mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-13 09:33:50 +00:00
2253a2f52f
The Builtin attribute is an attribute that can be placed on function call site that signal that even though a function is declared as being a builtin, rdar://problem/13727199 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185049 91177308-0d34-0410-b5e6-96231b3b80d8
3743 lines
141 KiB
C++
3743 lines
141 KiB
C++
//===-- llvm/Instructions.h - Instruction subclass definitions --*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file exposes the class definitions of all of the subclasses of the
|
|
// Instruction class. This is meant to be an easy way to get access to all
|
|
// instruction subclasses.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_IR_INSTRUCTIONS_H
|
|
#define LLVM_IR_INSTRUCTIONS_H
|
|
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/CallingConv.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/IntegersSubset.h"
|
|
#include "llvm/Support/IntegersSubsetMapping.h"
|
|
#include <iterator>
|
|
|
|
namespace llvm {
|
|
|
|
class APInt;
|
|
class ConstantInt;
|
|
class ConstantRange;
|
|
class DataLayout;
|
|
class LLVMContext;
|
|
|
|
enum AtomicOrdering {
|
|
NotAtomic = 0,
|
|
Unordered = 1,
|
|
Monotonic = 2,
|
|
// Consume = 3, // Not specified yet.
|
|
Acquire = 4,
|
|
Release = 5,
|
|
AcquireRelease = 6,
|
|
SequentiallyConsistent = 7
|
|
};
|
|
|
|
enum SynchronizationScope {
|
|
SingleThread = 0,
|
|
CrossThread = 1
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AllocaInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// AllocaInst - an instruction to allocate memory on the stack
|
|
///
|
|
class AllocaInst : public UnaryInstruction {
|
|
protected:
|
|
virtual AllocaInst *clone_impl() const;
|
|
public:
|
|
explicit AllocaInst(Type *Ty, Value *ArraySize = 0,
|
|
const Twine &Name = "", Instruction *InsertBefore = 0);
|
|
AllocaInst(Type *Ty, Value *ArraySize,
|
|
const Twine &Name, BasicBlock *InsertAtEnd);
|
|
|
|
AllocaInst(Type *Ty, const Twine &Name, Instruction *InsertBefore = 0);
|
|
AllocaInst(Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd);
|
|
|
|
AllocaInst(Type *Ty, Value *ArraySize, unsigned Align,
|
|
const Twine &Name = "", Instruction *InsertBefore = 0);
|
|
AllocaInst(Type *Ty, Value *ArraySize, unsigned Align,
|
|
const Twine &Name, BasicBlock *InsertAtEnd);
|
|
|
|
// Out of line virtual method, so the vtable, etc. has a home.
|
|
virtual ~AllocaInst();
|
|
|
|
/// isArrayAllocation - Return true if there is an allocation size parameter
|
|
/// to the allocation instruction that is not 1.
|
|
///
|
|
bool isArrayAllocation() const;
|
|
|
|
/// getArraySize - Get the number of elements allocated. For a simple
|
|
/// allocation of a single element, this will return a constant 1 value.
|
|
///
|
|
const Value *getArraySize() const { return getOperand(0); }
|
|
Value *getArraySize() { return getOperand(0); }
|
|
|
|
/// getType - Overload to return most specific pointer type
|
|
///
|
|
PointerType *getType() const {
|
|
return cast<PointerType>(Instruction::getType());
|
|
}
|
|
|
|
/// getAllocatedType - Return the type that is being allocated by the
|
|
/// instruction.
|
|
///
|
|
Type *getAllocatedType() const;
|
|
|
|
/// getAlignment - Return the alignment of the memory that is being allocated
|
|
/// by the instruction.
|
|
///
|
|
unsigned getAlignment() const {
|
|
return (1u << getSubclassDataFromInstruction()) >> 1;
|
|
}
|
|
void setAlignment(unsigned Align);
|
|
|
|
/// isStaticAlloca - Return true if this alloca is in the entry block of the
|
|
/// function and is a constant size. If so, the code generator will fold it
|
|
/// into the prolog/epilog code, so it is basically free.
|
|
bool isStaticAlloca() const;
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const Instruction *I) {
|
|
return (I->getOpcode() == Instruction::Alloca);
|
|
}
|
|
static inline bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
private:
|
|
// Shadow Instruction::setInstructionSubclassData with a private forwarding
|
|
// method so that subclasses cannot accidentally use it.
|
|
void setInstructionSubclassData(unsigned short D) {
|
|
Instruction::setInstructionSubclassData(D);
|
|
}
|
|
};
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// LoadInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// LoadInst - an instruction for reading from memory. This uses the
|
|
/// SubclassData field in Value to store whether or not the load is volatile.
|
|
///
|
|
class LoadInst : public UnaryInstruction {
|
|
void AssertOK();
|
|
protected:
|
|
virtual LoadInst *clone_impl() const;
|
|
public:
|
|
LoadInst(Value *Ptr, const Twine &NameStr, Instruction *InsertBefore);
|
|
LoadInst(Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd);
|
|
LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile = false,
|
|
Instruction *InsertBefore = 0);
|
|
LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile,
|
|
BasicBlock *InsertAtEnd);
|
|
LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile,
|
|
unsigned Align, Instruction *InsertBefore = 0);
|
|
LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile,
|
|
unsigned Align, BasicBlock *InsertAtEnd);
|
|
LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile,
|
|
unsigned Align, AtomicOrdering Order,
|
|
SynchronizationScope SynchScope = CrossThread,
|
|
Instruction *InsertBefore = 0);
|
|
LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile,
|
|
unsigned Align, AtomicOrdering Order,
|
|
SynchronizationScope SynchScope,
|
|
BasicBlock *InsertAtEnd);
|
|
|
|
LoadInst(Value *Ptr, const char *NameStr, Instruction *InsertBefore);
|
|
LoadInst(Value *Ptr, const char *NameStr, BasicBlock *InsertAtEnd);
|
|
explicit LoadInst(Value *Ptr, const char *NameStr = 0,
|
|
bool isVolatile = false, Instruction *InsertBefore = 0);
|
|
LoadInst(Value *Ptr, const char *NameStr, bool isVolatile,
|
|
BasicBlock *InsertAtEnd);
|
|
|
|
/// isVolatile - Return true if this is a load from a volatile memory
|
|
/// location.
|
|
///
|
|
bool isVolatile() const { return getSubclassDataFromInstruction() & 1; }
|
|
|
|
/// setVolatile - Specify whether this is a volatile load or not.
|
|
///
|
|
void setVolatile(bool V) {
|
|
setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
|
|
(V ? 1 : 0));
|
|
}
|
|
|
|
/// getAlignment - Return the alignment of the access that is being performed
|
|
///
|
|
unsigned getAlignment() const {
|
|
return (1 << ((getSubclassDataFromInstruction() >> 1) & 31)) >> 1;
|
|
}
|
|
|
|
void setAlignment(unsigned Align);
|
|
|
|
/// Returns the ordering effect of this fence.
|
|
AtomicOrdering getOrdering() const {
|
|
return AtomicOrdering((getSubclassDataFromInstruction() >> 7) & 7);
|
|
}
|
|
|
|
/// Set the ordering constraint on this load. May not be Release or
|
|
/// AcquireRelease.
|
|
void setOrdering(AtomicOrdering Ordering) {
|
|
setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 7)) |
|
|
(Ordering << 7));
|
|
}
|
|
|
|
SynchronizationScope getSynchScope() const {
|
|
return SynchronizationScope((getSubclassDataFromInstruction() >> 6) & 1);
|
|
}
|
|
|
|
/// Specify whether this load is ordered with respect to all
|
|
/// concurrently executing threads, or only with respect to signal handlers
|
|
/// executing in the same thread.
|
|
void setSynchScope(SynchronizationScope xthread) {
|
|
setInstructionSubclassData((getSubclassDataFromInstruction() & ~(1 << 6)) |
|
|
(xthread << 6));
|
|
}
|
|
|
|
bool isAtomic() const { return getOrdering() != NotAtomic; }
|
|
void setAtomic(AtomicOrdering Ordering,
|
|
SynchronizationScope SynchScope = CrossThread) {
|
|
setOrdering(Ordering);
|
|
setSynchScope(SynchScope);
|
|
}
|
|
|
|
bool isSimple() const { return !isAtomic() && !isVolatile(); }
|
|
bool isUnordered() const {
|
|
return getOrdering() <= Unordered && !isVolatile();
|
|
}
|
|
|
|
Value *getPointerOperand() { return getOperand(0); }
|
|
const Value *getPointerOperand() const { return getOperand(0); }
|
|
static unsigned getPointerOperandIndex() { return 0U; }
|
|
|
|
/// \brief Returns the address space of the pointer operand.
|
|
unsigned getPointerAddressSpace() const {
|
|
return getPointerOperand()->getType()->getPointerAddressSpace();
|
|
}
|
|
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const Instruction *I) {
|
|
return I->getOpcode() == Instruction::Load;
|
|
}
|
|
static inline bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
private:
|
|
// Shadow Instruction::setInstructionSubclassData with a private forwarding
|
|
// method so that subclasses cannot accidentally use it.
|
|
void setInstructionSubclassData(unsigned short D) {
|
|
Instruction::setInstructionSubclassData(D);
|
|
}
|
|
};
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// StoreInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// StoreInst - an instruction for storing to memory
|
|
///
|
|
class StoreInst : public Instruction {
|
|
void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
|
|
void AssertOK();
|
|
protected:
|
|
virtual StoreInst *clone_impl() const;
|
|
public:
|
|
// allocate space for exactly two operands
|
|
void *operator new(size_t s) {
|
|
return User::operator new(s, 2);
|
|
}
|
|
StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore);
|
|
StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd);
|
|
StoreInst(Value *Val, Value *Ptr, bool isVolatile = false,
|
|
Instruction *InsertBefore = 0);
|
|
StoreInst(Value *Val, Value *Ptr, bool isVolatile, BasicBlock *InsertAtEnd);
|
|
StoreInst(Value *Val, Value *Ptr, bool isVolatile,
|
|
unsigned Align, Instruction *InsertBefore = 0);
|
|
StoreInst(Value *Val, Value *Ptr, bool isVolatile,
|
|
unsigned Align, BasicBlock *InsertAtEnd);
|
|
StoreInst(Value *Val, Value *Ptr, bool isVolatile,
|
|
unsigned Align, AtomicOrdering Order,
|
|
SynchronizationScope SynchScope = CrossThread,
|
|
Instruction *InsertBefore = 0);
|
|
StoreInst(Value *Val, Value *Ptr, bool isVolatile,
|
|
unsigned Align, AtomicOrdering Order,
|
|
SynchronizationScope SynchScope,
|
|
BasicBlock *InsertAtEnd);
|
|
|
|
|
|
/// isVolatile - Return true if this is a store to a volatile memory
|
|
/// location.
|
|
///
|
|
bool isVolatile() const { return getSubclassDataFromInstruction() & 1; }
|
|
|
|
/// setVolatile - Specify whether this is a volatile store or not.
|
|
///
|
|
void setVolatile(bool V) {
|
|
setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
|
|
(V ? 1 : 0));
|
|
}
|
|
|
|
/// Transparently provide more efficient getOperand methods.
|
|
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
|
|
|
|
/// getAlignment - Return the alignment of the access that is being performed
|
|
///
|
|
unsigned getAlignment() const {
|
|
return (1 << ((getSubclassDataFromInstruction() >> 1) & 31)) >> 1;
|
|
}
|
|
|
|
void setAlignment(unsigned Align);
|
|
|
|
/// Returns the ordering effect of this store.
|
|
AtomicOrdering getOrdering() const {
|
|
return AtomicOrdering((getSubclassDataFromInstruction() >> 7) & 7);
|
|
}
|
|
|
|
/// Set the ordering constraint on this store. May not be Acquire or
|
|
/// AcquireRelease.
|
|
void setOrdering(AtomicOrdering Ordering) {
|
|
setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 7)) |
|
|
(Ordering << 7));
|
|
}
|
|
|
|
SynchronizationScope getSynchScope() const {
|
|
return SynchronizationScope((getSubclassDataFromInstruction() >> 6) & 1);
|
|
}
|
|
|
|
/// Specify whether this store instruction is ordered with respect to all
|
|
/// concurrently executing threads, or only with respect to signal handlers
|
|
/// executing in the same thread.
|
|
void setSynchScope(SynchronizationScope xthread) {
|
|
setInstructionSubclassData((getSubclassDataFromInstruction() & ~(1 << 6)) |
|
|
(xthread << 6));
|
|
}
|
|
|
|
bool isAtomic() const { return getOrdering() != NotAtomic; }
|
|
void setAtomic(AtomicOrdering Ordering,
|
|
SynchronizationScope SynchScope = CrossThread) {
|
|
setOrdering(Ordering);
|
|
setSynchScope(SynchScope);
|
|
}
|
|
|
|
bool isSimple() const { return !isAtomic() && !isVolatile(); }
|
|
bool isUnordered() const {
|
|
return getOrdering() <= Unordered && !isVolatile();
|
|
}
|
|
|
|
Value *getValueOperand() { return getOperand(0); }
|
|
const Value *getValueOperand() const { return getOperand(0); }
|
|
|
|
Value *getPointerOperand() { return getOperand(1); }
|
|
const Value *getPointerOperand() const { return getOperand(1); }
|
|
static unsigned getPointerOperandIndex() { return 1U; }
|
|
|
|
/// \brief Returns the address space of the pointer operand.
|
|
unsigned getPointerAddressSpace() const {
|
|
return getPointerOperand()->getType()->getPointerAddressSpace();
|
|
}
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const Instruction *I) {
|
|
return I->getOpcode() == Instruction::Store;
|
|
}
|
|
static inline bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
private:
|
|
// Shadow Instruction::setInstructionSubclassData with a private forwarding
|
|
// method so that subclasses cannot accidentally use it.
|
|
void setInstructionSubclassData(unsigned short D) {
|
|
Instruction::setInstructionSubclassData(D);
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct OperandTraits<StoreInst> : public FixedNumOperandTraits<StoreInst, 2> {
|
|
};
|
|
|
|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(StoreInst, Value)
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// FenceInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// FenceInst - an instruction for ordering other memory operations
|
|
///
|
|
class FenceInst : public Instruction {
|
|
void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
|
|
void Init(AtomicOrdering Ordering, SynchronizationScope SynchScope);
|
|
protected:
|
|
virtual FenceInst *clone_impl() const;
|
|
public:
|
|
// allocate space for exactly zero operands
|
|
void *operator new(size_t s) {
|
|
return User::operator new(s, 0);
|
|
}
|
|
|
|
// Ordering may only be Acquire, Release, AcquireRelease, or
|
|
// SequentiallyConsistent.
|
|
FenceInst(LLVMContext &C, AtomicOrdering Ordering,
|
|
SynchronizationScope SynchScope = CrossThread,
|
|
Instruction *InsertBefore = 0);
|
|
FenceInst(LLVMContext &C, AtomicOrdering Ordering,
|
|
SynchronizationScope SynchScope,
|
|
BasicBlock *InsertAtEnd);
|
|
|
|
/// Returns the ordering effect of this fence.
|
|
AtomicOrdering getOrdering() const {
|
|
return AtomicOrdering(getSubclassDataFromInstruction() >> 1);
|
|
}
|
|
|
|
/// Set the ordering constraint on this fence. May only be Acquire, Release,
|
|
/// AcquireRelease, or SequentiallyConsistent.
|
|
void setOrdering(AtomicOrdering Ordering) {
|
|
setInstructionSubclassData((getSubclassDataFromInstruction() & 1) |
|
|
(Ordering << 1));
|
|
}
|
|
|
|
SynchronizationScope getSynchScope() const {
|
|
return SynchronizationScope(getSubclassDataFromInstruction() & 1);
|
|
}
|
|
|
|
/// Specify whether this fence orders other operations with respect to all
|
|
/// concurrently executing threads, or only with respect to signal handlers
|
|
/// executing in the same thread.
|
|
void setSynchScope(SynchronizationScope xthread) {
|
|
setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
|
|
xthread);
|
|
}
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const Instruction *I) {
|
|
return I->getOpcode() == Instruction::Fence;
|
|
}
|
|
static inline bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
private:
|
|
// Shadow Instruction::setInstructionSubclassData with a private forwarding
|
|
// method so that subclasses cannot accidentally use it.
|
|
void setInstructionSubclassData(unsigned short D) {
|
|
Instruction::setInstructionSubclassData(D);
|
|
}
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtomicCmpXchgInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// AtomicCmpXchgInst - an instruction that atomically checks whether a
|
|
/// specified value is in a memory location, and, if it is, stores a new value
|
|
/// there. Returns the value that was loaded.
|
|
///
|
|
class AtomicCmpXchgInst : public Instruction {
|
|
void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
|
|
void Init(Value *Ptr, Value *Cmp, Value *NewVal,
|
|
AtomicOrdering Ordering, SynchronizationScope SynchScope);
|
|
protected:
|
|
virtual AtomicCmpXchgInst *clone_impl() const;
|
|
public:
|
|
// allocate space for exactly three operands
|
|
void *operator new(size_t s) {
|
|
return User::operator new(s, 3);
|
|
}
|
|
AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
|
|
AtomicOrdering Ordering, SynchronizationScope SynchScope,
|
|
Instruction *InsertBefore = 0);
|
|
AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
|
|
AtomicOrdering Ordering, SynchronizationScope SynchScope,
|
|
BasicBlock *InsertAtEnd);
|
|
|
|
/// isVolatile - Return true if this is a cmpxchg from a volatile memory
|
|
/// location.
|
|
///
|
|
bool isVolatile() const {
|
|
return getSubclassDataFromInstruction() & 1;
|
|
}
|
|
|
|
/// setVolatile - Specify whether this is a volatile cmpxchg.
|
|
///
|
|
void setVolatile(bool V) {
|
|
setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
|
|
(unsigned)V);
|
|
}
|
|
|
|
/// Transparently provide more efficient getOperand methods.
|
|
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
|
|
|
|
/// Set the ordering constraint on this cmpxchg.
|
|
void setOrdering(AtomicOrdering Ordering) {
|
|
assert(Ordering != NotAtomic &&
|
|
"CmpXchg instructions can only be atomic.");
|
|
setInstructionSubclassData((getSubclassDataFromInstruction() & 3) |
|
|
(Ordering << 2));
|
|
}
|
|
|
|
/// Specify whether this cmpxchg is atomic and orders other operations with
|
|
/// respect to all concurrently executing threads, or only with respect to
|
|
/// signal handlers executing in the same thread.
|
|
void setSynchScope(SynchronizationScope SynchScope) {
|
|
setInstructionSubclassData((getSubclassDataFromInstruction() & ~2) |
|
|
(SynchScope << 1));
|
|
}
|
|
|
|
/// Returns the ordering constraint on this cmpxchg.
|
|
AtomicOrdering getOrdering() const {
|
|
return AtomicOrdering(getSubclassDataFromInstruction() >> 2);
|
|
}
|
|
|
|
/// Returns whether this cmpxchg is atomic between threads or only within a
|
|
/// single thread.
|
|
SynchronizationScope getSynchScope() const {
|
|
return SynchronizationScope((getSubclassDataFromInstruction() & 2) >> 1);
|
|
}
|
|
|
|
Value *getPointerOperand() { return getOperand(0); }
|
|
const Value *getPointerOperand() const { return getOperand(0); }
|
|
static unsigned getPointerOperandIndex() { return 0U; }
|
|
|
|
Value *getCompareOperand() { return getOperand(1); }
|
|
const Value *getCompareOperand() const { return getOperand(1); }
|
|
|
|
Value *getNewValOperand() { return getOperand(2); }
|
|
const Value *getNewValOperand() const { return getOperand(2); }
|
|
|
|
/// \brief Returns the address space of the pointer operand.
|
|
unsigned getPointerAddressSpace() const {
|
|
return getPointerOperand()->getType()->getPointerAddressSpace();
|
|
}
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const Instruction *I) {
|
|
return I->getOpcode() == Instruction::AtomicCmpXchg;
|
|
}
|
|
static inline bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
private:
|
|
// Shadow Instruction::setInstructionSubclassData with a private forwarding
|
|
// method so that subclasses cannot accidentally use it.
|
|
void setInstructionSubclassData(unsigned short D) {
|
|
Instruction::setInstructionSubclassData(D);
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct OperandTraits<AtomicCmpXchgInst> :
|
|
public FixedNumOperandTraits<AtomicCmpXchgInst, 3> {
|
|
};
|
|
|
|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicCmpXchgInst, Value)
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtomicRMWInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// AtomicRMWInst - an instruction that atomically reads a memory location,
|
|
/// combines it with another value, and then stores the result back. Returns
|
|
/// the old value.
|
|
///
|
|
class AtomicRMWInst : public Instruction {
|
|
void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
|
|
protected:
|
|
virtual AtomicRMWInst *clone_impl() const;
|
|
public:
|
|
/// This enumeration lists the possible modifications atomicrmw can make. In
|
|
/// the descriptions, 'p' is the pointer to the instruction's memory location,
|
|
/// 'old' is the initial value of *p, and 'v' is the other value passed to the
|
|
/// instruction. These instructions always return 'old'.
|
|
enum BinOp {
|
|
/// *p = v
|
|
Xchg,
|
|
/// *p = old + v
|
|
Add,
|
|
/// *p = old - v
|
|
Sub,
|
|
/// *p = old & v
|
|
And,
|
|
/// *p = ~old & v
|
|
Nand,
|
|
/// *p = old | v
|
|
Or,
|
|
/// *p = old ^ v
|
|
Xor,
|
|
/// *p = old >signed v ? old : v
|
|
Max,
|
|
/// *p = old <signed v ? old : v
|
|
Min,
|
|
/// *p = old >unsigned v ? old : v
|
|
UMax,
|
|
/// *p = old <unsigned v ? old : v
|
|
UMin,
|
|
|
|
FIRST_BINOP = Xchg,
|
|
LAST_BINOP = UMin,
|
|
BAD_BINOP
|
|
};
|
|
|
|
// allocate space for exactly two operands
|
|
void *operator new(size_t s) {
|
|
return User::operator new(s, 2);
|
|
}
|
|
AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
|
|
AtomicOrdering Ordering, SynchronizationScope SynchScope,
|
|
Instruction *InsertBefore = 0);
|
|
AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
|
|
AtomicOrdering Ordering, SynchronizationScope SynchScope,
|
|
BasicBlock *InsertAtEnd);
|
|
|
|
BinOp getOperation() const {
|
|
return static_cast<BinOp>(getSubclassDataFromInstruction() >> 5);
|
|
}
|
|
|
|
void setOperation(BinOp Operation) {
|
|
unsigned short SubclassData = getSubclassDataFromInstruction();
|
|
setInstructionSubclassData((SubclassData & 31) |
|
|
(Operation << 5));
|
|
}
|
|
|
|
/// isVolatile - Return true if this is a RMW on a volatile memory location.
|
|
///
|
|
bool isVolatile() const {
|
|
return getSubclassDataFromInstruction() & 1;
|
|
}
|
|
|
|
/// setVolatile - Specify whether this is a volatile RMW or not.
|
|
///
|
|
void setVolatile(bool V) {
|
|
setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
|
|
(unsigned)V);
|
|
}
|
|
|
|
/// Transparently provide more efficient getOperand methods.
|
|
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
|
|
|
|
/// Set the ordering constraint on this RMW.
|
|
void setOrdering(AtomicOrdering Ordering) {
|
|
assert(Ordering != NotAtomic &&
|
|
"atomicrmw instructions can only be atomic.");
|
|
setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 2)) |
|
|
(Ordering << 2));
|
|
}
|
|
|
|
/// Specify whether this RMW orders other operations with respect to all
|
|
/// concurrently executing threads, or only with respect to signal handlers
|
|
/// executing in the same thread.
|
|
void setSynchScope(SynchronizationScope SynchScope) {
|
|
setInstructionSubclassData((getSubclassDataFromInstruction() & ~2) |
|
|
(SynchScope << 1));
|
|
}
|
|
|
|
/// Returns the ordering constraint on this RMW.
|
|
AtomicOrdering getOrdering() const {
|
|
return AtomicOrdering((getSubclassDataFromInstruction() >> 2) & 7);
|
|
}
|
|
|
|
/// Returns whether this RMW is atomic between threads or only within a
|
|
/// single thread.
|
|
SynchronizationScope getSynchScope() const {
|
|
return SynchronizationScope((getSubclassDataFromInstruction() & 2) >> 1);
|
|
}
|
|
|
|
Value *getPointerOperand() { return getOperand(0); }
|
|
const Value *getPointerOperand() const { return getOperand(0); }
|
|
static unsigned getPointerOperandIndex() { return 0U; }
|
|
|
|
Value *getValOperand() { return getOperand(1); }
|
|
const Value *getValOperand() const { return getOperand(1); }
|
|
|
|
/// \brief Returns the address space of the pointer operand.
|
|
unsigned getPointerAddressSpace() const {
|
|
return getPointerOperand()->getType()->getPointerAddressSpace();
|
|
}
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const Instruction *I) {
|
|
return I->getOpcode() == Instruction::AtomicRMW;
|
|
}
|
|
static inline bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
private:
|
|
void Init(BinOp Operation, Value *Ptr, Value *Val,
|
|
AtomicOrdering Ordering, SynchronizationScope SynchScope);
|
|
// Shadow Instruction::setInstructionSubclassData with a private forwarding
|
|
// method so that subclasses cannot accidentally use it.
|
|
void setInstructionSubclassData(unsigned short D) {
|
|
Instruction::setInstructionSubclassData(D);
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct OperandTraits<AtomicRMWInst>
|
|
: public FixedNumOperandTraits<AtomicRMWInst,2> {
|
|
};
|
|
|
|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicRMWInst, Value)
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// GetElementPtrInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// checkGEPType - Simple wrapper function to give a better assertion failure
|
|
// message on bad indexes for a gep instruction.
|
|
//
|
|
inline Type *checkGEPType(Type *Ty) {
|
|
assert(Ty && "Invalid GetElementPtrInst indices for type!");
|
|
return Ty;
|
|
}
|
|
|
|
/// GetElementPtrInst - an instruction for type-safe pointer arithmetic to
|
|
/// access elements of arrays and structs
|
|
///
|
|
class GetElementPtrInst : public Instruction {
|
|
GetElementPtrInst(const GetElementPtrInst &GEPI);
|
|
void init(Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr);
|
|
|
|
/// Constructors - Create a getelementptr instruction with a base pointer an
|
|
/// list of indices. The first ctor can optionally insert before an existing
|
|
/// instruction, the second appends the new instruction to the specified
|
|
/// BasicBlock.
|
|
inline GetElementPtrInst(Value *Ptr, ArrayRef<Value *> IdxList,
|
|
unsigned Values, const Twine &NameStr,
|
|
Instruction *InsertBefore);
|
|
inline GetElementPtrInst(Value *Ptr, ArrayRef<Value *> IdxList,
|
|
unsigned Values, const Twine &NameStr,
|
|
BasicBlock *InsertAtEnd);
|
|
protected:
|
|
virtual GetElementPtrInst *clone_impl() const;
|
|
public:
|
|
static GetElementPtrInst *Create(Value *Ptr, ArrayRef<Value *> IdxList,
|
|
const Twine &NameStr = "",
|
|
Instruction *InsertBefore = 0) {
|
|
unsigned Values = 1 + unsigned(IdxList.size());
|
|
return new(Values)
|
|
GetElementPtrInst(Ptr, IdxList, Values, NameStr, InsertBefore);
|
|
}
|
|
static GetElementPtrInst *Create(Value *Ptr, ArrayRef<Value *> IdxList,
|
|
const Twine &NameStr,
|
|
BasicBlock *InsertAtEnd) {
|
|
unsigned Values = 1 + unsigned(IdxList.size());
|
|
return new(Values)
|
|
GetElementPtrInst(Ptr, IdxList, Values, NameStr, InsertAtEnd);
|
|
}
|
|
|
|
/// Create an "inbounds" getelementptr. See the documentation for the
|
|
/// "inbounds" flag in LangRef.html for details.
|
|
static GetElementPtrInst *CreateInBounds(Value *Ptr,
|
|
ArrayRef<Value *> IdxList,
|
|
const Twine &NameStr = "",
|
|
Instruction *InsertBefore = 0) {
|
|
GetElementPtrInst *GEP = Create(Ptr, IdxList, NameStr, InsertBefore);
|
|
GEP->setIsInBounds(true);
|
|
return GEP;
|
|
}
|
|
static GetElementPtrInst *CreateInBounds(Value *Ptr,
|
|
ArrayRef<Value *> IdxList,
|
|
const Twine &NameStr,
|
|
BasicBlock *InsertAtEnd) {
|
|
GetElementPtrInst *GEP = Create(Ptr, IdxList, NameStr, InsertAtEnd);
|
|
GEP->setIsInBounds(true);
|
|
return GEP;
|
|
}
|
|
|
|
/// Transparently provide more efficient getOperand methods.
|
|
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
|
|
|
|
// getType - Overload to return most specific sequential type.
|
|
SequentialType *getType() const {
|
|
return cast<SequentialType>(Instruction::getType());
|
|
}
|
|
|
|
/// \brief Returns the address space of this instruction's pointer type.
|
|
unsigned getAddressSpace() const {
|
|
// Note that this is always the same as the pointer operand's address space
|
|
// and that is cheaper to compute, so cheat here.
|
|
return getPointerAddressSpace();
|
|
}
|
|
|
|
/// getIndexedType - Returns the type of the element that would be loaded with
|
|
/// a load instruction with the specified parameters.
|
|
///
|
|
/// Null is returned if the indices are invalid for the specified
|
|
/// pointer type.
|
|
///
|
|
static Type *getIndexedType(Type *Ptr, ArrayRef<Value *> IdxList);
|
|
static Type *getIndexedType(Type *Ptr, ArrayRef<Constant *> IdxList);
|
|
static Type *getIndexedType(Type *Ptr, ArrayRef<uint64_t> IdxList);
|
|
|
|
inline op_iterator idx_begin() { return op_begin()+1; }
|
|
inline const_op_iterator idx_begin() const { return op_begin()+1; }
|
|
inline op_iterator idx_end() { return op_end(); }
|
|
inline const_op_iterator idx_end() const { return op_end(); }
|
|
|
|
Value *getPointerOperand() {
|
|
return getOperand(0);
|
|
}
|
|
const Value *getPointerOperand() const {
|
|
return getOperand(0);
|
|
}
|
|
static unsigned getPointerOperandIndex() {
|
|
return 0U; // get index for modifying correct operand.
|
|
}
|
|
|
|
/// getPointerOperandType - Method to return the pointer operand as a
|
|
/// PointerType.
|
|
Type *getPointerOperandType() const {
|
|
return getPointerOperand()->getType();
|
|
}
|
|
|
|
/// \brief Returns the address space of the pointer operand.
|
|
unsigned getPointerAddressSpace() const {
|
|
return getPointerOperandType()->getPointerAddressSpace();
|
|
}
|
|
|
|
/// GetGEPReturnType - Returns the pointer type returned by the GEP
|
|
/// instruction, which may be a vector of pointers.
|
|
static Type *getGEPReturnType(Value *Ptr, ArrayRef<Value *> IdxList) {
|
|
Type *PtrTy = PointerType::get(checkGEPType(
|
|
getIndexedType(Ptr->getType(), IdxList)),
|
|
Ptr->getType()->getPointerAddressSpace());
|
|
// Vector GEP
|
|
if (Ptr->getType()->isVectorTy()) {
|
|
unsigned NumElem = cast<VectorType>(Ptr->getType())->getNumElements();
|
|
return VectorType::get(PtrTy, NumElem);
|
|
}
|
|
|
|
// Scalar GEP
|
|
return PtrTy;
|
|
}
|
|
|
|
unsigned getNumIndices() const { // Note: always non-negative
|
|
return getNumOperands() - 1;
|
|
}
|
|
|
|
bool hasIndices() const {
|
|
return getNumOperands() > 1;
|
|
}
|
|
|
|
/// hasAllZeroIndices - Return true if all of the indices of this GEP are
|
|
/// zeros. If so, the result pointer and the first operand have the same
|
|
/// value, just potentially different types.
|
|
bool hasAllZeroIndices() const;
|
|
|
|
/// hasAllConstantIndices - Return true if all of the indices of this GEP are
|
|
/// constant integers. If so, the result pointer and the first operand have
|
|
/// a constant offset between them.
|
|
bool hasAllConstantIndices() const;
|
|
|
|
/// setIsInBounds - Set or clear the inbounds flag on this GEP instruction.
|
|
/// See LangRef.html for the meaning of inbounds on a getelementptr.
|
|
void setIsInBounds(bool b = true);
|
|
|
|
/// isInBounds - Determine whether the GEP has the inbounds flag.
|
|
bool isInBounds() const;
|
|
|
|
/// \brief Accumulate the constant address offset of this GEP if possible.
|
|
///
|
|
/// This routine accepts an APInt into which it will accumulate the constant
|
|
/// offset of this GEP if the GEP is in fact constant. If the GEP is not
|
|
/// all-constant, it returns false and the value of the offset APInt is
|
|
/// undefined (it is *not* preserved!). The APInt passed into this routine
|
|
/// must be at least as wide as the IntPtr type for the address space of
|
|
/// the base GEP pointer.
|
|
bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const;
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const Instruction *I) {
|
|
return (I->getOpcode() == Instruction::GetElementPtr);
|
|
}
|
|
static inline bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct OperandTraits<GetElementPtrInst> :
|
|
public VariadicOperandTraits<GetElementPtrInst, 1> {
|
|
};
|
|
|
|
GetElementPtrInst::GetElementPtrInst(Value *Ptr,
|
|
ArrayRef<Value *> IdxList,
|
|
unsigned Values,
|
|
const Twine &NameStr,
|
|
Instruction *InsertBefore)
|
|
: Instruction(getGEPReturnType(Ptr, IdxList),
|
|
GetElementPtr,
|
|
OperandTraits<GetElementPtrInst>::op_end(this) - Values,
|
|
Values, InsertBefore) {
|
|
init(Ptr, IdxList, NameStr);
|
|
}
|
|
GetElementPtrInst::GetElementPtrInst(Value *Ptr,
|
|
ArrayRef<Value *> IdxList,
|
|
unsigned Values,
|
|
const Twine &NameStr,
|
|
BasicBlock *InsertAtEnd)
|
|
: Instruction(getGEPReturnType(Ptr, IdxList),
|
|
GetElementPtr,
|
|
OperandTraits<GetElementPtrInst>::op_end(this) - Values,
|
|
Values, InsertAtEnd) {
|
|
init(Ptr, IdxList, NameStr);
|
|
}
|
|
|
|
|
|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrInst, Value)
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ICmpInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// This instruction compares its operands according to the predicate given
|
|
/// to the constructor. It only operates on integers or pointers. The operands
|
|
/// must be identical types.
|
|
/// \brief Represent an integer comparison operator.
|
|
class ICmpInst: public CmpInst {
|
|
protected:
|
|
/// \brief Clone an identical ICmpInst
|
|
virtual ICmpInst *clone_impl() const;
|
|
public:
|
|
/// \brief Constructor with insert-before-instruction semantics.
|
|
ICmpInst(
|
|
Instruction *InsertBefore, ///< Where to insert
|
|
Predicate pred, ///< The predicate to use for the comparison
|
|
Value *LHS, ///< The left-hand-side of the expression
|
|
Value *RHS, ///< The right-hand-side of the expression
|
|
const Twine &NameStr = "" ///< Name of the instruction
|
|
) : CmpInst(makeCmpResultType(LHS->getType()),
|
|
Instruction::ICmp, pred, LHS, RHS, NameStr,
|
|
InsertBefore) {
|
|
assert(pred >= CmpInst::FIRST_ICMP_PREDICATE &&
|
|
pred <= CmpInst::LAST_ICMP_PREDICATE &&
|
|
"Invalid ICmp predicate value");
|
|
assert(getOperand(0)->getType() == getOperand(1)->getType() &&
|
|
"Both operands to ICmp instruction are not of the same type!");
|
|
// Check that the operands are the right type
|
|
assert((getOperand(0)->getType()->isIntOrIntVectorTy() ||
|
|
getOperand(0)->getType()->getScalarType()->isPointerTy()) &&
|
|
"Invalid operand types for ICmp instruction");
|
|
}
|
|
|
|
/// \brief Constructor with insert-at-end semantics.
|
|
ICmpInst(
|
|
BasicBlock &InsertAtEnd, ///< Block to insert into.
|
|
Predicate pred, ///< The predicate to use for the comparison
|
|
Value *LHS, ///< The left-hand-side of the expression
|
|
Value *RHS, ///< The right-hand-side of the expression
|
|
const Twine &NameStr = "" ///< Name of the instruction
|
|
) : CmpInst(makeCmpResultType(LHS->getType()),
|
|
Instruction::ICmp, pred, LHS, RHS, NameStr,
|
|
&InsertAtEnd) {
|
|
assert(pred >= CmpInst::FIRST_ICMP_PREDICATE &&
|
|
pred <= CmpInst::LAST_ICMP_PREDICATE &&
|
|
"Invalid ICmp predicate value");
|
|
assert(getOperand(0)->getType() == getOperand(1)->getType() &&
|
|
"Both operands to ICmp instruction are not of the same type!");
|
|
// Check that the operands are the right type
|
|
assert((getOperand(0)->getType()->isIntOrIntVectorTy() ||
|
|
getOperand(0)->getType()->getScalarType()->isPointerTy()) &&
|
|
"Invalid operand types for ICmp instruction");
|
|
}
|
|
|
|
/// \brief Constructor with no-insertion semantics
|
|
ICmpInst(
|
|
Predicate pred, ///< The predicate to use for the comparison
|
|
Value *LHS, ///< The left-hand-side of the expression
|
|
Value *RHS, ///< The right-hand-side of the expression
|
|
const Twine &NameStr = "" ///< Name of the instruction
|
|
) : CmpInst(makeCmpResultType(LHS->getType()),
|
|
Instruction::ICmp, pred, LHS, RHS, NameStr) {
|
|
assert(pred >= CmpInst::FIRST_ICMP_PREDICATE &&
|
|
pred <= CmpInst::LAST_ICMP_PREDICATE &&
|
|
"Invalid ICmp predicate value");
|
|
assert(getOperand(0)->getType() == getOperand(1)->getType() &&
|
|
"Both operands to ICmp instruction are not of the same type!");
|
|
// Check that the operands are the right type
|
|
assert((getOperand(0)->getType()->isIntOrIntVectorTy() ||
|
|
getOperand(0)->getType()->getScalarType()->isPointerTy()) &&
|
|
"Invalid operand types for ICmp instruction");
|
|
}
|
|
|
|
/// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
|
|
/// @returns the predicate that would be the result if the operand were
|
|
/// regarded as signed.
|
|
/// \brief Return the signed version of the predicate
|
|
Predicate getSignedPredicate() const {
|
|
return getSignedPredicate(getPredicate());
|
|
}
|
|
|
|
/// This is a static version that you can use without an instruction.
|
|
/// \brief Return the signed version of the predicate.
|
|
static Predicate getSignedPredicate(Predicate pred);
|
|
|
|
/// For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
|
|
/// @returns the predicate that would be the result if the operand were
|
|
/// regarded as unsigned.
|
|
/// \brief Return the unsigned version of the predicate
|
|
Predicate getUnsignedPredicate() const {
|
|
return getUnsignedPredicate(getPredicate());
|
|
}
|
|
|
|
/// This is a static version that you can use without an instruction.
|
|
/// \brief Return the unsigned version of the predicate.
|
|
static Predicate getUnsignedPredicate(Predicate pred);
|
|
|
|
/// isEquality - Return true if this predicate is either EQ or NE. This also
|
|
/// tests for commutativity.
|
|
static bool isEquality(Predicate P) {
|
|
return P == ICMP_EQ || P == ICMP_NE;
|
|
}
|
|
|
|
/// isEquality - Return true if this predicate is either EQ or NE. This also
|
|
/// tests for commutativity.
|
|
bool isEquality() const {
|
|
return isEquality(getPredicate());
|
|
}
|
|
|
|
/// @returns true if the predicate of this ICmpInst is commutative
|
|
/// \brief Determine if this relation is commutative.
|
|
bool isCommutative() const { return isEquality(); }
|
|
|
|
/// isRelational - Return true if the predicate is relational (not EQ or NE).
|
|
///
|
|
bool isRelational() const {
|
|
return !isEquality();
|
|
}
|
|
|
|
/// isRelational - Return true if the predicate is relational (not EQ or NE).
|
|
///
|
|
static bool isRelational(Predicate P) {
|
|
return !isEquality(P);
|
|
}
|
|
|
|
/// Initialize a set of values that all satisfy the predicate with C.
|
|
/// \brief Make a ConstantRange for a relation with a constant value.
|
|
static ConstantRange makeConstantRange(Predicate pred, const APInt &C);
|
|
|
|
/// Exchange the two operands to this instruction in such a way that it does
|
|
/// not modify the semantics of the instruction. The predicate value may be
|
|
/// changed to retain the same result if the predicate is order dependent
|
|
/// (e.g. ult).
|
|
/// \brief Swap operands and adjust predicate.
|
|
void swapOperands() {
|
|
setPredicate(getSwappedPredicate());
|
|
Op<0>().swap(Op<1>());
|
|
}
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const Instruction *I) {
|
|
return I->getOpcode() == Instruction::ICmp;
|
|
}
|
|
static inline bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// FCmpInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// This instruction compares its operands according to the predicate given
|
|
/// to the constructor. It only operates on floating point values or packed
|
|
/// vectors of floating point values. The operands must be identical types.
|
|
/// \brief Represents a floating point comparison operator.
|
|
class FCmpInst: public CmpInst {
|
|
protected:
|
|
/// \brief Clone an identical FCmpInst
|
|
virtual FCmpInst *clone_impl() const;
|
|
public:
|
|
/// \brief Constructor with insert-before-instruction semantics.
|
|
FCmpInst(
|
|
Instruction *InsertBefore, ///< Where to insert
|
|
Predicate pred, ///< The predicate to use for the comparison
|
|
Value *LHS, ///< The left-hand-side of the expression
|
|
Value *RHS, ///< The right-hand-side of the expression
|
|
const Twine &NameStr = "" ///< Name of the instruction
|
|
) : CmpInst(makeCmpResultType(LHS->getType()),
|
|
Instruction::FCmp, pred, LHS, RHS, NameStr,
|
|
InsertBefore) {
|
|
assert(pred <= FCmpInst::LAST_FCMP_PREDICATE &&
|
|
"Invalid FCmp predicate value");
|
|
assert(getOperand(0)->getType() == getOperand(1)->getType() &&
|
|
"Both operands to FCmp instruction are not of the same type!");
|
|
// Check that the operands are the right type
|
|
assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&
|
|
"Invalid operand types for FCmp instruction");
|
|
}
|
|
|
|
/// \brief Constructor with insert-at-end semantics.
|
|
FCmpInst(
|
|
BasicBlock &InsertAtEnd, ///< Block to insert into.
|
|
Predicate pred, ///< The predicate to use for the comparison
|
|
Value *LHS, ///< The left-hand-side of the expression
|
|
Value *RHS, ///< The right-hand-side of the expression
|
|
const Twine &NameStr = "" ///< Name of the instruction
|
|
) : CmpInst(makeCmpResultType(LHS->getType()),
|
|
Instruction::FCmp, pred, LHS, RHS, NameStr,
|
|
&InsertAtEnd) {
|
|
assert(pred <= FCmpInst::LAST_FCMP_PREDICATE &&
|
|
"Invalid FCmp predicate value");
|
|
assert(getOperand(0)->getType() == getOperand(1)->getType() &&
|
|
"Both operands to FCmp instruction are not of the same type!");
|
|
// Check that the operands are the right type
|
|
assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&
|
|
"Invalid operand types for FCmp instruction");
|
|
}
|
|
|
|
/// \brief Constructor with no-insertion semantics
|
|
FCmpInst(
|
|
Predicate pred, ///< The predicate to use for the comparison
|
|
Value *LHS, ///< The left-hand-side of the expression
|
|
Value *RHS, ///< The right-hand-side of the expression
|
|
const Twine &NameStr = "" ///< Name of the instruction
|
|
) : CmpInst(makeCmpResultType(LHS->getType()),
|
|
Instruction::FCmp, pred, LHS, RHS, NameStr) {
|
|
assert(pred <= FCmpInst::LAST_FCMP_PREDICATE &&
|
|
"Invalid FCmp predicate value");
|
|
assert(getOperand(0)->getType() == getOperand(1)->getType() &&
|
|
"Both operands to FCmp instruction are not of the same type!");
|
|
// Check that the operands are the right type
|
|
assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&
|
|
"Invalid operand types for FCmp instruction");
|
|
}
|
|
|
|
/// @returns true if the predicate of this instruction is EQ or NE.
|
|
/// \brief Determine if this is an equality predicate.
|
|
bool isEquality() const {
|
|
return getPredicate() == FCMP_OEQ || getPredicate() == FCMP_ONE ||
|
|
getPredicate() == FCMP_UEQ || getPredicate() == FCMP_UNE;
|
|
}
|
|
|
|
/// @returns true if the predicate of this instruction is commutative.
|
|
/// \brief Determine if this is a commutative predicate.
|
|
bool isCommutative() const {
|
|
return isEquality() ||
|
|
getPredicate() == FCMP_FALSE ||
|
|
getPredicate() == FCMP_TRUE ||
|
|
getPredicate() == FCMP_ORD ||
|
|
getPredicate() == FCMP_UNO;
|
|
}
|
|
|
|
/// @returns true if the predicate is relational (not EQ or NE).
|
|
/// \brief Determine if this a relational predicate.
|
|
bool isRelational() const { return !isEquality(); }
|
|
|
|
/// Exchange the two operands to this instruction in such a way that it does
|
|
/// not modify the semantics of the instruction. The predicate value may be
|
|
/// changed to retain the same result if the predicate is order dependent
|
|
/// (e.g. ult).
|
|
/// \brief Swap operands and adjust predicate.
|
|
void swapOperands() {
|
|
setPredicate(getSwappedPredicate());
|
|
Op<0>().swap(Op<1>());
|
|
}
|
|
|
|
/// \brief Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const Instruction *I) {
|
|
return I->getOpcode() == Instruction::FCmp;
|
|
}
|
|
static inline bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// CallInst - This class represents a function call, abstracting a target
|
|
/// machine's calling convention. This class uses low bit of the SubClassData
|
|
/// field to indicate whether or not this is a tail call. The rest of the bits
|
|
/// hold the calling convention of the call.
|
|
///
|
|
class CallInst : public Instruction {
|
|
AttributeSet AttributeList; ///< parameter attributes for call
|
|
CallInst(const CallInst &CI);
|
|
void init(Value *Func, ArrayRef<Value *> Args, const Twine &NameStr);
|
|
void init(Value *Func, const Twine &NameStr);
|
|
|
|
/// Construct a CallInst given a range of arguments.
|
|
/// \brief Construct a CallInst from a range of arguments
|
|
inline CallInst(Value *Func, ArrayRef<Value *> Args,
|
|
const Twine &NameStr, Instruction *InsertBefore);
|
|
|
|
/// Construct a CallInst given a range of arguments.
|
|
/// \brief Construct a CallInst from a range of arguments
|
|
inline CallInst(Value *Func, ArrayRef<Value *> Args,
|
|
const Twine &NameStr, BasicBlock *InsertAtEnd);
|
|
|
|
CallInst(Value *F, Value *Actual, const Twine &NameStr,
|
|
Instruction *InsertBefore);
|
|
CallInst(Value *F, Value *Actual, const Twine &NameStr,
|
|
BasicBlock *InsertAtEnd);
|
|
explicit CallInst(Value *F, const Twine &NameStr,
|
|
Instruction *InsertBefore);
|
|
CallInst(Value *F, const Twine &NameStr, BasicBlock *InsertAtEnd);
|
|
protected:
|
|
virtual CallInst *clone_impl() const;
|
|
public:
|
|
static CallInst *Create(Value *Func,
|
|
ArrayRef<Value *> Args,
|
|
const Twine &NameStr = "",
|
|
Instruction *InsertBefore = 0) {
|
|
return new(unsigned(Args.size() + 1))
|
|
CallInst(Func, Args, NameStr, InsertBefore);
|
|
}
|
|
static CallInst *Create(Value *Func,
|
|
ArrayRef<Value *> Args,
|
|
const Twine &NameStr, BasicBlock *InsertAtEnd) {
|
|
return new(unsigned(Args.size() + 1))
|
|
CallInst(Func, Args, NameStr, InsertAtEnd);
|
|
}
|
|
static CallInst *Create(Value *F, const Twine &NameStr = "",
|
|
Instruction *InsertBefore = 0) {
|
|
return new(1) CallInst(F, NameStr, InsertBefore);
|
|
}
|
|
static CallInst *Create(Value *F, const Twine &NameStr,
|
|
BasicBlock *InsertAtEnd) {
|
|
return new(1) CallInst(F, NameStr, InsertAtEnd);
|
|
}
|
|
/// CreateMalloc - Generate the IR for a call to malloc:
|
|
/// 1. Compute the malloc call's argument as the specified type's size,
|
|
/// possibly multiplied by the array size if the array size is not
|
|
/// constant 1.
|
|
/// 2. Call malloc with that argument.
|
|
/// 3. Bitcast the result of the malloc call to the specified type.
|
|
static Instruction *CreateMalloc(Instruction *InsertBefore,
|
|
Type *IntPtrTy, Type *AllocTy,
|
|
Value *AllocSize, Value *ArraySize = 0,
|
|
Function* MallocF = 0,
|
|
const Twine &Name = "");
|
|
static Instruction *CreateMalloc(BasicBlock *InsertAtEnd,
|
|
Type *IntPtrTy, Type *AllocTy,
|
|
Value *AllocSize, Value *ArraySize = 0,
|
|
Function* MallocF = 0,
|
|
const Twine &Name = "");
|
|
/// CreateFree - Generate the IR for a call to the builtin free function.
|
|
static Instruction* CreateFree(Value* Source, Instruction *InsertBefore);
|
|
static Instruction* CreateFree(Value* Source, BasicBlock *InsertAtEnd);
|
|
|
|
~CallInst();
|
|
|
|
bool isTailCall() const { return getSubclassDataFromInstruction() & 1; }
|
|
void setTailCall(bool isTC = true) {
|
|
setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
|
|
unsigned(isTC));
|
|
}
|
|
|
|
/// Provide fast operand accessors
|
|
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
|
|
|
|
/// getNumArgOperands - Return the number of call arguments.
|
|
///
|
|
unsigned getNumArgOperands() const { return getNumOperands() - 1; }
|
|
|
|
/// getArgOperand/setArgOperand - Return/set the i-th call argument.
|
|
///
|
|
Value *getArgOperand(unsigned i) const { return getOperand(i); }
|
|
void setArgOperand(unsigned i, Value *v) { setOperand(i, v); }
|
|
|
|
/// getCallingConv/setCallingConv - Get or set the calling convention of this
|
|
/// function call.
|
|
CallingConv::ID getCallingConv() const {
|
|
return static_cast<CallingConv::ID>(getSubclassDataFromInstruction() >> 1);
|
|
}
|
|
void setCallingConv(CallingConv::ID CC) {
|
|
setInstructionSubclassData((getSubclassDataFromInstruction() & 1) |
|
|
(static_cast<unsigned>(CC) << 1));
|
|
}
|
|
|
|
/// getAttributes - Return the parameter attributes for this call.
|
|
///
|
|
const AttributeSet &getAttributes() const { return AttributeList; }
|
|
|
|
/// setAttributes - Set the parameter attributes for this call.
|
|
///
|
|
void setAttributes(const AttributeSet &Attrs) { AttributeList = Attrs; }
|
|
|
|
/// addAttribute - adds the attribute to the list of attributes.
|
|
void addAttribute(unsigned i, Attribute::AttrKind attr);
|
|
|
|
/// removeAttribute - removes the attribute from the list of attributes.
|
|
void removeAttribute(unsigned i, Attribute attr);
|
|
|
|
/// \brief Determine whether this call has the given attribute.
|
|
bool hasFnAttr(Attribute::AttrKind A) const {
|
|
assert(A != Attribute::NoBuiltin &&
|
|
"Use CallInst::isNoBuiltin() to check for Attribute::NoBuiltin");
|
|
return hasFnAttrImpl(A);
|
|
}
|
|
|
|
/// \brief Determine whether the call or the callee has the given attributes.
|
|
bool paramHasAttr(unsigned i, Attribute::AttrKind A) const;
|
|
|
|
/// \brief Extract the alignment for a call or parameter (0=unknown).
|
|
unsigned getParamAlignment(unsigned i) const {
|
|
return AttributeList.getParamAlignment(i);
|
|
}
|
|
|
|
/// \brief Return true if the call should not be treated as a call to a
|
|
/// builtin.
|
|
bool isNoBuiltin() const {
|
|
return hasFnAttrImpl(Attribute::NoBuiltin) &&
|
|
!hasFnAttrImpl(Attribute::Builtin);
|
|
}
|
|
|
|
/// \brief Return true if the call should not be inlined.
|
|
bool isNoInline() const { return hasFnAttr(Attribute::NoInline); }
|
|
void setIsNoInline() {
|
|
addAttribute(AttributeSet::FunctionIndex, Attribute::NoInline);
|
|
}
|
|
|
|
/// \brief Return true if the call can return twice
|
|
bool canReturnTwice() const {
|
|
return hasFnAttr(Attribute::ReturnsTwice);
|
|
}
|
|
void setCanReturnTwice() {
|
|
addAttribute(AttributeSet::FunctionIndex, Attribute::ReturnsTwice);
|
|
}
|
|
|
|
/// \brief Determine if the call does not access memory.
|
|
bool doesNotAccessMemory() const {
|
|
return hasFnAttr(Attribute::ReadNone);
|
|
}
|
|
void setDoesNotAccessMemory() {
|
|
addAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone);
|
|
}
|
|
|
|
/// \brief Determine if the call does not access or only reads memory.
|
|
bool onlyReadsMemory() const {
|
|
return doesNotAccessMemory() || hasFnAttr(Attribute::ReadOnly);
|
|
}
|
|
void setOnlyReadsMemory() {
|
|
addAttribute(AttributeSet::FunctionIndex, Attribute::ReadOnly);
|
|
}
|
|
|
|
/// \brief Determine if the call cannot return.
|
|
bool doesNotReturn() const { return hasFnAttr(Attribute::NoReturn); }
|
|
void setDoesNotReturn() {
|
|
addAttribute(AttributeSet::FunctionIndex, Attribute::NoReturn);
|
|
}
|
|
|
|
/// \brief Determine if the call cannot unwind.
|
|
bool doesNotThrow() const { return hasFnAttr(Attribute::NoUnwind); }
|
|
void setDoesNotThrow() {
|
|
addAttribute(AttributeSet::FunctionIndex, Attribute::NoUnwind);
|
|
}
|
|
|
|
/// \brief Determine if the call cannot be duplicated.
|
|
bool cannotDuplicate() const {return hasFnAttr(Attribute::NoDuplicate); }
|
|
void setCannotDuplicate() {
|
|
addAttribute(AttributeSet::FunctionIndex, Attribute::NoDuplicate);
|
|
}
|
|
|
|
/// \brief Determine if the call returns a structure through first
|
|
/// pointer argument.
|
|
bool hasStructRetAttr() const {
|
|
// Be friendly and also check the callee.
|
|
return paramHasAttr(1, Attribute::StructRet);
|
|
}
|
|
|
|
/// \brief Determine if any call argument is an aggregate passed by value.
|
|
bool hasByValArgument() const {
|
|
return AttributeList.hasAttrSomewhere(Attribute::ByVal);
|
|
}
|
|
|
|
/// getCalledFunction - Return the function called, or null if this is an
|
|
/// indirect function invocation.
|
|
///
|
|
Function *getCalledFunction() const {
|
|
return dyn_cast<Function>(Op<-1>());
|
|
}
|
|
|
|
/// getCalledValue - Get a pointer to the function that is invoked by this
|
|
/// instruction.
|
|
const Value *getCalledValue() const { return Op<-1>(); }
|
|
Value *getCalledValue() { return Op<-1>(); }
|
|
|
|
/// setCalledFunction - Set the function called.
|
|
void setCalledFunction(Value* Fn) {
|
|
Op<-1>() = Fn;
|
|
}
|
|
|
|
/// isInlineAsm - Check if this call is an inline asm statement.
|
|
bool isInlineAsm() const {
|
|
return isa<InlineAsm>(Op<-1>());
|
|
}
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const Instruction *I) {
|
|
return I->getOpcode() == Instruction::Call;
|
|
}
|
|
static inline bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
private:
|
|
|
|
bool hasFnAttrImpl(Attribute::AttrKind A) const;
|
|
|
|
// Shadow Instruction::setInstructionSubclassData with a private forwarding
|
|
// method so that subclasses cannot accidentally use it.
|
|
void setInstructionSubclassData(unsigned short D) {
|
|
Instruction::setInstructionSubclassData(D);
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct OperandTraits<CallInst> : public VariadicOperandTraits<CallInst, 1> {
|
|
};
|
|
|
|
CallInst::CallInst(Value *Func, ArrayRef<Value *> Args,
|
|
const Twine &NameStr, BasicBlock *InsertAtEnd)
|
|
: Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
|
|
->getElementType())->getReturnType(),
|
|
Instruction::Call,
|
|
OperandTraits<CallInst>::op_end(this) - (Args.size() + 1),
|
|
unsigned(Args.size() + 1), InsertAtEnd) {
|
|
init(Func, Args, NameStr);
|
|
}
|
|
|
|
CallInst::CallInst(Value *Func, ArrayRef<Value *> Args,
|
|
const Twine &NameStr, Instruction *InsertBefore)
|
|
: Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
|
|
->getElementType())->getReturnType(),
|
|
Instruction::Call,
|
|
OperandTraits<CallInst>::op_end(this) - (Args.size() + 1),
|
|
unsigned(Args.size() + 1), InsertBefore) {
|
|
init(Func, Args, NameStr);
|
|
}
|
|
|
|
|
|
// Note: if you get compile errors about private methods then
|
|
// please update your code to use the high-level operand
|
|
// interfaces. See line 943 above.
|
|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CallInst, Value)
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SelectInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// SelectInst - This class represents the LLVM 'select' instruction.
|
|
///
|
|
class SelectInst : public Instruction {
|
|
void init(Value *C, Value *S1, Value *S2) {
|
|
assert(!areInvalidOperands(C, S1, S2) && "Invalid operands for select");
|
|
Op<0>() = C;
|
|
Op<1>() = S1;
|
|
Op<2>() = S2;
|
|
}
|
|
|
|
SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
|
|
Instruction *InsertBefore)
|
|
: Instruction(S1->getType(), Instruction::Select,
|
|
&Op<0>(), 3, InsertBefore) {
|
|
init(C, S1, S2);
|
|
setName(NameStr);
|
|
}
|
|
SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
|
|
BasicBlock *InsertAtEnd)
|
|
: Instruction(S1->getType(), Instruction::Select,
|
|
&Op<0>(), 3, InsertAtEnd) {
|
|
init(C, S1, S2);
|
|
setName(NameStr);
|
|
}
|
|
protected:
|
|
virtual SelectInst *clone_impl() const;
|
|
public:
|
|
static SelectInst *Create(Value *C, Value *S1, Value *S2,
|
|
const Twine &NameStr = "",
|
|
Instruction *InsertBefore = 0) {
|
|
return new(3) SelectInst(C, S1, S2, NameStr, InsertBefore);
|
|
}
|
|
static SelectInst *Create(Value *C, Value *S1, Value *S2,
|
|
const Twine &NameStr,
|
|
BasicBlock *InsertAtEnd) {
|
|
return new(3) SelectInst(C, S1, S2, NameStr, InsertAtEnd);
|
|
}
|
|
|
|
const Value *getCondition() const { return Op<0>(); }
|
|
const Value *getTrueValue() const { return Op<1>(); }
|
|
const Value *getFalseValue() const { return Op<2>(); }
|
|
Value *getCondition() { return Op<0>(); }
|
|
Value *getTrueValue() { return Op<1>(); }
|
|
Value *getFalseValue() { return Op<2>(); }
|
|
|
|
/// areInvalidOperands - Return a string if the specified operands are invalid
|
|
/// for a select operation, otherwise return null.
|
|
static const char *areInvalidOperands(Value *Cond, Value *True, Value *False);
|
|
|
|
/// Transparently provide more efficient getOperand methods.
|
|
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
|
|
|
|
OtherOps getOpcode() const {
|
|
return static_cast<OtherOps>(Instruction::getOpcode());
|
|
}
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const Instruction *I) {
|
|
return I->getOpcode() == Instruction::Select;
|
|
}
|
|
static inline bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct OperandTraits<SelectInst> : public FixedNumOperandTraits<SelectInst, 3> {
|
|
};
|
|
|
|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectInst, Value)
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// VAArgInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// VAArgInst - This class represents the va_arg llvm instruction, which returns
|
|
/// an argument of the specified type given a va_list and increments that list
|
|
///
|
|
class VAArgInst : public UnaryInstruction {
|
|
protected:
|
|
virtual VAArgInst *clone_impl() const;
|
|
|
|
public:
|
|
VAArgInst(Value *List, Type *Ty, const Twine &NameStr = "",
|
|
Instruction *InsertBefore = 0)
|
|
: UnaryInstruction(Ty, VAArg, List, InsertBefore) {
|
|
setName(NameStr);
|
|
}
|
|
VAArgInst(Value *List, Type *Ty, const Twine &NameStr,
|
|
BasicBlock *InsertAtEnd)
|
|
: UnaryInstruction(Ty, VAArg, List, InsertAtEnd) {
|
|
setName(NameStr);
|
|
}
|
|
|
|
Value *getPointerOperand() { return getOperand(0); }
|
|
const Value *getPointerOperand() const { return getOperand(0); }
|
|
static unsigned getPointerOperandIndex() { return 0U; }
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const Instruction *I) {
|
|
return I->getOpcode() == VAArg;
|
|
}
|
|
static inline bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ExtractElementInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// ExtractElementInst - This instruction extracts a single (scalar)
|
|
/// element from a VectorType value
|
|
///
|
|
class ExtractElementInst : public Instruction {
|
|
ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr = "",
|
|
Instruction *InsertBefore = 0);
|
|
ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr,
|
|
BasicBlock *InsertAtEnd);
|
|
protected:
|
|
virtual ExtractElementInst *clone_impl() const;
|
|
|
|
public:
|
|
static ExtractElementInst *Create(Value *Vec, Value *Idx,
|
|
const Twine &NameStr = "",
|
|
Instruction *InsertBefore = 0) {
|
|
return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertBefore);
|
|
}
|
|
static ExtractElementInst *Create(Value *Vec, Value *Idx,
|
|
const Twine &NameStr,
|
|
BasicBlock *InsertAtEnd) {
|
|
return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertAtEnd);
|
|
}
|
|
|
|
/// isValidOperands - Return true if an extractelement instruction can be
|
|
/// formed with the specified operands.
|
|
static bool isValidOperands(const Value *Vec, const Value *Idx);
|
|
|
|
Value *getVectorOperand() { return Op<0>(); }
|
|
Value *getIndexOperand() { return Op<1>(); }
|
|
const Value *getVectorOperand() const { return Op<0>(); }
|
|
const Value *getIndexOperand() const { return Op<1>(); }
|
|
|
|
VectorType *getVectorOperandType() const {
|
|
return cast<VectorType>(getVectorOperand()->getType());
|
|
}
|
|
|
|
|
|
/// Transparently provide more efficient getOperand methods.
|
|
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const Instruction *I) {
|
|
return I->getOpcode() == Instruction::ExtractElement;
|
|
}
|
|
static inline bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct OperandTraits<ExtractElementInst> :
|
|
public FixedNumOperandTraits<ExtractElementInst, 2> {
|
|
};
|
|
|
|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementInst, Value)
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// InsertElementInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// InsertElementInst - This instruction inserts a single (scalar)
|
|
/// element into a VectorType value
|
|
///
|
|
class InsertElementInst : public Instruction {
|
|
InsertElementInst(Value *Vec, Value *NewElt, Value *Idx,
|
|
const Twine &NameStr = "",
|
|
Instruction *InsertBefore = 0);
|
|
InsertElementInst(Value *Vec, Value *NewElt, Value *Idx,
|
|
const Twine &NameStr, BasicBlock *InsertAtEnd);
|
|
protected:
|
|
virtual InsertElementInst *clone_impl() const;
|
|
|
|
public:
|
|
static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
|
|
const Twine &NameStr = "",
|
|
Instruction *InsertBefore = 0) {
|
|
return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertBefore);
|
|
}
|
|
static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
|
|
const Twine &NameStr,
|
|
BasicBlock *InsertAtEnd) {
|
|
return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertAtEnd);
|
|
}
|
|
|
|
/// isValidOperands - Return true if an insertelement instruction can be
|
|
/// formed with the specified operands.
|
|
static bool isValidOperands(const Value *Vec, const Value *NewElt,
|
|
const Value *Idx);
|
|
|
|
/// getType - Overload to return most specific vector type.
|
|
///
|
|
VectorType *getType() const {
|
|
return cast<VectorType>(Instruction::getType());
|
|
}
|
|
|
|
/// Transparently provide more efficient getOperand methods.
|
|
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const Instruction *I) {
|
|
return I->getOpcode() == Instruction::InsertElement;
|
|
}
|
|
static inline bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct OperandTraits<InsertElementInst> :
|
|
public FixedNumOperandTraits<InsertElementInst, 3> {
|
|
};
|
|
|
|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementInst, Value)
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ShuffleVectorInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// ShuffleVectorInst - This instruction constructs a fixed permutation of two
|
|
/// input vectors.
|
|
///
|
|
class ShuffleVectorInst : public Instruction {
|
|
protected:
|
|
virtual ShuffleVectorInst *clone_impl() const;
|
|
|
|
public:
|
|
// allocate space for exactly three operands
|
|
void *operator new(size_t s) {
|
|
return User::operator new(s, 3);
|
|
}
|
|
ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
|
|
const Twine &NameStr = "",
|
|
Instruction *InsertBefor = 0);
|
|
ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
|
|
const Twine &NameStr, BasicBlock *InsertAtEnd);
|
|
|
|
/// isValidOperands - Return true if a shufflevector instruction can be
|
|
/// formed with the specified operands.
|
|
static bool isValidOperands(const Value *V1, const Value *V2,
|
|
const Value *Mask);
|
|
|
|
/// getType - Overload to return most specific vector type.
|
|
///
|
|
VectorType *getType() const {
|
|
return cast<VectorType>(Instruction::getType());
|
|
}
|
|
|
|
/// Transparently provide more efficient getOperand methods.
|
|
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
|
|
|
|
Constant *getMask() const {
|
|
return cast<Constant>(getOperand(2));
|
|
}
|
|
|
|
/// getMaskValue - Return the index from the shuffle mask for the specified
|
|
/// output result. This is either -1 if the element is undef or a number less
|
|
/// than 2*numelements.
|
|
static int getMaskValue(Constant *Mask, unsigned i);
|
|
|
|
int getMaskValue(unsigned i) const {
|
|
return getMaskValue(getMask(), i);
|
|
}
|
|
|
|
/// getShuffleMask - Return the full mask for this instruction, where each
|
|
/// element is the element number and undef's are returned as -1.
|
|
static void getShuffleMask(Constant *Mask, SmallVectorImpl<int> &Result);
|
|
|
|
void getShuffleMask(SmallVectorImpl<int> &Result) const {
|
|
return getShuffleMask(getMask(), Result);
|
|
}
|
|
|
|
SmallVector<int, 16> getShuffleMask() const {
|
|
SmallVector<int, 16> Mask;
|
|
getShuffleMask(Mask);
|
|
return Mask;
|
|
}
|
|
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const Instruction *I) {
|
|
return I->getOpcode() == Instruction::ShuffleVector;
|
|
}
|
|
static inline bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct OperandTraits<ShuffleVectorInst> :
|
|
public FixedNumOperandTraits<ShuffleVectorInst, 3> {
|
|
};
|
|
|
|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorInst, Value)
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ExtractValueInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// ExtractValueInst - This instruction extracts a struct member or array
|
|
/// element value from an aggregate value.
|
|
///
|
|
class ExtractValueInst : public UnaryInstruction {
|
|
SmallVector<unsigned, 4> Indices;
|
|
|
|
ExtractValueInst(const ExtractValueInst &EVI);
|
|
void init(ArrayRef<unsigned> Idxs, const Twine &NameStr);
|
|
|
|
/// Constructors - Create a extractvalue instruction with a base aggregate
|
|
/// value and a list of indices. The first ctor can optionally insert before
|
|
/// an existing instruction, the second appends the new instruction to the
|
|
/// specified BasicBlock.
|
|
inline ExtractValueInst(Value *Agg,
|
|
ArrayRef<unsigned> Idxs,
|
|
const Twine &NameStr,
|
|
Instruction *InsertBefore);
|
|
inline ExtractValueInst(Value *Agg,
|
|
ArrayRef<unsigned> Idxs,
|
|
const Twine &NameStr, BasicBlock *InsertAtEnd);
|
|
|
|
// allocate space for exactly one operand
|
|
void *operator new(size_t s) {
|
|
return User::operator new(s, 1);
|
|
}
|
|
protected:
|
|
virtual ExtractValueInst *clone_impl() const;
|
|
|
|
public:
|
|
static ExtractValueInst *Create(Value *Agg,
|
|
ArrayRef<unsigned> Idxs,
|
|
const Twine &NameStr = "",
|
|
Instruction *InsertBefore = 0) {
|
|
return new
|
|
ExtractValueInst(Agg, Idxs, NameStr, InsertBefore);
|
|
}
|
|
static ExtractValueInst *Create(Value *Agg,
|
|
ArrayRef<unsigned> Idxs,
|
|
const Twine &NameStr,
|
|
BasicBlock *InsertAtEnd) {
|
|
return new ExtractValueInst(Agg, Idxs, NameStr, InsertAtEnd);
|
|
}
|
|
|
|
/// getIndexedType - Returns the type of the element that would be extracted
|
|
/// with an extractvalue instruction with the specified parameters.
|
|
///
|
|
/// Null is returned if the indices are invalid for the specified type.
|
|
static Type *getIndexedType(Type *Agg, ArrayRef<unsigned> Idxs);
|
|
|
|
typedef const unsigned* idx_iterator;
|
|
inline idx_iterator idx_begin() const { return Indices.begin(); }
|
|
inline idx_iterator idx_end() const { return Indices.end(); }
|
|
|
|
Value *getAggregateOperand() {
|
|
return getOperand(0);
|
|
}
|
|
const Value *getAggregateOperand() const {
|
|
return getOperand(0);
|
|
}
|
|
static unsigned getAggregateOperandIndex() {
|
|
return 0U; // get index for modifying correct operand
|
|
}
|
|
|
|
ArrayRef<unsigned> getIndices() const {
|
|
return Indices;
|
|
}
|
|
|
|
unsigned getNumIndices() const {
|
|
return (unsigned)Indices.size();
|
|
}
|
|
|
|
bool hasIndices() const {
|
|
return true;
|
|
}
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const Instruction *I) {
|
|
return I->getOpcode() == Instruction::ExtractValue;
|
|
}
|
|
static inline bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
};
|
|
|
|
ExtractValueInst::ExtractValueInst(Value *Agg,
|
|
ArrayRef<unsigned> Idxs,
|
|
const Twine &NameStr,
|
|
Instruction *InsertBefore)
|
|
: UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
|
|
ExtractValue, Agg, InsertBefore) {
|
|
init(Idxs, NameStr);
|
|
}
|
|
ExtractValueInst::ExtractValueInst(Value *Agg,
|
|
ArrayRef<unsigned> Idxs,
|
|
const Twine &NameStr,
|
|
BasicBlock *InsertAtEnd)
|
|
: UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
|
|
ExtractValue, Agg, InsertAtEnd) {
|
|
init(Idxs, NameStr);
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// InsertValueInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// InsertValueInst - This instruction inserts a struct field of array element
|
|
/// value into an aggregate value.
|
|
///
|
|
class InsertValueInst : public Instruction {
|
|
SmallVector<unsigned, 4> Indices;
|
|
|
|
void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
|
|
InsertValueInst(const InsertValueInst &IVI);
|
|
void init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
|
|
const Twine &NameStr);
|
|
|
|
/// Constructors - Create a insertvalue instruction with a base aggregate
|
|
/// value, a value to insert, and a list of indices. The first ctor can
|
|
/// optionally insert before an existing instruction, the second appends
|
|
/// the new instruction to the specified BasicBlock.
|
|
inline InsertValueInst(Value *Agg, Value *Val,
|
|
ArrayRef<unsigned> Idxs,
|
|
const Twine &NameStr,
|
|
Instruction *InsertBefore);
|
|
inline InsertValueInst(Value *Agg, Value *Val,
|
|
ArrayRef<unsigned> Idxs,
|
|
const Twine &NameStr, BasicBlock *InsertAtEnd);
|
|
|
|
/// Constructors - These two constructors are convenience methods because one
|
|
/// and two index insertvalue instructions are so common.
|
|
InsertValueInst(Value *Agg, Value *Val,
|
|
unsigned Idx, const Twine &NameStr = "",
|
|
Instruction *InsertBefore = 0);
|
|
InsertValueInst(Value *Agg, Value *Val, unsigned Idx,
|
|
const Twine &NameStr, BasicBlock *InsertAtEnd);
|
|
protected:
|
|
virtual InsertValueInst *clone_impl() const;
|
|
public:
|
|
// allocate space for exactly two operands
|
|
void *operator new(size_t s) {
|
|
return User::operator new(s, 2);
|
|
}
|
|
|
|
static InsertValueInst *Create(Value *Agg, Value *Val,
|
|
ArrayRef<unsigned> Idxs,
|
|
const Twine &NameStr = "",
|
|
Instruction *InsertBefore = 0) {
|
|
return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertBefore);
|
|
}
|
|
static InsertValueInst *Create(Value *Agg, Value *Val,
|
|
ArrayRef<unsigned> Idxs,
|
|
const Twine &NameStr,
|
|
BasicBlock *InsertAtEnd) {
|
|
return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertAtEnd);
|
|
}
|
|
|
|
/// Transparently provide more efficient getOperand methods.
|
|
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
|
|
|
|
typedef const unsigned* idx_iterator;
|
|
inline idx_iterator idx_begin() const { return Indices.begin(); }
|
|
inline idx_iterator idx_end() const { return Indices.end(); }
|
|
|
|
Value *getAggregateOperand() {
|
|
return getOperand(0);
|
|
}
|
|
const Value *getAggregateOperand() const {
|
|
return getOperand(0);
|
|
}
|
|
static unsigned getAggregateOperandIndex() {
|
|
return 0U; // get index for modifying correct operand
|
|
}
|
|
|
|
Value *getInsertedValueOperand() {
|
|
return getOperand(1);
|
|
}
|
|
const Value *getInsertedValueOperand() const {
|
|
return getOperand(1);
|
|
}
|
|
static unsigned getInsertedValueOperandIndex() {
|
|
return 1U; // get index for modifying correct operand
|
|
}
|
|
|
|
ArrayRef<unsigned> getIndices() const {
|
|
return Indices;
|
|
}
|
|
|
|
unsigned getNumIndices() const {
|
|
return (unsigned)Indices.size();
|
|
}
|
|
|
|
bool hasIndices() const {
|
|
return true;
|
|
}
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const Instruction *I) {
|
|
return I->getOpcode() == Instruction::InsertValue;
|
|
}
|
|
static inline bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct OperandTraits<InsertValueInst> :
|
|
public FixedNumOperandTraits<InsertValueInst, 2> {
|
|
};
|
|
|
|
InsertValueInst::InsertValueInst(Value *Agg,
|
|
Value *Val,
|
|
ArrayRef<unsigned> Idxs,
|
|
const Twine &NameStr,
|
|
Instruction *InsertBefore)
|
|
: Instruction(Agg->getType(), InsertValue,
|
|
OperandTraits<InsertValueInst>::op_begin(this),
|
|
2, InsertBefore) {
|
|
init(Agg, Val, Idxs, NameStr);
|
|
}
|
|
InsertValueInst::InsertValueInst(Value *Agg,
|
|
Value *Val,
|
|
ArrayRef<unsigned> Idxs,
|
|
const Twine &NameStr,
|
|
BasicBlock *InsertAtEnd)
|
|
: Instruction(Agg->getType(), InsertValue,
|
|
OperandTraits<InsertValueInst>::op_begin(this),
|
|
2, InsertAtEnd) {
|
|
init(Agg, Val, Idxs, NameStr);
|
|
}
|
|
|
|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueInst, Value)
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// PHINode Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// PHINode - The PHINode class is used to represent the magical mystical PHI
|
|
// node, that can not exist in nature, but can be synthesized in a computer
|
|
// scientist's overactive imagination.
|
|
//
|
|
class PHINode : public Instruction {
|
|
void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
|
|
/// ReservedSpace - The number of operands actually allocated. NumOperands is
|
|
/// the number actually in use.
|
|
unsigned ReservedSpace;
|
|
PHINode(const PHINode &PN);
|
|
// allocate space for exactly zero operands
|
|
void *operator new(size_t s) {
|
|
return User::operator new(s, 0);
|
|
}
|
|
explicit PHINode(Type *Ty, unsigned NumReservedValues,
|
|
const Twine &NameStr = "", Instruction *InsertBefore = 0)
|
|
: Instruction(Ty, Instruction::PHI, 0, 0, InsertBefore),
|
|
ReservedSpace(NumReservedValues) {
|
|
setName(NameStr);
|
|
OperandList = allocHungoffUses(ReservedSpace);
|
|
}
|
|
|
|
PHINode(Type *Ty, unsigned NumReservedValues, const Twine &NameStr,
|
|
BasicBlock *InsertAtEnd)
|
|
: Instruction(Ty, Instruction::PHI, 0, 0, InsertAtEnd),
|
|
ReservedSpace(NumReservedValues) {
|
|
setName(NameStr);
|
|
OperandList = allocHungoffUses(ReservedSpace);
|
|
}
|
|
protected:
|
|
// allocHungoffUses - this is more complicated than the generic
|
|
// User::allocHungoffUses, because we have to allocate Uses for the incoming
|
|
// values and pointers to the incoming blocks, all in one allocation.
|
|
Use *allocHungoffUses(unsigned) const;
|
|
|
|
virtual PHINode *clone_impl() const;
|
|
public:
|
|
/// Constructors - NumReservedValues is a hint for the number of incoming
|
|
/// edges that this phi node will have (use 0 if you really have no idea).
|
|
static PHINode *Create(Type *Ty, unsigned NumReservedValues,
|
|
const Twine &NameStr = "",
|
|
Instruction *InsertBefore = 0) {
|
|
return new PHINode(Ty, NumReservedValues, NameStr, InsertBefore);
|
|
}
|
|
static PHINode *Create(Type *Ty, unsigned NumReservedValues,
|
|
const Twine &NameStr, BasicBlock *InsertAtEnd) {
|
|
return new PHINode(Ty, NumReservedValues, NameStr, InsertAtEnd);
|
|
}
|
|
~PHINode();
|
|
|
|
/// Provide fast operand accessors
|
|
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
|
|
|
|
// Block iterator interface. This provides access to the list of incoming
|
|
// basic blocks, which parallels the list of incoming values.
|
|
|
|
typedef BasicBlock **block_iterator;
|
|
typedef BasicBlock * const *const_block_iterator;
|
|
|
|
block_iterator block_begin() {
|
|
Use::UserRef *ref =
|
|
reinterpret_cast<Use::UserRef*>(op_begin() + ReservedSpace);
|
|
return reinterpret_cast<block_iterator>(ref + 1);
|
|
}
|
|
|
|
const_block_iterator block_begin() const {
|
|
const Use::UserRef *ref =
|
|
reinterpret_cast<const Use::UserRef*>(op_begin() + ReservedSpace);
|
|
return reinterpret_cast<const_block_iterator>(ref + 1);
|
|
}
|
|
|
|
block_iterator block_end() {
|
|
return block_begin() + getNumOperands();
|
|
}
|
|
|
|
const_block_iterator block_end() const {
|
|
return block_begin() + getNumOperands();
|
|
}
|
|
|
|
/// getNumIncomingValues - Return the number of incoming edges
|
|
///
|
|
unsigned getNumIncomingValues() const { return getNumOperands(); }
|
|
|
|
/// getIncomingValue - Return incoming value number x
|
|
///
|
|
Value *getIncomingValue(unsigned i) const {
|
|
return getOperand(i);
|
|
}
|
|
void setIncomingValue(unsigned i, Value *V) {
|
|
setOperand(i, V);
|
|
}
|
|
static unsigned getOperandNumForIncomingValue(unsigned i) {
|
|
return i;
|
|
}
|
|
static unsigned getIncomingValueNumForOperand(unsigned i) {
|
|
return i;
|
|
}
|
|
|
|
/// getIncomingBlock - Return incoming basic block number @p i.
|
|
///
|
|
BasicBlock *getIncomingBlock(unsigned i) const {
|
|
return block_begin()[i];
|
|
}
|
|
|
|
/// getIncomingBlock - Return incoming basic block corresponding
|
|
/// to an operand of the PHI.
|
|
///
|
|
BasicBlock *getIncomingBlock(const Use &U) const {
|
|
assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?");
|
|
return getIncomingBlock(unsigned(&U - op_begin()));
|
|
}
|
|
|
|
/// getIncomingBlock - Return incoming basic block corresponding
|
|
/// to value use iterator.
|
|
///
|
|
template <typename U>
|
|
BasicBlock *getIncomingBlock(value_use_iterator<U> I) const {
|
|
return getIncomingBlock(I.getUse());
|
|
}
|
|
|
|
void setIncomingBlock(unsigned i, BasicBlock *BB) {
|
|
block_begin()[i] = BB;
|
|
}
|
|
|
|
/// addIncoming - Add an incoming value to the end of the PHI list
|
|
///
|
|
void addIncoming(Value *V, BasicBlock *BB) {
|
|
assert(V && "PHI node got a null value!");
|
|
assert(BB && "PHI node got a null basic block!");
|
|
assert(getType() == V->getType() &&
|
|
"All operands to PHI node must be the same type as the PHI node!");
|
|
if (NumOperands == ReservedSpace)
|
|
growOperands(); // Get more space!
|
|
// Initialize some new operands.
|
|
++NumOperands;
|
|
setIncomingValue(NumOperands - 1, V);
|
|
setIncomingBlock(NumOperands - 1, BB);
|
|
}
|
|
|
|
/// removeIncomingValue - Remove an incoming value. This is useful if a
|
|
/// predecessor basic block is deleted. The value removed is returned.
|
|
///
|
|
/// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty
|
|
/// is true), the PHI node is destroyed and any uses of it are replaced with
|
|
/// dummy values. The only time there should be zero incoming values to a PHI
|
|
/// node is when the block is dead, so this strategy is sound.
|
|
///
|
|
Value *removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty = true);
|
|
|
|
Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty=true) {
|
|
int Idx = getBasicBlockIndex(BB);
|
|
assert(Idx >= 0 && "Invalid basic block argument to remove!");
|
|
return removeIncomingValue(Idx, DeletePHIIfEmpty);
|
|
}
|
|
|
|
/// getBasicBlockIndex - Return the first index of the specified basic
|
|
/// block in the value list for this PHI. Returns -1 if no instance.
|
|
///
|
|
int getBasicBlockIndex(const BasicBlock *BB) const {
|
|
for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
|
|
if (block_begin()[i] == BB)
|
|
return i;
|
|
return -1;
|
|
}
|
|
|
|
Value *getIncomingValueForBlock(const BasicBlock *BB) const {
|
|
int Idx = getBasicBlockIndex(BB);
|
|
assert(Idx >= 0 && "Invalid basic block argument!");
|
|
return getIncomingValue(Idx);
|
|
}
|
|
|
|
/// hasConstantValue - If the specified PHI node always merges together the
|
|
/// same value, return the value, otherwise return null.
|
|
Value *hasConstantValue() const;
|
|
|
|
/// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const Instruction *I) {
|
|
return I->getOpcode() == Instruction::PHI;
|
|
}
|
|
static inline bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
private:
|
|
void growOperands();
|
|
};
|
|
|
|
template <>
|
|
struct OperandTraits<PHINode> : public HungoffOperandTraits<2> {
|
|
};
|
|
|
|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(PHINode, Value)
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// LandingPadInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//===---------------------------------------------------------------------------
|
|
/// LandingPadInst - The landingpad instruction holds all of the information
|
|
/// necessary to generate correct exception handling. The landingpad instruction
|
|
/// cannot be moved from the top of a landing pad block, which itself is
|
|
/// accessible only from the 'unwind' edge of an invoke. This uses the
|
|
/// SubclassData field in Value to store whether or not the landingpad is a
|
|
/// cleanup.
|
|
///
|
|
class LandingPadInst : public Instruction {
|
|
/// ReservedSpace - The number of operands actually allocated. NumOperands is
|
|
/// the number actually in use.
|
|
unsigned ReservedSpace;
|
|
LandingPadInst(const LandingPadInst &LP);
|
|
public:
|
|
enum ClauseType { Catch, Filter };
|
|
private:
|
|
void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
|
|
// Allocate space for exactly zero operands.
|
|
void *operator new(size_t s) {
|
|
return User::operator new(s, 0);
|
|
}
|
|
void growOperands(unsigned Size);
|
|
void init(Value *PersFn, unsigned NumReservedValues, const Twine &NameStr);
|
|
|
|
explicit LandingPadInst(Type *RetTy, Value *PersonalityFn,
|
|
unsigned NumReservedValues, const Twine &NameStr,
|
|
Instruction *InsertBefore);
|
|
explicit LandingPadInst(Type *RetTy, Value *PersonalityFn,
|
|
unsigned NumReservedValues, const Twine &NameStr,
|
|
BasicBlock *InsertAtEnd);
|
|
protected:
|
|
virtual LandingPadInst *clone_impl() const;
|
|
public:
|
|
/// Constructors - NumReservedClauses is a hint for the number of incoming
|
|
/// clauses that this landingpad will have (use 0 if you really have no idea).
|
|
static LandingPadInst *Create(Type *RetTy, Value *PersonalityFn,
|
|
unsigned NumReservedClauses,
|
|
const Twine &NameStr = "",
|
|
Instruction *InsertBefore = 0);
|
|
static LandingPadInst *Create(Type *RetTy, Value *PersonalityFn,
|
|
unsigned NumReservedClauses,
|
|
const Twine &NameStr, BasicBlock *InsertAtEnd);
|
|
~LandingPadInst();
|
|
|
|
/// Provide fast operand accessors
|
|
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
|
|
|
|
/// getPersonalityFn - Get the personality function associated with this
|
|
/// landing pad.
|
|
Value *getPersonalityFn() const { return getOperand(0); }
|
|
|
|
/// isCleanup - Return 'true' if this landingpad instruction is a
|
|
/// cleanup. I.e., it should be run when unwinding even if its landing pad
|
|
/// doesn't catch the exception.
|
|
bool isCleanup() const { return getSubclassDataFromInstruction() & 1; }
|
|
|
|
/// setCleanup - Indicate that this landingpad instruction is a cleanup.
|
|
void setCleanup(bool V) {
|
|
setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
|
|
(V ? 1 : 0));
|
|
}
|
|
|
|
/// addClause - Add a catch or filter clause to the landing pad.
|
|
void addClause(Value *ClauseVal);
|
|
|
|
/// getClause - Get the value of the clause at index Idx. Use isCatch/isFilter
|
|
/// to determine what type of clause this is.
|
|
Value *getClause(unsigned Idx) const { return OperandList[Idx + 1]; }
|
|
|
|
/// isCatch - Return 'true' if the clause and index Idx is a catch clause.
|
|
bool isCatch(unsigned Idx) const {
|
|
return !isa<ArrayType>(OperandList[Idx + 1]->getType());
|
|
}
|
|
|
|
/// isFilter - Return 'true' if the clause and index Idx is a filter clause.
|
|
bool isFilter(unsigned Idx) const {
|
|
return isa<ArrayType>(OperandList[Idx + 1]->getType());
|
|
}
|
|
|
|
/// getNumClauses - Get the number of clauses for this landing pad.
|
|
unsigned getNumClauses() const { return getNumOperands() - 1; }
|
|
|
|
/// reserveClauses - Grow the size of the operand list to accommodate the new
|
|
/// number of clauses.
|
|
void reserveClauses(unsigned Size) { growOperands(Size); }
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const Instruction *I) {
|
|
return I->getOpcode() == Instruction::LandingPad;
|
|
}
|
|
static inline bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct OperandTraits<LandingPadInst> : public HungoffOperandTraits<2> {
|
|
};
|
|
|
|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(LandingPadInst, Value)
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ReturnInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//===---------------------------------------------------------------------------
|
|
/// ReturnInst - Return a value (possibly void), from a function. Execution
|
|
/// does not continue in this function any longer.
|
|
///
|
|
class ReturnInst : public TerminatorInst {
|
|
ReturnInst(const ReturnInst &RI);
|
|
|
|
private:
|
|
// ReturnInst constructors:
|
|
// ReturnInst() - 'ret void' instruction
|
|
// ReturnInst( null) - 'ret void' instruction
|
|
// ReturnInst(Value* X) - 'ret X' instruction
|
|
// ReturnInst( null, Inst *I) - 'ret void' instruction, insert before I
|
|
// ReturnInst(Value* X, Inst *I) - 'ret X' instruction, insert before I
|
|
// ReturnInst( null, BB *B) - 'ret void' instruction, insert @ end of B
|
|
// ReturnInst(Value* X, BB *B) - 'ret X' instruction, insert @ end of B
|
|
//
|
|
// NOTE: If the Value* passed is of type void then the constructor behaves as
|
|
// if it was passed NULL.
|
|
explicit ReturnInst(LLVMContext &C, Value *retVal = 0,
|
|
Instruction *InsertBefore = 0);
|
|
ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd);
|
|
explicit ReturnInst(LLVMContext &C, BasicBlock *InsertAtEnd);
|
|
protected:
|
|
virtual ReturnInst *clone_impl() const;
|
|
public:
|
|
static ReturnInst* Create(LLVMContext &C, Value *retVal = 0,
|
|
Instruction *InsertBefore = 0) {
|
|
return new(!!retVal) ReturnInst(C, retVal, InsertBefore);
|
|
}
|
|
static ReturnInst* Create(LLVMContext &C, Value *retVal,
|
|
BasicBlock *InsertAtEnd) {
|
|
return new(!!retVal) ReturnInst(C, retVal, InsertAtEnd);
|
|
}
|
|
static ReturnInst* Create(LLVMContext &C, BasicBlock *InsertAtEnd) {
|
|
return new(0) ReturnInst(C, InsertAtEnd);
|
|
}
|
|
virtual ~ReturnInst();
|
|
|
|
/// Provide fast operand accessors
|
|
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
|
|
|
|
/// Convenience accessor. Returns null if there is no return value.
|
|
Value *getReturnValue() const {
|
|
return getNumOperands() != 0 ? getOperand(0) : 0;
|
|
}
|
|
|
|
unsigned getNumSuccessors() const { return 0; }
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const Instruction *I) {
|
|
return (I->getOpcode() == Instruction::Ret);
|
|
}
|
|
static inline bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
private:
|
|
virtual BasicBlock *getSuccessorV(unsigned idx) const;
|
|
virtual unsigned getNumSuccessorsV() const;
|
|
virtual void setSuccessorV(unsigned idx, BasicBlock *B);
|
|
};
|
|
|
|
template <>
|
|
struct OperandTraits<ReturnInst> : public VariadicOperandTraits<ReturnInst> {
|
|
};
|
|
|
|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ReturnInst, Value)
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// BranchInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//===---------------------------------------------------------------------------
|
|
/// BranchInst - Conditional or Unconditional Branch instruction.
|
|
///
|
|
class BranchInst : public TerminatorInst {
|
|
/// Ops list - Branches are strange. The operands are ordered:
|
|
/// [Cond, FalseDest,] TrueDest. This makes some accessors faster because
|
|
/// they don't have to check for cond/uncond branchness. These are mostly
|
|
/// accessed relative from op_end().
|
|
BranchInst(const BranchInst &BI);
|
|
void AssertOK();
|
|
// BranchInst constructors (where {B, T, F} are blocks, and C is a condition):
|
|
// BranchInst(BB *B) - 'br B'
|
|
// BranchInst(BB* T, BB *F, Value *C) - 'br C, T, F'
|
|
// BranchInst(BB* B, Inst *I) - 'br B' insert before I
|
|
// BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I
|
|
// BranchInst(BB* B, BB *I) - 'br B' insert at end
|
|
// BranchInst(BB* T, BB *F, Value *C, BB *I) - 'br C, T, F', insert at end
|
|
explicit BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore = 0);
|
|
BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
|
|
Instruction *InsertBefore = 0);
|
|
BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd);
|
|
BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
|
|
BasicBlock *InsertAtEnd);
|
|
protected:
|
|
virtual BranchInst *clone_impl() const;
|
|
public:
|
|
static BranchInst *Create(BasicBlock *IfTrue, Instruction *InsertBefore = 0) {
|
|
return new(1) BranchInst(IfTrue, InsertBefore);
|
|
}
|
|
static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
|
|
Value *Cond, Instruction *InsertBefore = 0) {
|
|
return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertBefore);
|
|
}
|
|
static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) {
|
|
return new(1) BranchInst(IfTrue, InsertAtEnd);
|
|
}
|
|
static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
|
|
Value *Cond, BasicBlock *InsertAtEnd) {
|
|
return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertAtEnd);
|
|
}
|
|
|
|
/// Transparently provide more efficient getOperand methods.
|
|
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
|
|
|
|
bool isUnconditional() const { return getNumOperands() == 1; }
|
|
bool isConditional() const { return getNumOperands() == 3; }
|
|
|
|
Value *getCondition() const {
|
|
assert(isConditional() && "Cannot get condition of an uncond branch!");
|
|
return Op<-3>();
|
|
}
|
|
|
|
void setCondition(Value *V) {
|
|
assert(isConditional() && "Cannot set condition of unconditional branch!");
|
|
Op<-3>() = V;
|
|
}
|
|
|
|
unsigned getNumSuccessors() const { return 1+isConditional(); }
|
|
|
|
BasicBlock *getSuccessor(unsigned i) const {
|
|
assert(i < getNumSuccessors() && "Successor # out of range for Branch!");
|
|
return cast_or_null<BasicBlock>((&Op<-1>() - i)->get());
|
|
}
|
|
|
|
void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
|
|
assert(idx < getNumSuccessors() && "Successor # out of range for Branch!");
|
|
*(&Op<-1>() - idx) = (Value*)NewSucc;
|
|
}
|
|
|
|
/// \brief Swap the successors of this branch instruction.
|
|
///
|
|
/// Swaps the successors of the branch instruction. This also swaps any
|
|
/// branch weight metadata associated with the instruction so that it
|
|
/// continues to map correctly to each operand.
|
|
void swapSuccessors();
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const Instruction *I) {
|
|
return (I->getOpcode() == Instruction::Br);
|
|
}
|
|
static inline bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
private:
|
|
virtual BasicBlock *getSuccessorV(unsigned idx) const;
|
|
virtual unsigned getNumSuccessorsV() const;
|
|
virtual void setSuccessorV(unsigned idx, BasicBlock *B);
|
|
};
|
|
|
|
template <>
|
|
struct OperandTraits<BranchInst> : public VariadicOperandTraits<BranchInst, 1> {
|
|
};
|
|
|
|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BranchInst, Value)
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SwitchInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//===---------------------------------------------------------------------------
|
|
/// SwitchInst - Multiway switch
|
|
///
|
|
class SwitchInst : public TerminatorInst {
|
|
void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
|
|
unsigned ReservedSpace;
|
|
// Operands format:
|
|
// Operand[0] = Value to switch on
|
|
// Operand[1] = Default basic block destination
|
|
// Operand[2n ] = Value to match
|
|
// Operand[2n+1] = BasicBlock to go to on match
|
|
|
|
// Store case values separately from operands list. We needn't User-Use
|
|
// concept here, since it is just a case value, it will always constant,
|
|
// and case value couldn't reused with another instructions/values.
|
|
// Additionally:
|
|
// It allows us to use custom type for case values that is not inherited
|
|
// from Value. Since case value is a complex type that implements
|
|
// the subset of integers, we needn't extract sub-constants within
|
|
// slow getAggregateElement method.
|
|
// For case values we will use std::list to by two reasons:
|
|
// 1. It allows to add/remove cases without whole collection reallocation.
|
|
// 2. In most of cases we needn't random access.
|
|
// Currently case values are also stored in Operands List, but it will moved
|
|
// out in future commits.
|
|
typedef std::list<IntegersSubset> Subsets;
|
|
typedef Subsets::iterator SubsetsIt;
|
|
typedef Subsets::const_iterator SubsetsConstIt;
|
|
|
|
Subsets TheSubsets;
|
|
|
|
SwitchInst(const SwitchInst &SI);
|
|
void init(Value *Value, BasicBlock *Default, unsigned NumReserved);
|
|
void growOperands();
|
|
// allocate space for exactly zero operands
|
|
void *operator new(size_t s) {
|
|
return User::operator new(s, 0);
|
|
}
|
|
/// SwitchInst ctor - Create a new switch instruction, specifying a value to
|
|
/// switch on and a default destination. The number of additional cases can
|
|
/// be specified here to make memory allocation more efficient. This
|
|
/// constructor can also autoinsert before another instruction.
|
|
SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
|
|
Instruction *InsertBefore);
|
|
|
|
/// SwitchInst ctor - Create a new switch instruction, specifying a value to
|
|
/// switch on and a default destination. The number of additional cases can
|
|
/// be specified here to make memory allocation more efficient. This
|
|
/// constructor also autoinserts at the end of the specified BasicBlock.
|
|
SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
|
|
BasicBlock *InsertAtEnd);
|
|
protected:
|
|
virtual SwitchInst *clone_impl() const;
|
|
public:
|
|
|
|
// FIXME: Currently there are a lot of unclean template parameters,
|
|
// we need to make refactoring in future.
|
|
// All these parameters are used to implement both iterator and const_iterator
|
|
// without code duplication.
|
|
// SwitchInstTy may be "const SwitchInst" or "SwitchInst"
|
|
// ConstantIntTy may be "const ConstantInt" or "ConstantInt"
|
|
// SubsetsItTy may be SubsetsConstIt or SubsetsIt
|
|
// BasicBlockTy may be "const BasicBlock" or "BasicBlock"
|
|
template <class SwitchInstTy, class ConstantIntTy,
|
|
class SubsetsItTy, class BasicBlockTy>
|
|
class CaseIteratorT;
|
|
|
|
typedef CaseIteratorT<const SwitchInst, const ConstantInt,
|
|
SubsetsConstIt, const BasicBlock> ConstCaseIt;
|
|
class CaseIt;
|
|
|
|
// -2
|
|
static const unsigned DefaultPseudoIndex = static_cast<unsigned>(~0L-1);
|
|
|
|
static SwitchInst *Create(Value *Value, BasicBlock *Default,
|
|
unsigned NumCases, Instruction *InsertBefore = 0) {
|
|
return new SwitchInst(Value, Default, NumCases, InsertBefore);
|
|
}
|
|
static SwitchInst *Create(Value *Value, BasicBlock *Default,
|
|
unsigned NumCases, BasicBlock *InsertAtEnd) {
|
|
return new SwitchInst(Value, Default, NumCases, InsertAtEnd);
|
|
}
|
|
|
|
~SwitchInst();
|
|
|
|
/// Provide fast operand accessors
|
|
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
|
|
|
|
// Accessor Methods for Switch stmt
|
|
Value *getCondition() const { return getOperand(0); }
|
|
void setCondition(Value *V) { setOperand(0, V); }
|
|
|
|
BasicBlock *getDefaultDest() const {
|
|
return cast<BasicBlock>(getOperand(1));
|
|
}
|
|
|
|
void setDefaultDest(BasicBlock *DefaultCase) {
|
|
setOperand(1, reinterpret_cast<Value*>(DefaultCase));
|
|
}
|
|
|
|
/// getNumCases - return the number of 'cases' in this switch instruction,
|
|
/// except the default case
|
|
unsigned getNumCases() const {
|
|
return getNumOperands()/2 - 1;
|
|
}
|
|
|
|
/// Returns a read/write iterator that points to the first
|
|
/// case in SwitchInst.
|
|
CaseIt case_begin() {
|
|
return CaseIt(this, 0, TheSubsets.begin());
|
|
}
|
|
/// Returns a read-only iterator that points to the first
|
|
/// case in the SwitchInst.
|
|
ConstCaseIt case_begin() const {
|
|
return ConstCaseIt(this, 0, TheSubsets.begin());
|
|
}
|
|
|
|
/// Returns a read/write iterator that points one past the last
|
|
/// in the SwitchInst.
|
|
CaseIt case_end() {
|
|
return CaseIt(this, getNumCases(), TheSubsets.end());
|
|
}
|
|
/// Returns a read-only iterator that points one past the last
|
|
/// in the SwitchInst.
|
|
ConstCaseIt case_end() const {
|
|
return ConstCaseIt(this, getNumCases(), TheSubsets.end());
|
|
}
|
|
/// Returns an iterator that points to the default case.
|
|
/// Note: this iterator allows to resolve successor only. Attempt
|
|
/// to resolve case value causes an assertion.
|
|
/// Also note, that increment and decrement also causes an assertion and
|
|
/// makes iterator invalid.
|
|
CaseIt case_default() {
|
|
return CaseIt(this, DefaultPseudoIndex, TheSubsets.end());
|
|
}
|
|
ConstCaseIt case_default() const {
|
|
return ConstCaseIt(this, DefaultPseudoIndex, TheSubsets.end());
|
|
}
|
|
|
|
/// findCaseValue - Search all of the case values for the specified constant.
|
|
/// If it is explicitly handled, return the case iterator of it, otherwise
|
|
/// return default case iterator to indicate
|
|
/// that it is handled by the default handler.
|
|
CaseIt findCaseValue(const ConstantInt *C) {
|
|
for (CaseIt i = case_begin(), e = case_end(); i != e; ++i)
|
|
if (i.getCaseValueEx().isSatisfies(IntItem::fromConstantInt(C)))
|
|
return i;
|
|
return case_default();
|
|
}
|
|
ConstCaseIt findCaseValue(const ConstantInt *C) const {
|
|
for (ConstCaseIt i = case_begin(), e = case_end(); i != e; ++i)
|
|
if (i.getCaseValueEx().isSatisfies(IntItem::fromConstantInt(C)))
|
|
return i;
|
|
return case_default();
|
|
}
|
|
|
|
/// findCaseDest - Finds the unique case value for a given successor. Returns
|
|
/// null if the successor is not found, not unique, or is the default case.
|
|
ConstantInt *findCaseDest(BasicBlock *BB) {
|
|
if (BB == getDefaultDest()) return NULL;
|
|
|
|
ConstantInt *CI = NULL;
|
|
for (CaseIt i = case_begin(), e = case_end(); i != e; ++i) {
|
|
if (i.getCaseSuccessor() == BB) {
|
|
if (CI) return NULL; // Multiple cases lead to BB.
|
|
else CI = i.getCaseValue();
|
|
}
|
|
}
|
|
return CI;
|
|
}
|
|
|
|
/// addCase - Add an entry to the switch instruction...
|
|
/// Note:
|
|
/// This action invalidates case_end(). Old case_end() iterator will
|
|
/// point to the added case.
|
|
void addCase(ConstantInt *OnVal, BasicBlock *Dest);
|
|
|
|
/// addCase - Add an entry to the switch instruction.
|
|
/// Note:
|
|
/// This action invalidates case_end(). Old case_end() iterator will
|
|
/// point to the added case.
|
|
void addCase(IntegersSubset& OnVal, BasicBlock *Dest);
|
|
|
|
/// removeCase - This method removes the specified case and its successor
|
|
/// from the switch instruction. Note that this operation may reorder the
|
|
/// remaining cases at index idx and above.
|
|
/// Note:
|
|
/// This action invalidates iterators for all cases following the one removed,
|
|
/// including the case_end() iterator.
|
|
void removeCase(CaseIt& i);
|
|
|
|
unsigned getNumSuccessors() const { return getNumOperands()/2; }
|
|
BasicBlock *getSuccessor(unsigned idx) const {
|
|
assert(idx < getNumSuccessors() &&"Successor idx out of range for switch!");
|
|
return cast<BasicBlock>(getOperand(idx*2+1));
|
|
}
|
|
void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
|
|
assert(idx < getNumSuccessors() && "Successor # out of range for switch!");
|
|
setOperand(idx*2+1, (Value*)NewSucc);
|
|
}
|
|
|
|
uint16_t hash() const {
|
|
uint32_t NumberOfCases = (uint32_t)getNumCases();
|
|
uint16_t Hash = (0xFFFF & NumberOfCases) ^ (NumberOfCases >> 16);
|
|
for (ConstCaseIt i = case_begin(), e = case_end();
|
|
i != e; ++i) {
|
|
uint32_t NumItems = (uint32_t)i.getCaseValueEx().getNumItems();
|
|
Hash = (Hash << 1) ^ (0xFFFF & NumItems) ^ (NumItems >> 16);
|
|
}
|
|
return Hash;
|
|
}
|
|
|
|
// Case iterators definition.
|
|
|
|
template <class SwitchInstTy, class ConstantIntTy,
|
|
class SubsetsItTy, class BasicBlockTy>
|
|
class CaseIteratorT {
|
|
protected:
|
|
|
|
SwitchInstTy *SI;
|
|
unsigned Index;
|
|
SubsetsItTy SubsetIt;
|
|
|
|
/// Initializes case iterator for given SwitchInst and for given
|
|
/// case number.
|
|
friend class SwitchInst;
|
|
CaseIteratorT(SwitchInstTy *SI, unsigned SuccessorIndex,
|
|
SubsetsItTy CaseValueIt) {
|
|
this->SI = SI;
|
|
Index = SuccessorIndex;
|
|
this->SubsetIt = CaseValueIt;
|
|
}
|
|
|
|
public:
|
|
typedef typename SubsetsItTy::reference IntegersSubsetRef;
|
|
typedef CaseIteratorT<SwitchInstTy, ConstantIntTy,
|
|
SubsetsItTy, BasicBlockTy> Self;
|
|
|
|
CaseIteratorT(SwitchInstTy *SI, unsigned CaseNum) {
|
|
this->SI = SI;
|
|
Index = CaseNum;
|
|
SubsetIt = SI->TheSubsets.begin();
|
|
std::advance(SubsetIt, CaseNum);
|
|
}
|
|
|
|
|
|
/// Initializes case iterator for given SwitchInst and for given
|
|
/// TerminatorInst's successor index.
|
|
static Self fromSuccessorIndex(SwitchInstTy *SI, unsigned SuccessorIndex) {
|
|
assert(SuccessorIndex < SI->getNumSuccessors() &&
|
|
"Successor index # out of range!");
|
|
return SuccessorIndex != 0 ?
|
|
Self(SI, SuccessorIndex - 1) :
|
|
Self(SI, DefaultPseudoIndex);
|
|
}
|
|
|
|
/// Resolves case value for current case.
|
|
ConstantIntTy *getCaseValue() {
|
|
assert(Index < SI->getNumCases() && "Index out the number of cases.");
|
|
IntegersSubsetRef CaseRanges = *SubsetIt;
|
|
|
|
// FIXME: Currently we work with ConstantInt based cases.
|
|
// So return CaseValue as ConstantInt.
|
|
return CaseRanges.getSingleNumber(0).toConstantInt();
|
|
}
|
|
|
|
/// Resolves case value for current case.
|
|
IntegersSubsetRef getCaseValueEx() {
|
|
assert(Index < SI->getNumCases() && "Index out the number of cases.");
|
|
return *SubsetIt;
|
|
}
|
|
|
|
/// Resolves successor for current case.
|
|
BasicBlockTy *getCaseSuccessor() {
|
|
assert((Index < SI->getNumCases() ||
|
|
Index == DefaultPseudoIndex) &&
|
|
"Index out the number of cases.");
|
|
return SI->getSuccessor(getSuccessorIndex());
|
|
}
|
|
|
|
/// Returns number of current case.
|
|
unsigned getCaseIndex() const { return Index; }
|
|
|
|
/// Returns TerminatorInst's successor index for current case successor.
|
|
unsigned getSuccessorIndex() const {
|
|
assert((Index == DefaultPseudoIndex || Index < SI->getNumCases()) &&
|
|
"Index out the number of cases.");
|
|
return Index != DefaultPseudoIndex ? Index + 1 : 0;
|
|
}
|
|
|
|
Self operator++() {
|
|
// Check index correctness after increment.
|
|
// Note: Index == getNumCases() means end().
|
|
assert(Index+1 <= SI->getNumCases() && "Index out the number of cases.");
|
|
++Index;
|
|
if (Index == 0)
|
|
SubsetIt = SI->TheSubsets.begin();
|
|
else
|
|
++SubsetIt;
|
|
return *this;
|
|
}
|
|
Self operator++(int) {
|
|
Self tmp = *this;
|
|
++(*this);
|
|
return tmp;
|
|
}
|
|
Self operator--() {
|
|
// Check index correctness after decrement.
|
|
// Note: Index == getNumCases() means end().
|
|
// Also allow "-1" iterator here. That will became valid after ++.
|
|
unsigned NumCases = SI->getNumCases();
|
|
assert((Index == 0 || Index-1 <= NumCases) &&
|
|
"Index out the number of cases.");
|
|
--Index;
|
|
if (Index == NumCases) {
|
|
SubsetIt = SI->TheSubsets.end();
|
|
return *this;
|
|
}
|
|
|
|
if (Index != -1U)
|
|
--SubsetIt;
|
|
|
|
return *this;
|
|
}
|
|
Self operator--(int) {
|
|
Self tmp = *this;
|
|
--(*this);
|
|
return tmp;
|
|
}
|
|
bool operator==(const Self& RHS) const {
|
|
assert(RHS.SI == SI && "Incompatible operators.");
|
|
return RHS.Index == Index;
|
|
}
|
|
bool operator!=(const Self& RHS) const {
|
|
assert(RHS.SI == SI && "Incompatible operators.");
|
|
return RHS.Index != Index;
|
|
}
|
|
};
|
|
|
|
class CaseIt : public CaseIteratorT<SwitchInst, ConstantInt,
|
|
SubsetsIt, BasicBlock> {
|
|
typedef CaseIteratorT<SwitchInst, ConstantInt, SubsetsIt, BasicBlock>
|
|
ParentTy;
|
|
|
|
protected:
|
|
friend class SwitchInst;
|
|
CaseIt(SwitchInst *SI, unsigned CaseNum, SubsetsIt SubsetIt) :
|
|
ParentTy(SI, CaseNum, SubsetIt) {}
|
|
|
|
void updateCaseValueOperand(IntegersSubset& V) {
|
|
SI->setOperand(2 + Index*2, reinterpret_cast<Value*>((Constant*)V));
|
|
}
|
|
|
|
public:
|
|
|
|
CaseIt(SwitchInst *SI, unsigned CaseNum) : ParentTy(SI, CaseNum) {}
|
|
|
|
CaseIt(const ParentTy& Src) : ParentTy(Src) {}
|
|
|
|
/// Sets the new value for current case.
|
|
void setValue(ConstantInt *V) {
|
|
assert(Index < SI->getNumCases() && "Index out the number of cases.");
|
|
IntegersSubsetToBB Mapping;
|
|
// FIXME: Currently we work with ConstantInt based cases.
|
|
// So inititalize IntItem container directly from ConstantInt.
|
|
Mapping.add(IntItem::fromConstantInt(V));
|
|
*SubsetIt = Mapping.getCase();
|
|
updateCaseValueOperand(*SubsetIt);
|
|
}
|
|
|
|
/// Sets the new value for current case.
|
|
void setValueEx(IntegersSubset& V) {
|
|
assert(Index < SI->getNumCases() && "Index out the number of cases.");
|
|
*SubsetIt = V;
|
|
updateCaseValueOperand(*SubsetIt);
|
|
}
|
|
|
|
/// Sets the new successor for current case.
|
|
void setSuccessor(BasicBlock *S) {
|
|
SI->setSuccessor(getSuccessorIndex(), S);
|
|
}
|
|
};
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
|
|
static inline bool classof(const Instruction *I) {
|
|
return I->getOpcode() == Instruction::Switch;
|
|
}
|
|
static inline bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
private:
|
|
virtual BasicBlock *getSuccessorV(unsigned idx) const;
|
|
virtual unsigned getNumSuccessorsV() const;
|
|
virtual void setSuccessorV(unsigned idx, BasicBlock *B);
|
|
};
|
|
|
|
template <>
|
|
struct OperandTraits<SwitchInst> : public HungoffOperandTraits<2> {
|
|
};
|
|
|
|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SwitchInst, Value)
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// IndirectBrInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//===---------------------------------------------------------------------------
|
|
/// IndirectBrInst - Indirect Branch Instruction.
|
|
///
|
|
class IndirectBrInst : public TerminatorInst {
|
|
void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
|
|
unsigned ReservedSpace;
|
|
// Operand[0] = Value to switch on
|
|
// Operand[1] = Default basic block destination
|
|
// Operand[2n ] = Value to match
|
|
// Operand[2n+1] = BasicBlock to go to on match
|
|
IndirectBrInst(const IndirectBrInst &IBI);
|
|
void init(Value *Address, unsigned NumDests);
|
|
void growOperands();
|
|
// allocate space for exactly zero operands
|
|
void *operator new(size_t s) {
|
|
return User::operator new(s, 0);
|
|
}
|
|
/// IndirectBrInst ctor - Create a new indirectbr instruction, specifying an
|
|
/// Address to jump to. The number of expected destinations can be specified
|
|
/// here to make memory allocation more efficient. This constructor can also
|
|
/// autoinsert before another instruction.
|
|
IndirectBrInst(Value *Address, unsigned NumDests, Instruction *InsertBefore);
|
|
|
|
/// IndirectBrInst ctor - Create a new indirectbr instruction, specifying an
|
|
/// Address to jump to. The number of expected destinations can be specified
|
|
/// here to make memory allocation more efficient. This constructor also
|
|
/// autoinserts at the end of the specified BasicBlock.
|
|
IndirectBrInst(Value *Address, unsigned NumDests, BasicBlock *InsertAtEnd);
|
|
protected:
|
|
virtual IndirectBrInst *clone_impl() const;
|
|
public:
|
|
static IndirectBrInst *Create(Value *Address, unsigned NumDests,
|
|
Instruction *InsertBefore = 0) {
|
|
return new IndirectBrInst(Address, NumDests, InsertBefore);
|
|
}
|
|
static IndirectBrInst *Create(Value *Address, unsigned NumDests,
|
|
BasicBlock *InsertAtEnd) {
|
|
return new IndirectBrInst(Address, NumDests, InsertAtEnd);
|
|
}
|
|
~IndirectBrInst();
|
|
|
|
/// Provide fast operand accessors.
|
|
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
|
|
|
|
// Accessor Methods for IndirectBrInst instruction.
|
|
Value *getAddress() { return getOperand(0); }
|
|
const Value *getAddress() const { return getOperand(0); }
|
|
void setAddress(Value *V) { setOperand(0, V); }
|
|
|
|
|
|
/// getNumDestinations - return the number of possible destinations in this
|
|
/// indirectbr instruction.
|
|
unsigned getNumDestinations() const { return getNumOperands()-1; }
|
|
|
|
/// getDestination - Return the specified destination.
|
|
BasicBlock *getDestination(unsigned i) { return getSuccessor(i); }
|
|
const BasicBlock *getDestination(unsigned i) const { return getSuccessor(i); }
|
|
|
|
/// addDestination - Add a destination.
|
|
///
|
|
void addDestination(BasicBlock *Dest);
|
|
|
|
/// removeDestination - This method removes the specified successor from the
|
|
/// indirectbr instruction.
|
|
void removeDestination(unsigned i);
|
|
|
|
unsigned getNumSuccessors() const { return getNumOperands()-1; }
|
|
BasicBlock *getSuccessor(unsigned i) const {
|
|
return cast<BasicBlock>(getOperand(i+1));
|
|
}
|
|
void setSuccessor(unsigned i, BasicBlock *NewSucc) {
|
|
setOperand(i+1, (Value*)NewSucc);
|
|
}
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const Instruction *I) {
|
|
return I->getOpcode() == Instruction::IndirectBr;
|
|
}
|
|
static inline bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
private:
|
|
virtual BasicBlock *getSuccessorV(unsigned idx) const;
|
|
virtual unsigned getNumSuccessorsV() const;
|
|
virtual void setSuccessorV(unsigned idx, BasicBlock *B);
|
|
};
|
|
|
|
template <>
|
|
struct OperandTraits<IndirectBrInst> : public HungoffOperandTraits<1> {
|
|
};
|
|
|
|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(IndirectBrInst, Value)
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// InvokeInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// InvokeInst - Invoke instruction. The SubclassData field is used to hold the
|
|
/// calling convention of the call.
|
|
///
|
|
class InvokeInst : public TerminatorInst {
|
|
AttributeSet AttributeList;
|
|
InvokeInst(const InvokeInst &BI);
|
|
void init(Value *Func, BasicBlock *IfNormal, BasicBlock *IfException,
|
|
ArrayRef<Value *> Args, const Twine &NameStr);
|
|
|
|
/// Construct an InvokeInst given a range of arguments.
|
|
///
|
|
/// \brief Construct an InvokeInst from a range of arguments
|
|
inline InvokeInst(Value *Func, BasicBlock *IfNormal, BasicBlock *IfException,
|
|
ArrayRef<Value *> Args, unsigned Values,
|
|
const Twine &NameStr, Instruction *InsertBefore);
|
|
|
|
/// Construct an InvokeInst given a range of arguments.
|
|
///
|
|
/// \brief Construct an InvokeInst from a range of arguments
|
|
inline InvokeInst(Value *Func, BasicBlock *IfNormal, BasicBlock *IfException,
|
|
ArrayRef<Value *> Args, unsigned Values,
|
|
const Twine &NameStr, BasicBlock *InsertAtEnd);
|
|
protected:
|
|
virtual InvokeInst *clone_impl() const;
|
|
public:
|
|
static InvokeInst *Create(Value *Func,
|
|
BasicBlock *IfNormal, BasicBlock *IfException,
|
|
ArrayRef<Value *> Args, const Twine &NameStr = "",
|
|
Instruction *InsertBefore = 0) {
|
|
unsigned Values = unsigned(Args.size()) + 3;
|
|
return new(Values) InvokeInst(Func, IfNormal, IfException, Args,
|
|
Values, NameStr, InsertBefore);
|
|
}
|
|
static InvokeInst *Create(Value *Func,
|
|
BasicBlock *IfNormal, BasicBlock *IfException,
|
|
ArrayRef<Value *> Args, const Twine &NameStr,
|
|
BasicBlock *InsertAtEnd) {
|
|
unsigned Values = unsigned(Args.size()) + 3;
|
|
return new(Values) InvokeInst(Func, IfNormal, IfException, Args,
|
|
Values, NameStr, InsertAtEnd);
|
|
}
|
|
|
|
/// Provide fast operand accessors
|
|
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
|
|
|
|
/// getNumArgOperands - Return the number of invoke arguments.
|
|
///
|
|
unsigned getNumArgOperands() const { return getNumOperands() - 3; }
|
|
|
|
/// getArgOperand/setArgOperand - Return/set the i-th invoke argument.
|
|
///
|
|
Value *getArgOperand(unsigned i) const { return getOperand(i); }
|
|
void setArgOperand(unsigned i, Value *v) { setOperand(i, v); }
|
|
|
|
/// getCallingConv/setCallingConv - Get or set the calling convention of this
|
|
/// function call.
|
|
CallingConv::ID getCallingConv() const {
|
|
return static_cast<CallingConv::ID>(getSubclassDataFromInstruction());
|
|
}
|
|
void setCallingConv(CallingConv::ID CC) {
|
|
setInstructionSubclassData(static_cast<unsigned>(CC));
|
|
}
|
|
|
|
/// getAttributes - Return the parameter attributes for this invoke.
|
|
///
|
|
const AttributeSet &getAttributes() const { return AttributeList; }
|
|
|
|
/// setAttributes - Set the parameter attributes for this invoke.
|
|
///
|
|
void setAttributes(const AttributeSet &Attrs) { AttributeList = Attrs; }
|
|
|
|
/// addAttribute - adds the attribute to the list of attributes.
|
|
void addAttribute(unsigned i, Attribute::AttrKind attr);
|
|
|
|
/// removeAttribute - removes the attribute from the list of attributes.
|
|
void removeAttribute(unsigned i, Attribute attr);
|
|
|
|
/// \brief Determine whether this call has the NoAlias attribute.
|
|
bool hasFnAttr(Attribute::AttrKind A) const {
|
|
assert(A != Attribute::NoBuiltin &&
|
|
"Use CallInst::isNoBuiltin() to check for Attribute::NoBuiltin");
|
|
return hasFnAttrImpl(A);
|
|
}
|
|
|
|
/// \brief Determine whether the call or the callee has the given attributes.
|
|
bool paramHasAttr(unsigned i, Attribute::AttrKind A) const;
|
|
|
|
/// \brief Extract the alignment for a call or parameter (0=unknown).
|
|
unsigned getParamAlignment(unsigned i) const {
|
|
return AttributeList.getParamAlignment(i);
|
|
}
|
|
|
|
/// \brief Return true if the call should not be treated as a call to a
|
|
/// builtin.
|
|
bool isNoBuiltin() const {
|
|
// We assert in hasFnAttr if one passes in Attribute::NoBuiltin, so we have
|
|
// to check it by hand.
|
|
return hasFnAttrImpl(Attribute::NoBuiltin) &&
|
|
!hasFnAttrImpl(Attribute::Builtin);
|
|
}
|
|
|
|
/// \brief Return true if the call should not be inlined.
|
|
bool isNoInline() const { return hasFnAttr(Attribute::NoInline); }
|
|
void setIsNoInline() {
|
|
addAttribute(AttributeSet::FunctionIndex, Attribute::NoInline);
|
|
}
|
|
|
|
/// \brief Determine if the call does not access memory.
|
|
bool doesNotAccessMemory() const {
|
|
return hasFnAttr(Attribute::ReadNone);
|
|
}
|
|
void setDoesNotAccessMemory() {
|
|
addAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone);
|
|
}
|
|
|
|
/// \brief Determine if the call does not access or only reads memory.
|
|
bool onlyReadsMemory() const {
|
|
return doesNotAccessMemory() || hasFnAttr(Attribute::ReadOnly);
|
|
}
|
|
void setOnlyReadsMemory() {
|
|
addAttribute(AttributeSet::FunctionIndex, Attribute::ReadOnly);
|
|
}
|
|
|
|
/// \brief Determine if the call cannot return.
|
|
bool doesNotReturn() const { return hasFnAttr(Attribute::NoReturn); }
|
|
void setDoesNotReturn() {
|
|
addAttribute(AttributeSet::FunctionIndex, Attribute::NoReturn);
|
|
}
|
|
|
|
/// \brief Determine if the call cannot unwind.
|
|
bool doesNotThrow() const { return hasFnAttr(Attribute::NoUnwind); }
|
|
void setDoesNotThrow() {
|
|
addAttribute(AttributeSet::FunctionIndex, Attribute::NoUnwind);
|
|
}
|
|
|
|
/// \brief Determine if the call returns a structure through first
|
|
/// pointer argument.
|
|
bool hasStructRetAttr() const {
|
|
// Be friendly and also check the callee.
|
|
return paramHasAttr(1, Attribute::StructRet);
|
|
}
|
|
|
|
/// \brief Determine if any call argument is an aggregate passed by value.
|
|
bool hasByValArgument() const {
|
|
return AttributeList.hasAttrSomewhere(Attribute::ByVal);
|
|
}
|
|
|
|
/// getCalledFunction - Return the function called, or null if this is an
|
|
/// indirect function invocation.
|
|
///
|
|
Function *getCalledFunction() const {
|
|
return dyn_cast<Function>(Op<-3>());
|
|
}
|
|
|
|
/// getCalledValue - Get a pointer to the function that is invoked by this
|
|
/// instruction
|
|
const Value *getCalledValue() const { return Op<-3>(); }
|
|
Value *getCalledValue() { return Op<-3>(); }
|
|
|
|
/// setCalledFunction - Set the function called.
|
|
void setCalledFunction(Value* Fn) {
|
|
Op<-3>() = Fn;
|
|
}
|
|
|
|
// get*Dest - Return the destination basic blocks...
|
|
BasicBlock *getNormalDest() const {
|
|
return cast<BasicBlock>(Op<-2>());
|
|
}
|
|
BasicBlock *getUnwindDest() const {
|
|
return cast<BasicBlock>(Op<-1>());
|
|
}
|
|
void setNormalDest(BasicBlock *B) {
|
|
Op<-2>() = reinterpret_cast<Value*>(B);
|
|
}
|
|
void setUnwindDest(BasicBlock *B) {
|
|
Op<-1>() = reinterpret_cast<Value*>(B);
|
|
}
|
|
|
|
/// getLandingPadInst - Get the landingpad instruction from the landing pad
|
|
/// block (the unwind destination).
|
|
LandingPadInst *getLandingPadInst() const;
|
|
|
|
BasicBlock *getSuccessor(unsigned i) const {
|
|
assert(i < 2 && "Successor # out of range for invoke!");
|
|
return i == 0 ? getNormalDest() : getUnwindDest();
|
|
}
|
|
|
|
void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
|
|
assert(idx < 2 && "Successor # out of range for invoke!");
|
|
*(&Op<-2>() + idx) = reinterpret_cast<Value*>(NewSucc);
|
|
}
|
|
|
|
unsigned getNumSuccessors() const { return 2; }
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const Instruction *I) {
|
|
return (I->getOpcode() == Instruction::Invoke);
|
|
}
|
|
static inline bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
|
|
private:
|
|
virtual BasicBlock *getSuccessorV(unsigned idx) const;
|
|
virtual unsigned getNumSuccessorsV() const;
|
|
virtual void setSuccessorV(unsigned idx, BasicBlock *B);
|
|
|
|
bool hasFnAttrImpl(Attribute::AttrKind A) const;
|
|
|
|
// Shadow Instruction::setInstructionSubclassData with a private forwarding
|
|
// method so that subclasses cannot accidentally use it.
|
|
void setInstructionSubclassData(unsigned short D) {
|
|
Instruction::setInstructionSubclassData(D);
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct OperandTraits<InvokeInst> : public VariadicOperandTraits<InvokeInst, 3> {
|
|
};
|
|
|
|
InvokeInst::InvokeInst(Value *Func,
|
|
BasicBlock *IfNormal, BasicBlock *IfException,
|
|
ArrayRef<Value *> Args, unsigned Values,
|
|
const Twine &NameStr, Instruction *InsertBefore)
|
|
: TerminatorInst(cast<FunctionType>(cast<PointerType>(Func->getType())
|
|
->getElementType())->getReturnType(),
|
|
Instruction::Invoke,
|
|
OperandTraits<InvokeInst>::op_end(this) - Values,
|
|
Values, InsertBefore) {
|
|
init(Func, IfNormal, IfException, Args, NameStr);
|
|
}
|
|
InvokeInst::InvokeInst(Value *Func,
|
|
BasicBlock *IfNormal, BasicBlock *IfException,
|
|
ArrayRef<Value *> Args, unsigned Values,
|
|
const Twine &NameStr, BasicBlock *InsertAtEnd)
|
|
: TerminatorInst(cast<FunctionType>(cast<PointerType>(Func->getType())
|
|
->getElementType())->getReturnType(),
|
|
Instruction::Invoke,
|
|
OperandTraits<InvokeInst>::op_end(this) - Values,
|
|
Values, InsertAtEnd) {
|
|
init(Func, IfNormal, IfException, Args, NameStr);
|
|
}
|
|
|
|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InvokeInst, Value)
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ResumeInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//===---------------------------------------------------------------------------
|
|
/// ResumeInst - Resume the propagation of an exception.
|
|
///
|
|
class ResumeInst : public TerminatorInst {
|
|
ResumeInst(const ResumeInst &RI);
|
|
|
|
explicit ResumeInst(Value *Exn, Instruction *InsertBefore=0);
|
|
ResumeInst(Value *Exn, BasicBlock *InsertAtEnd);
|
|
protected:
|
|
virtual ResumeInst *clone_impl() const;
|
|
public:
|
|
static ResumeInst *Create(Value *Exn, Instruction *InsertBefore = 0) {
|
|
return new(1) ResumeInst(Exn, InsertBefore);
|
|
}
|
|
static ResumeInst *Create(Value *Exn, BasicBlock *InsertAtEnd) {
|
|
return new(1) ResumeInst(Exn, InsertAtEnd);
|
|
}
|
|
|
|
/// Provide fast operand accessors
|
|
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
|
|
|
|
/// Convenience accessor.
|
|
Value *getValue() const { return Op<0>(); }
|
|
|
|
unsigned getNumSuccessors() const { return 0; }
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const Instruction *I) {
|
|
return I->getOpcode() == Instruction::Resume;
|
|
}
|
|
static inline bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
private:
|
|
virtual BasicBlock *getSuccessorV(unsigned idx) const;
|
|
virtual unsigned getNumSuccessorsV() const;
|
|
virtual void setSuccessorV(unsigned idx, BasicBlock *B);
|
|
};
|
|
|
|
template <>
|
|
struct OperandTraits<ResumeInst> :
|
|
public FixedNumOperandTraits<ResumeInst, 1> {
|
|
};
|
|
|
|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ResumeInst, Value)
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// UnreachableInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//===---------------------------------------------------------------------------
|
|
/// UnreachableInst - This function has undefined behavior. In particular, the
|
|
/// presence of this instruction indicates some higher level knowledge that the
|
|
/// end of the block cannot be reached.
|
|
///
|
|
class UnreachableInst : public TerminatorInst {
|
|
void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
|
|
protected:
|
|
virtual UnreachableInst *clone_impl() const;
|
|
|
|
public:
|
|
// allocate space for exactly zero operands
|
|
void *operator new(size_t s) {
|
|
return User::operator new(s, 0);
|
|
}
|
|
explicit UnreachableInst(LLVMContext &C, Instruction *InsertBefore = 0);
|
|
explicit UnreachableInst(LLVMContext &C, BasicBlock *InsertAtEnd);
|
|
|
|
unsigned getNumSuccessors() const { return 0; }
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const Instruction *I) {
|
|
return I->getOpcode() == Instruction::Unreachable;
|
|
}
|
|
static inline bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
private:
|
|
virtual BasicBlock *getSuccessorV(unsigned idx) const;
|
|
virtual unsigned getNumSuccessorsV() const;
|
|
virtual void setSuccessorV(unsigned idx, BasicBlock *B);
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TruncInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// \brief This class represents a truncation of integer types.
|
|
class TruncInst : public CastInst {
|
|
protected:
|
|
/// \brief Clone an identical TruncInst
|
|
virtual TruncInst *clone_impl() const;
|
|
|
|
public:
|
|
/// \brief Constructor with insert-before-instruction semantics
|
|
TruncInst(
|
|
Value *S, ///< The value to be truncated
|
|
Type *Ty, ///< The (smaller) type to truncate to
|
|
const Twine &NameStr = "", ///< A name for the new instruction
|
|
Instruction *InsertBefore = 0 ///< Where to insert the new instruction
|
|
);
|
|
|
|
/// \brief Constructor with insert-at-end-of-block semantics
|
|
TruncInst(
|
|
Value *S, ///< The value to be truncated
|
|
Type *Ty, ///< The (smaller) type to truncate to
|
|
const Twine &NameStr, ///< A name for the new instruction
|
|
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
|
|
);
|
|
|
|
/// \brief Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const Instruction *I) {
|
|
return I->getOpcode() == Trunc;
|
|
}
|
|
static inline bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ZExtInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// \brief This class represents zero extension of integer types.
|
|
class ZExtInst : public CastInst {
|
|
protected:
|
|
/// \brief Clone an identical ZExtInst
|
|
virtual ZExtInst *clone_impl() const;
|
|
|
|
public:
|
|
/// \brief Constructor with insert-before-instruction semantics
|
|
ZExtInst(
|
|
Value *S, ///< The value to be zero extended
|
|
Type *Ty, ///< The type to zero extend to
|
|
const Twine &NameStr = "", ///< A name for the new instruction
|
|
Instruction *InsertBefore = 0 ///< Where to insert the new instruction
|
|
);
|
|
|
|
/// \brief Constructor with insert-at-end semantics.
|
|
ZExtInst(
|
|
Value *S, ///< The value to be zero extended
|
|
Type *Ty, ///< The type to zero extend to
|
|
const Twine &NameStr, ///< A name for the new instruction
|
|
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
|
|
);
|
|
|
|
/// \brief Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const Instruction *I) {
|
|
return I->getOpcode() == ZExt;
|
|
}
|
|
static inline bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SExtInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// \brief This class represents a sign extension of integer types.
|
|
class SExtInst : public CastInst {
|
|
protected:
|
|
/// \brief Clone an identical SExtInst
|
|
virtual SExtInst *clone_impl() const;
|
|
|
|
public:
|
|
/// \brief Constructor with insert-before-instruction semantics
|
|
SExtInst(
|
|
Value *S, ///< The value to be sign extended
|
|
Type *Ty, ///< The type to sign extend to
|
|
const Twine &NameStr = "", ///< A name for the new instruction
|
|
Instruction *InsertBefore = 0 ///< Where to insert the new instruction
|
|
);
|
|
|
|
/// \brief Constructor with insert-at-end-of-block semantics
|
|
SExtInst(
|
|
Value *S, ///< The value to be sign extended
|
|
Type *Ty, ///< The type to sign extend to
|
|
const Twine &NameStr, ///< A name for the new instruction
|
|
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
|
|
);
|
|
|
|
/// \brief Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const Instruction *I) {
|
|
return I->getOpcode() == SExt;
|
|
}
|
|
static inline bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// FPTruncInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// \brief This class represents a truncation of floating point types.
|
|
class FPTruncInst : public CastInst {
|
|
protected:
|
|
/// \brief Clone an identical FPTruncInst
|
|
virtual FPTruncInst *clone_impl() const;
|
|
|
|
public:
|
|
/// \brief Constructor with insert-before-instruction semantics
|
|
FPTruncInst(
|
|
Value *S, ///< The value to be truncated
|
|
Type *Ty, ///< The type to truncate to
|
|
const Twine &NameStr = "", ///< A name for the new instruction
|
|
Instruction *InsertBefore = 0 ///< Where to insert the new instruction
|
|
);
|
|
|
|
/// \brief Constructor with insert-before-instruction semantics
|
|
FPTruncInst(
|
|
Value *S, ///< The value to be truncated
|
|
Type *Ty, ///< The type to truncate to
|
|
const Twine &NameStr, ///< A name for the new instruction
|
|
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
|
|
);
|
|
|
|
/// \brief Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const Instruction *I) {
|
|
return I->getOpcode() == FPTrunc;
|
|
}
|
|
static inline bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// FPExtInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// \brief This class represents an extension of floating point types.
|
|
class FPExtInst : public CastInst {
|
|
protected:
|
|
/// \brief Clone an identical FPExtInst
|
|
virtual FPExtInst *clone_impl() const;
|
|
|
|
public:
|
|
/// \brief Constructor with insert-before-instruction semantics
|
|
FPExtInst(
|
|
Value *S, ///< The value to be extended
|
|
Type *Ty, ///< The type to extend to
|
|
const Twine &NameStr = "", ///< A name for the new instruction
|
|
Instruction *InsertBefore = 0 ///< Where to insert the new instruction
|
|
);
|
|
|
|
/// \brief Constructor with insert-at-end-of-block semantics
|
|
FPExtInst(
|
|
Value *S, ///< The value to be extended
|
|
Type *Ty, ///< The type to extend to
|
|
const Twine &NameStr, ///< A name for the new instruction
|
|
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
|
|
);
|
|
|
|
/// \brief Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const Instruction *I) {
|
|
return I->getOpcode() == FPExt;
|
|
}
|
|
static inline bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// UIToFPInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// \brief This class represents a cast unsigned integer to floating point.
|
|
class UIToFPInst : public CastInst {
|
|
protected:
|
|
/// \brief Clone an identical UIToFPInst
|
|
virtual UIToFPInst *clone_impl() const;
|
|
|
|
public:
|
|
/// \brief Constructor with insert-before-instruction semantics
|
|
UIToFPInst(
|
|
Value *S, ///< The value to be converted
|
|
Type *Ty, ///< The type to convert to
|
|
const Twine &NameStr = "", ///< A name for the new instruction
|
|
Instruction *InsertBefore = 0 ///< Where to insert the new instruction
|
|
);
|
|
|
|
/// \brief Constructor with insert-at-end-of-block semantics
|
|
UIToFPInst(
|
|
Value *S, ///< The value to be converted
|
|
Type *Ty, ///< The type to convert to
|
|
const Twine &NameStr, ///< A name for the new instruction
|
|
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
|
|
);
|
|
|
|
/// \brief Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const Instruction *I) {
|
|
return I->getOpcode() == UIToFP;
|
|
}
|
|
static inline bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SIToFPInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// \brief This class represents a cast from signed integer to floating point.
|
|
class SIToFPInst : public CastInst {
|
|
protected:
|
|
/// \brief Clone an identical SIToFPInst
|
|
virtual SIToFPInst *clone_impl() const;
|
|
|
|
public:
|
|
/// \brief Constructor with insert-before-instruction semantics
|
|
SIToFPInst(
|
|
Value *S, ///< The value to be converted
|
|
Type *Ty, ///< The type to convert to
|
|
const Twine &NameStr = "", ///< A name for the new instruction
|
|
Instruction *InsertBefore = 0 ///< Where to insert the new instruction
|
|
);
|
|
|
|
/// \brief Constructor with insert-at-end-of-block semantics
|
|
SIToFPInst(
|
|
Value *S, ///< The value to be converted
|
|
Type *Ty, ///< The type to convert to
|
|
const Twine &NameStr, ///< A name for the new instruction
|
|
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
|
|
);
|
|
|
|
/// \brief Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const Instruction *I) {
|
|
return I->getOpcode() == SIToFP;
|
|
}
|
|
static inline bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// FPToUIInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// \brief This class represents a cast from floating point to unsigned integer
|
|
class FPToUIInst : public CastInst {
|
|
protected:
|
|
/// \brief Clone an identical FPToUIInst
|
|
virtual FPToUIInst *clone_impl() const;
|
|
|
|
public:
|
|
/// \brief Constructor with insert-before-instruction semantics
|
|
FPToUIInst(
|
|
Value *S, ///< The value to be converted
|
|
Type *Ty, ///< The type to convert to
|
|
const Twine &NameStr = "", ///< A name for the new instruction
|
|
Instruction *InsertBefore = 0 ///< Where to insert the new instruction
|
|
);
|
|
|
|
/// \brief Constructor with insert-at-end-of-block semantics
|
|
FPToUIInst(
|
|
Value *S, ///< The value to be converted
|
|
Type *Ty, ///< The type to convert to
|
|
const Twine &NameStr, ///< A name for the new instruction
|
|
BasicBlock *InsertAtEnd ///< Where to insert the new instruction
|
|
);
|
|
|
|
/// \brief Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const Instruction *I) {
|
|
return I->getOpcode() == FPToUI;
|
|
}
|
|
static inline bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// FPToSIInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// \brief This class represents a cast from floating point to signed integer.
|
|
class FPToSIInst : public CastInst {
|
|
protected:
|
|
/// \brief Clone an identical FPToSIInst
|
|
virtual FPToSIInst *clone_impl() const;
|
|
|
|
public:
|
|
/// \brief Constructor with insert-before-instruction semantics
|
|
FPToSIInst(
|
|
Value *S, ///< The value to be converted
|
|
Type *Ty, ///< The type to convert to
|
|
const Twine &NameStr = "", ///< A name for the new instruction
|
|
Instruction *InsertBefore = 0 ///< Where to insert the new instruction
|
|
);
|
|
|
|
/// \brief Constructor with insert-at-end-of-block semantics
|
|
FPToSIInst(
|
|
Value *S, ///< The value to be converted
|
|
Type *Ty, ///< The type to convert to
|
|
const Twine &NameStr, ///< A name for the new instruction
|
|
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
|
|
);
|
|
|
|
/// \brief Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const Instruction *I) {
|
|
return I->getOpcode() == FPToSI;
|
|
}
|
|
static inline bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// IntToPtrInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// \brief This class represents a cast from an integer to a pointer.
|
|
class IntToPtrInst : public CastInst {
|
|
public:
|
|
/// \brief Constructor with insert-before-instruction semantics
|
|
IntToPtrInst(
|
|
Value *S, ///< The value to be converted
|
|
Type *Ty, ///< The type to convert to
|
|
const Twine &NameStr = "", ///< A name for the new instruction
|
|
Instruction *InsertBefore = 0 ///< Where to insert the new instruction
|
|
);
|
|
|
|
/// \brief Constructor with insert-at-end-of-block semantics
|
|
IntToPtrInst(
|
|
Value *S, ///< The value to be converted
|
|
Type *Ty, ///< The type to convert to
|
|
const Twine &NameStr, ///< A name for the new instruction
|
|
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
|
|
);
|
|
|
|
/// \brief Clone an identical IntToPtrInst
|
|
virtual IntToPtrInst *clone_impl() const;
|
|
|
|
/// \brief Returns the address space of this instruction's pointer type.
|
|
unsigned getAddressSpace() const {
|
|
return getType()->getPointerAddressSpace();
|
|
}
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const Instruction *I) {
|
|
return I->getOpcode() == IntToPtr;
|
|
}
|
|
static inline bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// PtrToIntInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// \brief This class represents a cast from a pointer to an integer
|
|
class PtrToIntInst : public CastInst {
|
|
protected:
|
|
/// \brief Clone an identical PtrToIntInst
|
|
virtual PtrToIntInst *clone_impl() const;
|
|
|
|
public:
|
|
/// \brief Constructor with insert-before-instruction semantics
|
|
PtrToIntInst(
|
|
Value *S, ///< The value to be converted
|
|
Type *Ty, ///< The type to convert to
|
|
const Twine &NameStr = "", ///< A name for the new instruction
|
|
Instruction *InsertBefore = 0 ///< Where to insert the new instruction
|
|
);
|
|
|
|
/// \brief Constructor with insert-at-end-of-block semantics
|
|
PtrToIntInst(
|
|
Value *S, ///< The value to be converted
|
|
Type *Ty, ///< The type to convert to
|
|
const Twine &NameStr, ///< A name for the new instruction
|
|
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
|
|
);
|
|
|
|
/// \brief Gets the pointer operand.
|
|
Value *getPointerOperand() { return getOperand(0); }
|
|
/// \brief Gets the pointer operand.
|
|
const Value *getPointerOperand() const { return getOperand(0); }
|
|
/// \brief Gets the operand index of the pointer operand.
|
|
static unsigned getPointerOperandIndex() { return 0U; }
|
|
|
|
/// \brief Returns the address space of the pointer operand.
|
|
unsigned getPointerAddressSpace() const {
|
|
return getPointerOperand()->getType()->getPointerAddressSpace();
|
|
}
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const Instruction *I) {
|
|
return I->getOpcode() == PtrToInt;
|
|
}
|
|
static inline bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// BitCastInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// \brief This class represents a no-op cast from one type to another.
|
|
class BitCastInst : public CastInst {
|
|
protected:
|
|
/// \brief Clone an identical BitCastInst
|
|
virtual BitCastInst *clone_impl() const;
|
|
|
|
public:
|
|
/// \brief Constructor with insert-before-instruction semantics
|
|
BitCastInst(
|
|
Value *S, ///< The value to be casted
|
|
Type *Ty, ///< The type to casted to
|
|
const Twine &NameStr = "", ///< A name for the new instruction
|
|
Instruction *InsertBefore = 0 ///< Where to insert the new instruction
|
|
);
|
|
|
|
/// \brief Constructor with insert-at-end-of-block semantics
|
|
BitCastInst(
|
|
Value *S, ///< The value to be casted
|
|
Type *Ty, ///< The type to casted to
|
|
const Twine &NameStr, ///< A name for the new instruction
|
|
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
|
|
);
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const Instruction *I) {
|
|
return I->getOpcode() == BitCast;
|
|
}
|
|
static inline bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
};
|
|
|
|
} // End llvm namespace
|
|
|
|
#endif
|