mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-19 01:13:25 +00:00
938b9d8ef7
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@58532 91177308-0d34-0410-b5e6-96231b3b80d8
646 lines
23 KiB
C++
646 lines
23 KiB
C++
//===-- ARM/ARMCodeEmitter.cpp - Convert ARM code to machine code ---------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains the pass that transforms the ARM machine instructions into
|
|
// relocatable machine code.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "jit"
|
|
#include "ARM.h"
|
|
#include "ARMAddressingModes.h"
|
|
#include "ARMConstantPoolValue.h"
|
|
#include "ARMInstrInfo.h"
|
|
#include "ARMRelocations.h"
|
|
#include "ARMSubtarget.h"
|
|
#include "ARMTargetMachine.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/PassManager.h"
|
|
#include "llvm/CodeGen/MachineCodeEmitter.h"
|
|
#include "llvm/CodeGen/MachineConstantPool.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
using namespace llvm;
|
|
|
|
STATISTIC(NumEmitted, "Number of machine instructions emitted");
|
|
|
|
namespace {
|
|
class VISIBILITY_HIDDEN ARMCodeEmitter : public MachineFunctionPass {
|
|
ARMJITInfo *JTI;
|
|
const ARMInstrInfo *II;
|
|
const TargetData *TD;
|
|
TargetMachine &TM;
|
|
MachineCodeEmitter &MCE;
|
|
const std::vector<MachineConstantPoolEntry> *MCPEs;
|
|
|
|
public:
|
|
static char ID;
|
|
explicit ARMCodeEmitter(TargetMachine &tm, MachineCodeEmitter &mce)
|
|
: MachineFunctionPass(&ID), JTI(0), II(0), TD(0), TM(tm),
|
|
MCE(mce), MCPEs(0) {}
|
|
ARMCodeEmitter(TargetMachine &tm, MachineCodeEmitter &mce,
|
|
const ARMInstrInfo &ii, const TargetData &td)
|
|
: MachineFunctionPass(&ID), JTI(0), II(&ii), TD(&td), TM(tm),
|
|
MCE(mce), MCPEs(0) {}
|
|
|
|
bool runOnMachineFunction(MachineFunction &MF);
|
|
|
|
virtual const char *getPassName() const {
|
|
return "ARM Machine Code Emitter";
|
|
}
|
|
|
|
void emitInstruction(const MachineInstr &MI);
|
|
|
|
private:
|
|
|
|
void emitConstPoolInstruction(const MachineInstr &MI);
|
|
|
|
void emitPseudoInstruction(const MachineInstr &MI);
|
|
|
|
unsigned getAddrModeNoneInstrBinary(const MachineInstr &MI,
|
|
const TargetInstrDesc &TID,
|
|
unsigned Binary);
|
|
|
|
unsigned getMachineSoRegOpValue(const MachineInstr &MI,
|
|
const TargetInstrDesc &TID,
|
|
const MachineOperand &MO,
|
|
unsigned OpIdx);
|
|
|
|
unsigned getMachineSoImmOpValue(const MachineInstr &MI,
|
|
const TargetInstrDesc &TID,
|
|
const MachineOperand &MO);
|
|
|
|
unsigned getAddrMode1SBit(const MachineInstr &MI,
|
|
const TargetInstrDesc &TID) const;
|
|
|
|
unsigned getAddrMode1InstrBinary(const MachineInstr &MI,
|
|
const TargetInstrDesc &TID,
|
|
unsigned Binary);
|
|
unsigned getAddrMode2InstrBinary(const MachineInstr &MI,
|
|
const TargetInstrDesc &TID,
|
|
unsigned Binary);
|
|
unsigned getAddrMode3InstrBinary(const MachineInstr &MI,
|
|
const TargetInstrDesc &TID,
|
|
unsigned Binary);
|
|
unsigned getAddrMode4InstrBinary(const MachineInstr &MI,
|
|
const TargetInstrDesc &TID,
|
|
unsigned Binary);
|
|
|
|
/// getInstrBinary - Return binary encoding for the specified
|
|
/// machine instruction.
|
|
unsigned getInstrBinary(const MachineInstr &MI);
|
|
|
|
/// getBinaryCodeForInstr - This function, generated by the
|
|
/// CodeEmitterGenerator using TableGen, produces the binary encoding for
|
|
/// machine instructions.
|
|
///
|
|
unsigned getBinaryCodeForInstr(const MachineInstr &MI);
|
|
|
|
/// getMachineOpValue - Return binary encoding of operand. If the machine
|
|
/// operand requires relocation, record the relocation and return zero.
|
|
unsigned getMachineOpValue(const MachineInstr &MI,const MachineOperand &MO);
|
|
unsigned getMachineOpValue(const MachineInstr &MI, unsigned OpIdx) {
|
|
return getMachineOpValue(MI, MI.getOperand(OpIdx));
|
|
}
|
|
|
|
/// getBaseOpcodeFor - Return the opcode value.
|
|
///
|
|
unsigned getBaseOpcodeFor(const TargetInstrDesc &TID) const {
|
|
return (TID.TSFlags & ARMII::OpcodeMask) >> ARMII::OpcodeShift;
|
|
}
|
|
|
|
/// getShiftOp - Return the shift opcode (bit[6:5]) of the machine operand.
|
|
///
|
|
unsigned getShiftOp(const MachineOperand &MO) const ;
|
|
|
|
/// Routines that handle operands which add machine relocations which are
|
|
/// fixed up by the JIT fixup stage.
|
|
void emitGlobalAddress(GlobalValue *GV, unsigned Reloc,
|
|
bool NeedStub);
|
|
void emitExternalSymbolAddress(const char *ES, unsigned Reloc);
|
|
void emitConstPoolAddress(unsigned CPI, unsigned Reloc,
|
|
int Disp = 0, unsigned PCAdj = 0 );
|
|
void emitJumpTableAddress(unsigned JTIndex, unsigned Reloc,
|
|
unsigned PCAdj = 0);
|
|
void emitGlobalConstant(const Constant *CV);
|
|
void emitMachineBasicBlock(MachineBasicBlock *BB);
|
|
};
|
|
char ARMCodeEmitter::ID = 0;
|
|
}
|
|
|
|
/// createARMCodeEmitterPass - Return a pass that emits the collected ARM code
|
|
/// to the specified MCE object.
|
|
FunctionPass *llvm::createARMCodeEmitterPass(ARMTargetMachine &TM,
|
|
MachineCodeEmitter &MCE) {
|
|
return new ARMCodeEmitter(TM, MCE);
|
|
}
|
|
|
|
bool ARMCodeEmitter::runOnMachineFunction(MachineFunction &MF) {
|
|
assert((MF.getTarget().getRelocationModel() != Reloc::Default ||
|
|
MF.getTarget().getRelocationModel() != Reloc::Static) &&
|
|
"JIT relocation model must be set to static or default!");
|
|
II = ((ARMTargetMachine&)MF.getTarget()).getInstrInfo();
|
|
TD = ((ARMTargetMachine&)MF.getTarget()).getTargetData();
|
|
JTI = ((ARMTargetMachine&)MF.getTarget()).getJITInfo();
|
|
MCPEs = &MF.getConstantPool()->getConstants();
|
|
JTI->ResizeConstPoolMap(MCPEs->size());
|
|
|
|
do {
|
|
DOUT << "JITTing function '" << MF.getFunction()->getName() << "'\n";
|
|
MCE.startFunction(MF);
|
|
for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
|
|
MBB != E; ++MBB) {
|
|
MCE.StartMachineBasicBlock(MBB);
|
|
for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
|
|
I != E; ++I)
|
|
emitInstruction(*I);
|
|
}
|
|
} while (MCE.finishFunction(MF));
|
|
|
|
return false;
|
|
}
|
|
|
|
/// getShiftOp - Return the shift opcode (bit[6:5]) of the machine operand.
|
|
///
|
|
unsigned ARMCodeEmitter::getShiftOp(const MachineOperand &MO) const {
|
|
switch (ARM_AM::getAM2ShiftOpc(MO.getImm())) {
|
|
default: assert(0 && "Unknown shift opc!");
|
|
case ARM_AM::asr: return 2;
|
|
case ARM_AM::lsl: return 0;
|
|
case ARM_AM::lsr: return 1;
|
|
case ARM_AM::ror:
|
|
case ARM_AM::rrx: return 3;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/// getMachineOpValue - Return binary encoding of operand. If the machine
|
|
/// operand requires relocation, record the relocation and return zero.
|
|
unsigned ARMCodeEmitter::getMachineOpValue(const MachineInstr &MI,
|
|
const MachineOperand &MO) {
|
|
if (MO.isReg())
|
|
return ARMRegisterInfo::getRegisterNumbering(MO.getReg());
|
|
else if (MO.isImm())
|
|
return static_cast<unsigned>(MO.getImm());
|
|
else if (MO.isGlobal())
|
|
emitGlobalAddress(MO.getGlobal(), ARM::reloc_arm_branch, true);
|
|
else if (MO.isSymbol())
|
|
emitExternalSymbolAddress(MO.getSymbolName(), ARM::reloc_arm_relative);
|
|
else if (MO.isCPI())
|
|
emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_cp_entry);
|
|
else if (MO.isJTI())
|
|
emitJumpTableAddress(MO.getIndex(), ARM::reloc_arm_relative);
|
|
else if (MO.isMBB())
|
|
emitMachineBasicBlock(MO.getMBB());
|
|
else {
|
|
cerr << "ERROR: Unknown type of MachineOperand: " << MO << "\n";
|
|
abort();
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/// emitGlobalAddress - Emit the specified address to the code stream.
|
|
///
|
|
void ARMCodeEmitter::emitGlobalAddress(GlobalValue *GV,
|
|
unsigned Reloc, bool NeedStub) {
|
|
MCE.addRelocation(MachineRelocation::getGV(MCE.getCurrentPCOffset(),
|
|
Reloc, GV, 0, NeedStub));
|
|
}
|
|
|
|
/// emitExternalSymbolAddress - Arrange for the address of an external symbol to
|
|
/// be emitted to the current location in the function, and allow it to be PC
|
|
/// relative.
|
|
void ARMCodeEmitter::emitExternalSymbolAddress(const char *ES, unsigned Reloc) {
|
|
MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
|
|
Reloc, ES));
|
|
}
|
|
|
|
/// emitConstPoolAddress - Arrange for the address of an constant pool
|
|
/// to be emitted to the current location in the function, and allow it to be PC
|
|
/// relative.
|
|
void ARMCodeEmitter::emitConstPoolAddress(unsigned CPI, unsigned Reloc,
|
|
int Disp /* = 0 */,
|
|
unsigned PCAdj /* = 0 */) {
|
|
// Tell JIT emitter we'll resolve the address.
|
|
MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
|
|
Reloc, CPI, PCAdj, true));
|
|
}
|
|
|
|
/// emitJumpTableAddress - Arrange for the address of a jump table to
|
|
/// be emitted to the current location in the function, and allow it to be PC
|
|
/// relative.
|
|
void ARMCodeEmitter::emitJumpTableAddress(unsigned JTIndex, unsigned Reloc,
|
|
unsigned PCAdj /* = 0 */) {
|
|
MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
|
|
Reloc, JTIndex, PCAdj));
|
|
}
|
|
|
|
/// emitMachineBasicBlock - Emit the specified address basic block.
|
|
void ARMCodeEmitter::emitMachineBasicBlock(MachineBasicBlock *BB) {
|
|
MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
|
|
ARM::reloc_arm_branch, BB));
|
|
}
|
|
|
|
void ARMCodeEmitter::emitInstruction(const MachineInstr &MI) {
|
|
DOUT << "JIT: " << "0x" << MCE.getCurrentPCValue() << ":\t" << MI;
|
|
|
|
NumEmitted++; // Keep track of the # of mi's emitted
|
|
if ((MI.getDesc().TSFlags & ARMII::FormMask) == ARMII::Pseudo)
|
|
emitPseudoInstruction(MI);
|
|
else
|
|
MCE.emitWordLE(getInstrBinary(MI));
|
|
}
|
|
|
|
void ARMCodeEmitter::emitConstPoolInstruction(const MachineInstr &MI) {
|
|
unsigned CPI = MI.getOperand(0).getImm();
|
|
unsigned CPIndex = MI.getOperand(1).getIndex();
|
|
const MachineConstantPoolEntry &MCPE = (*MCPEs)[CPIndex];
|
|
|
|
// Remember the CONSTPOOL_ENTRY address for later relocation.
|
|
JTI->addConstantPoolEntryAddr(CPI, MCE.getCurrentPCValue());
|
|
|
|
// Emit constpool island entry. In most cases, the actual values will be
|
|
// resolved and relocated after code emission.
|
|
if (MCPE.isMachineConstantPoolEntry()) {
|
|
ARMConstantPoolValue *ACPV =
|
|
static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
|
|
|
|
DOUT << "\t** ARM constant pool #" << CPI << " @ "
|
|
<< (void*)MCE.getCurrentPCValue() << " '" << *ACPV << "'\n";
|
|
|
|
GlobalValue *GV = ACPV->getGV();
|
|
if (GV) {
|
|
assert(!ACPV->isStub() && "Don't know how to deal this yet!");
|
|
emitGlobalAddress(GV, ARM::reloc_arm_absolute, false);
|
|
} else {
|
|
assert(!ACPV->isNonLazyPointer() && "Don't know how to deal this yet!");
|
|
emitExternalSymbolAddress(ACPV->getSymbol(), ARM::reloc_arm_absolute);
|
|
}
|
|
MCE.emitWordLE(0);
|
|
} else {
|
|
Constant *CV = MCPE.Val.ConstVal;
|
|
|
|
DOUT << "\t** Constant pool #" << CPI << " @ "
|
|
<< (void*)MCE.getCurrentPCValue() << " '" << *CV << "'\n";
|
|
|
|
if (GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
|
|
emitGlobalAddress(GV, ARM::reloc_arm_absolute, false);
|
|
MCE.emitWordLE(0);
|
|
} else {
|
|
assert(CV->getType()->isInteger() &&
|
|
"Not expecting non-integer constpool entries yet!");
|
|
const ConstantInt *CI = dyn_cast<ConstantInt>(CV);
|
|
uint32_t Val = *(uint32_t*)CI->getValue().getRawData();
|
|
MCE.emitWordLE(Val);
|
|
}
|
|
}
|
|
}
|
|
|
|
void ARMCodeEmitter::emitPseudoInstruction(const MachineInstr &MI) {
|
|
unsigned Opcode = MI.getDesc().Opcode;
|
|
switch (Opcode) {
|
|
default:
|
|
abort(); // FIXME:
|
|
case ARM::CONSTPOOL_ENTRY:
|
|
emitConstPoolInstruction(MI);
|
|
break;
|
|
case ARM::PICADD: {
|
|
// PICADD is just an add instruction that implicitly read pc.
|
|
unsigned Binary = getBinaryCodeForInstr(MI);
|
|
const TargetInstrDesc &TID = MI.getDesc();
|
|
MCE.emitWordLE(getAddrMode1InstrBinary(MI, TID, Binary));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
unsigned ARMCodeEmitter::getAddrModeNoneInstrBinary(const MachineInstr &MI,
|
|
const TargetInstrDesc &TID,
|
|
unsigned Binary) {
|
|
// Set the conditional execution predicate
|
|
Binary |= II->getPredicate(&MI) << 28;
|
|
|
|
switch (TID.TSFlags & ARMII::FormMask) {
|
|
default:
|
|
assert(0 && "Unknown instruction subtype!");
|
|
break;
|
|
case ARMII::Branch: {
|
|
// Set signed_immed_24 field
|
|
Binary |= getMachineOpValue(MI, 0);
|
|
|
|
// if it is a conditional branch, set cond field
|
|
if (TID.Opcode == ARM::Bcc) {
|
|
Binary &= 0x0FFFFFFF; // clear conditional field
|
|
Binary |= getMachineOpValue(MI, 1) << 28; // set conditional field
|
|
}
|
|
break;
|
|
}
|
|
case ARMII::BranchMisc: {
|
|
if (TID.Opcode == ARM::BX)
|
|
abort(); // FIXME
|
|
if (TID.Opcode == ARM::BX_RET)
|
|
Binary |= 0xe; // the return register is LR
|
|
else
|
|
// otherwise, set the return register
|
|
Binary |= getMachineOpValue(MI, 0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return Binary;
|
|
}
|
|
|
|
unsigned ARMCodeEmitter::getMachineSoRegOpValue(const MachineInstr &MI,
|
|
const TargetInstrDesc &TID,
|
|
const MachineOperand &MO,
|
|
unsigned OpIdx) {
|
|
unsigned Binary = getMachineOpValue(MI, MO);
|
|
|
|
const MachineOperand &MO1 = MI.getOperand(OpIdx + 1);
|
|
const MachineOperand &MO2 = MI.getOperand(OpIdx + 2);
|
|
ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO2.getImm());
|
|
|
|
// Encode the shift opcode.
|
|
unsigned SBits = 0;
|
|
unsigned Rs = MO1.getReg();
|
|
if (Rs) {
|
|
// Set shift operand (bit[7:4]).
|
|
// LSL - 0001
|
|
// LSR - 0011
|
|
// ASR - 0101
|
|
// ROR - 0111
|
|
// RRX - 0110 and bit[11:8] clear.
|
|
switch (SOpc) {
|
|
default: assert(0 && "Unknown shift opc!");
|
|
case ARM_AM::lsl: SBits = 0x1; break;
|
|
case ARM_AM::lsr: SBits = 0x3; break;
|
|
case ARM_AM::asr: SBits = 0x5; break;
|
|
case ARM_AM::ror: SBits = 0x7; break;
|
|
case ARM_AM::rrx: SBits = 0x6; break;
|
|
}
|
|
} else {
|
|
// Set shift operand (bit[6:4]).
|
|
// LSL - 000
|
|
// LSR - 010
|
|
// ASR - 100
|
|
// ROR - 110
|
|
switch (SOpc) {
|
|
default: assert(0 && "Unknown shift opc!");
|
|
case ARM_AM::lsl: SBits = 0x0; break;
|
|
case ARM_AM::lsr: SBits = 0x2; break;
|
|
case ARM_AM::asr: SBits = 0x4; break;
|
|
case ARM_AM::ror: SBits = 0x6; break;
|
|
}
|
|
}
|
|
Binary |= SBits << 4;
|
|
if (SOpc == ARM_AM::rrx)
|
|
return Binary;
|
|
|
|
// Encode the shift operation Rs or shift_imm (except rrx).
|
|
if (Rs) {
|
|
// Encode Rs bit[11:8].
|
|
assert(ARM_AM::getSORegOffset(MO2.getImm()) == 0);
|
|
return Binary |
|
|
(ARMRegisterInfo::getRegisterNumbering(Rs) << ARMII::RegRsShift);
|
|
}
|
|
|
|
// Encode shift_imm bit[11:7].
|
|
return Binary | ARM_AM::getSORegOffset(MO2.getImm()) << 7;
|
|
}
|
|
|
|
unsigned ARMCodeEmitter::getMachineSoImmOpValue(const MachineInstr &MI,
|
|
const TargetInstrDesc &TID,
|
|
const MachineOperand &MO) {
|
|
unsigned SoImm = MO.getImm();
|
|
// Encode rotate_imm.
|
|
unsigned Binary = ARM_AM::getSOImmValRot(SoImm) << ARMII::RotImmShift;
|
|
// Encode immed_8.
|
|
Binary |= ARM_AM::getSOImmVal(SoImm);
|
|
return Binary;
|
|
}
|
|
|
|
unsigned ARMCodeEmitter::getAddrMode1SBit(const MachineInstr &MI,
|
|
const TargetInstrDesc &TID) const {
|
|
for (unsigned i = MI.getNumOperands(), e = TID.getNumOperands(); i != e; --i){
|
|
const MachineOperand &MO = MI.getOperand(i-1);
|
|
if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)
|
|
return 1 << ARMII::S_BitShift;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
unsigned ARMCodeEmitter::getAddrMode1InstrBinary(const MachineInstr &MI,
|
|
const TargetInstrDesc &TID,
|
|
unsigned Binary) {
|
|
// Set the conditional execution predicate
|
|
Binary |= II->getPredicate(&MI) << 28;
|
|
|
|
// Encode S bit if MI modifies CPSR.
|
|
Binary |= getAddrMode1SBit(MI, TID);
|
|
|
|
// Encode register def if there is one.
|
|
unsigned NumDefs = TID.getNumDefs();
|
|
unsigned OpIdx = 0;
|
|
if (NumDefs) {
|
|
Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRdShift;
|
|
++OpIdx;
|
|
}
|
|
|
|
// Encode first non-shifter register operand if there is one.
|
|
unsigned Format = TID.TSFlags & ARMII::FormMask;
|
|
bool HasRnReg = !(Format == ARMII::DPRdMisc ||
|
|
Format == ARMII::DPRdIm ||
|
|
Format == ARMII::DPRdReg ||
|
|
Format == ARMII::DPRdSoReg);
|
|
if (HasRnReg) {
|
|
if (TID.getOpcode() == ARM::PICADD)
|
|
// Special handling for PICADD. It implicitly use add.
|
|
Binary |=
|
|
ARMRegisterInfo::getRegisterNumbering(ARM::PC) << ARMII::RegRnShift;
|
|
else {
|
|
Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRnShift;
|
|
++OpIdx;
|
|
}
|
|
}
|
|
|
|
// Encode shifter operand.
|
|
bool HasSoReg = (Format == ARMII::DPRdSoReg ||
|
|
Format == ARMII::DPRnSoReg ||
|
|
Format == ARMII::DPRSoReg ||
|
|
Format == ARMII::DPRSoRegS);
|
|
|
|
const MachineOperand &MO = MI.getOperand(OpIdx);
|
|
if (HasSoReg)
|
|
// Encode SoReg.
|
|
return Binary | getMachineSoRegOpValue(MI, TID, MO, OpIdx);
|
|
|
|
if (MO.isReg())
|
|
// Encode register Rm.
|
|
return Binary | ARMRegisterInfo::getRegisterNumbering(MO.getReg());
|
|
|
|
// Encode so_imm.
|
|
// Set bit I(25) to identify this is the immediate form of <shifter_op>
|
|
Binary |= 1 << ARMII::I_BitShift;
|
|
Binary |= getMachineSoImmOpValue(MI, TID, MO);
|
|
return Binary;
|
|
}
|
|
|
|
unsigned ARMCodeEmitter::getAddrMode2InstrBinary(const MachineInstr &MI,
|
|
const TargetInstrDesc &TID,
|
|
unsigned Binary) {
|
|
// Set the conditional execution predicate
|
|
Binary |= II->getPredicate(&MI) << 28;
|
|
|
|
// Set first operand
|
|
Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
|
|
|
|
// Set second operand
|
|
Binary |= getMachineOpValue(MI, 1) << ARMII::RegRnShift;
|
|
|
|
const MachineOperand &MO2 = MI.getOperand(2);
|
|
const MachineOperand &MO3 = MI.getOperand(3);
|
|
|
|
// Set bit U(23) according to sign of immed value (positive or negative).
|
|
Binary |= ((ARM_AM::getAM2Op(MO3.getImm()) == ARM_AM::add ? 1 : 0) <<
|
|
ARMII::U_BitShift);
|
|
if (!MO2.getReg()) { // is immediate
|
|
if (ARM_AM::getAM2Offset(MO3.getImm()))
|
|
// Set the value of offset_12 field
|
|
Binary |= ARM_AM::getAM2Offset(MO3.getImm());
|
|
return Binary;
|
|
}
|
|
|
|
// Set bit I(25), because this is not in immediate enconding.
|
|
Binary |= 1 << ARMII::I_BitShift;
|
|
assert(TargetRegisterInfo::isPhysicalRegister(MO2.getReg()));
|
|
// Set bit[3:0] to the corresponding Rm register
|
|
Binary |= ARMRegisterInfo::getRegisterNumbering(MO2.getReg());
|
|
|
|
// if this instr is in scaled register offset/index instruction, set
|
|
// shift_immed(bit[11:7]) and shift(bit[6:5]) fields.
|
|
if (unsigned ShImm = ARM_AM::getAM2Offset(MO3.getImm())) {
|
|
Binary |= getShiftOp(MO3) << 5; // shift
|
|
Binary |= ShImm << 7; // shift_immed
|
|
}
|
|
|
|
return Binary;
|
|
}
|
|
|
|
unsigned ARMCodeEmitter::getAddrMode3InstrBinary(const MachineInstr &MI,
|
|
const TargetInstrDesc &TID,
|
|
unsigned Binary) {
|
|
// Set the conditional execution predicate
|
|
Binary |= II->getPredicate(&MI) << 28;
|
|
|
|
// Set first operand
|
|
Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
|
|
|
|
// Set second operand
|
|
Binary |= getMachineOpValue(MI, 1) << ARMII::RegRnShift;
|
|
|
|
const MachineOperand &MO2 = MI.getOperand(2);
|
|
const MachineOperand &MO3 = MI.getOperand(3);
|
|
|
|
// Set bit U(23) according to sign of immed value (positive or negative)
|
|
Binary |= ((ARM_AM::getAM2Op(MO3.getImm()) == ARM_AM::add ? 1 : 0) <<
|
|
ARMII::U_BitShift);
|
|
|
|
// If this instr is in register offset/index encoding, set bit[3:0]
|
|
// to the corresponding Rm register.
|
|
if (MO2.getReg()) {
|
|
Binary |= ARMRegisterInfo::getRegisterNumbering(MO2.getReg());
|
|
return Binary;
|
|
}
|
|
|
|
// if this instr is in immediate offset/index encoding, set bit 22 to 1
|
|
if (unsigned ImmOffs = ARM_AM::getAM3Offset(MO3.getImm())) {
|
|
Binary |= 1 << 22;
|
|
// Set operands
|
|
Binary |= (ImmOffs >> 4) << 8; // immedH
|
|
Binary |= (ImmOffs & ~0xF); // immedL
|
|
}
|
|
|
|
return Binary;
|
|
}
|
|
|
|
unsigned ARMCodeEmitter::getAddrMode4InstrBinary(const MachineInstr &MI,
|
|
const TargetInstrDesc &TID,
|
|
unsigned Binary) {
|
|
// Set the conditional execution predicate
|
|
Binary |= II->getPredicate(&MI) << 28;
|
|
|
|
// Set first operand
|
|
Binary |= getMachineOpValue(MI, 0) << ARMII::RegRnShift;
|
|
|
|
// Set addressing mode by modifying bits U(23) and P(24)
|
|
// IA - Increment after - bit U = 1 and bit P = 0
|
|
// IB - Increment before - bit U = 1 and bit P = 1
|
|
// DA - Decrement after - bit U = 0 and bit P = 0
|
|
// DB - Decrement before - bit U = 0 and bit P = 1
|
|
const MachineOperand &MO = MI.getOperand(1);
|
|
ARM_AM::AMSubMode Mode = ARM_AM::getAM4SubMode(MO.getImm());
|
|
switch (Mode) {
|
|
default: assert(0 && "Unknown addressing sub-mode!");
|
|
case ARM_AM::da: break;
|
|
case ARM_AM::db: Binary |= 0x1 << 24; break;
|
|
case ARM_AM::ia: Binary |= 0x1 << 23; break;
|
|
case ARM_AM::ib: Binary |= 0x3 << 23; break;
|
|
}
|
|
|
|
// Set bit W(21)
|
|
if (ARM_AM::getAM4WBFlag(MO.getImm()))
|
|
Binary |= 0x1 << 21;
|
|
|
|
// Set registers
|
|
for (unsigned i = 4, e = MI.getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = MI.getOperand(i);
|
|
if (MO.isReg() && MO.isImplicit())
|
|
continue;
|
|
unsigned RegNum = ARMRegisterInfo::getRegisterNumbering(MO.getReg());
|
|
assert(TargetRegisterInfo::isPhysicalRegister(MO.getReg()) &&
|
|
RegNum < 16);
|
|
Binary |= 0x1 << RegNum;
|
|
}
|
|
|
|
return Binary;
|
|
}
|
|
|
|
/// getInstrBinary - Return binary encoding for the specified
|
|
/// machine instruction.
|
|
unsigned ARMCodeEmitter::getInstrBinary(const MachineInstr &MI) {
|
|
// Part of binary is determined by TableGn.
|
|
unsigned Binary = getBinaryCodeForInstr(MI);
|
|
|
|
const TargetInstrDesc &TID = MI.getDesc();
|
|
switch (TID.TSFlags & ARMII::AddrModeMask) {
|
|
case ARMII::AddrModeNone:
|
|
return getAddrModeNoneInstrBinary(MI, TID, Binary);
|
|
case ARMII::AddrMode1:
|
|
return getAddrMode1InstrBinary(MI, TID, Binary);
|
|
case ARMII::AddrMode2:
|
|
return getAddrMode2InstrBinary(MI, TID, Binary);
|
|
case ARMII::AddrMode3:
|
|
return getAddrMode3InstrBinary(MI, TID, Binary);
|
|
case ARMII::AddrMode4:
|
|
return getAddrMode4InstrBinary(MI, TID, Binary);
|
|
}
|
|
|
|
abort();
|
|
return 0;
|
|
}
|
|
|
|
#include "ARMGenCodeEmitter.inc"
|