|
|
emitAllocaFor(Live[i]);
|
|
}
|
|
|
|
// emit allocas for rematerialized values
|
|
for (size_t i = 0; i < Records.size(); i++) {
|
|
const struct PartiallyConstructedSafepointRecord &Info = Records[i];
|
|
|
|
for (auto RematerializedValuePair : Info.RematerializedValues) {
|
|
Value *OriginalValue = RematerializedValuePair.second;
|
|
if (AllocaMap.count(OriginalValue) != 0)
|
|
continue;
|
|
|
|
emitAllocaFor(OriginalValue);
|
|
++NumRematerializedValues;
|
|
}
|
|
}
|
|
|
|
// The next two loops are part of the same conceptual operation. We need to
|
|
// insert a store to the alloca after the original def and at each
|
|
// redefinition. We need to insert a load before each use. These are split
|
|
// into distinct loops for performance reasons.
|
|
|
|
// update gc pointer after each statepoint
|
|
// either store a relocated value or null (if no relocated value found for
|
|
// this gc pointer and it is not a gc_result)
|
|
// this must happen before we update the statepoint with load of alloca
|
|
// otherwise we lose the link between statepoint and old def
|
|
for (size_t i = 0; i < Records.size(); i++) {
|
|
const struct PartiallyConstructedSafepointRecord &Info = Records[i];
|
|
Value *Statepoint = Info.StatepointToken;
|
|
|
|
// This will be used for consistency check
|
|
DenseSet<Value *> VisitedLiveValues;
|
|
|
|
// Insert stores for normal statepoint gc relocates
|
|
insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues);
|
|
|
|
// In case if it was invoke statepoint
|
|
// we will insert stores for exceptional path gc relocates.
|
|
if (isa<InvokeInst>(Statepoint)) {
|
|
insertRelocationStores(Info.UnwindToken->users(), AllocaMap,
|
|
VisitedLiveValues);
|
|
}
|
|
|
|
// Do similar thing with rematerialized values
|
|
insertRematerializationStores(Info.RematerializedValues, AllocaMap,
|
|
VisitedLiveValues);
|
|
|
|
if (ClobberNonLive) {
|
|
// As a debuging aid, pretend that an unrelocated pointer becomes null at
|
|
// the gc.statepoint. This will turn some subtle GC problems into
|
|
// slightly easier to debug SEGVs. Note that on large IR files with
|
|
// lots of gc.statepoints this is extremely costly both memory and time
|
|
// wise.
|
|
SmallVector<AllocaInst *, 64> ToClobber;
|
|
for (auto Pair : AllocaMap) {
|
|
Value *Def = Pair.first;
|
|
AllocaInst *Alloca = cast<AllocaInst>(Pair.second);
|
|
|
|
// This value was relocated
|
|
if (VisitedLiveValues.count(Def)) {
|
|
continue;
|
|
}
|
|
ToClobber.push_back(Alloca);
|
|
}
|
|
|
|
auto InsertClobbersAt = [&](Instruction *IP) {
|
|
for (auto *AI : ToClobber) {
|
|
auto AIType = cast<PointerType>(AI->getType());
|
|
auto PT = cast<PointerType>(AIType->getElementType());
|
|
Constant *CPN = ConstantPointerNull::get(PT);
|
|
StoreInst *Store = new StoreInst(CPN, AI);
|
|
Store->insertBefore(IP);
|
|
}
|
|
};
|
|
|
|
// Insert the clobbering stores. These may get intermixed with the
|
|
// gc.results and gc.relocates, but that's fine.
|
|
if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
|
|
InsertClobbersAt(II->getNormalDest()->getFirstInsertionPt());
|
|
InsertClobbersAt(II->getUnwindDest()->getFirstInsertionPt());
|
|
} else {
|
|
BasicBlock::iterator Next(cast<CallInst>(Statepoint));
|
|
Next++;
|
|
InsertClobbersAt(Next);
|
|
}
|
|
}
|
|
}
|
|
// update use with load allocas and add store for gc_relocated
|
|
for (auto Pair : AllocaMap) {
|
|
Value *Def = Pair.first;
|
|
Value *Alloca = Pair.second;
|
|
|
|
// we pre-record the uses of allocas so that we dont have to worry about
|
|
// later update
|
|
// that change the user information.
|
|
SmallVector<Instruction *, 20> Uses;
|
|
// PERF: trade a linear scan for repeated reallocation
|
|
Uses.reserve(std::distance(Def->user_begin(), Def->user_end()));
|
|
for (User *U : Def->users()) {
|
|
if (!isa<ConstantExpr>(U)) {
|
|
// If the def has a ConstantExpr use, then the def is either a
|
|
// ConstantExpr use itself or null. In either case
|
|
// (recursively in the first, directly in the second), the oop
|
|
// it is ultimately dependent on is null and this particular
|
|
// use does not need to be fixed up.
|
|
Uses.push_back(cast<Instruction>(U));
|
|
}
|
|
}
|
|
|
|
std::sort(Uses.begin(), Uses.end());
|
|
auto Last = std::unique(Uses.begin(), Uses.end());
|
|
Uses.erase(Last, Uses.end());
|
|
|
|
for (Instruction *Use : Uses) {
|
|
if (isa<PHINode>(Use)) {
|
|
PHINode *Phi = cast<PHINode>(Use);
|
|
for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) {
|
|
if (Def == Phi->getIncomingValue(i)) {
|
|
LoadInst *Load = new LoadInst(
|
|
Alloca, "", Phi->getIncomingBlock(i)->getTerminator());
|
|
Phi->setIncomingValue(i, Load);
|
|
}
|
|
}
|
|
} else {
|
|
LoadInst *Load = new LoadInst(Alloca, "", Use);
|
|
Use->replaceUsesOfWith(Def, Load);
|
|
}
|
|
}
|
|
|
|
// emit store for the initial gc value
|
|
// store must be inserted after load, otherwise store will be in alloca's
|
|
// use list and an extra load will be inserted before it
|
|
StoreInst *Store = new StoreInst(Def, Alloca);
|
|
if (Instruction *Inst = dyn_cast<Instruction>(Def)) {
|
|
if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) {
|
|
// InvokeInst is a TerminatorInst so the store need to be inserted
|
|
// into its normal destination block.
|
|
BasicBlock *NormalDest = Invoke->getNormalDest();
|
|
Store->insertBefore(NormalDest->getFirstNonPHI());
|
|
} else {
|
|
assert(!Inst->isTerminator() &&
|
|
"The only TerminatorInst that can produce a value is "
|
|
"InvokeInst which is handled above.");
|
|
Store->insertAfter(Inst);
|
|
}
|
|
} else {
|
|
assert(isa<Argument>(Def));
|
|
Store->insertAfter(cast<Instruction>(Alloca));
|
|
}
|
|
}
|
|
|
|
assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues &&
|
|
"we must have the same allocas with lives");
|
|
if (!PromotableAllocas.empty()) {
|
|
// apply mem2reg to promote alloca to SSA
|
|
PromoteMemToReg(PromotableAllocas, DT);
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E;
|
|
I++)
|
|
if (isa<AllocaInst>(*I))
|
|
InitialAllocaNum--;
|
|
assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas");
|
|
#endif
|
|
}
|
|
|
|
/// Implement a unique function which doesn't require we sort the input
|
|
/// vector. Doing so has the effect of changing the output of a couple of
|
|
/// tests in ways which make them less useful in testing fused safepoints.
|
|
template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
|
|
DenseSet<T> Seen;
|
|
SmallVector<T, 128> TempVec;
|
|
TempVec.reserve(Vec.size());
|
|
for (auto Element : Vec)
|
|
TempVec.push_back(Element);
|
|
Vec.clear();
|
|
for (auto V : TempVec) {
|
|
if (Seen.insert(V).second) {
|
|
Vec.push_back(V);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Insert holders so that each Value is obviously live through the entire
|
|
/// lifetime of the call.
|
|
static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values,
|
|
SmallVectorImpl<CallInst *> &Holders) {
|
|
if (Values.empty())
|
|
// No values to hold live, might as well not insert the empty holder
|
|
return;
|
|
|
|
Module *M = CS.getInstruction()->getParent()->getParent()->getParent();
|
|
// Use a dummy vararg function to actually hold the values live
|
|
Function *Func = cast<Function>(M->getOrInsertFunction(
|
|
"__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true)));
|
|
if (CS.isCall()) {
|
|
// For call safepoints insert dummy calls right after safepoint
|
|
BasicBlock::iterator Next(CS.getInstruction());
|
|
Next++;
|
|
Holders.push_back(CallInst::Create(Func, Values, "", Next));
|
|
return;
|
|
}
|
|
// For invoke safepooints insert dummy calls both in normal and
|
|
// exceptional destination blocks
|
|
auto *II = cast<InvokeInst>(CS.getInstruction());
|
|
Holders.push_back(CallInst::Create(
|
|
Func, Values, "", II->getNormalDest()->getFirstInsertionPt()));
|
|
Holders.push_back(CallInst::Create(
|
|
Func, Values, "", II->getUnwindDest()->getFirstInsertionPt()));
|
|
}
|
|
|
|
static void findLiveReferences(
|
|
Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate,
|
|
MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
|
|
GCPtrLivenessData OriginalLivenessData;
|
|
computeLiveInValues(DT, F, OriginalLivenessData);
|
|
for (size_t i = 0; i < records.size(); i++) {
|
|
struct PartiallyConstructedSafepointRecord &info = records[i];
|
|
const CallSite &CS = toUpdate[i];
|
|
analyzeParsePointLiveness(DT, OriginalLivenessData, CS, info);
|
|
}
|
|
}
|
|
|
|
/// Remove any vector of pointers from the liveset by scalarizing them over the
|
|
/// statepoint instruction. Adds the scalarized pieces to the liveset. It
|
|
/// would be preferrable to include the vector in the statepoint itself, but
|
|
/// the lowering code currently does not handle that. Extending it would be
|
|
/// slightly non-trivial since it requires a format change. Given how rare
|
|
/// such cases are (for the moment?) scalarizing is an acceptable comprimise.
|
|
static void splitVectorValues(Instruction *StatepointInst,
|
|
StatepointLiveSetTy &LiveSet, DominatorTree &DT) {
|
|
SmallVector<Value *, 16> ToSplit;
|
|
for (Value *V : LiveSet)
|
|
if (isa<VectorType>(V->getType()))
|
|
ToSplit.push_back(V);
|
|
|
|
if (ToSplit.empty())
|
|
return;
|
|
|
|
Function &F = *(StatepointInst->getParent()->getParent());
|
|
|
|
DenseMap<Value *, AllocaInst *> AllocaMap;
|
|
// First is normal return, second is exceptional return (invoke only)
|
|
DenseMap<Value *, std::pair<Value *, Value *>> Replacements;
|
|
for (Value *V : ToSplit) {
|
|
LiveSet.erase(V);
|
|
|
|
AllocaInst *Alloca =
|
|
new AllocaInst(V->getType(), "", F.getEntryBlock().getFirstNonPHI());
|
|
AllocaMap[V] = Alloca;
|
|
|
|
VectorType *VT = cast<VectorType>(V->getType());
|
|
IRBuilder<> Builder(StatepointInst);
|
|
SmallVector<Value *, 16> Elements;
|
|
for (unsigned i = 0; i < VT->getNumElements(); i++)
|
|
Elements.push_back(Builder.CreateExtractElement(V, Builder.getInt32(i)));
|
|
LiveSet.insert(Elements.begin(), Elements.end());
|
|
|
|
auto InsertVectorReform = [&](Instruction *IP) {
|
|
Builder.SetInsertPoint(IP);
|
|
Builder.SetCurrentDebugLocation(IP->getDebugLoc());
|
|
Value *ResultVec = UndefValue::get(VT);
|
|
for (unsigned i = 0; i < VT->getNumElements(); i++)
|
|
ResultVec = Builder.CreateInsertElement(ResultVec, Elements[i],
|
|
Builder.getInt32(i));
|
|
return ResultVec;
|
|
};
|
|
|
|
if (isa<CallInst>(StatepointInst)) {
|
|
BasicBlock::iterator Next(StatepointInst);
|
|
Next++;
|
|
Instruction *IP = &*(Next);
|
|
Replacements[V].first = InsertVectorReform(IP);
|
|
Replacements[V].second = nullptr;
|
|
} else {
|
|
InvokeInst *Invoke = cast<InvokeInst>(StatepointInst);
|
|
// We've already normalized - check that we don't have shared destination
|
|
// blocks
|
|
BasicBlock *NormalDest = Invoke->getNormalDest();
|
|
assert(!isa<PHINode>(NormalDest->begin()));
|
|
BasicBlock *UnwindDest = Invoke->getUnwindDest();
|
|
assert(!isa<PHINode>(UnwindDest->begin()));
|
|
// Insert insert element sequences in both successors
|
|
Instruction *IP = &*(NormalDest->getFirstInsertionPt());
|
|
Replacements[V].first = InsertVectorReform(IP);
|
|
IP = &*(UnwindDest->getFirstInsertionPt());
|
|
Replacements[V].second = InsertVectorReform(IP);
|
|
}
|
|
}
|
|
for (Value *V : ToSplit) {
|
|
AllocaInst *Alloca = AllocaMap[V];
|
|
|
|
// Capture all users before we start mutating use lists
|
|
SmallVector<Instruction *, 16> Users;
|
|
for (User *U : V->users())
|
|
Users.push_back(cast<Instruction>(U));
|
|
|
|
for (Instruction *I : Users) {
|
|
if (auto Phi = dyn_cast<PHINode>(I)) {
|
|
for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++)
|
|
if (V == Phi->getIncomingValue(i)) {
|
|
LoadInst *Load = new LoadInst(
|
|
Alloca, "", Phi->getIncomingBlock(i)->getTerminator());
|
|
Phi->setIncomingValue(i, Load);
|
|
}
|
|
} else {
|
|
LoadInst *Load = new LoadInst(Alloca, "", I);
|
|
I->replaceUsesOfWith(V, Load);
|
|
}
|
|
}
|
|
|
|
// Store the original value and the replacement value into the alloca
|
|
StoreInst *Store = new StoreInst(V, Alloca);
|
|
if (auto I = dyn_cast<Instruction>(V))
|
|
Store->insertAfter(I);
|
|
else
|
|
Store->insertAfter(Alloca);
|
|
|
|
// Normal return for invoke, or call return
|
|
Instruction *Replacement = cast<Instruction>(Replacements[V].first);
|
|
(new StoreInst(Replacement, Alloca))->insertAfter(Replacement);
|
|
// Unwind return for invoke only
|
|
Replacement = cast_or_null<Instruction>(Replacements[V].second);
|
|
if (Replacement)
|
|
(new StoreInst(Replacement, Alloca))->insertAfter(Replacement);
|
|
}
|
|
|
|
// apply mem2reg to promote alloca to SSA
|
|
SmallVector<AllocaInst *, 16> Allocas;
|
|
for (Value *V : ToSplit)
|
|
Allocas.push_back(AllocaMap[V]);
|
|
PromoteMemToReg(Allocas, DT);
|
|
}
|
|
|
|
// Helper function for the "rematerializeLiveValues". It walks use chain
|
|
// starting from the "CurrentValue" until it meets "BaseValue". Only "simple"
|
|
// values are visited (currently it is GEP's and casts). Returns true if it
|
|
// sucessfully reached "BaseValue" and false otherwise.
|
|
// Fills "ChainToBase" array with all visited values. "BaseValue" is not
|
|
// recorded.
|
|
static bool findRematerializableChainToBasePointer(
|
|
SmallVectorImpl<Instruction*> &ChainToBase,
|
|
Value *CurrentValue, Value *BaseValue) {
|
|
|
|
// We have found a base value
|
|
if (CurrentValue == BaseValue) {
|
|
return true;
|
|
}
|
|
|
|
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) {
|
|
ChainToBase.push_back(GEP);
|
|
return findRematerializableChainToBasePointer(ChainToBase,
|
|
GEP->getPointerOperand(),
|
|
BaseValue);
|
|
}
|
|
|
|
if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) {
|
|
Value *Def = CI->stripPointerCasts();
|
|
|
|
// This two checks are basically similar. First one is here for the
|
|
// consistency with findBasePointers logic.
|
|
assert(!isa<CastInst>(Def) && "not a pointer cast found");
|
|
if (!CI->isNoopCast(CI->getModule()->getDataLayout()))
|
|
return false;
|
|
|
|
ChainToBase.push_back(CI);
|
|
return findRematerializableChainToBasePointer(ChainToBase, Def, BaseValue);
|
|
}
|
|
|
|
// Not supported instruction in the chain
|
|
return false;
|
|
}
|
|
|
|
// Helper function for the "rematerializeLiveValues". Compute cost of the use
|
|
// chain we are going to rematerialize.
|
|
static unsigned
|
|
chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain,
|
|
TargetTransformInfo &TTI) {
|
|
unsigned Cost = 0;
|
|
|
|
for (Instruction *Instr : Chain) {
|
|
if (CastInst *CI = dyn_cast<CastInst>(Instr)) {
|
|
assert(CI->isNoopCast(CI->getModule()->getDataLayout()) &&
|
|
"non noop cast is found during rematerialization");
|
|
|
|
Type *SrcTy = CI->getOperand(0)->getType();
|
|
Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy);
|
|
|
|
} else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) {
|
|
// Cost of the address calculation
|
|
Type *ValTy = GEP->getPointerOperandType()->getPointerElementType();
|
|
Cost += TTI.getAddressComputationCost(ValTy);
|
|
|
|
// And cost of the GEP itself
|
|
// TODO: Use TTI->getGEPCost here (it exists, but appears to be not
|
|
// allowed for the external usage)
|
|
if (!GEP->hasAllConstantIndices())
|
|
Cost += 2;
|
|
|
|
} else {
|
|
llvm_unreachable("unsupported instruciton type during rematerialization");
|
|
}
|
|
}
|
|
|
|
return Cost;
|
|
}
|
|
|
|
// From the statepoint liveset pick values that are cheaper to recompute then to
|
|
// relocate. Remove this values from the liveset, rematerialize them after
|
|
// statepoint and record them in "Info" structure. Note that similar to
|
|
// relocated values we don't do any user adjustments here.
|
|
static void rematerializeLiveValues(CallSite CS,
|
|
PartiallyConstructedSafepointRecord &Info,
|
|
TargetTransformInfo &TTI) {
|
|
const int ChainLengthThreshold = 10;
|
|
|
|
// Record values we are going to delete from this statepoint live set.
|
|
// We can not di this in following loop due to iterator invalidation.
|
|
SmallVector<Value *, 32> LiveValuesToBeDeleted;
|
|
|
|
for (Value *LiveValue: Info.liveset) {
|
|
// For each live pointer find it's defining chain
|
|
SmallVector<Instruction *, 3> ChainToBase;
|
|
assert(Info.PointerToBase.find(LiveValue) != Info.PointerToBase.end());
|
|
bool FoundChain =
|
|
findRematerializableChainToBasePointer(ChainToBase,
|
|
LiveValue,
|
|
Info.PointerToBase[LiveValue]);
|
|
// Nothing to do, or chain is too long
|
|
if (!FoundChain ||
|
|
ChainToBase.size() == 0 ||
|
|
ChainToBase.size() > ChainLengthThreshold)
|
|
continue;
|
|
|
|
// Compute cost of this chain
|
|
unsigned Cost = chainToBasePointerCost(ChainToBase, TTI);
|
|
// TODO: We can also account for cases when we will be able to remove some
|
|
// of the rematerialized values by later optimization passes. I.e if
|
|
// we rematerialized several intersecting chains. Or if original values
|
|
// don't have any uses besides this statepoint.
|
|
|
|
// For invokes we need to rematerialize each chain twice - for normal and
|
|
// for unwind basic blocks. Model this by multiplying cost by two.
|
|
if (CS.isInvoke()) {
|
|
Cost *= 2;
|
|
}
|
|
// If it's too expensive - skip it
|
|
if (Cost >= RematerializationThreshold)
|
|
continue;
|
|
|
|
// Remove value from the live set
|
|
LiveValuesToBeDeleted.push_back(LiveValue);
|
|
|
|
// Clone instructions and record them inside "Info" structure
|
|
|
|
// Walk backwards to visit top-most instructions first
|
|
std::reverse(ChainToBase.begin(), ChainToBase.end());
|
|
|
|
// Utility function which clones all instructions from "ChainToBase"
|
|
// and inserts them before "InsertBefore". Returns rematerialized value
|
|
// which should be used after statepoint.
|
|
auto rematerializeChain = [&ChainToBase](Instruction *InsertBefore) {
|
|
Instruction *LastClonedValue = nullptr;
|
|
Instruction *LastValue = nullptr;
|
|
for (Instruction *Instr: ChainToBase) {
|
|
// Only GEP's and casts are suported as we need to be careful to not
|
|
// introduce any new uses of pointers not in the liveset.
|
|
// Note that it's fine to introduce new uses of pointers which were
|
|
// otherwise not used after this statepoint.
|
|
assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr));
|
|
|
|
Instruction *ClonedValue = Instr->clone();
|
|
ClonedValue->insertBefore(InsertBefore);
|
|
ClonedValue->setName(Instr->getName() + ".remat");
|
|
|
|
// If it is not first instruction in the chain then it uses previously
|
|
// cloned value. We should update it to use cloned value.
|
|
if (LastClonedValue) {
|
|
assert(LastValue);
|
|
ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue);
|
|
#ifndef NDEBUG
|
|
// Assert that cloned instruction does not use any instructions
|
|
// other than LastClonedValue
|
|
for (auto OpValue: ClonedValue->operand_values()) {
|
|
if (isa<Instruction>(OpValue))
|
|
assert(OpValue == LastClonedValue &&
|
|
"unexpected use found in rematerialized value");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
LastClonedValue = ClonedValue;
|
|
LastValue = Instr;
|
|
}
|
|
assert(LastClonedValue);
|
|
return LastClonedValue;
|
|
};
|
|
|
|
// Different cases for calls and invokes. For invokes we need to clone
|
|
// instructions both on normal and unwind path.
|
|
if (CS.isCall()) {
|
|
Instruction *InsertBefore = CS.getInstruction()->getNextNode();
|
|
assert(InsertBefore);
|
|
Instruction *RematerializedValue = rematerializeChain(InsertBefore);
|
|
Info.RematerializedValues[RematerializedValue] = LiveValue;
|
|
} else {
|
|
InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction());
|
|
|
|
Instruction *NormalInsertBefore =
|
|
Invoke->getNormalDest()->getFirstInsertionPt();
|
|
Instruction *UnwindInsertBefore =
|
|
Invoke->getUnwindDest()->getFirstInsertionPt();
|
|
|
|
Instruction *NormalRematerializedValue =
|
|
rematerializeChain(NormalInsertBefore);
|
|
Instruction *UnwindRematerializedValue =
|
|
rematerializeChain(UnwindInsertBefore);
|
|
|
|
Info.RematerializedValues[NormalRematerializedValue] = LiveValue;
|
|
Info.RematerializedValues[UnwindRematerializedValue] = LiveValue;
|
|
}
|
|
}
|
|
|
|
// Remove rematerializaed values from the live set
|
|
for (auto LiveValue: LiveValuesToBeDeleted) {
|
|
Info.liveset.erase(LiveValue);
|
|
}
|
|
}
|
|
|
|
static bool insertParsePoints(Function &F, DominatorTree &DT, Pass *P,
|
|
SmallVectorImpl<CallSite> &toUpdate) {
|
|
#ifndef NDEBUG
|
|
// sanity check the input
|
|
std::set<CallSite> uniqued;
|
|
uniqued.insert(toUpdate.begin(), toUpdate.end());
|
|
assert(uniqued.size() == toUpdate.size() && "no duplicates please!");
|
|
|
|
for (size_t i = 0; i < toUpdate.size(); i++) {
|
|
CallSite &CS = toUpdate[i];
|
|
assert(CS.getInstruction()->getParent()->getParent() == &F);
|
|
assert(isStatepoint(CS) && "expected to already be a deopt statepoint");
|
|
}
|
|
#endif
|
|
|
|
// When inserting gc.relocates for invokes, we need to be able to insert at
|
|
// the top of the successor blocks. See the comment on
|
|
// normalForInvokeSafepoint on exactly what is needed. Note that this step
|
|
// may restructure the CFG.
|
|
for (CallSite CS : toUpdate) {
|
|
if (!CS.isInvoke())
|
|
continue;
|
|
InvokeInst *invoke = cast<InvokeInst>(CS.getInstruction());
|
|
normalizeForInvokeSafepoint(invoke->getNormalDest(), invoke->getParent(),
|
|
P);
|
|
normalizeForInvokeSafepoint(invoke->getUnwindDest(), invoke->getParent(),
|
|
P);
|
|
}
|
|
|
|
// A list of dummy calls added to the IR to keep various values obviously
|
|
// live in the IR. We'll remove all of these when done.
|
|
SmallVector<CallInst *, 64> holders;
|
|
|
|
// Insert a dummy call with all of the arguments to the vm_state we'll need
|
|
// for the actual safepoint insertion. This ensures reference arguments in
|
|
// the deopt argument list are considered live through the safepoint (and
|
|
// thus makes sure they get relocated.)
|
|
for (size_t i = 0; i < toUpdate.size(); i++) {
|
|
CallSite &CS = toUpdate[i];
|
|
Statepoint StatepointCS(CS);
|
|
|
|
SmallVector<Value *, 64> DeoptValues;
|
|
for (Use &U : StatepointCS.vm_state_args()) {
|
|
Value *Arg = cast<Value>(&U);
|
|
assert(!isUnhandledGCPointerType(Arg->getType()) &&
|
|
"support for FCA unimplemented");
|
|
if (isHandledGCPointerType(Arg->getType()))
|
|
DeoptValues.push_back(Arg);
|
|
}
|
|
insertUseHolderAfter(CS, DeoptValues, holders);
|
|
}
|
|
|
|
SmallVector<struct PartiallyConstructedSafepointRecord, 64> records;
|
|
records.reserve(toUpdate.size());
|
|
for (size_t i = 0; i < toUpdate.size(); i++) {
|
|
struct PartiallyConstructedSafepointRecord info;
|
|
records.push_back(info);
|
|
}
|
|
assert(records.size() == toUpdate.size());
|
|
|
|
// A) Identify all gc pointers which are staticly live at the given call
|
|
// site.
|
|
findLiveReferences(F, DT, P, toUpdate, records);
|
|
|
|
// Do a limited scalarization of any live at safepoint vector values which
|
|
// contain pointers. This enables this pass to run after vectorization at
|
|
// the cost of some possible performance loss. TODO: it would be nice to
|
|
// natively support vectors all the way through the backend so we don't need
|
|
// to scalarize here.
|
|
for (size_t i = 0; i < records.size(); i++) {
|
|
struct PartiallyConstructedSafepointRecord &info = records[i];
|
|
Instruction *statepoint = toUpdate[i].getInstruction();
|
|
splitVectorValues(cast<Instruction>(statepoint), info.liveset, DT);
|
|
}
|
|
|
|
// B) Find the base pointers for each live pointer
|
|
/* scope for caching */ {
|
|
// Cache the 'defining value' relation used in the computation and
|
|
// insertion of base phis and selects. This ensures that we don't insert
|
|
// large numbers of duplicate base_phis.
|
|
DefiningValueMapTy DVCache;
|
|
|
|
for (size_t i = 0; i < records.size(); i++) {
|
|
struct PartiallyConstructedSafepointRecord &info = records[i];
|
|
CallSite &CS = toUpdate[i];
|
|
findBasePointers(DT, DVCache, CS, info);
|
|
}
|
|
} // end of cache scope
|
|
|
|
// The base phi insertion logic (for any safepoint) may have inserted new
|
|
// instructions which are now live at some safepoint. The simplest such
|
|
// example is:
|
|
// loop:
|
|
// phi a <-- will be a new base_phi here
|
|
// safepoint 1 <-- that needs to be live here
|
|
// gep a + 1
|
|
// safepoint 2
|
|
// br loop
|
|
// We insert some dummy calls after each safepoint to definitely hold live
|
|
// the base pointers which were identified for that safepoint. We'll then
|
|
// ask liveness for _every_ base inserted to see what is now live. Then we
|
|
// remove the dummy calls.
|
|
holders.reserve(holders.size() + records.size());
|
|
for (size_t i = 0; i < records.size(); i++) {
|
|
struct PartiallyConstructedSafepointRecord &info = records[i];
|
|
CallSite &CS = toUpdate[i];
|
|
|
|
SmallVector<Value *, 128> Bases;
|
|
for (auto Pair : info.PointerToBase) {
|
|
Bases.push_back(Pair.second);
|
|
}
|
|
insertUseHolderAfter(CS, Bases, holders);
|
|
}
|
|
|
|
// By selecting base pointers, we've effectively inserted new uses. Thus, we
|
|
// need to rerun liveness. We may *also* have inserted new defs, but that's
|
|
// not the key issue.
|
|
recomputeLiveInValues(F, DT, P, toUpdate, records);
|
|
|
|
if (PrintBasePointers) {
|
|
for (size_t i = 0; i < records.size(); i++) {
|
|
struct PartiallyConstructedSafepointRecord &info = records[i];
|
|
errs() << "Base Pairs: (w/Relocation)\n";
|
|
for (auto Pair : info.PointerToBase) {
|
|
errs() << " derived %" << Pair.first->getName() << " base %"
|
|
<< Pair.second->getName() << "\n";
|
|
}
|
|
}
|
|
}
|
|
for (size_t i = 0; i < holders.size(); i++) {
|
|
holders[i]->eraseFromParent();
|
|
holders[i] = nullptr;
|
|
}
|
|
holders.clear();
|
|
|
|
// In order to reduce live set of statepoint we might choose to rematerialize
|
|
// some values instead of relocating them. This is purelly an optimization and
|
|
// does not influence correctness.
|
|
TargetTransformInfo &TTI =
|
|
P->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
|
|
|
|
for (size_t i = 0; i < records.size(); i++) {
|
|
struct PartiallyConstructedSafepointRecord &info = records[i];
|
|
CallSite &CS = toUpdate[i];
|
|
|
|
rematerializeLiveValues(CS, info, TTI);
|
|
}
|
|
|
|
// Now run through and replace the existing statepoints with new ones with
|
|
// the live variables listed. We do not yet update uses of the values being
|
|
// relocated. We have references to live variables that need to
|
|
// survive to the last iteration of this loop. (By construction, the
|
|
// previous statepoint can not be a live variable, thus we can and remove
|
|
// the old statepoint calls as we go.)
|
|
for (size_t i = 0; i < records.size(); i++) {
|
|
struct PartiallyConstructedSafepointRecord &info = records[i];
|
|
CallSite &CS = toUpdate[i];
|
|
makeStatepointExplicit(DT, CS, P, info);
|
|
}
|
|
toUpdate.clear(); // prevent accident use of invalid CallSites
|
|
|
|
// Do all the fixups of the original live variables to their relocated selves
|
|
SmallVector<Value *, 128> live;
|
|
for (size_t i = 0; i < records.size(); i++) {
|
|
struct PartiallyConstructedSafepointRecord &info = records[i];
|
|
// We can't simply save the live set from the original insertion. One of
|
|
// the live values might be the result of a call which needs a safepoint.
|
|
// That Value* no longer exists and we need to use the new gc_result.
|
|
// Thankfully, the liveset is embedded in the statepoint (and updated), so
|
|
// we just grab that.
|
|
Statepoint statepoint(info.StatepointToken);
|
|
live.insert(live.end(), statepoint.gc_args_begin(),
|
|
statepoint.gc_args_end());
|
|
#ifndef NDEBUG
|
|
// Do some basic sanity checks on our liveness results before performing
|
|
// relocation. Relocation can and will turn mistakes in liveness results
|
|
// into non-sensical code which is must harder to debug.
|
|
// TODO: It would be nice to test consistency as well
|
|
assert(DT.isReachableFromEntry(info.StatepointToken->getParent()) &&
|
|
"statepoint must be reachable or liveness is meaningless");
|
|
for (Value *V : statepoint.gc_args()) {
|
|
if (!isa<Instruction>(V))
|
|
// Non-instruction values trivial dominate all possible uses
|
|
continue;
|
|
auto LiveInst = cast<Instruction>(V);
|
|
assert(DT.isReachableFromEntry(LiveInst->getParent()) &&
|
|
"unreachable values should never be live");
|
|
assert(DT.dominates(LiveInst, info.StatepointToken) &&
|
|
"basic SSA liveness expectation violated by liveness analysis");
|
|
}
|
|
#endif
|
|
}
|
|
unique_unsorted(live);
|
|
|
|
#ifndef NDEBUG
|
|
// sanity check
|
|
for (auto ptr : live) {
|
|
assert(isGCPointerType(ptr->getType()) && "must be a gc pointer type");
|
|
}
|
|
#endif
|
|
|
|
relocationViaAlloca(F, DT, live, records);
|
|
return !records.empty();
|
|
}
|
|
|
|
/// Returns true if this function should be rewritten by this pass. The main
|
|
/// point of this function is as an extension point for custom logic.
|
|
static bool shouldRewriteStatepointsIn(Function &F) {
|
|
// TODO: This should check the GCStrategy
|
|
if (F.hasGC()) {
|
|
const std::string StatepointExampleName("statepoint-example");
|
|
return StatepointExampleName == F.getGC();
|
|
} else
|
|
return false;
|
|
}
|
|
|
|
bool RewriteStatepointsForGC::runOnFunction(Function &F) {
|
|
// Nothing to do for declarations.
|
|
if (F.isDeclaration() || F.empty())
|
|
return false;
|
|
|
|
// Policy choice says not to rewrite - the most common reason is that we're
|
|
// compiling code without a GCStrategy.
|
|
if (!shouldRewriteStatepointsIn(F))
|
|
return false;
|
|
|
|
DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
|
|
// Gather all the statepoints which need rewritten. Be careful to only
|
|
// consider those in reachable code since we need to ask dominance queries
|
|
// when rewriting. We'll delete the unreachable ones in a moment.
|
|
SmallVector<CallSite, 64> ParsePointNeeded;
|
|
bool HasUnreachableStatepoint = false;
|
|
for (Instruction &I : inst_range(F)) {
|
|
// TODO: only the ones with the flag set!
|
|
if (isStatepoint(I)) {
|
|
if (DT.isReachableFromEntry(I.getParent()))
|
|
ParsePointNeeded.push_back(CallSite(&I));
|
|
else
|
|
HasUnreachableStatepoint = true;
|
|
}
|
|
}
|
|
|
|
bool MadeChange = false;
|
|
|
|
// Delete any unreachable statepoints so that we don't have unrewritten
|
|
// statepoints surviving this pass. This makes testing easier and the
|
|
// resulting IR less confusing to human readers. Rather than be fancy, we
|
|
// just reuse a utility function which removes the unreachable blocks.
|
|
if (HasUnreachableStatepoint)
|
|
MadeChange |= removeUnreachableBlocks(F);
|
|
|
|
// Return early if no work to do.
|
|
if (ParsePointNeeded.empty())
|
|
return MadeChange;
|
|
|
|
// As a prepass, go ahead and aggressively destroy single entry phi nodes.
|
|
// These are created by LCSSA. They have the effect of increasing the size
|
|
// of liveness sets for no good reason. It may be harder to do this post
|
|
// insertion since relocations and base phis can confuse things.
|
|
for (BasicBlock &BB : F)
|
|
if (BB.getUniquePredecessor()) {
|
|
MadeChange = true;
|
|
FoldSingleEntryPHINodes(&BB);
|
|
}
|
|
|
|
MadeChange |= insertParsePoints(F, DT, this, ParsePointNeeded);
|
|
return MadeChange;
|
|
}
|
|
|
|
// liveness computation via standard dataflow
|
|
// -------------------------------------------------------------------
|
|
|
|
// TODO: Consider using bitvectors for liveness, the set of potentially
|
|
// interesting values should be small and easy to pre-compute.
|
|
|
|
/// Compute the live-in set for the location rbegin starting from
|
|
/// the live-out set of the basic block
|
|
static void computeLiveInValues(BasicBlock::reverse_iterator rbegin,
|
|
BasicBlock::reverse_iterator rend,
|
|
DenseSet<Value *> &LiveTmp) {
|
|
|
|
for (BasicBlock::reverse_iterator ritr = rbegin; ritr != rend; ritr++) {
|
|
Instruction *I = &*ritr;
|
|
|
|
// KILL/Def - Remove this definition from LiveIn
|
|
LiveTmp.erase(I);
|
|
|
|
// Don't consider *uses* in PHI nodes, we handle their contribution to
|
|
// predecessor blocks when we seed the LiveOut sets
|
|
if (isa<PHINode>(I))
|
|
continue;
|
|
|
|
// USE - Add to the LiveIn set for this instruction
|
|
for (Value *V : I->operands()) {
|
|
assert(!isUnhandledGCPointerType(V->getType()) &&
|
|
"support for FCA unimplemented");
|
|
if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
|
|
// The choice to exclude all things constant here is slightly subtle.
|
|
// There are two idependent reasons:
|
|
// - We assume that things which are constant (from LLVM's definition)
|
|
// do not move at runtime. For example, the address of a global
|
|
// variable is fixed, even though it's contents may not be.
|
|
// - Second, we can't disallow arbitrary inttoptr constants even
|
|
// if the language frontend does. Optimization passes are free to
|
|
// locally exploit facts without respect to global reachability. This
|
|
// can create sections of code which are dynamically unreachable and
|
|
// contain just about anything. (see constants.ll in tests)
|
|
LiveTmp.insert(V);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void computeLiveOutSeed(BasicBlock *BB, DenseSet<Value *> &LiveTmp) {
|
|
|
|
for (BasicBlock *Succ : successors(BB)) {
|
|
const BasicBlock::iterator E(Succ->getFirstNonPHI());
|
|
for (BasicBlock::iterator I = Succ->begin(); I != E; I++) {
|
|
PHINode *Phi = cast<PHINode>(&*I);
|
|
Value *V = Phi->getIncomingValueForBlock(BB);
|
|
assert(!isUnhandledGCPointerType(V->getType()) &&
|
|
"support for FCA unimplemented");
|
|
if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
|
|
LiveTmp.insert(V);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static DenseSet<Value *> computeKillSet(BasicBlock *BB) {
|
|
DenseSet<Value *> KillSet;
|
|
for (Instruction &I : *BB)
|
|
if (isHandledGCPointerType(I.getType()))
|
|
KillSet.insert(&I);
|
|
return KillSet;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
/// Check that the items in 'Live' dominate 'TI'. This is used as a basic
|
|
/// sanity check for the liveness computation.
|
|
static void checkBasicSSA(DominatorTree &DT, DenseSet<Value *> &Live,
|
|
TerminatorInst *TI, bool TermOkay = false) {
|
|
for (Value *V : Live) {
|
|
if (auto *I = dyn_cast<Instruction>(V)) {
|
|
// The terminator can be a member of the LiveOut set. LLVM's definition
|
|
// of instruction dominance states that V does not dominate itself. As
|
|
// such, we need to special case this to allow it.
|
|
if (TermOkay && TI == I)
|
|
continue;
|
|
assert(DT.dominates(I, TI) &&
|
|
"basic SSA liveness expectation violated by liveness analysis");
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Check that all the liveness sets used during the computation of liveness
|
|
/// obey basic SSA properties. This is useful for finding cases where we miss
|
|
/// a def.
|
|
static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data,
|
|
BasicBlock &BB) {
|
|
checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator());
|
|
checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true);
|
|
checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator());
|
|
}
|
|
#endif
|
|
|
|
static void computeLiveInValues(DominatorTree &DT, Function &F,
|
|
GCPtrLivenessData &Data) {
|
|
|
|
SmallSetVector<BasicBlock *, 200> Worklist;
|
|
auto AddPredsToWorklist = [&](BasicBlock *BB) {
|
|
// We use a SetVector so that we don't have duplicates in the worklist.
|
|
Worklist.insert(pred_begin(BB), pred_end(BB));
|
|
};
|
|
auto NextItem = [&]() {
|
|
BasicBlock *BB = Worklist.back();
|
|
Worklist.pop_back();
|
|
return BB;
|
|
};
|
|
|
|
// Seed the liveness for each individual block
|
|
for (BasicBlock &BB : F) {
|
|
Data.KillSet[&BB] = computeKillSet(&BB);
|
|
Data.LiveSet[&BB].clear();
|
|
computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]);
|
|
|
|
#ifndef NDEBUG
|
|
for (Value *Kill : Data.KillSet[&BB])
|
|
assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill");
|
|
#endif
|
|
|
|
Data.LiveOut[&BB] = DenseSet<Value *>();
|
|
computeLiveOutSeed(&BB, Data.LiveOut[&BB]);
|
|
Data.LiveIn[&BB] = Data.LiveSet[&BB];
|
|
set_union(Data.LiveIn[&BB], Data.LiveOut[&BB]);
|
|
set_subtract(Data.LiveIn[&BB], Data.KillSet[&BB]);
|
|
if (!Data.LiveIn[&BB].empty())
|
|
AddPredsToWorklist(&BB);
|
|
}
|
|
|
|
// Propagate that liveness until stable
|
|
while (!Worklist.empty()) {
|
|
BasicBlock *BB = NextItem();
|
|
|
|
// Compute our new liveout set, then exit early if it hasn't changed
|
|
// despite the contribution of our successor.
|
|
DenseSet<Value *> LiveOut = Data.LiveOut[BB];
|
|
const auto OldLiveOutSize = LiveOut.size();
|
|
for (BasicBlock *Succ : successors(BB)) {
|
|
assert(Data.LiveIn.count(Succ));
|
|
set_union(LiveOut, Data.LiveIn[Succ]);
|
|
}
|
|
// assert OutLiveOut is a subset of LiveOut
|
|
if (OldLiveOutSize == LiveOut.size()) {
|
|
// If the sets are the same size, then we didn't actually add anything
|
|
// when unioning our successors LiveIn Thus, the LiveIn of this block
|
|
// hasn't changed.
|
|
continue;
|
|
}
|
|
Data.LiveOut[BB] = LiveOut;
|
|
|
|
// Apply the effects of this basic block
|
|
DenseSet<Value *> LiveTmp = LiveOut;
|
|
set_union(LiveTmp, Data.LiveSet[BB]);
|
|
set_subtract(LiveTmp, Data.KillSet[BB]);
|
|
|
|
assert(Data.LiveIn.count(BB));
|
|
const DenseSet<Value *> &OldLiveIn = Data.LiveIn[BB];
|
|
// assert: OldLiveIn is a subset of LiveTmp
|
|
if (OldLiveIn.size() != LiveTmp.size()) {
|
|
Data.LiveIn[BB] = LiveTmp;
|
|
AddPredsToWorklist(BB);
|
|
}
|
|
} // while( !worklist.empty() )
|
|
|
|
#ifndef NDEBUG
|
|
// Sanity check our ouput against SSA properties. This helps catch any
|
|
// missing kills during the above iteration.
|
|
for (BasicBlock &BB : F) {
|
|
checkBasicSSA(DT, Data, BB);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data,
|
|
StatepointLiveSetTy &Out) {
|
|
|
|
BasicBlock *BB = Inst->getParent();
|
|
|
|
// Note: The copy is intentional and required
|
|
assert(Data.LiveOut.count(BB));
|
|
DenseSet<Value *> LiveOut = Data.LiveOut[BB];
|
|
|
|
// We want to handle the statepoint itself oddly. It's
|
|
// call result is not live (normal), nor are it's arguments
|
|
// (unless they're used again later). This adjustment is
|
|
// specifically what we need to relocate
|
|
BasicBlock::reverse_iterator rend(Inst);
|
|
computeLiveInValues(BB->rbegin(), rend, LiveOut);
|
|
LiveOut.erase(Inst);
|
|
Out.insert(LiveOut.begin(), LiveOut.end());
|
|
}
|
|
|
|
static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
|
|
const CallSite &CS,
|
|
PartiallyConstructedSafepointRecord &Info) {
|
|
Instruction *Inst = CS.getInstruction();
|
|
StatepointLiveSetTy Updated;
|
|
findLiveSetAtInst(Inst, RevisedLivenessData, Updated);
|
|
|
|
#ifndef NDEBUG
|
|
DenseSet<Value *> Bases;
|
|
for (auto KVPair : Info.PointerToBase) {
|
|
Bases.insert(KVPair.second);
|
|
}
|
|
#endif
|
|
// We may have base pointers which are now live that weren't before. We need
|
|
// to update the PointerToBase structure to reflect this.
|
|
for (auto V : Updated)
|
|
if (!Info.PointerToBase.count(V)) {
|
|
assert(Bases.count(V) && "can't find base for unexpected live value");
|
|
Info.PointerToBase[V] = V;
|
|
continue;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
for (auto V : Updated) {
|
|
assert(Info.PointerToBase.count(V) &&
|
|
"must be able to find base for live value");
|
|
}
|
|
#endif
|
|
|
|
// Remove any stale base mappings - this can happen since our liveness is
|
|
// more precise then the one inherent in the base pointer analysis
|
|
DenseSet<Value *> ToErase;
|
|
for (auto KVPair : Info.PointerToBase)
|
|
if (!Updated.count(KVPair.first))
|
|
ToErase.insert(KVPair.first);
|
|
for (auto V : ToErase)
|
|
Info.PointerToBase.erase(V);
|
|
|
|
#ifndef NDEBUG
|
|
for (auto KVPair : Info.PointerToBase)
|
|
assert(Updated.count(KVPair.first) && "record for non-live value");
|
|
#endif
|
|
|
|
Info.liveset = Updated;
|
|
}
|