mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-12 02:33:33 +00:00
b501d4f673
aliases installed and working. They now work when the matched pattern and the result instruction have exactly the same operand list. This is now enough for us to define proper aliases for movzx and movsx, implementing rdar://8017633 and PR7459. Note that we do not accept instructions like: movzx 0(%rsp), %rsi GAS accepts this instruction, but it doesn't make any sense because we don't know the size of the memory operand. It could be 8/16/32 bits. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@117901 91177308-0d34-0410-b5e6-96231b3b80d8
1885 lines
66 KiB
C++
1885 lines
66 KiB
C++
//===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This tablegen backend emits a target specifier matcher for converting parsed
|
|
// assembly operands in the MCInst structures.
|
|
//
|
|
// The input to the target specific matcher is a list of literal tokens and
|
|
// operands. The target specific parser should generally eliminate any syntax
|
|
// which is not relevant for matching; for example, comma tokens should have
|
|
// already been consumed and eliminated by the parser. Most instructions will
|
|
// end up with a single literal token (the instruction name) and some number of
|
|
// operands.
|
|
//
|
|
// Some example inputs, for X86:
|
|
// 'addl' (immediate ...) (register ...)
|
|
// 'add' (immediate ...) (memory ...)
|
|
// 'call' '*' %epc
|
|
//
|
|
// The assembly matcher is responsible for converting this input into a precise
|
|
// machine instruction (i.e., an instruction with a well defined encoding). This
|
|
// mapping has several properties which complicate matching:
|
|
//
|
|
// - It may be ambiguous; many architectures can legally encode particular
|
|
// variants of an instruction in different ways (for example, using a smaller
|
|
// encoding for small immediates). Such ambiguities should never be
|
|
// arbitrarily resolved by the assembler, the assembler is always responsible
|
|
// for choosing the "best" available instruction.
|
|
//
|
|
// - It may depend on the subtarget or the assembler context. Instructions
|
|
// which are invalid for the current mode, but otherwise unambiguous (e.g.,
|
|
// an SSE instruction in a file being assembled for i486) should be accepted
|
|
// and rejected by the assembler front end. However, if the proper encoding
|
|
// for an instruction is dependent on the assembler context then the matcher
|
|
// is responsible for selecting the correct machine instruction for the
|
|
// current mode.
|
|
//
|
|
// The core matching algorithm attempts to exploit the regularity in most
|
|
// instruction sets to quickly determine the set of possibly matching
|
|
// instructions, and the simplify the generated code. Additionally, this helps
|
|
// to ensure that the ambiguities are intentionally resolved by the user.
|
|
//
|
|
// The matching is divided into two distinct phases:
|
|
//
|
|
// 1. Classification: Each operand is mapped to the unique set which (a)
|
|
// contains it, and (b) is the largest such subset for which a single
|
|
// instruction could match all members.
|
|
//
|
|
// For register classes, we can generate these subgroups automatically. For
|
|
// arbitrary operands, we expect the user to define the classes and their
|
|
// relations to one another (for example, 8-bit signed immediates as a
|
|
// subset of 32-bit immediates).
|
|
//
|
|
// By partitioning the operands in this way, we guarantee that for any
|
|
// tuple of classes, any single instruction must match either all or none
|
|
// of the sets of operands which could classify to that tuple.
|
|
//
|
|
// In addition, the subset relation amongst classes induces a partial order
|
|
// on such tuples, which we use to resolve ambiguities.
|
|
//
|
|
// FIXME: What do we do if a crazy case shows up where this is the wrong
|
|
// resolution?
|
|
//
|
|
// 2. The input can now be treated as a tuple of classes (static tokens are
|
|
// simple singleton sets). Each such tuple should generally map to a single
|
|
// instruction (we currently ignore cases where this isn't true, whee!!!),
|
|
// which we can emit a simple matcher for.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AsmMatcherEmitter.h"
|
|
#include "CodeGenTarget.h"
|
|
#include "Record.h"
|
|
#include "StringMatcher.h"
|
|
#include "llvm/ADT/OwningPtr.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include <list>
|
|
#include <map>
|
|
#include <set>
|
|
using namespace llvm;
|
|
|
|
static cl::opt<std::string>
|
|
MatchPrefix("match-prefix", cl::init(""),
|
|
cl::desc("Only match instructions with the given prefix"));
|
|
|
|
/// TokenizeAsmString - Tokenize a simplified assembly string.
|
|
static void TokenizeAsmString(StringRef AsmString,
|
|
SmallVectorImpl<StringRef> &Tokens) {
|
|
unsigned Prev = 0;
|
|
bool InTok = true;
|
|
for (unsigned i = 0, e = AsmString.size(); i != e; ++i) {
|
|
switch (AsmString[i]) {
|
|
case '[':
|
|
case ']':
|
|
case '*':
|
|
case '!':
|
|
case ' ':
|
|
case '\t':
|
|
case ',':
|
|
if (InTok) {
|
|
Tokens.push_back(AsmString.slice(Prev, i));
|
|
InTok = false;
|
|
}
|
|
if (!isspace(AsmString[i]) && AsmString[i] != ',')
|
|
Tokens.push_back(AsmString.substr(i, 1));
|
|
Prev = i + 1;
|
|
break;
|
|
|
|
case '\\':
|
|
if (InTok) {
|
|
Tokens.push_back(AsmString.slice(Prev, i));
|
|
InTok = false;
|
|
}
|
|
++i;
|
|
assert(i != AsmString.size() && "Invalid quoted character");
|
|
Tokens.push_back(AsmString.substr(i, 1));
|
|
Prev = i + 1;
|
|
break;
|
|
|
|
case '$': {
|
|
// If this isn't "${", treat like a normal token.
|
|
if (i + 1 == AsmString.size() || AsmString[i + 1] != '{') {
|
|
if (InTok) {
|
|
Tokens.push_back(AsmString.slice(Prev, i));
|
|
InTok = false;
|
|
}
|
|
Prev = i;
|
|
break;
|
|
}
|
|
|
|
if (InTok) {
|
|
Tokens.push_back(AsmString.slice(Prev, i));
|
|
InTok = false;
|
|
}
|
|
|
|
StringRef::iterator End =
|
|
std::find(AsmString.begin() + i, AsmString.end(), '}');
|
|
assert(End != AsmString.end() && "Missing brace in operand reference!");
|
|
size_t EndPos = End - AsmString.begin();
|
|
Tokens.push_back(AsmString.slice(i, EndPos+1));
|
|
Prev = EndPos + 1;
|
|
i = EndPos;
|
|
break;
|
|
}
|
|
|
|
case '.':
|
|
if (InTok) {
|
|
Tokens.push_back(AsmString.slice(Prev, i));
|
|
}
|
|
Prev = i;
|
|
InTok = true;
|
|
break;
|
|
|
|
default:
|
|
InTok = true;
|
|
}
|
|
}
|
|
if (InTok && Prev != AsmString.size())
|
|
Tokens.push_back(AsmString.substr(Prev));
|
|
}
|
|
|
|
|
|
namespace {
|
|
class AsmMatcherInfo;
|
|
struct SubtargetFeatureInfo;
|
|
|
|
/// ClassInfo - Helper class for storing the information about a particular
|
|
/// class of operands which can be matched.
|
|
struct ClassInfo {
|
|
enum ClassInfoKind {
|
|
/// Invalid kind, for use as a sentinel value.
|
|
Invalid = 0,
|
|
|
|
/// The class for a particular token.
|
|
Token,
|
|
|
|
/// The (first) register class, subsequent register classes are
|
|
/// RegisterClass0+1, and so on.
|
|
RegisterClass0,
|
|
|
|
/// The (first) user defined class, subsequent user defined classes are
|
|
/// UserClass0+1, and so on.
|
|
UserClass0 = 1<<16
|
|
};
|
|
|
|
/// Kind - The class kind, which is either a predefined kind, or (UserClass0 +
|
|
/// N) for the Nth user defined class.
|
|
unsigned Kind;
|
|
|
|
/// SuperClasses - The super classes of this class. Note that for simplicities
|
|
/// sake user operands only record their immediate super class, while register
|
|
/// operands include all superclasses.
|
|
std::vector<ClassInfo*> SuperClasses;
|
|
|
|
/// Name - The full class name, suitable for use in an enum.
|
|
std::string Name;
|
|
|
|
/// ClassName - The unadorned generic name for this class (e.g., Token).
|
|
std::string ClassName;
|
|
|
|
/// ValueName - The name of the value this class represents; for a token this
|
|
/// is the literal token string, for an operand it is the TableGen class (or
|
|
/// empty if this is a derived class).
|
|
std::string ValueName;
|
|
|
|
/// PredicateMethod - The name of the operand method to test whether the
|
|
/// operand matches this class; this is not valid for Token or register kinds.
|
|
std::string PredicateMethod;
|
|
|
|
/// RenderMethod - The name of the operand method to add this operand to an
|
|
/// MCInst; this is not valid for Token or register kinds.
|
|
std::string RenderMethod;
|
|
|
|
/// For register classes, the records for all the registers in this class.
|
|
std::set<Record*> Registers;
|
|
|
|
public:
|
|
/// isRegisterClass() - Check if this is a register class.
|
|
bool isRegisterClass() const {
|
|
return Kind >= RegisterClass0 && Kind < UserClass0;
|
|
}
|
|
|
|
/// isUserClass() - Check if this is a user defined class.
|
|
bool isUserClass() const {
|
|
return Kind >= UserClass0;
|
|
}
|
|
|
|
/// isRelatedTo - Check whether this class is "related" to \arg RHS. Classes
|
|
/// are related if they are in the same class hierarchy.
|
|
bool isRelatedTo(const ClassInfo &RHS) const {
|
|
// Tokens are only related to tokens.
|
|
if (Kind == Token || RHS.Kind == Token)
|
|
return Kind == Token && RHS.Kind == Token;
|
|
|
|
// Registers classes are only related to registers classes, and only if
|
|
// their intersection is non-empty.
|
|
if (isRegisterClass() || RHS.isRegisterClass()) {
|
|
if (!isRegisterClass() || !RHS.isRegisterClass())
|
|
return false;
|
|
|
|
std::set<Record*> Tmp;
|
|
std::insert_iterator< std::set<Record*> > II(Tmp, Tmp.begin());
|
|
std::set_intersection(Registers.begin(), Registers.end(),
|
|
RHS.Registers.begin(), RHS.Registers.end(),
|
|
II);
|
|
|
|
return !Tmp.empty();
|
|
}
|
|
|
|
// Otherwise we have two users operands; they are related if they are in the
|
|
// same class hierarchy.
|
|
//
|
|
// FIXME: This is an oversimplification, they should only be related if they
|
|
// intersect, however we don't have that information.
|
|
assert(isUserClass() && RHS.isUserClass() && "Unexpected class!");
|
|
const ClassInfo *Root = this;
|
|
while (!Root->SuperClasses.empty())
|
|
Root = Root->SuperClasses.front();
|
|
|
|
const ClassInfo *RHSRoot = &RHS;
|
|
while (!RHSRoot->SuperClasses.empty())
|
|
RHSRoot = RHSRoot->SuperClasses.front();
|
|
|
|
return Root == RHSRoot;
|
|
}
|
|
|
|
/// isSubsetOf - Test whether this class is a subset of \arg RHS;
|
|
bool isSubsetOf(const ClassInfo &RHS) const {
|
|
// This is a subset of RHS if it is the same class...
|
|
if (this == &RHS)
|
|
return true;
|
|
|
|
// ... or if any of its super classes are a subset of RHS.
|
|
for (std::vector<ClassInfo*>::const_iterator it = SuperClasses.begin(),
|
|
ie = SuperClasses.end(); it != ie; ++it)
|
|
if ((*it)->isSubsetOf(RHS))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// operator< - Compare two classes.
|
|
bool operator<(const ClassInfo &RHS) const {
|
|
if (this == &RHS)
|
|
return false;
|
|
|
|
// Unrelated classes can be ordered by kind.
|
|
if (!isRelatedTo(RHS))
|
|
return Kind < RHS.Kind;
|
|
|
|
switch (Kind) {
|
|
case Invalid:
|
|
assert(0 && "Invalid kind!");
|
|
case Token:
|
|
// Tokens are comparable by value.
|
|
//
|
|
// FIXME: Compare by enum value.
|
|
return ValueName < RHS.ValueName;
|
|
|
|
default:
|
|
// This class preceeds the RHS if it is a proper subset of the RHS.
|
|
if (isSubsetOf(RHS))
|
|
return true;
|
|
if (RHS.isSubsetOf(*this))
|
|
return false;
|
|
|
|
// Otherwise, order by name to ensure we have a total ordering.
|
|
return ValueName < RHS.ValueName;
|
|
}
|
|
}
|
|
};
|
|
|
|
/// MatchableInfo - Helper class for storing the necessary information for an
|
|
/// instruction or alias which is capable of being matched.
|
|
struct MatchableInfo {
|
|
struct Operand {
|
|
/// The unique class instance this operand should match.
|
|
ClassInfo *Class;
|
|
|
|
/// The original operand this corresponds to, if any.
|
|
const CGIOperandList::OperandInfo *OperandInfo;
|
|
};
|
|
|
|
/// InstrName - The target name for this instruction.
|
|
std::string InstrName;
|
|
|
|
Record *const TheDef;
|
|
const CGIOperandList &OperandList;
|
|
|
|
/// AsmString - The assembly string for this instruction (with variants
|
|
/// removed).
|
|
std::string AsmString;
|
|
|
|
/// Tokens - The tokenized assembly pattern that this instruction matches.
|
|
SmallVector<StringRef, 4> Tokens;
|
|
|
|
/// Operands - The operands that this instruction matches.
|
|
SmallVector<Operand, 4> Operands;
|
|
|
|
/// Predicates - The required subtarget features to match this instruction.
|
|
SmallVector<SubtargetFeatureInfo*, 4> RequiredFeatures;
|
|
|
|
/// ConversionFnKind - The enum value which is passed to the generated
|
|
/// ConvertToMCInst to convert parsed operands into an MCInst for this
|
|
/// function.
|
|
std::string ConversionFnKind;
|
|
|
|
MatchableInfo(const CodeGenInstruction &CGI)
|
|
: TheDef(CGI.TheDef), OperandList(CGI.Operands), AsmString(CGI.AsmString) {
|
|
InstrName = TheDef->getName();
|
|
}
|
|
|
|
MatchableInfo(const CodeGenInstAlias *Alias)
|
|
: TheDef(Alias->TheDef), OperandList(Alias->Operands),
|
|
AsmString(Alias->AsmString) {
|
|
|
|
// FIXME: Huge hack.
|
|
DefInit *DI = dynamic_cast<DefInit*>(Alias->Result->getOperator());
|
|
assert(DI);
|
|
|
|
InstrName = DI->getDef()->getName();
|
|
}
|
|
|
|
void Initialize(const AsmMatcherInfo &Info,
|
|
SmallPtrSet<Record*, 16> &SingletonRegisters);
|
|
|
|
/// Validate - Return true if this matchable is a valid thing to match against
|
|
/// and perform a bunch of validity checking.
|
|
bool Validate(StringRef CommentDelimiter, bool Hack) const;
|
|
|
|
/// getSingletonRegisterForToken - If the specified token is a singleton
|
|
/// register, return the Record for it, otherwise return null.
|
|
Record *getSingletonRegisterForToken(unsigned i,
|
|
const AsmMatcherInfo &Info) const;
|
|
|
|
/// operator< - Compare two matchables.
|
|
bool operator<(const MatchableInfo &RHS) const {
|
|
// The primary comparator is the instruction mnemonic.
|
|
if (Tokens[0] != RHS.Tokens[0])
|
|
return Tokens[0] < RHS.Tokens[0];
|
|
|
|
if (Operands.size() != RHS.Operands.size())
|
|
return Operands.size() < RHS.Operands.size();
|
|
|
|
// Compare lexicographically by operand. The matcher validates that other
|
|
// orderings wouldn't be ambiguous using \see CouldMatchAmiguouslyWith().
|
|
for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
|
|
if (*Operands[i].Class < *RHS.Operands[i].Class)
|
|
return true;
|
|
if (*RHS.Operands[i].Class < *Operands[i].Class)
|
|
return false;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// CouldMatchAmiguouslyWith - Check whether this matchable could
|
|
/// ambiguously match the same set of operands as \arg RHS (without being a
|
|
/// strictly superior match).
|
|
bool CouldMatchAmiguouslyWith(const MatchableInfo &RHS) {
|
|
// The number of operands is unambiguous.
|
|
if (Operands.size() != RHS.Operands.size())
|
|
return false;
|
|
|
|
// Otherwise, make sure the ordering of the two instructions is unambiguous
|
|
// by checking that either (a) a token or operand kind discriminates them,
|
|
// or (b) the ordering among equivalent kinds is consistent.
|
|
|
|
// Tokens and operand kinds are unambiguous (assuming a correct target
|
|
// specific parser).
|
|
for (unsigned i = 0, e = Operands.size(); i != e; ++i)
|
|
if (Operands[i].Class->Kind != RHS.Operands[i].Class->Kind ||
|
|
Operands[i].Class->Kind == ClassInfo::Token)
|
|
if (*Operands[i].Class < *RHS.Operands[i].Class ||
|
|
*RHS.Operands[i].Class < *Operands[i].Class)
|
|
return false;
|
|
|
|
// Otherwise, this operand could commute if all operands are equivalent, or
|
|
// there is a pair of operands that compare less than and a pair that
|
|
// compare greater than.
|
|
bool HasLT = false, HasGT = false;
|
|
for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
|
|
if (*Operands[i].Class < *RHS.Operands[i].Class)
|
|
HasLT = true;
|
|
if (*RHS.Operands[i].Class < *Operands[i].Class)
|
|
HasGT = true;
|
|
}
|
|
|
|
return !(HasLT ^ HasGT);
|
|
}
|
|
|
|
void dump();
|
|
};
|
|
|
|
/// SubtargetFeatureInfo - Helper class for storing information on a subtarget
|
|
/// feature which participates in instruction matching.
|
|
struct SubtargetFeatureInfo {
|
|
/// \brief The predicate record for this feature.
|
|
Record *TheDef;
|
|
|
|
/// \brief An unique index assigned to represent this feature.
|
|
unsigned Index;
|
|
|
|
SubtargetFeatureInfo(Record *D, unsigned Idx) : TheDef(D), Index(Idx) {}
|
|
|
|
/// \brief The name of the enumerated constant identifying this feature.
|
|
std::string getEnumName() const {
|
|
return "Feature_" + TheDef->getName();
|
|
}
|
|
};
|
|
|
|
class AsmMatcherInfo {
|
|
public:
|
|
/// The tablegen AsmParser record.
|
|
Record *AsmParser;
|
|
|
|
/// Target - The target information.
|
|
CodeGenTarget &Target;
|
|
|
|
/// The AsmParser "RegisterPrefix" value.
|
|
std::string RegisterPrefix;
|
|
|
|
/// The classes which are needed for matching.
|
|
std::vector<ClassInfo*> Classes;
|
|
|
|
/// The information on the matchables to match.
|
|
std::vector<MatchableInfo*> Matchables;
|
|
|
|
/// Map of Register records to their class information.
|
|
std::map<Record*, ClassInfo*> RegisterClasses;
|
|
|
|
/// Map of Predicate records to their subtarget information.
|
|
std::map<Record*, SubtargetFeatureInfo*> SubtargetFeatures;
|
|
|
|
private:
|
|
/// Map of token to class information which has already been constructed.
|
|
std::map<std::string, ClassInfo*> TokenClasses;
|
|
|
|
/// Map of RegisterClass records to their class information.
|
|
std::map<Record*, ClassInfo*> RegisterClassClasses;
|
|
|
|
/// Map of AsmOperandClass records to their class information.
|
|
std::map<Record*, ClassInfo*> AsmOperandClasses;
|
|
|
|
private:
|
|
/// getTokenClass - Lookup or create the class for the given token.
|
|
ClassInfo *getTokenClass(StringRef Token);
|
|
|
|
/// getOperandClass - Lookup or create the class for the given operand.
|
|
ClassInfo *getOperandClass(StringRef Token,
|
|
const CGIOperandList::OperandInfo &OI);
|
|
|
|
/// BuildRegisterClasses - Build the ClassInfo* instances for register
|
|
/// classes.
|
|
void BuildRegisterClasses(SmallPtrSet<Record*, 16> &SingletonRegisters);
|
|
|
|
/// BuildOperandClasses - Build the ClassInfo* instances for user defined
|
|
/// operand classes.
|
|
void BuildOperandClasses();
|
|
|
|
public:
|
|
AsmMatcherInfo(Record *AsmParser, CodeGenTarget &Target);
|
|
|
|
/// BuildInfo - Construct the various tables used during matching.
|
|
void BuildInfo();
|
|
|
|
/// getSubtargetFeature - Lookup or create the subtarget feature info for the
|
|
/// given operand.
|
|
SubtargetFeatureInfo *getSubtargetFeature(Record *Def) const {
|
|
assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!");
|
|
std::map<Record*, SubtargetFeatureInfo*>::const_iterator I =
|
|
SubtargetFeatures.find(Def);
|
|
return I == SubtargetFeatures.end() ? 0 : I->second;
|
|
}
|
|
};
|
|
|
|
}
|
|
|
|
void MatchableInfo::dump() {
|
|
errs() << InstrName << " -- " << "flattened:\"" << AsmString << '\"'
|
|
<< ", tokens:[";
|
|
for (unsigned i = 0, e = Tokens.size(); i != e; ++i) {
|
|
errs() << Tokens[i];
|
|
if (i + 1 != e)
|
|
errs() << ", ";
|
|
}
|
|
errs() << "]\n";
|
|
|
|
for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
|
|
Operand &Op = Operands[i];
|
|
errs() << " op[" << i << "] = " << Op.Class->ClassName << " - ";
|
|
if (Op.Class->Kind == ClassInfo::Token) {
|
|
errs() << '\"' << Tokens[i] << "\"\n";
|
|
continue;
|
|
}
|
|
|
|
if (!Op.OperandInfo) {
|
|
errs() << "(singleton register)\n";
|
|
continue;
|
|
}
|
|
|
|
const CGIOperandList::OperandInfo &OI = *Op.OperandInfo;
|
|
errs() << OI.Name << " " << OI.Rec->getName()
|
|
<< " (" << OI.MIOperandNo << ", " << OI.MINumOperands << ")\n";
|
|
}
|
|
}
|
|
|
|
void MatchableInfo::Initialize(const AsmMatcherInfo &Info,
|
|
SmallPtrSet<Record*, 16> &SingletonRegisters) {
|
|
// TODO: Eventually support asmparser for Variant != 0.
|
|
AsmString = CodeGenInstruction::FlattenAsmStringVariants(AsmString, 0);
|
|
|
|
TokenizeAsmString(AsmString, Tokens);
|
|
|
|
// Compute the require features.
|
|
std::vector<Record*> Predicates =TheDef->getValueAsListOfDefs("Predicates");
|
|
for (unsigned i = 0, e = Predicates.size(); i != e; ++i)
|
|
if (SubtargetFeatureInfo *Feature =
|
|
Info.getSubtargetFeature(Predicates[i]))
|
|
RequiredFeatures.push_back(Feature);
|
|
|
|
// Collect singleton registers, if used.
|
|
for (unsigned i = 0, e = Tokens.size(); i != e; ++i) {
|
|
if (Record *Reg = getSingletonRegisterForToken(i, Info))
|
|
SingletonRegisters.insert(Reg);
|
|
}
|
|
}
|
|
|
|
|
|
/// getRegisterRecord - Get the register record for \arg name, or 0.
|
|
static Record *getRegisterRecord(CodeGenTarget &Target, StringRef Name) {
|
|
for (unsigned i = 0, e = Target.getRegisters().size(); i != e; ++i) {
|
|
const CodeGenRegister &Reg = Target.getRegisters()[i];
|
|
if (Name == Reg.TheDef->getValueAsString("AsmName"))
|
|
return Reg.TheDef;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
bool MatchableInfo::Validate(StringRef CommentDelimiter, bool Hack) const {
|
|
// Reject matchables with no .s string.
|
|
if (AsmString.empty())
|
|
throw TGError(TheDef->getLoc(), "instruction with empty asm string");
|
|
|
|
// Reject any matchables with a newline in them, they should be marked
|
|
// isCodeGenOnly if they are pseudo instructions.
|
|
if (AsmString.find('\n') != std::string::npos)
|
|
throw TGError(TheDef->getLoc(),
|
|
"multiline instruction is not valid for the asmparser, "
|
|
"mark it isCodeGenOnly");
|
|
|
|
// Remove comments from the asm string. We know that the asmstring only
|
|
// has one line.
|
|
if (!CommentDelimiter.empty() &&
|
|
StringRef(AsmString).find(CommentDelimiter) != StringRef::npos)
|
|
throw TGError(TheDef->getLoc(),
|
|
"asmstring for instruction has comment character in it, "
|
|
"mark it isCodeGenOnly");
|
|
|
|
// Reject matchables with operand modifiers, these aren't something we can
|
|
/// handle, the target should be refactored to use operands instead of
|
|
/// modifiers.
|
|
//
|
|
// Also, check for instructions which reference the operand multiple times;
|
|
// this implies a constraint we would not honor.
|
|
std::set<std::string> OperandNames;
|
|
for (unsigned i = 1, e = Tokens.size(); i < e; ++i) {
|
|
if (Tokens[i][0] == '$' && Tokens[i].find(':') != StringRef::npos)
|
|
throw TGError(TheDef->getLoc(),
|
|
"matchable with operand modifier '" + Tokens[i].str() +
|
|
"' not supported by asm matcher. Mark isCodeGenOnly!");
|
|
|
|
// Verify that any operand is only mentioned once.
|
|
if (Tokens[i][0] == '$' && !OperandNames.insert(Tokens[i]).second) {
|
|
if (!Hack)
|
|
throw TGError(TheDef->getLoc(),
|
|
"ERROR: matchable with tied operand '" + Tokens[i].str() +
|
|
"' can never be matched!");
|
|
// FIXME: Should reject these. The ARM backend hits this with $lane in a
|
|
// bunch of instructions. It is unclear what the right answer is.
|
|
DEBUG({
|
|
errs() << "warning: '" << InstrName << "': "
|
|
<< "ignoring instruction with tied operand '"
|
|
<< Tokens[i].str() << "'\n";
|
|
});
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/// getSingletonRegisterForToken - If the specified token is a singleton
|
|
/// register, return the register name, otherwise return a null StringRef.
|
|
Record *MatchableInfo::
|
|
getSingletonRegisterForToken(unsigned i, const AsmMatcherInfo &Info) const {
|
|
StringRef Tok = Tokens[i];
|
|
if (!Tok.startswith(Info.RegisterPrefix))
|
|
return 0;
|
|
|
|
StringRef RegName = Tok.substr(Info.RegisterPrefix.size());
|
|
if (Record *Rec = getRegisterRecord(Info.Target, RegName))
|
|
return Rec;
|
|
|
|
// If there is no register prefix (i.e. "%" in "%eax"), then this may
|
|
// be some random non-register token, just ignore it.
|
|
if (Info.RegisterPrefix.empty())
|
|
return 0;
|
|
|
|
std::string Err = "unable to find register for '" + RegName.str() +
|
|
"' (which matches register prefix)";
|
|
throw TGError(TheDef->getLoc(), Err);
|
|
}
|
|
|
|
|
|
static std::string getEnumNameForToken(StringRef Str) {
|
|
std::string Res;
|
|
|
|
for (StringRef::iterator it = Str.begin(), ie = Str.end(); it != ie; ++it) {
|
|
switch (*it) {
|
|
case '*': Res += "_STAR_"; break;
|
|
case '%': Res += "_PCT_"; break;
|
|
case ':': Res += "_COLON_"; break;
|
|
default:
|
|
if (isalnum(*it))
|
|
Res += *it;
|
|
else
|
|
Res += "_" + utostr((unsigned) *it) + "_";
|
|
}
|
|
}
|
|
|
|
return Res;
|
|
}
|
|
|
|
ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) {
|
|
ClassInfo *&Entry = TokenClasses[Token];
|
|
|
|
if (!Entry) {
|
|
Entry = new ClassInfo();
|
|
Entry->Kind = ClassInfo::Token;
|
|
Entry->ClassName = "Token";
|
|
Entry->Name = "MCK_" + getEnumNameForToken(Token);
|
|
Entry->ValueName = Token;
|
|
Entry->PredicateMethod = "<invalid>";
|
|
Entry->RenderMethod = "<invalid>";
|
|
Classes.push_back(Entry);
|
|
}
|
|
|
|
return Entry;
|
|
}
|
|
|
|
ClassInfo *
|
|
AsmMatcherInfo::getOperandClass(StringRef Token,
|
|
const CGIOperandList::OperandInfo &OI) {
|
|
if (OI.Rec->isSubClassOf("RegisterClass")) {
|
|
ClassInfo *CI = RegisterClassClasses[OI.Rec];
|
|
|
|
if (!CI)
|
|
throw TGError(OI.Rec->getLoc(), "register class has no class info!");
|
|
|
|
return CI;
|
|
}
|
|
|
|
assert(OI.Rec->isSubClassOf("Operand") && "Unexpected operand!");
|
|
Record *MatchClass = OI.Rec->getValueAsDef("ParserMatchClass");
|
|
ClassInfo *CI = AsmOperandClasses[MatchClass];
|
|
|
|
if (!CI)
|
|
throw TGError(OI.Rec->getLoc(), "operand has no match class!");
|
|
|
|
return CI;
|
|
}
|
|
|
|
void AsmMatcherInfo::
|
|
BuildRegisterClasses(SmallPtrSet<Record*, 16> &SingletonRegisters) {
|
|
std::vector<CodeGenRegisterClass> RegisterClasses;
|
|
std::vector<CodeGenRegister> Registers;
|
|
|
|
RegisterClasses = Target.getRegisterClasses();
|
|
Registers = Target.getRegisters();
|
|
|
|
// The register sets used for matching.
|
|
std::set< std::set<Record*> > RegisterSets;
|
|
|
|
// Gather the defined sets.
|
|
for (std::vector<CodeGenRegisterClass>::iterator it = RegisterClasses.begin(),
|
|
ie = RegisterClasses.end(); it != ie; ++it)
|
|
RegisterSets.insert(std::set<Record*>(it->Elements.begin(),
|
|
it->Elements.end()));
|
|
|
|
// Add any required singleton sets.
|
|
for (SmallPtrSet<Record*, 16>::iterator it = SingletonRegisters.begin(),
|
|
ie = SingletonRegisters.end(); it != ie; ++it) {
|
|
Record *Rec = *it;
|
|
RegisterSets.insert(std::set<Record*>(&Rec, &Rec + 1));
|
|
}
|
|
|
|
// Introduce derived sets where necessary (when a register does not determine
|
|
// a unique register set class), and build the mapping of registers to the set
|
|
// they should classify to.
|
|
std::map<Record*, std::set<Record*> > RegisterMap;
|
|
for (std::vector<CodeGenRegister>::iterator it = Registers.begin(),
|
|
ie = Registers.end(); it != ie; ++it) {
|
|
CodeGenRegister &CGR = *it;
|
|
// Compute the intersection of all sets containing this register.
|
|
std::set<Record*> ContainingSet;
|
|
|
|
for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
|
|
ie = RegisterSets.end(); it != ie; ++it) {
|
|
if (!it->count(CGR.TheDef))
|
|
continue;
|
|
|
|
if (ContainingSet.empty()) {
|
|
ContainingSet = *it;
|
|
} else {
|
|
std::set<Record*> Tmp;
|
|
std::swap(Tmp, ContainingSet);
|
|
std::insert_iterator< std::set<Record*> > II(ContainingSet,
|
|
ContainingSet.begin());
|
|
std::set_intersection(Tmp.begin(), Tmp.end(), it->begin(), it->end(),
|
|
II);
|
|
}
|
|
}
|
|
|
|
if (!ContainingSet.empty()) {
|
|
RegisterSets.insert(ContainingSet);
|
|
RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet));
|
|
}
|
|
}
|
|
|
|
// Construct the register classes.
|
|
std::map<std::set<Record*>, ClassInfo*> RegisterSetClasses;
|
|
unsigned Index = 0;
|
|
for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
|
|
ie = RegisterSets.end(); it != ie; ++it, ++Index) {
|
|
ClassInfo *CI = new ClassInfo();
|
|
CI->Kind = ClassInfo::RegisterClass0 + Index;
|
|
CI->ClassName = "Reg" + utostr(Index);
|
|
CI->Name = "MCK_Reg" + utostr(Index);
|
|
CI->ValueName = "";
|
|
CI->PredicateMethod = ""; // unused
|
|
CI->RenderMethod = "addRegOperands";
|
|
CI->Registers = *it;
|
|
Classes.push_back(CI);
|
|
RegisterSetClasses.insert(std::make_pair(*it, CI));
|
|
}
|
|
|
|
// Find the superclasses; we could compute only the subgroup lattice edges,
|
|
// but there isn't really a point.
|
|
for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
|
|
ie = RegisterSets.end(); it != ie; ++it) {
|
|
ClassInfo *CI = RegisterSetClasses[*it];
|
|
for (std::set< std::set<Record*> >::iterator it2 = RegisterSets.begin(),
|
|
ie2 = RegisterSets.end(); it2 != ie2; ++it2)
|
|
if (*it != *it2 &&
|
|
std::includes(it2->begin(), it2->end(), it->begin(), it->end()))
|
|
CI->SuperClasses.push_back(RegisterSetClasses[*it2]);
|
|
}
|
|
|
|
// Name the register classes which correspond to a user defined RegisterClass.
|
|
for (std::vector<CodeGenRegisterClass>::iterator it = RegisterClasses.begin(),
|
|
ie = RegisterClasses.end(); it != ie; ++it) {
|
|
ClassInfo *CI = RegisterSetClasses[std::set<Record*>(it->Elements.begin(),
|
|
it->Elements.end())];
|
|
if (CI->ValueName.empty()) {
|
|
CI->ClassName = it->getName();
|
|
CI->Name = "MCK_" + it->getName();
|
|
CI->ValueName = it->getName();
|
|
} else
|
|
CI->ValueName = CI->ValueName + "," + it->getName();
|
|
|
|
RegisterClassClasses.insert(std::make_pair(it->TheDef, CI));
|
|
}
|
|
|
|
// Populate the map for individual registers.
|
|
for (std::map<Record*, std::set<Record*> >::iterator it = RegisterMap.begin(),
|
|
ie = RegisterMap.end(); it != ie; ++it)
|
|
this->RegisterClasses[it->first] = RegisterSetClasses[it->second];
|
|
|
|
// Name the register classes which correspond to singleton registers.
|
|
for (SmallPtrSet<Record*, 16>::iterator it = SingletonRegisters.begin(),
|
|
ie = SingletonRegisters.end(); it != ie; ++it) {
|
|
Record *Rec = *it;
|
|
ClassInfo *CI = this->RegisterClasses[Rec];
|
|
assert(CI && "Missing singleton register class info!");
|
|
|
|
if (CI->ValueName.empty()) {
|
|
CI->ClassName = Rec->getName();
|
|
CI->Name = "MCK_" + Rec->getName();
|
|
CI->ValueName = Rec->getName();
|
|
} else
|
|
CI->ValueName = CI->ValueName + "," + Rec->getName();
|
|
}
|
|
}
|
|
|
|
void AsmMatcherInfo::BuildOperandClasses() {
|
|
std::vector<Record*> AsmOperands;
|
|
AsmOperands = Records.getAllDerivedDefinitions("AsmOperandClass");
|
|
|
|
// Pre-populate AsmOperandClasses map.
|
|
for (std::vector<Record*>::iterator it = AsmOperands.begin(),
|
|
ie = AsmOperands.end(); it != ie; ++it)
|
|
AsmOperandClasses[*it] = new ClassInfo();
|
|
|
|
unsigned Index = 0;
|
|
for (std::vector<Record*>::iterator it = AsmOperands.begin(),
|
|
ie = AsmOperands.end(); it != ie; ++it, ++Index) {
|
|
ClassInfo *CI = AsmOperandClasses[*it];
|
|
CI->Kind = ClassInfo::UserClass0 + Index;
|
|
|
|
ListInit *Supers = (*it)->getValueAsListInit("SuperClasses");
|
|
for (unsigned i = 0, e = Supers->getSize(); i != e; ++i) {
|
|
DefInit *DI = dynamic_cast<DefInit*>(Supers->getElement(i));
|
|
if (!DI) {
|
|
PrintError((*it)->getLoc(), "Invalid super class reference!");
|
|
continue;
|
|
}
|
|
|
|
ClassInfo *SC = AsmOperandClasses[DI->getDef()];
|
|
if (!SC)
|
|
PrintError((*it)->getLoc(), "Invalid super class reference!");
|
|
else
|
|
CI->SuperClasses.push_back(SC);
|
|
}
|
|
CI->ClassName = (*it)->getValueAsString("Name");
|
|
CI->Name = "MCK_" + CI->ClassName;
|
|
CI->ValueName = (*it)->getName();
|
|
|
|
// Get or construct the predicate method name.
|
|
Init *PMName = (*it)->getValueInit("PredicateMethod");
|
|
if (StringInit *SI = dynamic_cast<StringInit*>(PMName)) {
|
|
CI->PredicateMethod = SI->getValue();
|
|
} else {
|
|
assert(dynamic_cast<UnsetInit*>(PMName) &&
|
|
"Unexpected PredicateMethod field!");
|
|
CI->PredicateMethod = "is" + CI->ClassName;
|
|
}
|
|
|
|
// Get or construct the render method name.
|
|
Init *RMName = (*it)->getValueInit("RenderMethod");
|
|
if (StringInit *SI = dynamic_cast<StringInit*>(RMName)) {
|
|
CI->RenderMethod = SI->getValue();
|
|
} else {
|
|
assert(dynamic_cast<UnsetInit*>(RMName) &&
|
|
"Unexpected RenderMethod field!");
|
|
CI->RenderMethod = "add" + CI->ClassName + "Operands";
|
|
}
|
|
|
|
AsmOperandClasses[*it] = CI;
|
|
Classes.push_back(CI);
|
|
}
|
|
}
|
|
|
|
AsmMatcherInfo::AsmMatcherInfo(Record *asmParser, CodeGenTarget &target)
|
|
: AsmParser(asmParser), Target(target),
|
|
RegisterPrefix(AsmParser->getValueAsString("RegisterPrefix")) {
|
|
}
|
|
|
|
|
|
void AsmMatcherInfo::BuildInfo() {
|
|
// Build information about all of the AssemblerPredicates.
|
|
std::vector<Record*> AllPredicates =
|
|
Records.getAllDerivedDefinitions("Predicate");
|
|
for (unsigned i = 0, e = AllPredicates.size(); i != e; ++i) {
|
|
Record *Pred = AllPredicates[i];
|
|
// Ignore predicates that are not intended for the assembler.
|
|
if (!Pred->getValueAsBit("AssemblerMatcherPredicate"))
|
|
continue;
|
|
|
|
if (Pred->getName().empty())
|
|
throw TGError(Pred->getLoc(), "Predicate has no name!");
|
|
|
|
unsigned FeatureNo = SubtargetFeatures.size();
|
|
SubtargetFeatures[Pred] = new SubtargetFeatureInfo(Pred, FeatureNo);
|
|
assert(FeatureNo < 32 && "Too many subtarget features!");
|
|
}
|
|
|
|
StringRef CommentDelimiter = AsmParser->getValueAsString("CommentDelimiter");
|
|
|
|
// Parse the instructions; we need to do this first so that we can gather the
|
|
// singleton register classes.
|
|
SmallPtrSet<Record*, 16> SingletonRegisters;
|
|
for (CodeGenTarget::inst_iterator I = Target.inst_begin(),
|
|
E = Target.inst_end(); I != E; ++I) {
|
|
const CodeGenInstruction &CGI = **I;
|
|
|
|
// If the tblgen -match-prefix option is specified (for tblgen hackers),
|
|
// filter the set of instructions we consider.
|
|
if (!StringRef(CGI.TheDef->getName()).startswith(MatchPrefix))
|
|
continue;
|
|
|
|
// Ignore "codegen only" instructions.
|
|
if (CGI.TheDef->getValueAsBit("isCodeGenOnly"))
|
|
continue;
|
|
|
|
OwningPtr<MatchableInfo> II(new MatchableInfo(CGI));
|
|
|
|
II->Initialize(*this, SingletonRegisters);
|
|
|
|
// Ignore instructions which shouldn't be matched and diagnose invalid
|
|
// instruction definitions with an error.
|
|
if (!II->Validate(CommentDelimiter, true))
|
|
continue;
|
|
|
|
// Ignore "Int_*" and "*_Int" instructions, which are internal aliases.
|
|
//
|
|
// FIXME: This is a total hack.
|
|
if (StringRef(II->InstrName).startswith("Int_") ||
|
|
StringRef(II->InstrName).endswith("_Int"))
|
|
continue;
|
|
|
|
Matchables.push_back(II.take());
|
|
}
|
|
|
|
// Parse all of the InstAlias definitions and stick them in the list of
|
|
// matchables.
|
|
std::vector<Record*> AllInstAliases =
|
|
Records.getAllDerivedDefinitions("InstAlias");
|
|
for (unsigned i = 0, e = AllInstAliases.size(); i != e; ++i) {
|
|
CodeGenInstAlias *Alias = new CodeGenInstAlias(AllInstAliases[i]);
|
|
|
|
OwningPtr<MatchableInfo> II(new MatchableInfo(Alias));
|
|
|
|
II->Initialize(*this, SingletonRegisters);
|
|
|
|
// Validate the alias definitions.
|
|
II->Validate(CommentDelimiter, false);
|
|
|
|
Matchables.push_back(II.take());
|
|
}
|
|
|
|
// Build info for the register classes.
|
|
BuildRegisterClasses(SingletonRegisters);
|
|
|
|
// Build info for the user defined assembly operand classes.
|
|
BuildOperandClasses();
|
|
|
|
// Build the information about matchables.
|
|
for (std::vector<MatchableInfo*>::iterator it = Matchables.begin(),
|
|
ie = Matchables.end(); it != ie; ++it) {
|
|
MatchableInfo *II = *it;
|
|
|
|
// The first token of the instruction is the mnemonic, which must be a
|
|
// simple string, not a $foo variable or a singleton register.
|
|
assert(!II->Tokens.empty() && "Instruction has no tokens?");
|
|
StringRef Mnemonic = II->Tokens[0];
|
|
if (Mnemonic[0] == '$' || II->getSingletonRegisterForToken(0, *this))
|
|
throw TGError(II->TheDef->getLoc(),
|
|
"Invalid instruction mnemonic '" + Mnemonic.str() + "'!");
|
|
|
|
// Parse the tokens after the mnemonic.
|
|
for (unsigned i = 1, e = II->Tokens.size(); i != e; ++i) {
|
|
StringRef Token = II->Tokens[i];
|
|
|
|
// Check for singleton registers.
|
|
if (Record *RegRecord = II->getSingletonRegisterForToken(i, *this)) {
|
|
MatchableInfo::Operand Op;
|
|
Op.Class = RegisterClasses[RegRecord];
|
|
Op.OperandInfo = 0;
|
|
assert(Op.Class && Op.Class->Registers.size() == 1 &&
|
|
"Unexpected class for singleton register");
|
|
II->Operands.push_back(Op);
|
|
continue;
|
|
}
|
|
|
|
// Check for simple tokens.
|
|
if (Token[0] != '$') {
|
|
MatchableInfo::Operand Op;
|
|
Op.Class = getTokenClass(Token);
|
|
Op.OperandInfo = 0;
|
|
II->Operands.push_back(Op);
|
|
continue;
|
|
}
|
|
|
|
// Otherwise this is an operand reference.
|
|
StringRef OperandName;
|
|
if (Token[1] == '{')
|
|
OperandName = Token.substr(2, Token.size() - 3);
|
|
else
|
|
OperandName = Token.substr(1);
|
|
|
|
// Map this token to an operand. FIXME: Move elsewhere.
|
|
unsigned Idx;
|
|
if (!II->OperandList.hasOperandNamed(OperandName, Idx))
|
|
throw TGError(II->TheDef->getLoc(), "error: unable to find operand: '" +
|
|
OperandName.str() + "'");
|
|
|
|
// FIXME: This is annoying, the named operand may be tied (e.g.,
|
|
// XCHG8rm). What we want is the untied operand, which we now have to
|
|
// grovel for. Only worry about this for single entry operands, we have to
|
|
// clean this up anyway.
|
|
const CGIOperandList::OperandInfo *OI = &II->OperandList[Idx];
|
|
if (OI->Constraints[0].isTied()) {
|
|
unsigned TiedOp = OI->Constraints[0].getTiedOperand();
|
|
|
|
// The tied operand index is an MIOperand index, find the operand that
|
|
// contains it.
|
|
for (unsigned i = 0, e = II->OperandList.size(); i != e; ++i) {
|
|
if (II->OperandList[i].MIOperandNo == TiedOp) {
|
|
OI = &II->OperandList[i];
|
|
break;
|
|
}
|
|
}
|
|
|
|
assert(OI && "Unable to find tied operand target!");
|
|
}
|
|
|
|
MatchableInfo::Operand Op;
|
|
Op.Class = getOperandClass(Token, *OI);
|
|
Op.OperandInfo = OI;
|
|
II->Operands.push_back(Op);
|
|
}
|
|
}
|
|
|
|
// Reorder classes so that classes preceed super classes.
|
|
std::sort(Classes.begin(), Classes.end(), less_ptr<ClassInfo>());
|
|
}
|
|
|
|
static std::pair<unsigned, unsigned> *
|
|
GetTiedOperandAtIndex(SmallVectorImpl<std::pair<unsigned, unsigned> > &List,
|
|
unsigned Index) {
|
|
for (unsigned i = 0, e = List.size(); i != e; ++i)
|
|
if (Index == List[i].first)
|
|
return &List[i];
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void EmitConvertToMCInst(CodeGenTarget &Target,
|
|
std::vector<MatchableInfo*> &Infos,
|
|
raw_ostream &OS) {
|
|
// Write the convert function to a separate stream, so we can drop it after
|
|
// the enum.
|
|
std::string ConvertFnBody;
|
|
raw_string_ostream CvtOS(ConvertFnBody);
|
|
|
|
// Function we have already generated.
|
|
std::set<std::string> GeneratedFns;
|
|
|
|
// Start the unified conversion function.
|
|
|
|
CvtOS << "static void ConvertToMCInst(ConversionKind Kind, MCInst &Inst, "
|
|
<< "unsigned Opcode,\n"
|
|
<< " const SmallVectorImpl<MCParsedAsmOperand*"
|
|
<< "> &Operands) {\n";
|
|
CvtOS << " Inst.setOpcode(Opcode);\n";
|
|
CvtOS << " switch (Kind) {\n";
|
|
CvtOS << " default:\n";
|
|
|
|
// Start the enum, which we will generate inline.
|
|
|
|
OS << "// Unified function for converting operants to MCInst instances.\n\n";
|
|
OS << "enum ConversionKind {\n";
|
|
|
|
// TargetOperandClass - This is the target's operand class, like X86Operand.
|
|
std::string TargetOperandClass = Target.getName() + "Operand";
|
|
|
|
for (std::vector<MatchableInfo*>::const_iterator it = Infos.begin(),
|
|
ie = Infos.end(); it != ie; ++it) {
|
|
MatchableInfo &II = **it;
|
|
|
|
// Order the (class) operands by the order to convert them into an MCInst.
|
|
SmallVector<std::pair<unsigned, unsigned>, 4> MIOperandList;
|
|
for (unsigned i = 0, e = II.Operands.size(); i != e; ++i) {
|
|
MatchableInfo::Operand &Op = II.Operands[i];
|
|
if (Op.OperandInfo)
|
|
MIOperandList.push_back(std::make_pair(Op.OperandInfo->MIOperandNo, i));
|
|
}
|
|
|
|
// Find any tied operands.
|
|
SmallVector<std::pair<unsigned, unsigned>, 4> TiedOperands;
|
|
for (unsigned i = 0, e = II.OperandList.size(); i != e; ++i) {
|
|
const CGIOperandList::OperandInfo &OpInfo = II.OperandList[i];
|
|
for (unsigned j = 0, e = OpInfo.Constraints.size(); j != e; ++j) {
|
|
const CGIOperandList::ConstraintInfo &CI = OpInfo.Constraints[j];
|
|
if (CI.isTied())
|
|
TiedOperands.push_back(std::make_pair(OpInfo.MIOperandNo + j,
|
|
CI.getTiedOperand()));
|
|
}
|
|
}
|
|
|
|
std::sort(MIOperandList.begin(), MIOperandList.end());
|
|
|
|
// Compute the total number of operands.
|
|
unsigned NumMIOperands = 0;
|
|
for (unsigned i = 0, e = II.OperandList.size(); i != e; ++i) {
|
|
const CGIOperandList::OperandInfo &OI = II.OperandList[i];
|
|
NumMIOperands = std::max(NumMIOperands,
|
|
OI.MIOperandNo + OI.MINumOperands);
|
|
}
|
|
|
|
// Build the conversion function signature.
|
|
std::string Signature = "Convert";
|
|
unsigned CurIndex = 0;
|
|
for (unsigned i = 0, e = MIOperandList.size(); i != e; ++i) {
|
|
MatchableInfo::Operand &Op = II.Operands[MIOperandList[i].second];
|
|
assert(CurIndex <= Op.OperandInfo->MIOperandNo &&
|
|
"Duplicate match for instruction operand!");
|
|
|
|
// Skip operands which weren't matched by anything, this occurs when the
|
|
// .td file encodes "implicit" operands as explicit ones.
|
|
//
|
|
// FIXME: This should be removed from the MCInst structure.
|
|
for (; CurIndex != Op.OperandInfo->MIOperandNo; ++CurIndex) {
|
|
std::pair<unsigned, unsigned> *Tie = GetTiedOperandAtIndex(TiedOperands,
|
|
CurIndex);
|
|
if (!Tie)
|
|
Signature += "__Imp";
|
|
else
|
|
Signature += "__Tie" + utostr(Tie->second);
|
|
}
|
|
|
|
Signature += "__";
|
|
|
|
// Registers are always converted the same, don't duplicate the conversion
|
|
// function based on them.
|
|
//
|
|
// FIXME: We could generalize this based on the render method, if it
|
|
// mattered.
|
|
if (Op.Class->isRegisterClass())
|
|
Signature += "Reg";
|
|
else
|
|
Signature += Op.Class->ClassName;
|
|
Signature += utostr(Op.OperandInfo->MINumOperands);
|
|
Signature += "_" + utostr(MIOperandList[i].second);
|
|
|
|
CurIndex += Op.OperandInfo->MINumOperands;
|
|
}
|
|
|
|
// Add any trailing implicit operands.
|
|
for (; CurIndex != NumMIOperands; ++CurIndex) {
|
|
std::pair<unsigned, unsigned> *Tie = GetTiedOperandAtIndex(TiedOperands,
|
|
CurIndex);
|
|
if (!Tie)
|
|
Signature += "__Imp";
|
|
else
|
|
Signature += "__Tie" + utostr(Tie->second);
|
|
}
|
|
|
|
II.ConversionFnKind = Signature;
|
|
|
|
// Check if we have already generated this signature.
|
|
if (!GeneratedFns.insert(Signature).second)
|
|
continue;
|
|
|
|
// If not, emit it now.
|
|
|
|
// Add to the enum list.
|
|
OS << " " << Signature << ",\n";
|
|
|
|
// And to the convert function.
|
|
CvtOS << " case " << Signature << ":\n";
|
|
CurIndex = 0;
|
|
for (unsigned i = 0, e = MIOperandList.size(); i != e; ++i) {
|
|
MatchableInfo::Operand &Op = II.Operands[MIOperandList[i].second];
|
|
|
|
// Add the implicit operands.
|
|
for (; CurIndex != Op.OperandInfo->MIOperandNo; ++CurIndex) {
|
|
// See if this is a tied operand.
|
|
std::pair<unsigned, unsigned> *Tie = GetTiedOperandAtIndex(TiedOperands,
|
|
CurIndex);
|
|
|
|
if (!Tie) {
|
|
// If not, this is some implicit operand. Just assume it is a register
|
|
// for now.
|
|
CvtOS << " Inst.addOperand(MCOperand::CreateReg(0));\n";
|
|
} else {
|
|
// Copy the tied operand.
|
|
assert(Tie->first>Tie->second && "Tied operand preceeds its target!");
|
|
CvtOS << " Inst.addOperand(Inst.getOperand("
|
|
<< Tie->second << "));\n";
|
|
}
|
|
}
|
|
|
|
CvtOS << " ((" << TargetOperandClass << "*)Operands["
|
|
<< MIOperandList[i].second
|
|
<< "+1])->" << Op.Class->RenderMethod
|
|
<< "(Inst, " << Op.OperandInfo->MINumOperands << ");\n";
|
|
CurIndex += Op.OperandInfo->MINumOperands;
|
|
}
|
|
|
|
// And add trailing implicit operands.
|
|
for (; CurIndex != NumMIOperands; ++CurIndex) {
|
|
std::pair<unsigned, unsigned> *Tie = GetTiedOperandAtIndex(TiedOperands,
|
|
CurIndex);
|
|
|
|
if (!Tie) {
|
|
// If not, this is some implicit operand. Just assume it is a register
|
|
// for now.
|
|
CvtOS << " Inst.addOperand(MCOperand::CreateReg(0));\n";
|
|
} else {
|
|
// Copy the tied operand.
|
|
assert(Tie->first>Tie->second && "Tied operand preceeds its target!");
|
|
CvtOS << " Inst.addOperand(Inst.getOperand("
|
|
<< Tie->second << "));\n";
|
|
}
|
|
}
|
|
|
|
CvtOS << " return;\n";
|
|
}
|
|
|
|
// Finish the convert function.
|
|
|
|
CvtOS << " }\n";
|
|
CvtOS << "}\n\n";
|
|
|
|
// Finish the enum, and drop the convert function after it.
|
|
|
|
OS << " NumConversionVariants\n";
|
|
OS << "};\n\n";
|
|
|
|
OS << CvtOS.str();
|
|
}
|
|
|
|
/// EmitMatchClassEnumeration - Emit the enumeration for match class kinds.
|
|
static void EmitMatchClassEnumeration(CodeGenTarget &Target,
|
|
std::vector<ClassInfo*> &Infos,
|
|
raw_ostream &OS) {
|
|
OS << "namespace {\n\n";
|
|
|
|
OS << "/// MatchClassKind - The kinds of classes which participate in\n"
|
|
<< "/// instruction matching.\n";
|
|
OS << "enum MatchClassKind {\n";
|
|
OS << " InvalidMatchClass = 0,\n";
|
|
for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
|
|
ie = Infos.end(); it != ie; ++it) {
|
|
ClassInfo &CI = **it;
|
|
OS << " " << CI.Name << ", // ";
|
|
if (CI.Kind == ClassInfo::Token) {
|
|
OS << "'" << CI.ValueName << "'\n";
|
|
} else if (CI.isRegisterClass()) {
|
|
if (!CI.ValueName.empty())
|
|
OS << "register class '" << CI.ValueName << "'\n";
|
|
else
|
|
OS << "derived register class\n";
|
|
} else {
|
|
OS << "user defined class '" << CI.ValueName << "'\n";
|
|
}
|
|
}
|
|
OS << " NumMatchClassKinds\n";
|
|
OS << "};\n\n";
|
|
|
|
OS << "}\n\n";
|
|
}
|
|
|
|
/// EmitClassifyOperand - Emit the function to classify an operand.
|
|
static void EmitClassifyOperand(AsmMatcherInfo &Info,
|
|
raw_ostream &OS) {
|
|
OS << "static MatchClassKind ClassifyOperand(MCParsedAsmOperand *GOp) {\n"
|
|
<< " " << Info.Target.getName() << "Operand &Operand = *("
|
|
<< Info.Target.getName() << "Operand*)GOp;\n";
|
|
|
|
// Classify tokens.
|
|
OS << " if (Operand.isToken())\n";
|
|
OS << " return MatchTokenString(Operand.getToken());\n\n";
|
|
|
|
// Classify registers.
|
|
//
|
|
// FIXME: Don't hardcode isReg, getReg.
|
|
OS << " if (Operand.isReg()) {\n";
|
|
OS << " switch (Operand.getReg()) {\n";
|
|
OS << " default: return InvalidMatchClass;\n";
|
|
for (std::map<Record*, ClassInfo*>::iterator
|
|
it = Info.RegisterClasses.begin(), ie = Info.RegisterClasses.end();
|
|
it != ie; ++it)
|
|
OS << " case " << Info.Target.getName() << "::"
|
|
<< it->first->getName() << ": return " << it->second->Name << ";\n";
|
|
OS << " }\n";
|
|
OS << " }\n\n";
|
|
|
|
// Classify user defined operands.
|
|
for (std::vector<ClassInfo*>::iterator it = Info.Classes.begin(),
|
|
ie = Info.Classes.end(); it != ie; ++it) {
|
|
ClassInfo &CI = **it;
|
|
|
|
if (!CI.isUserClass())
|
|
continue;
|
|
|
|
OS << " // '" << CI.ClassName << "' class";
|
|
if (!CI.SuperClasses.empty()) {
|
|
OS << ", subclass of ";
|
|
for (unsigned i = 0, e = CI.SuperClasses.size(); i != e; ++i) {
|
|
if (i) OS << ", ";
|
|
OS << "'" << CI.SuperClasses[i]->ClassName << "'";
|
|
assert(CI < *CI.SuperClasses[i] && "Invalid class relation!");
|
|
}
|
|
}
|
|
OS << "\n";
|
|
|
|
OS << " if (Operand." << CI.PredicateMethod << "()) {\n";
|
|
|
|
// Validate subclass relationships.
|
|
if (!CI.SuperClasses.empty()) {
|
|
for (unsigned i = 0, e = CI.SuperClasses.size(); i != e; ++i)
|
|
OS << " assert(Operand." << CI.SuperClasses[i]->PredicateMethod
|
|
<< "() && \"Invalid class relationship!\");\n";
|
|
}
|
|
|
|
OS << " return " << CI.Name << ";\n";
|
|
OS << " }\n\n";
|
|
}
|
|
OS << " return InvalidMatchClass;\n";
|
|
OS << "}\n\n";
|
|
}
|
|
|
|
/// EmitIsSubclass - Emit the subclass predicate function.
|
|
static void EmitIsSubclass(CodeGenTarget &Target,
|
|
std::vector<ClassInfo*> &Infos,
|
|
raw_ostream &OS) {
|
|
OS << "/// IsSubclass - Compute whether \\arg A is a subclass of \\arg B.\n";
|
|
OS << "static bool IsSubclass(MatchClassKind A, MatchClassKind B) {\n";
|
|
OS << " if (A == B)\n";
|
|
OS << " return true;\n\n";
|
|
|
|
OS << " switch (A) {\n";
|
|
OS << " default:\n";
|
|
OS << " return false;\n";
|
|
for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
|
|
ie = Infos.end(); it != ie; ++it) {
|
|
ClassInfo &A = **it;
|
|
|
|
if (A.Kind != ClassInfo::Token) {
|
|
std::vector<StringRef> SuperClasses;
|
|
for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
|
|
ie = Infos.end(); it != ie; ++it) {
|
|
ClassInfo &B = **it;
|
|
|
|
if (&A != &B && A.isSubsetOf(B))
|
|
SuperClasses.push_back(B.Name);
|
|
}
|
|
|
|
if (SuperClasses.empty())
|
|
continue;
|
|
|
|
OS << "\n case " << A.Name << ":\n";
|
|
|
|
if (SuperClasses.size() == 1) {
|
|
OS << " return B == " << SuperClasses.back() << ";\n";
|
|
continue;
|
|
}
|
|
|
|
OS << " switch (B) {\n";
|
|
OS << " default: return false;\n";
|
|
for (unsigned i = 0, e = SuperClasses.size(); i != e; ++i)
|
|
OS << " case " << SuperClasses[i] << ": return true;\n";
|
|
OS << " }\n";
|
|
}
|
|
}
|
|
OS << " }\n";
|
|
OS << "}\n\n";
|
|
}
|
|
|
|
|
|
|
|
/// EmitMatchTokenString - Emit the function to match a token string to the
|
|
/// appropriate match class value.
|
|
static void EmitMatchTokenString(CodeGenTarget &Target,
|
|
std::vector<ClassInfo*> &Infos,
|
|
raw_ostream &OS) {
|
|
// Construct the match list.
|
|
std::vector<StringMatcher::StringPair> Matches;
|
|
for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
|
|
ie = Infos.end(); it != ie; ++it) {
|
|
ClassInfo &CI = **it;
|
|
|
|
if (CI.Kind == ClassInfo::Token)
|
|
Matches.push_back(StringMatcher::StringPair(CI.ValueName,
|
|
"return " + CI.Name + ";"));
|
|
}
|
|
|
|
OS << "static MatchClassKind MatchTokenString(StringRef Name) {\n";
|
|
|
|
StringMatcher("Name", Matches, OS).Emit();
|
|
|
|
OS << " return InvalidMatchClass;\n";
|
|
OS << "}\n\n";
|
|
}
|
|
|
|
/// EmitMatchRegisterName - Emit the function to match a string to the target
|
|
/// specific register enum.
|
|
static void EmitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser,
|
|
raw_ostream &OS) {
|
|
// Construct the match list.
|
|
std::vector<StringMatcher::StringPair> Matches;
|
|
for (unsigned i = 0, e = Target.getRegisters().size(); i != e; ++i) {
|
|
const CodeGenRegister &Reg = Target.getRegisters()[i];
|
|
if (Reg.TheDef->getValueAsString("AsmName").empty())
|
|
continue;
|
|
|
|
Matches.push_back(StringMatcher::StringPair(
|
|
Reg.TheDef->getValueAsString("AsmName"),
|
|
"return " + utostr(i + 1) + ";"));
|
|
}
|
|
|
|
OS << "static unsigned MatchRegisterName(StringRef Name) {\n";
|
|
|
|
StringMatcher("Name", Matches, OS).Emit();
|
|
|
|
OS << " return 0;\n";
|
|
OS << "}\n\n";
|
|
}
|
|
|
|
/// EmitSubtargetFeatureFlagEnumeration - Emit the subtarget feature flag
|
|
/// definitions.
|
|
static void EmitSubtargetFeatureFlagEnumeration(AsmMatcherInfo &Info,
|
|
raw_ostream &OS) {
|
|
OS << "// Flags for subtarget features that participate in "
|
|
<< "instruction matching.\n";
|
|
OS << "enum SubtargetFeatureFlag {\n";
|
|
for (std::map<Record*, SubtargetFeatureInfo*>::const_iterator
|
|
it = Info.SubtargetFeatures.begin(),
|
|
ie = Info.SubtargetFeatures.end(); it != ie; ++it) {
|
|
SubtargetFeatureInfo &SFI = *it->second;
|
|
OS << " " << SFI.getEnumName() << " = (1 << " << SFI.Index << "),\n";
|
|
}
|
|
OS << " Feature_None = 0\n";
|
|
OS << "};\n\n";
|
|
}
|
|
|
|
/// EmitComputeAvailableFeatures - Emit the function to compute the list of
|
|
/// available features given a subtarget.
|
|
static void EmitComputeAvailableFeatures(AsmMatcherInfo &Info,
|
|
raw_ostream &OS) {
|
|
std::string ClassName =
|
|
Info.AsmParser->getValueAsString("AsmParserClassName");
|
|
|
|
OS << "unsigned " << Info.Target.getName() << ClassName << "::\n"
|
|
<< "ComputeAvailableFeatures(const " << Info.Target.getName()
|
|
<< "Subtarget *Subtarget) const {\n";
|
|
OS << " unsigned Features = 0;\n";
|
|
for (std::map<Record*, SubtargetFeatureInfo*>::const_iterator
|
|
it = Info.SubtargetFeatures.begin(),
|
|
ie = Info.SubtargetFeatures.end(); it != ie; ++it) {
|
|
SubtargetFeatureInfo &SFI = *it->second;
|
|
OS << " if (" << SFI.TheDef->getValueAsString("CondString")
|
|
<< ")\n";
|
|
OS << " Features |= " << SFI.getEnumName() << ";\n";
|
|
}
|
|
OS << " return Features;\n";
|
|
OS << "}\n\n";
|
|
}
|
|
|
|
static std::string GetAliasRequiredFeatures(Record *R,
|
|
const AsmMatcherInfo &Info) {
|
|
std::vector<Record*> ReqFeatures = R->getValueAsListOfDefs("Predicates");
|
|
std::string Result;
|
|
unsigned NumFeatures = 0;
|
|
for (unsigned i = 0, e = ReqFeatures.size(); i != e; ++i) {
|
|
SubtargetFeatureInfo *F = Info.getSubtargetFeature(ReqFeatures[i]);
|
|
|
|
if (F == 0)
|
|
throw TGError(R->getLoc(), "Predicate '" + ReqFeatures[i]->getName() +
|
|
"' is not marked as an AssemblerPredicate!");
|
|
|
|
if (NumFeatures)
|
|
Result += '|';
|
|
|
|
Result += F->getEnumName();
|
|
++NumFeatures;
|
|
}
|
|
|
|
if (NumFeatures > 1)
|
|
Result = '(' + Result + ')';
|
|
return Result;
|
|
}
|
|
|
|
/// EmitMnemonicAliases - If the target has any MnemonicAlias<> definitions,
|
|
/// emit a function for them and return true, otherwise return false.
|
|
static bool EmitMnemonicAliases(raw_ostream &OS, const AsmMatcherInfo &Info) {
|
|
std::vector<Record*> Aliases =
|
|
Records.getAllDerivedDefinitions("MnemonicAlias");
|
|
if (Aliases.empty()) return false;
|
|
|
|
OS << "static void ApplyMnemonicAliases(StringRef &Mnemonic, "
|
|
"unsigned Features) {\n";
|
|
|
|
// Keep track of all the aliases from a mnemonic. Use an std::map so that the
|
|
// iteration order of the map is stable.
|
|
std::map<std::string, std::vector<Record*> > AliasesFromMnemonic;
|
|
|
|
for (unsigned i = 0, e = Aliases.size(); i != e; ++i) {
|
|
Record *R = Aliases[i];
|
|
AliasesFromMnemonic[R->getValueAsString("FromMnemonic")].push_back(R);
|
|
}
|
|
|
|
// Process each alias a "from" mnemonic at a time, building the code executed
|
|
// by the string remapper.
|
|
std::vector<StringMatcher::StringPair> Cases;
|
|
for (std::map<std::string, std::vector<Record*> >::iterator
|
|
I = AliasesFromMnemonic.begin(), E = AliasesFromMnemonic.end();
|
|
I != E; ++I) {
|
|
const std::vector<Record*> &ToVec = I->second;
|
|
|
|
// Loop through each alias and emit code that handles each case. If there
|
|
// are two instructions without predicates, emit an error. If there is one,
|
|
// emit it last.
|
|
std::string MatchCode;
|
|
int AliasWithNoPredicate = -1;
|
|
|
|
for (unsigned i = 0, e = ToVec.size(); i != e; ++i) {
|
|
Record *R = ToVec[i];
|
|
std::string FeatureMask = GetAliasRequiredFeatures(R, Info);
|
|
|
|
// If this unconditionally matches, remember it for later and diagnose
|
|
// duplicates.
|
|
if (FeatureMask.empty()) {
|
|
if (AliasWithNoPredicate != -1) {
|
|
// We can't have two aliases from the same mnemonic with no predicate.
|
|
PrintError(ToVec[AliasWithNoPredicate]->getLoc(),
|
|
"two MnemonicAliases with the same 'from' mnemonic!");
|
|
throw TGError(R->getLoc(), "this is the other MnemonicAlias.");
|
|
}
|
|
|
|
AliasWithNoPredicate = i;
|
|
continue;
|
|
}
|
|
|
|
if (!MatchCode.empty())
|
|
MatchCode += "else ";
|
|
MatchCode += "if ((Features & " + FeatureMask + ") == "+FeatureMask+")\n";
|
|
MatchCode += " Mnemonic = \"" +R->getValueAsString("ToMnemonic")+"\";\n";
|
|
}
|
|
|
|
if (AliasWithNoPredicate != -1) {
|
|
Record *R = ToVec[AliasWithNoPredicate];
|
|
if (!MatchCode.empty())
|
|
MatchCode += "else\n ";
|
|
MatchCode += "Mnemonic = \"" + R->getValueAsString("ToMnemonic")+"\";\n";
|
|
}
|
|
|
|
MatchCode += "return;";
|
|
|
|
Cases.push_back(std::make_pair(I->first, MatchCode));
|
|
}
|
|
|
|
|
|
StringMatcher("Mnemonic", Cases, OS).Emit();
|
|
OS << "}\n";
|
|
|
|
return true;
|
|
}
|
|
|
|
void AsmMatcherEmitter::run(raw_ostream &OS) {
|
|
CodeGenTarget Target;
|
|
Record *AsmParser = Target.getAsmParser();
|
|
std::string ClassName = AsmParser->getValueAsString("AsmParserClassName");
|
|
|
|
// Compute the information on the instructions to match.
|
|
AsmMatcherInfo Info(AsmParser, Target);
|
|
Info.BuildInfo();
|
|
|
|
// Sort the instruction table using the partial order on classes. We use
|
|
// stable_sort to ensure that ambiguous instructions are still
|
|
// deterministically ordered.
|
|
std::stable_sort(Info.Matchables.begin(), Info.Matchables.end(),
|
|
less_ptr<MatchableInfo>());
|
|
|
|
DEBUG_WITH_TYPE("instruction_info", {
|
|
for (std::vector<MatchableInfo*>::iterator
|
|
it = Info.Matchables.begin(), ie = Info.Matchables.end();
|
|
it != ie; ++it)
|
|
(*it)->dump();
|
|
});
|
|
|
|
// Check for ambiguous matchables.
|
|
DEBUG_WITH_TYPE("ambiguous_instrs", {
|
|
unsigned NumAmbiguous = 0;
|
|
for (unsigned i = 0, e = Info.Matchables.size(); i != e; ++i) {
|
|
for (unsigned j = i + 1; j != e; ++j) {
|
|
MatchableInfo &A = *Info.Matchables[i];
|
|
MatchableInfo &B = *Info.Matchables[j];
|
|
|
|
if (A.CouldMatchAmiguouslyWith(B)) {
|
|
errs() << "warning: ambiguous matchables:\n";
|
|
A.dump();
|
|
errs() << "\nis incomparable with:\n";
|
|
B.dump();
|
|
errs() << "\n\n";
|
|
++NumAmbiguous;
|
|
}
|
|
}
|
|
}
|
|
if (NumAmbiguous)
|
|
errs() << "warning: " << NumAmbiguous
|
|
<< " ambiguous matchables!\n";
|
|
});
|
|
|
|
// Write the output.
|
|
|
|
EmitSourceFileHeader("Assembly Matcher Source Fragment", OS);
|
|
|
|
// Information for the class declaration.
|
|
OS << "\n#ifdef GET_ASSEMBLER_HEADER\n";
|
|
OS << "#undef GET_ASSEMBLER_HEADER\n";
|
|
OS << " // This should be included into the middle of the declaration of \n";
|
|
OS << " // your subclasses implementation of TargetAsmParser.\n";
|
|
OS << " unsigned ComputeAvailableFeatures(const " <<
|
|
Target.getName() << "Subtarget *Subtarget) const;\n";
|
|
OS << " enum MatchResultTy {\n";
|
|
OS << " Match_Success, Match_MnemonicFail, Match_InvalidOperand,\n";
|
|
OS << " Match_MissingFeature\n";
|
|
OS << " };\n";
|
|
OS << " MatchResultTy MatchInstructionImpl(const "
|
|
<< "SmallVectorImpl<MCParsedAsmOperand*>"
|
|
<< " &Operands, MCInst &Inst, unsigned &ErrorInfo);\n\n";
|
|
OS << "#endif // GET_ASSEMBLER_HEADER_INFO\n\n";
|
|
|
|
|
|
|
|
|
|
OS << "\n#ifdef GET_REGISTER_MATCHER\n";
|
|
OS << "#undef GET_REGISTER_MATCHER\n\n";
|
|
|
|
// Emit the subtarget feature enumeration.
|
|
EmitSubtargetFeatureFlagEnumeration(Info, OS);
|
|
|
|
// Emit the function to match a register name to number.
|
|
EmitMatchRegisterName(Target, AsmParser, OS);
|
|
|
|
OS << "#endif // GET_REGISTER_MATCHER\n\n";
|
|
|
|
|
|
OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n";
|
|
OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n";
|
|
|
|
// Generate the function that remaps for mnemonic aliases.
|
|
bool HasMnemonicAliases = EmitMnemonicAliases(OS, Info);
|
|
|
|
// Generate the unified function to convert operands into an MCInst.
|
|
EmitConvertToMCInst(Target, Info.Matchables, OS);
|
|
|
|
// Emit the enumeration for classes which participate in matching.
|
|
EmitMatchClassEnumeration(Target, Info.Classes, OS);
|
|
|
|
// Emit the routine to match token strings to their match class.
|
|
EmitMatchTokenString(Target, Info.Classes, OS);
|
|
|
|
// Emit the routine to classify an operand.
|
|
EmitClassifyOperand(Info, OS);
|
|
|
|
// Emit the subclass predicate routine.
|
|
EmitIsSubclass(Target, Info.Classes, OS);
|
|
|
|
// Emit the available features compute function.
|
|
EmitComputeAvailableFeatures(Info, OS);
|
|
|
|
|
|
size_t MaxNumOperands = 0;
|
|
for (std::vector<MatchableInfo*>::const_iterator it =
|
|
Info.Matchables.begin(), ie = Info.Matchables.end();
|
|
it != ie; ++it)
|
|
MaxNumOperands = std::max(MaxNumOperands, (*it)->Operands.size());
|
|
|
|
|
|
// Emit the static match table; unused classes get initalized to 0 which is
|
|
// guaranteed to be InvalidMatchClass.
|
|
//
|
|
// FIXME: We can reduce the size of this table very easily. First, we change
|
|
// it so that store the kinds in separate bit-fields for each index, which
|
|
// only needs to be the max width used for classes at that index (we also need
|
|
// to reject based on this during classification). If we then make sure to
|
|
// order the match kinds appropriately (putting mnemonics last), then we
|
|
// should only end up using a few bits for each class, especially the ones
|
|
// following the mnemonic.
|
|
OS << "namespace {\n";
|
|
OS << " struct MatchEntry {\n";
|
|
OS << " unsigned Opcode;\n";
|
|
OS << " const char *Mnemonic;\n";
|
|
OS << " ConversionKind ConvertFn;\n";
|
|
OS << " MatchClassKind Classes[" << MaxNumOperands << "];\n";
|
|
OS << " unsigned RequiredFeatures;\n";
|
|
OS << " };\n\n";
|
|
|
|
OS << "// Predicate for searching for an opcode.\n";
|
|
OS << " struct LessOpcode {\n";
|
|
OS << " bool operator()(const MatchEntry &LHS, StringRef RHS) {\n";
|
|
OS << " return StringRef(LHS.Mnemonic) < RHS;\n";
|
|
OS << " }\n";
|
|
OS << " bool operator()(StringRef LHS, const MatchEntry &RHS) {\n";
|
|
OS << " return LHS < StringRef(RHS.Mnemonic);\n";
|
|
OS << " }\n";
|
|
OS << " bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n";
|
|
OS << " return StringRef(LHS.Mnemonic) < StringRef(RHS.Mnemonic);\n";
|
|
OS << " }\n";
|
|
OS << " };\n";
|
|
|
|
OS << "} // end anonymous namespace.\n\n";
|
|
|
|
OS << "static const MatchEntry MatchTable["
|
|
<< Info.Matchables.size() << "] = {\n";
|
|
|
|
for (std::vector<MatchableInfo*>::const_iterator it =
|
|
Info.Matchables.begin(), ie = Info.Matchables.end();
|
|
it != ie; ++it) {
|
|
MatchableInfo &II = **it;
|
|
|
|
OS << " { " << Target.getName() << "::" << II.InstrName
|
|
<< ", \"" << II.Tokens[0] << "\""
|
|
<< ", " << II.ConversionFnKind << ", { ";
|
|
for (unsigned i = 0, e = II.Operands.size(); i != e; ++i) {
|
|
MatchableInfo::Operand &Op = II.Operands[i];
|
|
|
|
if (i) OS << ", ";
|
|
OS << Op.Class->Name;
|
|
}
|
|
OS << " }, ";
|
|
|
|
// Write the required features mask.
|
|
if (!II.RequiredFeatures.empty()) {
|
|
for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) {
|
|
if (i) OS << "|";
|
|
OS << II.RequiredFeatures[i]->getEnumName();
|
|
}
|
|
} else
|
|
OS << "0";
|
|
|
|
OS << "},\n";
|
|
}
|
|
|
|
OS << "};\n\n";
|
|
|
|
// Finally, build the match function.
|
|
OS << Target.getName() << ClassName << "::MatchResultTy "
|
|
<< Target.getName() << ClassName << "::\n"
|
|
<< "MatchInstructionImpl(const SmallVectorImpl<MCParsedAsmOperand*>"
|
|
<< " &Operands,\n";
|
|
OS << " MCInst &Inst, unsigned &ErrorInfo) {\n";
|
|
|
|
// Emit code to get the available features.
|
|
OS << " // Get the current feature set.\n";
|
|
OS << " unsigned AvailableFeatures = getAvailableFeatures();\n\n";
|
|
|
|
OS << " // Get the instruction mnemonic, which is the first token.\n";
|
|
OS << " StringRef Mnemonic = ((" << Target.getName()
|
|
<< "Operand*)Operands[0])->getToken();\n\n";
|
|
|
|
if (HasMnemonicAliases) {
|
|
OS << " // Process all MnemonicAliases to remap the mnemonic.\n";
|
|
OS << " ApplyMnemonicAliases(Mnemonic, AvailableFeatures);\n\n";
|
|
}
|
|
|
|
// Emit code to compute the class list for this operand vector.
|
|
OS << " // Eliminate obvious mismatches.\n";
|
|
OS << " if (Operands.size() > " << (MaxNumOperands+1) << ") {\n";
|
|
OS << " ErrorInfo = " << (MaxNumOperands+1) << ";\n";
|
|
OS << " return Match_InvalidOperand;\n";
|
|
OS << " }\n\n";
|
|
|
|
OS << " // Compute the class list for this operand vector.\n";
|
|
OS << " MatchClassKind Classes[" << MaxNumOperands << "];\n";
|
|
OS << " for (unsigned i = 1, e = Operands.size(); i != e; ++i) {\n";
|
|
OS << " Classes[i-1] = ClassifyOperand(Operands[i]);\n\n";
|
|
|
|
OS << " // Check for invalid operands before matching.\n";
|
|
OS << " if (Classes[i-1] == InvalidMatchClass) {\n";
|
|
OS << " ErrorInfo = i;\n";
|
|
OS << " return Match_InvalidOperand;\n";
|
|
OS << " }\n";
|
|
OS << " }\n\n";
|
|
|
|
OS << " // Mark unused classes.\n";
|
|
OS << " for (unsigned i = Operands.size()-1, e = " << MaxNumOperands << "; "
|
|
<< "i != e; ++i)\n";
|
|
OS << " Classes[i] = InvalidMatchClass;\n\n";
|
|
|
|
OS << " // Some state to try to produce better error messages.\n";
|
|
OS << " bool HadMatchOtherThanFeatures = false;\n\n";
|
|
OS << " // Set ErrorInfo to the operand that mismatches if it is \n";
|
|
OS << " // wrong for all instances of the instruction.\n";
|
|
OS << " ErrorInfo = ~0U;\n";
|
|
|
|
// Emit code to search the table.
|
|
OS << " // Search the table.\n";
|
|
OS << " std::pair<const MatchEntry*, const MatchEntry*> MnemonicRange =\n";
|
|
OS << " std::equal_range(MatchTable, MatchTable+"
|
|
<< Info.Matchables.size() << ", Mnemonic, LessOpcode());\n\n";
|
|
|
|
OS << " // Return a more specific error code if no mnemonics match.\n";
|
|
OS << " if (MnemonicRange.first == MnemonicRange.second)\n";
|
|
OS << " return Match_MnemonicFail;\n\n";
|
|
|
|
OS << " for (const MatchEntry *it = MnemonicRange.first, "
|
|
<< "*ie = MnemonicRange.second;\n";
|
|
OS << " it != ie; ++it) {\n";
|
|
|
|
OS << " // equal_range guarantees that instruction mnemonic matches.\n";
|
|
OS << " assert(Mnemonic == it->Mnemonic);\n";
|
|
|
|
// Emit check that the subclasses match.
|
|
OS << " bool OperandsValid = true;\n";
|
|
OS << " for (unsigned i = 0; i != " << MaxNumOperands << "; ++i) {\n";
|
|
OS << " if (IsSubclass(Classes[i], it->Classes[i]))\n";
|
|
OS << " continue;\n";
|
|
OS << " // If this operand is broken for all of the instances of this\n";
|
|
OS << " // mnemonic, keep track of it so we can report loc info.\n";
|
|
OS << " if (it == MnemonicRange.first || ErrorInfo == i+1)\n";
|
|
OS << " ErrorInfo = i+1;\n";
|
|
OS << " else\n";
|
|
OS << " ErrorInfo = ~0U;";
|
|
OS << " // Otherwise, just reject this instance of the mnemonic.\n";
|
|
OS << " OperandsValid = false;\n";
|
|
OS << " break;\n";
|
|
OS << " }\n\n";
|
|
|
|
OS << " if (!OperandsValid) continue;\n";
|
|
|
|
// Emit check that the required features are available.
|
|
OS << " if ((AvailableFeatures & it->RequiredFeatures) "
|
|
<< "!= it->RequiredFeatures) {\n";
|
|
OS << " HadMatchOtherThanFeatures = true;\n";
|
|
OS << " continue;\n";
|
|
OS << " }\n";
|
|
|
|
OS << "\n";
|
|
OS << " ConvertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n";
|
|
|
|
// Call the post-processing function, if used.
|
|
std::string InsnCleanupFn =
|
|
AsmParser->getValueAsString("AsmParserInstCleanup");
|
|
if (!InsnCleanupFn.empty())
|
|
OS << " " << InsnCleanupFn << "(Inst);\n";
|
|
|
|
OS << " return Match_Success;\n";
|
|
OS << " }\n\n";
|
|
|
|
OS << " // Okay, we had no match. Try to return a useful error code.\n";
|
|
OS << " if (HadMatchOtherThanFeatures) return Match_MissingFeature;\n";
|
|
OS << " return Match_InvalidOperand;\n";
|
|
OS << "}\n\n";
|
|
|
|
OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n";
|
|
}
|