2005-07-27 06:12:32 +00:00

871 lines
30 KiB
C++

//===-- MSchedGraphSB.cpp - Scheduling Graph ----------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// A graph class for dependencies. This graph only contains true, anti, and
// output data dependencies for a given MachineBasicBlock. Dependencies
// across iterations are also computed. Unless data dependence analysis
// is provided, a conservative approach of adding dependencies between all
// loads and stores is taken.
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "ModuloSchedSB"
#include "MSchedGraphSB.h"
#include "../SparcV9RegisterInfo.h"
#include "../MachineCodeForInstruction.h"
#include "llvm/BasicBlock.h"
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/Type.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Support/Debug.h"
#include <cstdlib>
#include <algorithm>
#include <set>
#include "llvm/Target/TargetSchedInfo.h"
#include "../SparcV9Internals.h"
using namespace llvm;
//MSchedGraphSBNode constructor
MSchedGraphSBNode::MSchedGraphSBNode(const MachineInstr* inst,
MSchedGraphSB *graph, unsigned idx,
unsigned late, bool isBranch)
: Inst(inst), Parent(graph), index(idx), latency(late),
isBranchInstr(isBranch) {
//Add to the graph
graph->addNode(inst, this);
}
//MSchedGraphSBNode constructor
MSchedGraphSBNode::MSchedGraphSBNode(const MachineInstr* inst,
std::vector<const MachineInstr*> &other,
MSchedGraphSB *graph, unsigned idx,
unsigned late, bool isPNode)
: Inst(inst), otherInstrs(other), Parent(graph), index(idx), latency(late), isPredicateNode(isPNode) {
isBranchInstr = false;
//Add to the graph
graph->addNode(inst, this);
}
//MSchedGraphSBNode copy constructor
MSchedGraphSBNode::MSchedGraphSBNode(const MSchedGraphSBNode &N)
: Predecessors(N.Predecessors), Successors(N.Successors) {
Inst = N.Inst;
Parent = N.Parent;
index = N.index;
latency = N.latency;
isBranchInstr = N.isBranchInstr;
otherInstrs = N.otherInstrs;
}
//Print the node (instruction and latency)
void MSchedGraphSBNode::print(std::ostream &os) const {
if(!isPredicate())
os << "MSchedGraphSBNode: Inst=" << *Inst << ", latency= " << latency << "\n";
else
os << "Pred Node\n";
}
//Get the edge from a predecessor to this node
MSchedGraphSBEdge MSchedGraphSBNode::getInEdge(MSchedGraphSBNode *pred) {
//Loop over all the successors of our predecessor
//return the edge the corresponds to this in edge
for (MSchedGraphSBNode::succ_iterator I = pred->succ_begin(),
E = pred->succ_end(); I != E; ++I) {
if (*I == this)
return I.getEdge();
}
assert(0 && "Should have found edge between this node and its predecessor!");
abort();
}
//Get the iteration difference for the edge from this node to its successor
unsigned MSchedGraphSBNode::getIteDiff(MSchedGraphSBNode *succ) {
for(std::vector<MSchedGraphSBEdge>::iterator I = Successors.begin(),
E = Successors.end();
I != E; ++I) {
if(I->getDest() == succ)
return I->getIteDiff();
}
return 0;
}
//Get the index into the vector of edges for the edge from pred to this node
unsigned MSchedGraphSBNode::getInEdgeNum(MSchedGraphSBNode *pred) {
//Loop over all the successors of our predecessor
//return the edge the corresponds to this in edge
int count = 0;
for(MSchedGraphSBNode::succ_iterator I = pred->succ_begin(),
E = pred->succ_end();
I != E; ++I) {
if(*I == this)
return count;
count++;
}
assert(0 && "Should have found edge between this node and its predecessor!");
abort();
}
//Determine if succ is a successor of this node
bool MSchedGraphSBNode::isSuccessor(MSchedGraphSBNode *succ) {
for(succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I)
if(*I == succ)
return true;
return false;
}
//Dtermine if pred is a predecessor of this node
bool MSchedGraphSBNode::isPredecessor(MSchedGraphSBNode *pred) {
if(std::find( Predecessors.begin(), Predecessors.end(),
pred) != Predecessors.end())
return true;
else
return false;
}
//Add a node to the graph
void MSchedGraphSB::addNode(const MachineInstr* MI,
MSchedGraphSBNode *node) {
//Make sure node does not already exist
assert(GraphMap.find(MI) == GraphMap.end()
&& "New MSchedGraphSBNode already exists for this instruction");
GraphMap[MI] = node;
}
//Delete a node to the graph
void MSchedGraphSB::deleteNode(MSchedGraphSBNode *node) {
//Delete the edge to this node from all predecessors
while(node->pred_size() > 0) {
//DEBUG(std::cerr << "Delete edge from: " << **P << " to " << *node << "\n");
MSchedGraphSBNode *pred = *(node->pred_begin());
pred->deleteSuccessor(node);
}
//Remove this node from the graph
GraphMap.erase(node->getInst());
}
//Create a graph for a machine block. The ignoreInstrs map is so that
//we ignore instructions associated to the index variable since this
//is a special case in Modulo Scheduling. We only want to deal with
//the body of the loop.
MSchedGraphSB::MSchedGraphSB(std::vector<const MachineBasicBlock*> &bbs,
const TargetMachine &targ,
std::map<const MachineInstr*, unsigned> &ignoreInstrs,
DependenceAnalyzer &DA,
std::map<MachineInstr*, Instruction*> &machineTollvm)
: BBs(bbs), Target(targ) {
//Make sure there is at least one BB and it is not null,
assert(((bbs.size() >= 1) && bbs[1] != NULL) && "Basic Block is null");
std::map<MSchedGraphSBNode*, std::set<MachineInstr*> > liveOutsideTrace;
std::set<const BasicBlock*> llvmBBs;
for(std::vector<const MachineBasicBlock*>::iterator MBB = bbs.begin(), ME = bbs.end()-1;
MBB != ME; ++MBB)
llvmBBs.insert((*MBB)->getBasicBlock());
//create predicate nodes
DEBUG(std::cerr << "Create predicate nodes\n");
for(std::vector<const MachineBasicBlock*>::iterator MBB = bbs.begin(), ME = bbs.end()-1;
MBB != ME; ++MBB) {
//Get LLVM basic block
BasicBlock *BB = (BasicBlock*) (*MBB)->getBasicBlock();
//Get Terminator
BranchInst *b = dyn_cast<BranchInst>(BB->getTerminator());
std::vector<const MachineInstr*> otherInstrs;
MachineInstr *instr = 0;
//Get the condition for the branch (we already checked if it was conditional)
if(b->isConditional()) {
Value *cond = b->getCondition();
DEBUG(std::cerr << "Condition: " << *cond << "\n");
assert(cond && "Condition must not be null!");
if(Instruction *I = dyn_cast<Instruction>(cond)) {
MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(I);
if(tempMvec.size() > 0) {
DEBUG(std::cerr << *(tempMvec[tempMvec.size()-1]) << "\n");;
instr = (MachineInstr*) tempMvec[tempMvec.size()-1];
}
}
}
//Get Machine target information for calculating latency
const TargetInstrInfo *MTI = Target.getInstrInfo();
MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(b);
int offset = tempMvec.size();
for (unsigned j = 0; j < tempMvec.size(); j++) {
MachineInstr *mi = tempMvec[j];
if(MTI->isNop(mi->getOpcode()))
continue;
if(!instr) {
instr = mi;
DEBUG(std::cerr << "No Cond MI: " << *mi << "\n");
}
else {
DEBUG(std::cerr << *mi << "\n");;
otherInstrs.push_back(mi);
}
}
//Node is created and added to the graph automatically
MSchedGraphSBNode *node = new MSchedGraphSBNode(instr, otherInstrs, this, (*MBB)->size()-offset-1, 3, true);
DEBUG(std::cerr << "Created Node: " << *node << "\n");
//Now loop over all instructions and see if their def is live outside the trace
MachineBasicBlock *mb = (MachineBasicBlock*) *MBB;
for(MachineBasicBlock::iterator I = mb->begin(), E = mb->end(); I != E; ++I) {
MachineInstr *instr = I;
if(MTI->isNop(instr->getOpcode()) || MTI->isBranch(instr->getOpcode()))
continue;
if(node->getInst() == instr)
continue;
for(unsigned i=0; i < instr->getNumOperands(); ++i) {
MachineOperand &mOp = instr->getOperand(i);
if(mOp.isDef() && mOp.getType() == MachineOperand::MO_VirtualRegister) {
Value *val = mOp.getVRegValue();
//Check if there is a use not in the trace
for(Value::use_iterator V = val->use_begin(), VE = val->use_end(); V != VE; ++V) {
if (Instruction *Inst = dyn_cast<Instruction>(*V)) {
if(llvmBBs.count(Inst->getParent()))
liveOutsideTrace[node].insert(instr);
}
}
}
}
}
}
//Create nodes and edges for this BB
buildNodesAndEdges(ignoreInstrs, DA, machineTollvm, liveOutsideTrace);
}
//Copies the graph and keeps a map from old to new nodes
MSchedGraphSB::MSchedGraphSB(const MSchedGraphSB &G,
std::map<MSchedGraphSBNode*, MSchedGraphSBNode*> &newNodes)
: Target(G.Target) {
BBs = G.BBs;
std::map<MSchedGraphSBNode*, MSchedGraphSBNode*> oldToNew;
//Copy all nodes
for(MSchedGraphSB::const_iterator N = G.GraphMap.begin(),
NE = G.GraphMap.end(); N != NE; ++N) {
MSchedGraphSBNode *newNode = new MSchedGraphSBNode(*(N->second));
oldToNew[&*(N->second)] = newNode;
newNodes[newNode] = &*(N->second);
GraphMap[&*(N->first)] = newNode;
}
//Loop over nodes and update edges to point to new nodes
for(MSchedGraphSB::iterator N = GraphMap.begin(), NE = GraphMap.end();
N != NE; ++N) {
//Get the node we are dealing with
MSchedGraphSBNode *node = &*(N->second);
node->setParent(this);
//Loop over nodes successors and predecessors and update to the new nodes
for(unsigned i = 0; i < node->pred_size(); ++i) {
node->setPredecessor(i, oldToNew[node->getPredecessor(i)]);
}
for(unsigned i = 0; i < node->succ_size(); ++i) {
MSchedGraphSBEdge *edge = node->getSuccessor(i);
MSchedGraphSBNode *oldDest = edge->getDest();
edge->setDest(oldToNew[oldDest]);
}
}
}
//Deconstructor, deletes all nodes in the graph
MSchedGraphSB::~MSchedGraphSB () {
for(MSchedGraphSB::iterator I = GraphMap.begin(), E = GraphMap.end();
I != E; ++I)
delete I->second;
}
//Print out graph
void MSchedGraphSB::print(std::ostream &os) const {
for(MSchedGraphSB::const_iterator N = GraphMap.begin(), NE = GraphMap.end();
N != NE; ++N) {
//Get the node we are dealing with
MSchedGraphSBNode *node = &*(N->second);
os << "Node Start\n";
node->print(os);
os << "Successors:\n";
//print successors
for(unsigned i = 0; i < node->succ_size(); ++i) {
MSchedGraphSBEdge *edge = node->getSuccessor(i);
MSchedGraphSBNode *oldDest = edge->getDest();
oldDest->print(os);
}
os << "Node End\n";
}
}
//Calculate total delay
int MSchedGraphSB::totalDelay() {
int sum = 0;
for(MSchedGraphSB::const_iterator N = GraphMap.begin(), NE = GraphMap.end();
N != NE; ++N) {
//Get the node we are dealing with
MSchedGraphSBNode *node = &*(N->second);
sum += node->getLatency();
}
return sum;
}
bool MSchedGraphSB::instrCauseException(MachineOpCode opCode) {
//Check for integer divide
if(opCode == V9::SDIVXr || opCode == V9::SDIVXi
|| opCode == V9::UDIVXr || opCode == V9::UDIVXi)
return true;
//Check for loads or stores
const TargetInstrInfo *MTI = Target.getInstrInfo();
//if( MTI->isLoad(opCode) ||
if(MTI->isStore(opCode))
return true;
//Check for any floating point operation
const TargetSchedInfo *msi = Target.getSchedInfo();
InstrSchedClass sc = msi->getSchedClass(opCode);
//FIXME: Should check for floating point instructions!
//if(sc == SPARC_FGA || sc == SPARC_FGM)
//return true;
return false;
}
//Add edges between the nodes
void MSchedGraphSB::buildNodesAndEdges(std::map<const MachineInstr*, unsigned> &ignoreInstrs,
DependenceAnalyzer &DA,
std::map<MachineInstr*, Instruction*> &machineTollvm,
std::map<MSchedGraphSBNode*, std::set<MachineInstr*> > &liveOutsideTrace) {
//Get Machine target information for calculating latency
const TargetInstrInfo *MTI = Target.getInstrInfo();
std::vector<MSchedGraphSBNode*> memInstructions;
std::map<int, std::vector<OpIndexNodePair> > regNumtoNodeMap;
std::map<const Value*, std::vector<OpIndexNodePair> > valuetoNodeMap;
//Save PHI instructions to deal with later
std::vector<const MachineInstr*> phiInstrs;
unsigned index = 0;
MSchedGraphSBNode *lastPred = 0;
for(std::vector<const MachineBasicBlock*>::iterator B = BBs.begin(),
BE = BBs.end(); B != BE; ++B) {
const MachineBasicBlock *BB = *B;
//Loop over instructions in MBB and add nodes and edges
for (MachineBasicBlock::const_iterator MI = BB->begin(), e = BB->end();
MI != e; ++MI) {
//Ignore indvar instructions
if(ignoreInstrs.count(MI)) {
++index;
continue;
}
//Get each instruction of machine basic block, get the delay
//using the op code, create a new node for it, and add to the
//graph.
MachineOpCode opCode = MI->getOpcode();
int delay;
//Get delay
delay = MTI->maxLatency(opCode);
//Create new node for this machine instruction and add to the graph.
//Create only if not a nop
if(MTI->isNop(opCode))
continue;
//Sparc BE does not use PHI opcode, so assert on this case
assert(opCode != TargetInstrInfo::PHI && "Did not expect PHI opcode");
bool isBranch = false;
//Skip branches
if(MTI->isBranch(opCode))
continue;
//Node is created and added to the graph automatically
MSchedGraphSBNode *node = 0;
if(!GraphMap.count(MI)){
node = new MSchedGraphSBNode(MI, this, index, delay);
DEBUG(std::cerr << "Created Node: " << *node << "\n");
}
else {
node = GraphMap[MI];
if(node->isPredicate()) {
//Create edge between this node and last pred, then switch to new pred
if(lastPred) {
lastPred->addOutEdge(node, MSchedGraphSBEdge::PredDep,
MSchedGraphSBEdge::NonDataDep, 0);
if(liveOutsideTrace.count(lastPred)) {
for(std::set<MachineInstr*>::iterator L = liveOutsideTrace[lastPred].begin(), LE = liveOutsideTrace[lastPred].end(); L != LE; ++L)
lastPred->addOutEdge(GraphMap[*L], MSchedGraphSBEdge::PredDep,
MSchedGraphSBEdge::NonDataDep, 1);
}
}
lastPred = node;
}
}
//Add dependencies to instructions that cause exceptions
if(lastPred)
lastPred->print(std::cerr);
if(!node->isPredicate() && instrCauseException(opCode)) {
if(lastPred) {
lastPred->addOutEdge(node, MSchedGraphSBEdge::PredDep,
MSchedGraphSBEdge::NonDataDep, 0);
}
}
//Check OpCode to keep track of memory operations to add memory
//dependencies later.
if(MTI->isLoad(opCode) || MTI->isStore(opCode))
memInstructions.push_back(node);
//Loop over all operands, and put them into the register number to
//graph node map for determining dependencies
//If an operands is a use/def, we have an anti dependence to itself
for(unsigned i=0; i < MI->getNumOperands(); ++i) {
//Get Operand
const MachineOperand &mOp = MI->getOperand(i);
//Check if it has an allocated register
if(mOp.hasAllocatedReg()) {
int regNum = mOp.getReg();
if(regNum != SparcV9::g0) {
//Put into our map
regNumtoNodeMap[regNum].push_back(std::make_pair(i, node));
}
continue;
}
//Add virtual registers dependencies
//Check if any exist in the value map already and create dependencies
//between them.
if(mOp.getType() == MachineOperand::MO_VirtualRegister
|| mOp.getType() == MachineOperand::MO_CCRegister) {
//Make sure virtual register value is not null
assert((mOp.getVRegValue() != NULL) && "Null value is defined");
//Check if this is a read operation in a phi node, if so DO NOT PROCESS
if(mOp.isUse() && (opCode == TargetInstrInfo::PHI)) {
DEBUG(std::cerr << "Read Operation in a PHI node\n");
continue;
}
if (const Value* srcI = mOp.getVRegValue()) {
//Find value in the map
std::map<const Value*, std::vector<OpIndexNodePair> >::iterator V
= valuetoNodeMap.find(srcI);
//If there is something in the map already, add edges from
//those instructions
//to this one we are processing
if(V != valuetoNodeMap.end()) {
addValueEdges(V->second, node, mOp.isUse(), mOp.isDef(), phiInstrs);
//Add to value map
V->second.push_back(std::make_pair(i,node));
}
//Otherwise put it in the map
else
//Put into value map
valuetoNodeMap[mOp.getVRegValue()].push_back(std::make_pair(i, node));
}
}
}
++index;
}
//Loop over LLVM BB, examine phi instructions, and add them to our
//phiInstr list to process
const BasicBlock *llvm_bb = BB->getBasicBlock();
for(BasicBlock::const_iterator I = llvm_bb->begin(), E = llvm_bb->end();
I != E; ++I) {
if(const PHINode *PN = dyn_cast<PHINode>(I)) {
MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(PN);
for (unsigned j = 0; j < tempMvec.size(); j++) {
if(!ignoreInstrs.count(tempMvec[j])) {
DEBUG(std::cerr << "Inserting phi instr into map: " << *tempMvec[j] << "\n");
phiInstrs.push_back((MachineInstr*) tempMvec[j]);
}
}
}
}
addMemEdges(memInstructions, DA, machineTollvm);
addMachRegEdges(regNumtoNodeMap);
//Finally deal with PHI Nodes and Value*
for(std::vector<const MachineInstr*>::iterator I = phiInstrs.begin(),
E = phiInstrs.end(); I != E; ++I) {
//Get Node for this instruction
std::map<const MachineInstr*, MSchedGraphSBNode*>::iterator X;
X = find(*I);
if(X == GraphMap.end())
continue;
MSchedGraphSBNode *node = X->second;
DEBUG(std::cerr << "Adding ite diff edges for node: " << *node << "\n");
//Loop over operands for this instruction and add value edges
for(unsigned i=0; i < (*I)->getNumOperands(); ++i) {
//Get Operand
const MachineOperand &mOp = (*I)->getOperand(i);
if((mOp.getType() == MachineOperand::MO_VirtualRegister
|| mOp.getType() == MachineOperand::MO_CCRegister) && mOp.isUse()) {
//find the value in the map
if (const Value* srcI = mOp.getVRegValue()) {
//Find value in the map
std::map<const Value*, std::vector<OpIndexNodePair> >::iterator V
= valuetoNodeMap.find(srcI);
//If there is something in the map already, add edges from
//those instructions
//to this one we are processing
if(V != valuetoNodeMap.end()) {
addValueEdges(V->second, node, mOp.isUse(), mOp.isDef(),
phiInstrs, 1);
}
}
}
}
}
}
}
//Add dependencies for Value*s
void MSchedGraphSB::addValueEdges(std::vector<OpIndexNodePair> &NodesInMap,
MSchedGraphSBNode *destNode, bool nodeIsUse,
bool nodeIsDef, std::vector<const MachineInstr*> &phiInstrs, int diff) {
for(std::vector<OpIndexNodePair>::iterator I = NodesInMap.begin(),
E = NodesInMap.end(); I != E; ++I) {
//Get node in vectors machine operand that is the same value as node
MSchedGraphSBNode *srcNode = I->second;
MachineOperand mOp = srcNode->getInst()->getOperand(I->first);
if(diff > 0)
if(std::find(phiInstrs.begin(), phiInstrs.end(), srcNode->getInst()) == phiInstrs.end())
continue;
//Node is a Def, so add output dep.
if(nodeIsDef) {
if(mOp.isUse()) {
DEBUG(std::cerr << "Edge from " << *srcNode << " to " << *destNode << " (itediff=" << diff << ", type=anti)\n");
srcNode->addOutEdge(destNode, MSchedGraphSBEdge::ValueDep,
MSchedGraphSBEdge::AntiDep, diff);
}
if(mOp.isDef()) {
DEBUG(std::cerr << "Edge from " << *srcNode << " to " << *destNode << " (itediff=" << diff << ", type=output)\n");
srcNode->addOutEdge(destNode, MSchedGraphSBEdge::ValueDep,
MSchedGraphSBEdge::OutputDep, diff);
}
}
if(nodeIsUse) {
if(mOp.isDef()) {
DEBUG(std::cerr << "Edge from " << *srcNode << " to " << *destNode << " (itediff=" << diff << ", type=true)\n");
srcNode->addOutEdge(destNode, MSchedGraphSBEdge::ValueDep,
MSchedGraphSBEdge::TrueDep, diff);
}
}
}
}
//Add dependencies for machine registers across iterations
void MSchedGraphSB::addMachRegEdges(std::map<int, std::vector<OpIndexNodePair> >& regNumtoNodeMap) {
//Loop over all machine registers in the map, and add dependencies
//between the instructions that use it
typedef std::map<int, std::vector<OpIndexNodePair> > regNodeMap;
for(regNodeMap::iterator I = regNumtoNodeMap.begin();
I != regNumtoNodeMap.end(); ++I) {
//Get the register number
int regNum = (*I).first;
//Get Vector of nodes that use this register
std::vector<OpIndexNodePair> Nodes = (*I).second;
//Loop over nodes and determine the dependence between the other
//nodes in the vector
for(unsigned i =0; i < Nodes.size(); ++i) {
//Get src node operator index that uses this machine register
int srcOpIndex = Nodes[i].first;
//Get the actual src Node
MSchedGraphSBNode *srcNode = Nodes[i].second;
//Get Operand
const MachineOperand &srcMOp = srcNode->getInst()->getOperand(srcOpIndex);
bool srcIsUseandDef = srcMOp.isDef() && srcMOp.isUse();
bool srcIsUse = srcMOp.isUse() && !srcMOp.isDef();
//Look at all instructions after this in execution order
for(unsigned j=i+1; j < Nodes.size(); ++j) {
//Sink node is a write
if(Nodes[j].second->getInst()->getOperand(Nodes[j].first).isDef()) {
//Src only uses the register (read)
if(srcIsUse)
srcNode->addOutEdge(Nodes[j].second,
MSchedGraphSBEdge::MachineRegister,
MSchedGraphSBEdge::AntiDep);
else if(srcIsUseandDef) {
srcNode->addOutEdge(Nodes[j].second,
MSchedGraphSBEdge::MachineRegister,
MSchedGraphSBEdge::AntiDep);
srcNode->addOutEdge(Nodes[j].second,
MSchedGraphSBEdge::MachineRegister,
MSchedGraphSBEdge::OutputDep);
}
else
srcNode->addOutEdge(Nodes[j].second,
MSchedGraphSBEdge::MachineRegister,
MSchedGraphSBEdge::OutputDep);
}
//Dest node is a read
else {
if(!srcIsUse || srcIsUseandDef)
srcNode->addOutEdge(Nodes[j].second,
MSchedGraphSBEdge::MachineRegister,
MSchedGraphSBEdge::TrueDep);
}
}
//Look at all the instructions before this one since machine registers
//could live across iterations.
for(unsigned j = 0; j < i; ++j) {
//Sink node is a write
if(Nodes[j].second->getInst()->getOperand(Nodes[j].first).isDef()) {
//Src only uses the register (read)
if(srcIsUse)
srcNode->addOutEdge(Nodes[j].second,
MSchedGraphSBEdge::MachineRegister,
MSchedGraphSBEdge::AntiDep, 1);
else if(srcIsUseandDef) {
srcNode->addOutEdge(Nodes[j].second,
MSchedGraphSBEdge::MachineRegister,
MSchedGraphSBEdge::AntiDep, 1);
srcNode->addOutEdge(Nodes[j].second,
MSchedGraphSBEdge::MachineRegister,
MSchedGraphSBEdge::OutputDep, 1);
}
else
srcNode->addOutEdge(Nodes[j].second,
MSchedGraphSBEdge::MachineRegister,
MSchedGraphSBEdge::OutputDep, 1);
}
//Dest node is a read
else {
if(!srcIsUse || srcIsUseandDef)
srcNode->addOutEdge(Nodes[j].second,
MSchedGraphSBEdge::MachineRegister,
MSchedGraphSBEdge::TrueDep,1 );
}
}
}
}
}
//Add edges between all loads and stores
//Can be less strict with alias analysis and data dependence analysis.
void MSchedGraphSB::addMemEdges(const std::vector<MSchedGraphSBNode*>& memInst,
DependenceAnalyzer &DA,
std::map<MachineInstr*, Instruction*> &machineTollvm) {
//Get Target machine instruction info
const TargetInstrInfo *TMI = Target.getInstrInfo();
//Loop over all memory instructions in the vector
//Knowing that they are in execution, add true, anti, and output dependencies
for (unsigned srcIndex = 0; srcIndex < memInst.size(); ++srcIndex) {
MachineInstr *srcInst = (MachineInstr*) memInst[srcIndex]->getInst();
//Get the machine opCode to determine type of memory instruction
MachineOpCode srcNodeOpCode = srcInst->getOpcode();
//All instructions after this one in execution order have an
//iteration delay of 0
for(unsigned destIndex = 0; destIndex < memInst.size(); ++destIndex) {
//No self loops
if(destIndex == srcIndex)
continue;
MachineInstr *destInst = (MachineInstr*) memInst[destIndex]->getInst();
DEBUG(std::cerr << "MInst1: " << *srcInst << "\n");
DEBUG(std::cerr << "MInst2: " << *destInst << "\n");
//Assuming instructions without corresponding llvm instructions
//are from constant pools.
if (!machineTollvm.count(srcInst) || !machineTollvm.count(destInst))
continue;
bool useDepAnalyzer = true;
//Some machine loads and stores are generated by casts, so be
//conservative and always add deps
Instruction *srcLLVM = machineTollvm[srcInst];
Instruction *destLLVM = machineTollvm[destInst];
if(!isa<LoadInst>(srcLLVM)
&& !isa<StoreInst>(srcLLVM)) {
if(isa<BinaryOperator>(srcLLVM)) {
if(isa<ConstantFP>(srcLLVM->getOperand(0)) || isa<ConstantFP>(srcLLVM->getOperand(1)))
continue;
}
useDepAnalyzer = false;
}
if(!isa<LoadInst>(destLLVM)
&& !isa<StoreInst>(destLLVM)) {
if(isa<BinaryOperator>(destLLVM)) {
if(isa<ConstantFP>(destLLVM->getOperand(0)) || isa<ConstantFP>(destLLVM->getOperand(1)))
continue;
}
useDepAnalyzer = false;
}
//Use dep analysis when we have corresponding llvm loads/stores
if(useDepAnalyzer) {
bool srcBeforeDest = true;
if(destIndex < srcIndex)
srcBeforeDest = false;
DependenceResult dr = DA.getDependenceInfo(machineTollvm[srcInst],
machineTollvm[destInst],
srcBeforeDest);
for(std::vector<Dependence>::iterator d = dr.dependences.begin(),
de = dr.dependences.end(); d != de; ++d) {
//Add edge from load to store
memInst[srcIndex]->addOutEdge(memInst[destIndex],
MSchedGraphSBEdge::MemoryDep,
d->getDepType(), d->getIteDiff());
}
}
//Otherwise, we can not do any further analysis and must make a dependence
else {
//Get the machine opCode to determine type of memory instruction
MachineOpCode destNodeOpCode = destInst->getOpcode();
//Get the Value* that we are reading from the load, always the first op
const MachineOperand &mOp = srcInst->getOperand(0);
const MachineOperand &mOp2 = destInst->getOperand(0);
if(mOp.hasAllocatedReg())
if(mOp.getReg() == SparcV9::g0)
continue;
if(mOp2.hasAllocatedReg())
if(mOp2.getReg() == SparcV9::g0)
continue;
DEBUG(std::cerr << "Adding dependence for machine instructions\n");
//Load-Store deps
if(TMI->isLoad(srcNodeOpCode)) {
if(TMI->isStore(destNodeOpCode))
memInst[srcIndex]->addOutEdge(memInst[destIndex],
MSchedGraphSBEdge::MemoryDep,
MSchedGraphSBEdge::AntiDep, 0);
}
else if(TMI->isStore(srcNodeOpCode)) {
if(TMI->isStore(destNodeOpCode))
memInst[srcIndex]->addOutEdge(memInst[destIndex],
MSchedGraphSBEdge::MemoryDep,
MSchedGraphSBEdge::OutputDep, 0);
else
memInst[srcIndex]->addOutEdge(memInst[destIndex],
MSchedGraphSBEdge::MemoryDep,
MSchedGraphSBEdge::TrueDep, 0);
}
}
}
}
}