mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-01 00:11:00 +00:00
f7331b3dd7
init_trampoline. There is now only one trampoline intrinsic. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@41841 91177308-0d34-0410-b5e6-96231b3b80d8
3832 lines
136 KiB
C++
3832 lines
136 KiB
C++
//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This implements the SelectionDAG class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/CodeGen/SelectionDAG.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/GlobalVariable.h"
|
|
#include "llvm/Intrinsics.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Assembly/Writer.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineConstantPool.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Target/MRegisterInfo.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
using namespace llvm;
|
|
|
|
/// makeVTList - Return an instance of the SDVTList struct initialized with the
|
|
/// specified members.
|
|
static SDVTList makeVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
|
|
SDVTList Res = {VTs, NumVTs};
|
|
return Res;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ConstantFPSDNode Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// isExactlyValue - We don't rely on operator== working on double values, as
|
|
/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
|
|
/// As such, this method can be used to do an exact bit-for-bit comparison of
|
|
/// two floating point values.
|
|
bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
|
|
return Value.bitwiseIsEqual(V);
|
|
}
|
|
|
|
bool ConstantFPSDNode::isValueValidForType(MVT::ValueType VT,
|
|
const APFloat& Val) {
|
|
// convert modifies in place, so make a copy.
|
|
APFloat Val2 = APFloat(Val);
|
|
switch (VT) {
|
|
default:
|
|
return false; // These can't be represented as floating point!
|
|
|
|
// FIXME rounding mode needs to be more flexible
|
|
case MVT::f32:
|
|
return &Val2.getSemantics() == &APFloat::IEEEsingle ||
|
|
Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven) ==
|
|
APFloat::opOK;
|
|
case MVT::f64:
|
|
return &Val2.getSemantics() == &APFloat::IEEEsingle ||
|
|
&Val2.getSemantics() == &APFloat::IEEEdouble ||
|
|
Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven) ==
|
|
APFloat::opOK;
|
|
// TODO: Figure out how to test if we can use a shorter type instead!
|
|
case MVT::f80:
|
|
case MVT::f128:
|
|
case MVT::ppcf128:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ISD Namespace
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// isBuildVectorAllOnes - Return true if the specified node is a
|
|
/// BUILD_VECTOR where all of the elements are ~0 or undef.
|
|
bool ISD::isBuildVectorAllOnes(const SDNode *N) {
|
|
// Look through a bit convert.
|
|
if (N->getOpcode() == ISD::BIT_CONVERT)
|
|
N = N->getOperand(0).Val;
|
|
|
|
if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
|
|
|
|
unsigned i = 0, e = N->getNumOperands();
|
|
|
|
// Skip over all of the undef values.
|
|
while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
|
|
++i;
|
|
|
|
// Do not accept an all-undef vector.
|
|
if (i == e) return false;
|
|
|
|
// Do not accept build_vectors that aren't all constants or which have non-~0
|
|
// elements.
|
|
SDOperand NotZero = N->getOperand(i);
|
|
if (isa<ConstantSDNode>(NotZero)) {
|
|
if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
|
|
return false;
|
|
} else if (isa<ConstantFPSDNode>(NotZero)) {
|
|
MVT::ValueType VT = NotZero.getValueType();
|
|
if (VT== MVT::f64) {
|
|
if (DoubleToBits(cast<ConstantFPSDNode>(NotZero)->
|
|
getValueAPF().convertToDouble()) !=
|
|
(uint64_t)-1)
|
|
return false;
|
|
} else {
|
|
if (FloatToBits(cast<ConstantFPSDNode>(NotZero)->
|
|
getValueAPF().convertToFloat()) !=
|
|
(uint32_t)-1)
|
|
return false;
|
|
}
|
|
} else
|
|
return false;
|
|
|
|
// Okay, we have at least one ~0 value, check to see if the rest match or are
|
|
// undefs.
|
|
for (++i; i != e; ++i)
|
|
if (N->getOperand(i) != NotZero &&
|
|
N->getOperand(i).getOpcode() != ISD::UNDEF)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
|
|
/// isBuildVectorAllZeros - Return true if the specified node is a
|
|
/// BUILD_VECTOR where all of the elements are 0 or undef.
|
|
bool ISD::isBuildVectorAllZeros(const SDNode *N) {
|
|
// Look through a bit convert.
|
|
if (N->getOpcode() == ISD::BIT_CONVERT)
|
|
N = N->getOperand(0).Val;
|
|
|
|
if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
|
|
|
|
unsigned i = 0, e = N->getNumOperands();
|
|
|
|
// Skip over all of the undef values.
|
|
while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
|
|
++i;
|
|
|
|
// Do not accept an all-undef vector.
|
|
if (i == e) return false;
|
|
|
|
// Do not accept build_vectors that aren't all constants or which have non-~0
|
|
// elements.
|
|
SDOperand Zero = N->getOperand(i);
|
|
if (isa<ConstantSDNode>(Zero)) {
|
|
if (!cast<ConstantSDNode>(Zero)->isNullValue())
|
|
return false;
|
|
} else if (isa<ConstantFPSDNode>(Zero)) {
|
|
if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
|
|
return false;
|
|
} else
|
|
return false;
|
|
|
|
// Okay, we have at least one ~0 value, check to see if the rest match or are
|
|
// undefs.
|
|
for (++i; i != e; ++i)
|
|
if (N->getOperand(i) != Zero &&
|
|
N->getOperand(i).getOpcode() != ISD::UNDEF)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
|
|
/// when given the operation for (X op Y).
|
|
ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
|
|
// To perform this operation, we just need to swap the L and G bits of the
|
|
// operation.
|
|
unsigned OldL = (Operation >> 2) & 1;
|
|
unsigned OldG = (Operation >> 1) & 1;
|
|
return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits
|
|
(OldL << 1) | // New G bit
|
|
(OldG << 2)); // New L bit.
|
|
}
|
|
|
|
/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
|
|
/// 'op' is a valid SetCC operation.
|
|
ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
|
|
unsigned Operation = Op;
|
|
if (isInteger)
|
|
Operation ^= 7; // Flip L, G, E bits, but not U.
|
|
else
|
|
Operation ^= 15; // Flip all of the condition bits.
|
|
if (Operation > ISD::SETTRUE2)
|
|
Operation &= ~8; // Don't let N and U bits get set.
|
|
return ISD::CondCode(Operation);
|
|
}
|
|
|
|
|
|
/// isSignedOp - For an integer comparison, return 1 if the comparison is a
|
|
/// signed operation and 2 if the result is an unsigned comparison. Return zero
|
|
/// if the operation does not depend on the sign of the input (setne and seteq).
|
|
static int isSignedOp(ISD::CondCode Opcode) {
|
|
switch (Opcode) {
|
|
default: assert(0 && "Illegal integer setcc operation!");
|
|
case ISD::SETEQ:
|
|
case ISD::SETNE: return 0;
|
|
case ISD::SETLT:
|
|
case ISD::SETLE:
|
|
case ISD::SETGT:
|
|
case ISD::SETGE: return 1;
|
|
case ISD::SETULT:
|
|
case ISD::SETULE:
|
|
case ISD::SETUGT:
|
|
case ISD::SETUGE: return 2;
|
|
}
|
|
}
|
|
|
|
/// getSetCCOrOperation - Return the result of a logical OR between different
|
|
/// comparisons of identical values: ((X op1 Y) | (X op2 Y)). This function
|
|
/// returns SETCC_INVALID if it is not possible to represent the resultant
|
|
/// comparison.
|
|
ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
|
|
bool isInteger) {
|
|
if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
|
|
// Cannot fold a signed integer setcc with an unsigned integer setcc.
|
|
return ISD::SETCC_INVALID;
|
|
|
|
unsigned Op = Op1 | Op2; // Combine all of the condition bits.
|
|
|
|
// If the N and U bits get set then the resultant comparison DOES suddenly
|
|
// care about orderedness, and is true when ordered.
|
|
if (Op > ISD::SETTRUE2)
|
|
Op &= ~16; // Clear the U bit if the N bit is set.
|
|
|
|
// Canonicalize illegal integer setcc's.
|
|
if (isInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT
|
|
Op = ISD::SETNE;
|
|
|
|
return ISD::CondCode(Op);
|
|
}
|
|
|
|
/// getSetCCAndOperation - Return the result of a logical AND between different
|
|
/// comparisons of identical values: ((X op1 Y) & (X op2 Y)). This
|
|
/// function returns zero if it is not possible to represent the resultant
|
|
/// comparison.
|
|
ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
|
|
bool isInteger) {
|
|
if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
|
|
// Cannot fold a signed setcc with an unsigned setcc.
|
|
return ISD::SETCC_INVALID;
|
|
|
|
// Combine all of the condition bits.
|
|
ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
|
|
|
|
// Canonicalize illegal integer setcc's.
|
|
if (isInteger) {
|
|
switch (Result) {
|
|
default: break;
|
|
case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT
|
|
case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE
|
|
case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE
|
|
case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE
|
|
}
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
const TargetMachine &SelectionDAG::getTarget() const {
|
|
return TLI.getTargetMachine();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SDNode Profile Support
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
|
|
///
|
|
static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) {
|
|
ID.AddInteger(OpC);
|
|
}
|
|
|
|
/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
|
|
/// solely with their pointer.
|
|
void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
|
|
ID.AddPointer(VTList.VTs);
|
|
}
|
|
|
|
/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
|
|
///
|
|
static void AddNodeIDOperands(FoldingSetNodeID &ID,
|
|
const SDOperand *Ops, unsigned NumOps) {
|
|
for (; NumOps; --NumOps, ++Ops) {
|
|
ID.AddPointer(Ops->Val);
|
|
ID.AddInteger(Ops->ResNo);
|
|
}
|
|
}
|
|
|
|
static void AddNodeIDNode(FoldingSetNodeID &ID,
|
|
unsigned short OpC, SDVTList VTList,
|
|
const SDOperand *OpList, unsigned N) {
|
|
AddNodeIDOpcode(ID, OpC);
|
|
AddNodeIDValueTypes(ID, VTList);
|
|
AddNodeIDOperands(ID, OpList, N);
|
|
}
|
|
|
|
/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
|
|
/// data.
|
|
static void AddNodeIDNode(FoldingSetNodeID &ID, SDNode *N) {
|
|
AddNodeIDOpcode(ID, N->getOpcode());
|
|
// Add the return value info.
|
|
AddNodeIDValueTypes(ID, N->getVTList());
|
|
// Add the operand info.
|
|
AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
|
|
|
|
// Handle SDNode leafs with special info.
|
|
switch (N->getOpcode()) {
|
|
default: break; // Normal nodes don't need extra info.
|
|
case ISD::TargetConstant:
|
|
case ISD::Constant:
|
|
ID.AddInteger(cast<ConstantSDNode>(N)->getValue());
|
|
break;
|
|
case ISD::TargetConstantFP:
|
|
case ISD::ConstantFP: {
|
|
APFloat V = cast<ConstantFPSDNode>(N)->getValueAPF();
|
|
if (&V.getSemantics() == &APFloat::IEEEdouble)
|
|
ID.AddDouble(V.convertToDouble());
|
|
else if (&V.getSemantics() == &APFloat::IEEEsingle)
|
|
ID.AddDouble((double)V.convertToFloat());
|
|
else
|
|
assert(0);
|
|
break;
|
|
}
|
|
case ISD::TargetGlobalAddress:
|
|
case ISD::GlobalAddress:
|
|
case ISD::TargetGlobalTLSAddress:
|
|
case ISD::GlobalTLSAddress: {
|
|
GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
|
|
ID.AddPointer(GA->getGlobal());
|
|
ID.AddInteger(GA->getOffset());
|
|
break;
|
|
}
|
|
case ISD::BasicBlock:
|
|
ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
|
|
break;
|
|
case ISD::Register:
|
|
ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
|
|
break;
|
|
case ISD::SRCVALUE: {
|
|
SrcValueSDNode *SV = cast<SrcValueSDNode>(N);
|
|
ID.AddPointer(SV->getValue());
|
|
ID.AddInteger(SV->getOffset());
|
|
break;
|
|
}
|
|
case ISD::FrameIndex:
|
|
case ISD::TargetFrameIndex:
|
|
ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
|
|
break;
|
|
case ISD::JumpTable:
|
|
case ISD::TargetJumpTable:
|
|
ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
|
|
break;
|
|
case ISD::ConstantPool:
|
|
case ISD::TargetConstantPool: {
|
|
ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
|
|
ID.AddInteger(CP->getAlignment());
|
|
ID.AddInteger(CP->getOffset());
|
|
if (CP->isMachineConstantPoolEntry())
|
|
CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
|
|
else
|
|
ID.AddPointer(CP->getConstVal());
|
|
break;
|
|
}
|
|
case ISD::LOAD: {
|
|
LoadSDNode *LD = cast<LoadSDNode>(N);
|
|
ID.AddInteger(LD->getAddressingMode());
|
|
ID.AddInteger(LD->getExtensionType());
|
|
ID.AddInteger(LD->getLoadedVT());
|
|
ID.AddPointer(LD->getSrcValue());
|
|
ID.AddInteger(LD->getSrcValueOffset());
|
|
ID.AddInteger(LD->getAlignment());
|
|
ID.AddInteger(LD->isVolatile());
|
|
break;
|
|
}
|
|
case ISD::STORE: {
|
|
StoreSDNode *ST = cast<StoreSDNode>(N);
|
|
ID.AddInteger(ST->getAddressingMode());
|
|
ID.AddInteger(ST->isTruncatingStore());
|
|
ID.AddInteger(ST->getStoredVT());
|
|
ID.AddPointer(ST->getSrcValue());
|
|
ID.AddInteger(ST->getSrcValueOffset());
|
|
ID.AddInteger(ST->getAlignment());
|
|
ID.AddInteger(ST->isVolatile());
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SelectionDAG Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// RemoveDeadNodes - This method deletes all unreachable nodes in the
|
|
/// SelectionDAG.
|
|
void SelectionDAG::RemoveDeadNodes() {
|
|
// Create a dummy node (which is not added to allnodes), that adds a reference
|
|
// to the root node, preventing it from being deleted.
|
|
HandleSDNode Dummy(getRoot());
|
|
|
|
SmallVector<SDNode*, 128> DeadNodes;
|
|
|
|
// Add all obviously-dead nodes to the DeadNodes worklist.
|
|
for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
|
|
if (I->use_empty())
|
|
DeadNodes.push_back(I);
|
|
|
|
// Process the worklist, deleting the nodes and adding their uses to the
|
|
// worklist.
|
|
while (!DeadNodes.empty()) {
|
|
SDNode *N = DeadNodes.back();
|
|
DeadNodes.pop_back();
|
|
|
|
// Take the node out of the appropriate CSE map.
|
|
RemoveNodeFromCSEMaps(N);
|
|
|
|
// Next, brutally remove the operand list. This is safe to do, as there are
|
|
// no cycles in the graph.
|
|
for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
|
|
SDNode *Operand = I->Val;
|
|
Operand->removeUser(N);
|
|
|
|
// Now that we removed this operand, see if there are no uses of it left.
|
|
if (Operand->use_empty())
|
|
DeadNodes.push_back(Operand);
|
|
}
|
|
if (N->OperandsNeedDelete)
|
|
delete[] N->OperandList;
|
|
N->OperandList = 0;
|
|
N->NumOperands = 0;
|
|
|
|
// Finally, remove N itself.
|
|
AllNodes.erase(N);
|
|
}
|
|
|
|
// If the root changed (e.g. it was a dead load, update the root).
|
|
setRoot(Dummy.getValue());
|
|
}
|
|
|
|
void SelectionDAG::RemoveDeadNode(SDNode *N, std::vector<SDNode*> &Deleted) {
|
|
SmallVector<SDNode*, 16> DeadNodes;
|
|
DeadNodes.push_back(N);
|
|
|
|
// Process the worklist, deleting the nodes and adding their uses to the
|
|
// worklist.
|
|
while (!DeadNodes.empty()) {
|
|
SDNode *N = DeadNodes.back();
|
|
DeadNodes.pop_back();
|
|
|
|
// Take the node out of the appropriate CSE map.
|
|
RemoveNodeFromCSEMaps(N);
|
|
|
|
// Next, brutally remove the operand list. This is safe to do, as there are
|
|
// no cycles in the graph.
|
|
for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
|
|
SDNode *Operand = I->Val;
|
|
Operand->removeUser(N);
|
|
|
|
// Now that we removed this operand, see if there are no uses of it left.
|
|
if (Operand->use_empty())
|
|
DeadNodes.push_back(Operand);
|
|
}
|
|
if (N->OperandsNeedDelete)
|
|
delete[] N->OperandList;
|
|
N->OperandList = 0;
|
|
N->NumOperands = 0;
|
|
|
|
// Finally, remove N itself.
|
|
Deleted.push_back(N);
|
|
AllNodes.erase(N);
|
|
}
|
|
}
|
|
|
|
void SelectionDAG::DeleteNode(SDNode *N) {
|
|
assert(N->use_empty() && "Cannot delete a node that is not dead!");
|
|
|
|
// First take this out of the appropriate CSE map.
|
|
RemoveNodeFromCSEMaps(N);
|
|
|
|
// Finally, remove uses due to operands of this node, remove from the
|
|
// AllNodes list, and delete the node.
|
|
DeleteNodeNotInCSEMaps(N);
|
|
}
|
|
|
|
void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
|
|
|
|
// Remove it from the AllNodes list.
|
|
AllNodes.remove(N);
|
|
|
|
// Drop all of the operands and decrement used nodes use counts.
|
|
for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
|
|
I->Val->removeUser(N);
|
|
if (N->OperandsNeedDelete)
|
|
delete[] N->OperandList;
|
|
N->OperandList = 0;
|
|
N->NumOperands = 0;
|
|
|
|
delete N;
|
|
}
|
|
|
|
/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
|
|
/// correspond to it. This is useful when we're about to delete or repurpose
|
|
/// the node. We don't want future request for structurally identical nodes
|
|
/// to return N anymore.
|
|
void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
|
|
bool Erased = false;
|
|
switch (N->getOpcode()) {
|
|
case ISD::HANDLENODE: return; // noop.
|
|
case ISD::STRING:
|
|
Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
|
|
break;
|
|
case ISD::CONDCODE:
|
|
assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
|
|
"Cond code doesn't exist!");
|
|
Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
|
|
CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
|
|
break;
|
|
case ISD::ExternalSymbol:
|
|
Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
|
|
break;
|
|
case ISD::TargetExternalSymbol:
|
|
Erased =
|
|
TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
|
|
break;
|
|
case ISD::VALUETYPE:
|
|
Erased = ValueTypeNodes[cast<VTSDNode>(N)->getVT()] != 0;
|
|
ValueTypeNodes[cast<VTSDNode>(N)->getVT()] = 0;
|
|
break;
|
|
default:
|
|
// Remove it from the CSE Map.
|
|
Erased = CSEMap.RemoveNode(N);
|
|
break;
|
|
}
|
|
#ifndef NDEBUG
|
|
// Verify that the node was actually in one of the CSE maps, unless it has a
|
|
// flag result (which cannot be CSE'd) or is one of the special cases that are
|
|
// not subject to CSE.
|
|
if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
|
|
!N->isTargetOpcode()) {
|
|
N->dump(this);
|
|
cerr << "\n";
|
|
assert(0 && "Node is not in map!");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps. It
|
|
/// has been taken out and modified in some way. If the specified node already
|
|
/// exists in the CSE maps, do not modify the maps, but return the existing node
|
|
/// instead. If it doesn't exist, add it and return null.
|
|
///
|
|
SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
|
|
assert(N->getNumOperands() && "This is a leaf node!");
|
|
if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
|
|
return 0; // Never add these nodes.
|
|
|
|
// Check that remaining values produced are not flags.
|
|
for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
|
|
if (N->getValueType(i) == MVT::Flag)
|
|
return 0; // Never CSE anything that produces a flag.
|
|
|
|
SDNode *New = CSEMap.GetOrInsertNode(N);
|
|
if (New != N) return New; // Node already existed.
|
|
return 0;
|
|
}
|
|
|
|
/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
|
|
/// were replaced with those specified. If this node is never memoized,
|
|
/// return null, otherwise return a pointer to the slot it would take. If a
|
|
/// node already exists with these operands, the slot will be non-null.
|
|
SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
|
|
void *&InsertPos) {
|
|
if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
|
|
return 0; // Never add these nodes.
|
|
|
|
// Check that remaining values produced are not flags.
|
|
for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
|
|
if (N->getValueType(i) == MVT::Flag)
|
|
return 0; // Never CSE anything that produces a flag.
|
|
|
|
SDOperand Ops[] = { Op };
|
|
FoldingSetNodeID ID;
|
|
AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
|
|
return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
|
|
}
|
|
|
|
/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
|
|
/// were replaced with those specified. If this node is never memoized,
|
|
/// return null, otherwise return a pointer to the slot it would take. If a
|
|
/// node already exists with these operands, the slot will be non-null.
|
|
SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
|
|
SDOperand Op1, SDOperand Op2,
|
|
void *&InsertPos) {
|
|
if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
|
|
return 0; // Never add these nodes.
|
|
|
|
// Check that remaining values produced are not flags.
|
|
for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
|
|
if (N->getValueType(i) == MVT::Flag)
|
|
return 0; // Never CSE anything that produces a flag.
|
|
|
|
SDOperand Ops[] = { Op1, Op2 };
|
|
FoldingSetNodeID ID;
|
|
AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
|
|
return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
|
|
}
|
|
|
|
|
|
/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
|
|
/// were replaced with those specified. If this node is never memoized,
|
|
/// return null, otherwise return a pointer to the slot it would take. If a
|
|
/// node already exists with these operands, the slot will be non-null.
|
|
SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
|
|
const SDOperand *Ops,unsigned NumOps,
|
|
void *&InsertPos) {
|
|
if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
|
|
return 0; // Never add these nodes.
|
|
|
|
// Check that remaining values produced are not flags.
|
|
for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
|
|
if (N->getValueType(i) == MVT::Flag)
|
|
return 0; // Never CSE anything that produces a flag.
|
|
|
|
FoldingSetNodeID ID;
|
|
AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
|
|
|
|
if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
|
|
ID.AddInteger(LD->getAddressingMode());
|
|
ID.AddInteger(LD->getExtensionType());
|
|
ID.AddInteger(LD->getLoadedVT());
|
|
ID.AddPointer(LD->getSrcValue());
|
|
ID.AddInteger(LD->getSrcValueOffset());
|
|
ID.AddInteger(LD->getAlignment());
|
|
ID.AddInteger(LD->isVolatile());
|
|
} else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
|
|
ID.AddInteger(ST->getAddressingMode());
|
|
ID.AddInteger(ST->isTruncatingStore());
|
|
ID.AddInteger(ST->getStoredVT());
|
|
ID.AddPointer(ST->getSrcValue());
|
|
ID.AddInteger(ST->getSrcValueOffset());
|
|
ID.AddInteger(ST->getAlignment());
|
|
ID.AddInteger(ST->isVolatile());
|
|
}
|
|
|
|
return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
|
|
}
|
|
|
|
|
|
SelectionDAG::~SelectionDAG() {
|
|
while (!AllNodes.empty()) {
|
|
SDNode *N = AllNodes.begin();
|
|
N->SetNextInBucket(0);
|
|
if (N->OperandsNeedDelete)
|
|
delete [] N->OperandList;
|
|
N->OperandList = 0;
|
|
N->NumOperands = 0;
|
|
AllNodes.pop_front();
|
|
}
|
|
}
|
|
|
|
SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
|
|
if (Op.getValueType() == VT) return Op;
|
|
int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
|
|
return getNode(ISD::AND, Op.getValueType(), Op,
|
|
getConstant(Imm, Op.getValueType()));
|
|
}
|
|
|
|
SDOperand SelectionDAG::getString(const std::string &Val) {
|
|
StringSDNode *&N = StringNodes[Val];
|
|
if (!N) {
|
|
N = new StringSDNode(Val);
|
|
AllNodes.push_back(N);
|
|
}
|
|
return SDOperand(N, 0);
|
|
}
|
|
|
|
SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) {
|
|
assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
|
|
assert(!MVT::isVector(VT) && "Cannot create Vector ConstantSDNodes!");
|
|
|
|
// Mask out any bits that are not valid for this constant.
|
|
Val &= MVT::getIntVTBitMask(VT);
|
|
|
|
unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
|
|
FoldingSetNodeID ID;
|
|
AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
|
|
ID.AddInteger(Val);
|
|
void *IP = 0;
|
|
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
|
|
return SDOperand(E, 0);
|
|
SDNode *N = new ConstantSDNode(isT, Val, VT);
|
|
CSEMap.InsertNode(N, IP);
|
|
AllNodes.push_back(N);
|
|
return SDOperand(N, 0);
|
|
}
|
|
|
|
SDOperand SelectionDAG::getConstantFP(const APFloat& V, MVT::ValueType VT,
|
|
bool isTarget) {
|
|
assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
|
|
|
|
MVT::ValueType EltVT =
|
|
MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
|
|
bool isDouble = (EltVT == MVT::f64);
|
|
double Val = isDouble ? V.convertToDouble() : (double)V.convertToFloat();
|
|
|
|
// Do the map lookup using the actual bit pattern for the floating point
|
|
// value, so that we don't have problems with 0.0 comparing equal to -0.0, and
|
|
// we don't have issues with SNANs.
|
|
unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
|
|
// ?? Should we store float/double/longdouble separately in ID?
|
|
FoldingSetNodeID ID;
|
|
AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
|
|
ID.AddDouble(Val);
|
|
void *IP = 0;
|
|
SDNode *N = NULL;
|
|
if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
|
|
if (!MVT::isVector(VT))
|
|
return SDOperand(N, 0);
|
|
if (!N) {
|
|
N = new ConstantFPSDNode(isTarget,
|
|
isDouble ? APFloat(Val) : APFloat((float)Val), EltVT);
|
|
CSEMap.InsertNode(N, IP);
|
|
AllNodes.push_back(N);
|
|
}
|
|
|
|
SDOperand Result(N, 0);
|
|
if (MVT::isVector(VT)) {
|
|
SmallVector<SDOperand, 8> Ops;
|
|
Ops.assign(MVT::getVectorNumElements(VT), Result);
|
|
Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT,
|
|
bool isTarget) {
|
|
MVT::ValueType EltVT =
|
|
MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
|
|
if (EltVT==MVT::f32)
|
|
return getConstantFP(APFloat((float)Val), VT, isTarget);
|
|
else
|
|
return getConstantFP(APFloat(Val), VT, isTarget);
|
|
}
|
|
|
|
SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
|
|
MVT::ValueType VT, int Offset,
|
|
bool isTargetGA) {
|
|
const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
|
|
unsigned Opc;
|
|
if (GVar && GVar->isThreadLocal())
|
|
Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
|
|
else
|
|
Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
|
|
FoldingSetNodeID ID;
|
|
AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
|
|
ID.AddPointer(GV);
|
|
ID.AddInteger(Offset);
|
|
void *IP = 0;
|
|
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
|
|
return SDOperand(E, 0);
|
|
SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
|
|
CSEMap.InsertNode(N, IP);
|
|
AllNodes.push_back(N);
|
|
return SDOperand(N, 0);
|
|
}
|
|
|
|
SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT,
|
|
bool isTarget) {
|
|
unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
|
|
FoldingSetNodeID ID;
|
|
AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
|
|
ID.AddInteger(FI);
|
|
void *IP = 0;
|
|
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
|
|
return SDOperand(E, 0);
|
|
SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
|
|
CSEMap.InsertNode(N, IP);
|
|
AllNodes.push_back(N);
|
|
return SDOperand(N, 0);
|
|
}
|
|
|
|
SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){
|
|
unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
|
|
FoldingSetNodeID ID;
|
|
AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
|
|
ID.AddInteger(JTI);
|
|
void *IP = 0;
|
|
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
|
|
return SDOperand(E, 0);
|
|
SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
|
|
CSEMap.InsertNode(N, IP);
|
|
AllNodes.push_back(N);
|
|
return SDOperand(N, 0);
|
|
}
|
|
|
|
SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
|
|
unsigned Alignment, int Offset,
|
|
bool isTarget) {
|
|
unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
|
|
FoldingSetNodeID ID;
|
|
AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
|
|
ID.AddInteger(Alignment);
|
|
ID.AddInteger(Offset);
|
|
ID.AddPointer(C);
|
|
void *IP = 0;
|
|
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
|
|
return SDOperand(E, 0);
|
|
SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
|
|
CSEMap.InsertNode(N, IP);
|
|
AllNodes.push_back(N);
|
|
return SDOperand(N, 0);
|
|
}
|
|
|
|
|
|
SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C,
|
|
MVT::ValueType VT,
|
|
unsigned Alignment, int Offset,
|
|
bool isTarget) {
|
|
unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
|
|
FoldingSetNodeID ID;
|
|
AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
|
|
ID.AddInteger(Alignment);
|
|
ID.AddInteger(Offset);
|
|
C->AddSelectionDAGCSEId(ID);
|
|
void *IP = 0;
|
|
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
|
|
return SDOperand(E, 0);
|
|
SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
|
|
CSEMap.InsertNode(N, IP);
|
|
AllNodes.push_back(N);
|
|
return SDOperand(N, 0);
|
|
}
|
|
|
|
|
|
SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
|
|
FoldingSetNodeID ID;
|
|
AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
|
|
ID.AddPointer(MBB);
|
|
void *IP = 0;
|
|
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
|
|
return SDOperand(E, 0);
|
|
SDNode *N = new BasicBlockSDNode(MBB);
|
|
CSEMap.InsertNode(N, IP);
|
|
AllNodes.push_back(N);
|
|
return SDOperand(N, 0);
|
|
}
|
|
|
|
SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
|
|
if ((unsigned)VT >= ValueTypeNodes.size())
|
|
ValueTypeNodes.resize(VT+1);
|
|
if (ValueTypeNodes[VT] == 0) {
|
|
ValueTypeNodes[VT] = new VTSDNode(VT);
|
|
AllNodes.push_back(ValueTypeNodes[VT]);
|
|
}
|
|
|
|
return SDOperand(ValueTypeNodes[VT], 0);
|
|
}
|
|
|
|
SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
|
|
SDNode *&N = ExternalSymbols[Sym];
|
|
if (N) return SDOperand(N, 0);
|
|
N = new ExternalSymbolSDNode(false, Sym, VT);
|
|
AllNodes.push_back(N);
|
|
return SDOperand(N, 0);
|
|
}
|
|
|
|
SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
|
|
MVT::ValueType VT) {
|
|
SDNode *&N = TargetExternalSymbols[Sym];
|
|
if (N) return SDOperand(N, 0);
|
|
N = new ExternalSymbolSDNode(true, Sym, VT);
|
|
AllNodes.push_back(N);
|
|
return SDOperand(N, 0);
|
|
}
|
|
|
|
SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
|
|
if ((unsigned)Cond >= CondCodeNodes.size())
|
|
CondCodeNodes.resize(Cond+1);
|
|
|
|
if (CondCodeNodes[Cond] == 0) {
|
|
CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
|
|
AllNodes.push_back(CondCodeNodes[Cond]);
|
|
}
|
|
return SDOperand(CondCodeNodes[Cond], 0);
|
|
}
|
|
|
|
SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
|
|
FoldingSetNodeID ID;
|
|
AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
|
|
ID.AddInteger(RegNo);
|
|
void *IP = 0;
|
|
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
|
|
return SDOperand(E, 0);
|
|
SDNode *N = new RegisterSDNode(RegNo, VT);
|
|
CSEMap.InsertNode(N, IP);
|
|
AllNodes.push_back(N);
|
|
return SDOperand(N, 0);
|
|
}
|
|
|
|
SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
|
|
assert((!V || isa<PointerType>(V->getType())) &&
|
|
"SrcValue is not a pointer?");
|
|
|
|
FoldingSetNodeID ID;
|
|
AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
|
|
ID.AddPointer(V);
|
|
ID.AddInteger(Offset);
|
|
void *IP = 0;
|
|
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
|
|
return SDOperand(E, 0);
|
|
SDNode *N = new SrcValueSDNode(V, Offset);
|
|
CSEMap.InsertNode(N, IP);
|
|
AllNodes.push_back(N);
|
|
return SDOperand(N, 0);
|
|
}
|
|
|
|
SDOperand SelectionDAG::FoldSetCC(MVT::ValueType VT, SDOperand N1,
|
|
SDOperand N2, ISD::CondCode Cond) {
|
|
// These setcc operations always fold.
|
|
switch (Cond) {
|
|
default: break;
|
|
case ISD::SETFALSE:
|
|
case ISD::SETFALSE2: return getConstant(0, VT);
|
|
case ISD::SETTRUE:
|
|
case ISD::SETTRUE2: return getConstant(1, VT);
|
|
|
|
case ISD::SETOEQ:
|
|
case ISD::SETOGT:
|
|
case ISD::SETOGE:
|
|
case ISD::SETOLT:
|
|
case ISD::SETOLE:
|
|
case ISD::SETONE:
|
|
case ISD::SETO:
|
|
case ISD::SETUO:
|
|
case ISD::SETUEQ:
|
|
case ISD::SETUNE:
|
|
assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
|
|
break;
|
|
}
|
|
|
|
if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
|
|
uint64_t C2 = N2C->getValue();
|
|
if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
|
|
uint64_t C1 = N1C->getValue();
|
|
|
|
// Sign extend the operands if required
|
|
if (ISD::isSignedIntSetCC(Cond)) {
|
|
C1 = N1C->getSignExtended();
|
|
C2 = N2C->getSignExtended();
|
|
}
|
|
|
|
switch (Cond) {
|
|
default: assert(0 && "Unknown integer setcc!");
|
|
case ISD::SETEQ: return getConstant(C1 == C2, VT);
|
|
case ISD::SETNE: return getConstant(C1 != C2, VT);
|
|
case ISD::SETULT: return getConstant(C1 < C2, VT);
|
|
case ISD::SETUGT: return getConstant(C1 > C2, VT);
|
|
case ISD::SETULE: return getConstant(C1 <= C2, VT);
|
|
case ISD::SETUGE: return getConstant(C1 >= C2, VT);
|
|
case ISD::SETLT: return getConstant((int64_t)C1 < (int64_t)C2, VT);
|
|
case ISD::SETGT: return getConstant((int64_t)C1 > (int64_t)C2, VT);
|
|
case ISD::SETLE: return getConstant((int64_t)C1 <= (int64_t)C2, VT);
|
|
case ISD::SETGE: return getConstant((int64_t)C1 >= (int64_t)C2, VT);
|
|
}
|
|
}
|
|
}
|
|
if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
|
|
if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
|
|
|
|
APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
|
|
switch (Cond) {
|
|
default: break;
|
|
case ISD::SETEQ: if (R==APFloat::cmpUnordered)
|
|
return getNode(ISD::UNDEF, VT);
|
|
// fall through
|
|
case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
|
|
case ISD::SETNE: if (R==APFloat::cmpUnordered)
|
|
return getNode(ISD::UNDEF, VT);
|
|
// fall through
|
|
case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
|
|
R==APFloat::cmpLessThan, VT);
|
|
case ISD::SETLT: if (R==APFloat::cmpUnordered)
|
|
return getNode(ISD::UNDEF, VT);
|
|
// fall through
|
|
case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
|
|
case ISD::SETGT: if (R==APFloat::cmpUnordered)
|
|
return getNode(ISD::UNDEF, VT);
|
|
// fall through
|
|
case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
|
|
case ISD::SETLE: if (R==APFloat::cmpUnordered)
|
|
return getNode(ISD::UNDEF, VT);
|
|
// fall through
|
|
case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
|
|
R==APFloat::cmpEqual, VT);
|
|
case ISD::SETGE: if (R==APFloat::cmpUnordered)
|
|
return getNode(ISD::UNDEF, VT);
|
|
// fall through
|
|
case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
|
|
R==APFloat::cmpEqual, VT);
|
|
case ISD::SETO: return getConstant(R!=APFloat::cmpUnordered, VT);
|
|
case ISD::SETUO: return getConstant(R==APFloat::cmpUnordered, VT);
|
|
case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
|
|
R==APFloat::cmpEqual, VT);
|
|
case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
|
|
case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
|
|
R==APFloat::cmpLessThan, VT);
|
|
case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
|
|
R==APFloat::cmpUnordered, VT);
|
|
case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
|
|
case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
|
|
}
|
|
} else {
|
|
// Ensure that the constant occurs on the RHS.
|
|
return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
|
|
}
|
|
|
|
// Could not fold it.
|
|
return SDOperand();
|
|
}
|
|
|
|
/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
|
|
/// this predicate to simplify operations downstream. Mask is known to be zero
|
|
/// for bits that V cannot have.
|
|
bool SelectionDAG::MaskedValueIsZero(SDOperand Op, uint64_t Mask,
|
|
unsigned Depth) const {
|
|
// The masks are not wide enough to represent this type! Should use APInt.
|
|
if (Op.getValueType() == MVT::i128)
|
|
return false;
|
|
|
|
uint64_t KnownZero, KnownOne;
|
|
ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
|
|
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
|
return (KnownZero & Mask) == Mask;
|
|
}
|
|
|
|
/// ComputeMaskedBits - Determine which of the bits specified in Mask are
|
|
/// known to be either zero or one and return them in the KnownZero/KnownOne
|
|
/// bitsets. This code only analyzes bits in Mask, in order to short-circuit
|
|
/// processing.
|
|
void SelectionDAG::ComputeMaskedBits(SDOperand Op, uint64_t Mask,
|
|
uint64_t &KnownZero, uint64_t &KnownOne,
|
|
unsigned Depth) const {
|
|
KnownZero = KnownOne = 0; // Don't know anything.
|
|
if (Depth == 6 || Mask == 0)
|
|
return; // Limit search depth.
|
|
|
|
// The masks are not wide enough to represent this type! Should use APInt.
|
|
if (Op.getValueType() == MVT::i128)
|
|
return;
|
|
|
|
uint64_t KnownZero2, KnownOne2;
|
|
|
|
switch (Op.getOpcode()) {
|
|
case ISD::Constant:
|
|
// We know all of the bits for a constant!
|
|
KnownOne = cast<ConstantSDNode>(Op)->getValue() & Mask;
|
|
KnownZero = ~KnownOne & Mask;
|
|
return;
|
|
case ISD::AND:
|
|
// If either the LHS or the RHS are Zero, the result is zero.
|
|
ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
|
|
Mask &= ~KnownZero;
|
|
ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
|
|
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
|
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
|
|
|
|
// Output known-1 bits are only known if set in both the LHS & RHS.
|
|
KnownOne &= KnownOne2;
|
|
// Output known-0 are known to be clear if zero in either the LHS | RHS.
|
|
KnownZero |= KnownZero2;
|
|
return;
|
|
case ISD::OR:
|
|
ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
|
|
Mask &= ~KnownOne;
|
|
ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
|
|
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
|
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
|
|
|
|
// Output known-0 bits are only known if clear in both the LHS & RHS.
|
|
KnownZero &= KnownZero2;
|
|
// Output known-1 are known to be set if set in either the LHS | RHS.
|
|
KnownOne |= KnownOne2;
|
|
return;
|
|
case ISD::XOR: {
|
|
ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
|
|
ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
|
|
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
|
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
|
|
|
|
// Output known-0 bits are known if clear or set in both the LHS & RHS.
|
|
uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
|
|
// Output known-1 are known to be set if set in only one of the LHS, RHS.
|
|
KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
|
|
KnownZero = KnownZeroOut;
|
|
return;
|
|
}
|
|
case ISD::SELECT:
|
|
ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
|
|
ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
|
|
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
|
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
|
|
|
|
// Only known if known in both the LHS and RHS.
|
|
KnownOne &= KnownOne2;
|
|
KnownZero &= KnownZero2;
|
|
return;
|
|
case ISD::SELECT_CC:
|
|
ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
|
|
ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
|
|
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
|
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
|
|
|
|
// Only known if known in both the LHS and RHS.
|
|
KnownOne &= KnownOne2;
|
|
KnownZero &= KnownZero2;
|
|
return;
|
|
case ISD::SETCC:
|
|
// If we know the result of a setcc has the top bits zero, use this info.
|
|
if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
|
|
KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
|
|
return;
|
|
case ISD::SHL:
|
|
// (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
|
|
if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
|
|
ComputeMaskedBits(Op.getOperand(0), Mask >> SA->getValue(),
|
|
KnownZero, KnownOne, Depth+1);
|
|
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
|
KnownZero <<= SA->getValue();
|
|
KnownOne <<= SA->getValue();
|
|
KnownZero |= (1ULL << SA->getValue())-1; // low bits known zero.
|
|
}
|
|
return;
|
|
case ISD::SRL:
|
|
// (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
|
|
if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
|
|
MVT::ValueType VT = Op.getValueType();
|
|
unsigned ShAmt = SA->getValue();
|
|
|
|
uint64_t TypeMask = MVT::getIntVTBitMask(VT);
|
|
ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt) & TypeMask,
|
|
KnownZero, KnownOne, Depth+1);
|
|
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
|
KnownZero &= TypeMask;
|
|
KnownOne &= TypeMask;
|
|
KnownZero >>= ShAmt;
|
|
KnownOne >>= ShAmt;
|
|
|
|
uint64_t HighBits = (1ULL << ShAmt)-1;
|
|
HighBits <<= MVT::getSizeInBits(VT)-ShAmt;
|
|
KnownZero |= HighBits; // High bits known zero.
|
|
}
|
|
return;
|
|
case ISD::SRA:
|
|
if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
|
|
MVT::ValueType VT = Op.getValueType();
|
|
unsigned ShAmt = SA->getValue();
|
|
|
|
// Compute the new bits that are at the top now.
|
|
uint64_t TypeMask = MVT::getIntVTBitMask(VT);
|
|
|
|
uint64_t InDemandedMask = (Mask << ShAmt) & TypeMask;
|
|
// If any of the demanded bits are produced by the sign extension, we also
|
|
// demand the input sign bit.
|
|
uint64_t HighBits = (1ULL << ShAmt)-1;
|
|
HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
|
|
if (HighBits & Mask)
|
|
InDemandedMask |= MVT::getIntVTSignBit(VT);
|
|
|
|
ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
|
|
Depth+1);
|
|
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
|
KnownZero &= TypeMask;
|
|
KnownOne &= TypeMask;
|
|
KnownZero >>= ShAmt;
|
|
KnownOne >>= ShAmt;
|
|
|
|
// Handle the sign bits.
|
|
uint64_t SignBit = MVT::getIntVTSignBit(VT);
|
|
SignBit >>= ShAmt; // Adjust to where it is now in the mask.
|
|
|
|
if (KnownZero & SignBit) {
|
|
KnownZero |= HighBits; // New bits are known zero.
|
|
} else if (KnownOne & SignBit) {
|
|
KnownOne |= HighBits; // New bits are known one.
|
|
}
|
|
}
|
|
return;
|
|
case ISD::SIGN_EXTEND_INREG: {
|
|
MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
|
|
|
|
// Sign extension. Compute the demanded bits in the result that are not
|
|
// present in the input.
|
|
uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & Mask;
|
|
|
|
uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
|
|
int64_t InputDemandedBits = Mask & MVT::getIntVTBitMask(EVT);
|
|
|
|
// If the sign extended bits are demanded, we know that the sign
|
|
// bit is demanded.
|
|
if (NewBits)
|
|
InputDemandedBits |= InSignBit;
|
|
|
|
ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
|
|
KnownZero, KnownOne, Depth+1);
|
|
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
|
|
|
// If the sign bit of the input is known set or clear, then we know the
|
|
// top bits of the result.
|
|
if (KnownZero & InSignBit) { // Input sign bit known clear
|
|
KnownZero |= NewBits;
|
|
KnownOne &= ~NewBits;
|
|
} else if (KnownOne & InSignBit) { // Input sign bit known set
|
|
KnownOne |= NewBits;
|
|
KnownZero &= ~NewBits;
|
|
} else { // Input sign bit unknown
|
|
KnownZero &= ~NewBits;
|
|
KnownOne &= ~NewBits;
|
|
}
|
|
return;
|
|
}
|
|
case ISD::CTTZ:
|
|
case ISD::CTLZ:
|
|
case ISD::CTPOP: {
|
|
MVT::ValueType VT = Op.getValueType();
|
|
unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
|
|
KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
|
|
KnownOne = 0;
|
|
return;
|
|
}
|
|
case ISD::LOAD: {
|
|
if (ISD::isZEXTLoad(Op.Val)) {
|
|
LoadSDNode *LD = cast<LoadSDNode>(Op);
|
|
MVT::ValueType VT = LD->getLoadedVT();
|
|
KnownZero |= ~MVT::getIntVTBitMask(VT) & Mask;
|
|
}
|
|
return;
|
|
}
|
|
case ISD::ZERO_EXTEND: {
|
|
uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
|
|
uint64_t NewBits = (~InMask) & Mask;
|
|
ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
|
|
KnownOne, Depth+1);
|
|
KnownZero |= NewBits & Mask;
|
|
KnownOne &= ~NewBits;
|
|
return;
|
|
}
|
|
case ISD::SIGN_EXTEND: {
|
|
MVT::ValueType InVT = Op.getOperand(0).getValueType();
|
|
unsigned InBits = MVT::getSizeInBits(InVT);
|
|
uint64_t InMask = MVT::getIntVTBitMask(InVT);
|
|
uint64_t InSignBit = 1ULL << (InBits-1);
|
|
uint64_t NewBits = (~InMask) & Mask;
|
|
uint64_t InDemandedBits = Mask & InMask;
|
|
|
|
// If any of the sign extended bits are demanded, we know that the sign
|
|
// bit is demanded.
|
|
if (NewBits & Mask)
|
|
InDemandedBits |= InSignBit;
|
|
|
|
ComputeMaskedBits(Op.getOperand(0), InDemandedBits, KnownZero,
|
|
KnownOne, Depth+1);
|
|
// If the sign bit is known zero or one, the top bits match.
|
|
if (KnownZero & InSignBit) {
|
|
KnownZero |= NewBits;
|
|
KnownOne &= ~NewBits;
|
|
} else if (KnownOne & InSignBit) {
|
|
KnownOne |= NewBits;
|
|
KnownZero &= ~NewBits;
|
|
} else { // Otherwise, top bits aren't known.
|
|
KnownOne &= ~NewBits;
|
|
KnownZero &= ~NewBits;
|
|
}
|
|
return;
|
|
}
|
|
case ISD::ANY_EXTEND: {
|
|
MVT::ValueType VT = Op.getOperand(0).getValueType();
|
|
ComputeMaskedBits(Op.getOperand(0), Mask & MVT::getIntVTBitMask(VT),
|
|
KnownZero, KnownOne, Depth+1);
|
|
return;
|
|
}
|
|
case ISD::TRUNCATE: {
|
|
ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
|
|
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
|
uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType());
|
|
KnownZero &= OutMask;
|
|
KnownOne &= OutMask;
|
|
break;
|
|
}
|
|
case ISD::AssertZext: {
|
|
MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
|
|
uint64_t InMask = MVT::getIntVTBitMask(VT);
|
|
ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
|
|
KnownOne, Depth+1);
|
|
KnownZero |= (~InMask) & Mask;
|
|
return;
|
|
}
|
|
case ISD::ADD: {
|
|
// If either the LHS or the RHS are Zero, the result is zero.
|
|
ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
|
|
ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
|
|
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
|
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
|
|
|
|
// Output known-0 bits are known if clear or set in both the low clear bits
|
|
// common to both LHS & RHS. For example, 8+(X<<3) is known to have the
|
|
// low 3 bits clear.
|
|
uint64_t KnownZeroOut = std::min(CountTrailingZeros_64(~KnownZero),
|
|
CountTrailingZeros_64(~KnownZero2));
|
|
|
|
KnownZero = (1ULL << KnownZeroOut) - 1;
|
|
KnownOne = 0;
|
|
return;
|
|
}
|
|
case ISD::SUB: {
|
|
ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0));
|
|
if (!CLHS) return;
|
|
|
|
// We know that the top bits of C-X are clear if X contains less bits
|
|
// than C (i.e. no wrap-around can happen). For example, 20-X is
|
|
// positive if we can prove that X is >= 0 and < 16.
|
|
MVT::ValueType VT = CLHS->getValueType(0);
|
|
if ((CLHS->getValue() & MVT::getIntVTSignBit(VT)) == 0) { // sign bit clear
|
|
unsigned NLZ = CountLeadingZeros_64(CLHS->getValue()+1);
|
|
uint64_t MaskV = (1ULL << (63-NLZ))-1; // NLZ can't be 64 with no sign bit
|
|
MaskV = ~MaskV & MVT::getIntVTBitMask(VT);
|
|
ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1);
|
|
|
|
// If all of the MaskV bits are known to be zero, then we know the output
|
|
// top bits are zero, because we now know that the output is from [0-C].
|
|
if ((KnownZero & MaskV) == MaskV) {
|
|
unsigned NLZ2 = CountLeadingZeros_64(CLHS->getValue());
|
|
KnownZero = ~((1ULL << (64-NLZ2))-1) & Mask; // Top bits known zero.
|
|
KnownOne = 0; // No one bits known.
|
|
} else {
|
|
KnownZero = KnownOne = 0; // Otherwise, nothing known.
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
default:
|
|
// Allow the target to implement this method for its nodes.
|
|
if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
|
|
case ISD::INTRINSIC_WO_CHAIN:
|
|
case ISD::INTRINSIC_W_CHAIN:
|
|
case ISD::INTRINSIC_VOID:
|
|
TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
/// ComputeNumSignBits - Return the number of times the sign bit of the
|
|
/// register is replicated into the other bits. We know that at least 1 bit
|
|
/// is always equal to the sign bit (itself), but other cases can give us
|
|
/// information. For example, immediately after an "SRA X, 2", we know that
|
|
/// the top 3 bits are all equal to each other, so we return 3.
|
|
unsigned SelectionDAG::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
|
|
MVT::ValueType VT = Op.getValueType();
|
|
assert(MVT::isInteger(VT) && "Invalid VT!");
|
|
unsigned VTBits = MVT::getSizeInBits(VT);
|
|
unsigned Tmp, Tmp2;
|
|
|
|
if (Depth == 6)
|
|
return 1; // Limit search depth.
|
|
|
|
switch (Op.getOpcode()) {
|
|
default: break;
|
|
case ISD::AssertSext:
|
|
Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
|
|
return VTBits-Tmp+1;
|
|
case ISD::AssertZext:
|
|
Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
|
|
return VTBits-Tmp;
|
|
|
|
case ISD::Constant: {
|
|
uint64_t Val = cast<ConstantSDNode>(Op)->getValue();
|
|
// If negative, invert the bits, then look at it.
|
|
if (Val & MVT::getIntVTSignBit(VT))
|
|
Val = ~Val;
|
|
|
|
// Shift the bits so they are the leading bits in the int64_t.
|
|
Val <<= 64-VTBits;
|
|
|
|
// Return # leading zeros. We use 'min' here in case Val was zero before
|
|
// shifting. We don't want to return '64' as for an i32 "0".
|
|
return std::min(VTBits, CountLeadingZeros_64(Val));
|
|
}
|
|
|
|
case ISD::SIGN_EXTEND:
|
|
Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType());
|
|
return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
|
|
|
|
case ISD::SIGN_EXTEND_INREG:
|
|
// Max of the input and what this extends.
|
|
Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
|
|
Tmp = VTBits-Tmp+1;
|
|
|
|
Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
|
|
return std::max(Tmp, Tmp2);
|
|
|
|
case ISD::SRA:
|
|
Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
|
|
// SRA X, C -> adds C sign bits.
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
|
|
Tmp += C->getValue();
|
|
if (Tmp > VTBits) Tmp = VTBits;
|
|
}
|
|
return Tmp;
|
|
case ISD::SHL:
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
|
|
// shl destroys sign bits.
|
|
Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
|
|
if (C->getValue() >= VTBits || // Bad shift.
|
|
C->getValue() >= Tmp) break; // Shifted all sign bits out.
|
|
return Tmp - C->getValue();
|
|
}
|
|
break;
|
|
case ISD::AND:
|
|
case ISD::OR:
|
|
case ISD::XOR: // NOT is handled here.
|
|
// Logical binary ops preserve the number of sign bits.
|
|
Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
|
|
if (Tmp == 1) return 1; // Early out.
|
|
Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
|
|
return std::min(Tmp, Tmp2);
|
|
|
|
case ISD::SELECT:
|
|
Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
|
|
if (Tmp == 1) return 1; // Early out.
|
|
Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
|
|
return std::min(Tmp, Tmp2);
|
|
|
|
case ISD::SETCC:
|
|
// If setcc returns 0/-1, all bits are sign bits.
|
|
if (TLI.getSetCCResultContents() ==
|
|
TargetLowering::ZeroOrNegativeOneSetCCResult)
|
|
return VTBits;
|
|
break;
|
|
case ISD::ROTL:
|
|
case ISD::ROTR:
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
|
|
unsigned RotAmt = C->getValue() & (VTBits-1);
|
|
|
|
// Handle rotate right by N like a rotate left by 32-N.
|
|
if (Op.getOpcode() == ISD::ROTR)
|
|
RotAmt = (VTBits-RotAmt) & (VTBits-1);
|
|
|
|
// If we aren't rotating out all of the known-in sign bits, return the
|
|
// number that are left. This handles rotl(sext(x), 1) for example.
|
|
Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
|
|
if (Tmp > RotAmt+1) return Tmp-RotAmt;
|
|
}
|
|
break;
|
|
case ISD::ADD:
|
|
// Add can have at most one carry bit. Thus we know that the output
|
|
// is, at worst, one more bit than the inputs.
|
|
Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
|
|
if (Tmp == 1) return 1; // Early out.
|
|
|
|
// Special case decrementing a value (ADD X, -1):
|
|
if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
|
|
if (CRHS->isAllOnesValue()) {
|
|
uint64_t KnownZero, KnownOne;
|
|
uint64_t Mask = MVT::getIntVTBitMask(VT);
|
|
ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
|
|
|
|
// If the input is known to be 0 or 1, the output is 0/-1, which is all
|
|
// sign bits set.
|
|
if ((KnownZero|1) == Mask)
|
|
return VTBits;
|
|
|
|
// If we are subtracting one from a positive number, there is no carry
|
|
// out of the result.
|
|
if (KnownZero & MVT::getIntVTSignBit(VT))
|
|
return Tmp;
|
|
}
|
|
|
|
Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
|
|
if (Tmp2 == 1) return 1;
|
|
return std::min(Tmp, Tmp2)-1;
|
|
break;
|
|
|
|
case ISD::SUB:
|
|
Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
|
|
if (Tmp2 == 1) return 1;
|
|
|
|
// Handle NEG.
|
|
if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
|
|
if (CLHS->getValue() == 0) {
|
|
uint64_t KnownZero, KnownOne;
|
|
uint64_t Mask = MVT::getIntVTBitMask(VT);
|
|
ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
|
|
// If the input is known to be 0 or 1, the output is 0/-1, which is all
|
|
// sign bits set.
|
|
if ((KnownZero|1) == Mask)
|
|
return VTBits;
|
|
|
|
// If the input is known to be positive (the sign bit is known clear),
|
|
// the output of the NEG has the same number of sign bits as the input.
|
|
if (KnownZero & MVT::getIntVTSignBit(VT))
|
|
return Tmp2;
|
|
|
|
// Otherwise, we treat this like a SUB.
|
|
}
|
|
|
|
// Sub can have at most one carry bit. Thus we know that the output
|
|
// is, at worst, one more bit than the inputs.
|
|
Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
|
|
if (Tmp == 1) return 1; // Early out.
|
|
return std::min(Tmp, Tmp2)-1;
|
|
break;
|
|
case ISD::TRUNCATE:
|
|
// FIXME: it's tricky to do anything useful for this, but it is an important
|
|
// case for targets like X86.
|
|
break;
|
|
}
|
|
|
|
// Handle LOADX separately here. EXTLOAD case will fallthrough.
|
|
if (Op.getOpcode() == ISD::LOAD) {
|
|
LoadSDNode *LD = cast<LoadSDNode>(Op);
|
|
unsigned ExtType = LD->getExtensionType();
|
|
switch (ExtType) {
|
|
default: break;
|
|
case ISD::SEXTLOAD: // '17' bits known
|
|
Tmp = MVT::getSizeInBits(LD->getLoadedVT());
|
|
return VTBits-Tmp+1;
|
|
case ISD::ZEXTLOAD: // '16' bits known
|
|
Tmp = MVT::getSizeInBits(LD->getLoadedVT());
|
|
return VTBits-Tmp;
|
|
}
|
|
}
|
|
|
|
// Allow the target to implement this method for its nodes.
|
|
if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
|
|
Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
|
|
Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
|
|
Op.getOpcode() == ISD::INTRINSIC_VOID) {
|
|
unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
|
|
if (NumBits > 1) return NumBits;
|
|
}
|
|
|
|
// Finally, if we can prove that the top bits of the result are 0's or 1's,
|
|
// use this information.
|
|
uint64_t KnownZero, KnownOne;
|
|
uint64_t Mask = MVT::getIntVTBitMask(VT);
|
|
ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
|
|
|
|
uint64_t SignBit = MVT::getIntVTSignBit(VT);
|
|
if (KnownZero & SignBit) { // SignBit is 0
|
|
Mask = KnownZero;
|
|
} else if (KnownOne & SignBit) { // SignBit is 1;
|
|
Mask = KnownOne;
|
|
} else {
|
|
// Nothing known.
|
|
return 1;
|
|
}
|
|
|
|
// Okay, we know that the sign bit in Mask is set. Use CLZ to determine
|
|
// the number of identical bits in the top of the input value.
|
|
Mask ^= ~0ULL;
|
|
Mask <<= 64-VTBits;
|
|
// Return # leading zeros. We use 'min' here in case Val was zero before
|
|
// shifting. We don't want to return '64' as for an i32 "0".
|
|
return std::min(VTBits, CountLeadingZeros_64(Mask));
|
|
}
|
|
|
|
|
|
/// getNode - Gets or creates the specified node.
|
|
///
|
|
SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
|
|
FoldingSetNodeID ID;
|
|
AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
|
|
void *IP = 0;
|
|
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
|
|
return SDOperand(E, 0);
|
|
SDNode *N = new SDNode(Opcode, SDNode::getSDVTList(VT));
|
|
CSEMap.InsertNode(N, IP);
|
|
|
|
AllNodes.push_back(N);
|
|
return SDOperand(N, 0);
|
|
}
|
|
|
|
SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
|
|
SDOperand Operand) {
|
|
unsigned Tmp1;
|
|
// Constant fold unary operations with an integer constant operand.
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
|
|
uint64_t Val = C->getValue();
|
|
switch (Opcode) {
|
|
default: break;
|
|
case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
|
|
case ISD::ANY_EXTEND:
|
|
case ISD::ZERO_EXTEND: return getConstant(Val, VT);
|
|
case ISD::TRUNCATE: return getConstant(Val, VT);
|
|
case ISD::SINT_TO_FP: return getConstantFP(C->getSignExtended(), VT);
|
|
case ISD::UINT_TO_FP: return getConstantFP(C->getValue(), VT);
|
|
case ISD::BIT_CONVERT:
|
|
if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
|
|
return getConstantFP(BitsToFloat(Val), VT);
|
|
else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
|
|
return getConstantFP(BitsToDouble(Val), VT);
|
|
break;
|
|
case ISD::BSWAP:
|
|
switch(VT) {
|
|
default: assert(0 && "Invalid bswap!"); break;
|
|
case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT);
|
|
case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT);
|
|
case MVT::i64: return getConstant(ByteSwap_64(Val), VT);
|
|
}
|
|
break;
|
|
case ISD::CTPOP:
|
|
switch(VT) {
|
|
default: assert(0 && "Invalid ctpop!"); break;
|
|
case MVT::i1: return getConstant(Val != 0, VT);
|
|
case MVT::i8:
|
|
Tmp1 = (unsigned)Val & 0xFF;
|
|
return getConstant(CountPopulation_32(Tmp1), VT);
|
|
case MVT::i16:
|
|
Tmp1 = (unsigned)Val & 0xFFFF;
|
|
return getConstant(CountPopulation_32(Tmp1), VT);
|
|
case MVT::i32:
|
|
return getConstant(CountPopulation_32((unsigned)Val), VT);
|
|
case MVT::i64:
|
|
return getConstant(CountPopulation_64(Val), VT);
|
|
}
|
|
case ISD::CTLZ:
|
|
switch(VT) {
|
|
default: assert(0 && "Invalid ctlz!"); break;
|
|
case MVT::i1: return getConstant(Val == 0, VT);
|
|
case MVT::i8:
|
|
Tmp1 = (unsigned)Val & 0xFF;
|
|
return getConstant(CountLeadingZeros_32(Tmp1)-24, VT);
|
|
case MVT::i16:
|
|
Tmp1 = (unsigned)Val & 0xFFFF;
|
|
return getConstant(CountLeadingZeros_32(Tmp1)-16, VT);
|
|
case MVT::i32:
|
|
return getConstant(CountLeadingZeros_32((unsigned)Val), VT);
|
|
case MVT::i64:
|
|
return getConstant(CountLeadingZeros_64(Val), VT);
|
|
}
|
|
case ISD::CTTZ:
|
|
switch(VT) {
|
|
default: assert(0 && "Invalid cttz!"); break;
|
|
case MVT::i1: return getConstant(Val == 0, VT);
|
|
case MVT::i8:
|
|
Tmp1 = (unsigned)Val | 0x100;
|
|
return getConstant(CountTrailingZeros_32(Tmp1), VT);
|
|
case MVT::i16:
|
|
Tmp1 = (unsigned)Val | 0x10000;
|
|
return getConstant(CountTrailingZeros_32(Tmp1), VT);
|
|
case MVT::i32:
|
|
return getConstant(CountTrailingZeros_32((unsigned)Val), VT);
|
|
case MVT::i64:
|
|
return getConstant(CountTrailingZeros_64(Val), VT);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Constant fold unary operations with a floating point constant operand.
|
|
if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val)) {
|
|
APFloat V = C->getValueAPF(); // make copy
|
|
switch (Opcode) {
|
|
case ISD::FNEG:
|
|
V.changeSign();
|
|
return getConstantFP(V, VT);
|
|
case ISD::FABS:
|
|
V.clearSign();
|
|
return getConstantFP(V, VT);
|
|
case ISD::FP_ROUND:
|
|
case ISD::FP_EXTEND:
|
|
// This can return overflow, underflow, or inexact; we don't care.
|
|
// FIXME need to be more flexible about rounding mode.
|
|
(void) V.convert(VT==MVT::f32 ? APFloat::IEEEsingle :
|
|
APFloat::IEEEdouble,
|
|
APFloat::rmNearestTiesToEven);
|
|
return getConstantFP(V, VT);
|
|
case ISD::FP_TO_SINT:
|
|
case ISD::FP_TO_UINT: {
|
|
integerPart x;
|
|
assert(integerPartWidth >= 64);
|
|
// FIXME need to be more flexible about rounding mode.
|
|
APFloat::opStatus s = V.convertToInteger(&x, 64U,
|
|
Opcode==ISD::FP_TO_SINT,
|
|
APFloat::rmTowardZero);
|
|
if (s==APFloat::opInvalidOp) // inexact is OK, in fact usual
|
|
break;
|
|
return getConstant(x, VT);
|
|
}
|
|
case ISD::BIT_CONVERT:
|
|
if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
|
|
return getConstant(FloatToBits(V.convertToFloat()), VT);
|
|
else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
|
|
return getConstant(DoubleToBits(V.convertToDouble()), VT);
|
|
break;
|
|
}
|
|
}
|
|
|
|
unsigned OpOpcode = Operand.Val->getOpcode();
|
|
switch (Opcode) {
|
|
case ISD::TokenFactor:
|
|
return Operand; // Factor of one node? No factor.
|
|
case ISD::FP_ROUND:
|
|
case ISD::FP_EXTEND:
|
|
assert(MVT::isFloatingPoint(VT) &&
|
|
MVT::isFloatingPoint(Operand.getValueType()) && "Invalid FP cast!");
|
|
break;
|
|
case ISD::SIGN_EXTEND:
|
|
assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
|
|
"Invalid SIGN_EXTEND!");
|
|
if (Operand.getValueType() == VT) return Operand; // noop extension
|
|
assert(Operand.getValueType() < VT && "Invalid sext node, dst < src!");
|
|
if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
|
|
return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
|
|
break;
|
|
case ISD::ZERO_EXTEND:
|
|
assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
|
|
"Invalid ZERO_EXTEND!");
|
|
if (Operand.getValueType() == VT) return Operand; // noop extension
|
|
assert(Operand.getValueType() < VT && "Invalid zext node, dst < src!");
|
|
if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x)
|
|
return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
|
|
break;
|
|
case ISD::ANY_EXTEND:
|
|
assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
|
|
"Invalid ANY_EXTEND!");
|
|
if (Operand.getValueType() == VT) return Operand; // noop extension
|
|
assert(Operand.getValueType() < VT && "Invalid anyext node, dst < src!");
|
|
if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
|
|
// (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x)
|
|
return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
|
|
break;
|
|
case ISD::TRUNCATE:
|
|
assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
|
|
"Invalid TRUNCATE!");
|
|
if (Operand.getValueType() == VT) return Operand; // noop truncate
|
|
assert(Operand.getValueType() > VT && "Invalid truncate node, src < dst!");
|
|
if (OpOpcode == ISD::TRUNCATE)
|
|
return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
|
|
else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
|
|
OpOpcode == ISD::ANY_EXTEND) {
|
|
// If the source is smaller than the dest, we still need an extend.
|
|
if (Operand.Val->getOperand(0).getValueType() < VT)
|
|
return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
|
|
else if (Operand.Val->getOperand(0).getValueType() > VT)
|
|
return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
|
|
else
|
|
return Operand.Val->getOperand(0);
|
|
}
|
|
break;
|
|
case ISD::BIT_CONVERT:
|
|
// Basic sanity checking.
|
|
assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
|
|
&& "Cannot BIT_CONVERT between types of different sizes!");
|
|
if (VT == Operand.getValueType()) return Operand; // noop conversion.
|
|
if (OpOpcode == ISD::BIT_CONVERT) // bitconv(bitconv(x)) -> bitconv(x)
|
|
return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
|
|
if (OpOpcode == ISD::UNDEF)
|
|
return getNode(ISD::UNDEF, VT);
|
|
break;
|
|
case ISD::SCALAR_TO_VECTOR:
|
|
assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
|
|
MVT::getVectorElementType(VT) == Operand.getValueType() &&
|
|
"Illegal SCALAR_TO_VECTOR node!");
|
|
break;
|
|
case ISD::FNEG:
|
|
if (OpOpcode == ISD::FSUB) // -(X-Y) -> (Y-X)
|
|
return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
|
|
Operand.Val->getOperand(0));
|
|
if (OpOpcode == ISD::FNEG) // --X -> X
|
|
return Operand.Val->getOperand(0);
|
|
break;
|
|
case ISD::FABS:
|
|
if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X)
|
|
return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
|
|
break;
|
|
}
|
|
|
|
SDNode *N;
|
|
SDVTList VTs = getVTList(VT);
|
|
if (VT != MVT::Flag) { // Don't CSE flag producing nodes
|
|
FoldingSetNodeID ID;
|
|
SDOperand Ops[1] = { Operand };
|
|
AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
|
|
void *IP = 0;
|
|
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
|
|
return SDOperand(E, 0);
|
|
N = new UnarySDNode(Opcode, VTs, Operand);
|
|
CSEMap.InsertNode(N, IP);
|
|
} else {
|
|
N = new UnarySDNode(Opcode, VTs, Operand);
|
|
}
|
|
AllNodes.push_back(N);
|
|
return SDOperand(N, 0);
|
|
}
|
|
|
|
|
|
|
|
SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
|
|
SDOperand N1, SDOperand N2) {
|
|
#ifndef NDEBUG
|
|
switch (Opcode) {
|
|
case ISD::TokenFactor:
|
|
assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
|
|
N2.getValueType() == MVT::Other && "Invalid token factor!");
|
|
break;
|
|
case ISD::AND:
|
|
case ISD::OR:
|
|
case ISD::XOR:
|
|
case ISD::UDIV:
|
|
case ISD::UREM:
|
|
case ISD::MULHU:
|
|
case ISD::MULHS:
|
|
assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
|
|
// fall through
|
|
case ISD::ADD:
|
|
case ISD::SUB:
|
|
case ISD::MUL:
|
|
case ISD::SDIV:
|
|
case ISD::SREM:
|
|
assert(MVT::isInteger(N1.getValueType()) && "Should use F* for FP ops");
|
|
// fall through.
|
|
case ISD::FADD:
|
|
case ISD::FSUB:
|
|
case ISD::FMUL:
|
|
case ISD::FDIV:
|
|
case ISD::FREM:
|
|
assert(N1.getValueType() == N2.getValueType() &&
|
|
N1.getValueType() == VT && "Binary operator types must match!");
|
|
break;
|
|
case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match.
|
|
assert(N1.getValueType() == VT &&
|
|
MVT::isFloatingPoint(N1.getValueType()) &&
|
|
MVT::isFloatingPoint(N2.getValueType()) &&
|
|
"Invalid FCOPYSIGN!");
|
|
break;
|
|
case ISD::SHL:
|
|
case ISD::SRA:
|
|
case ISD::SRL:
|
|
case ISD::ROTL:
|
|
case ISD::ROTR:
|
|
assert(VT == N1.getValueType() &&
|
|
"Shift operators return type must be the same as their first arg");
|
|
assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
|
|
VT != MVT::i1 && "Shifts only work on integers");
|
|
break;
|
|
case ISD::FP_ROUND_INREG: {
|
|
MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
|
|
assert(VT == N1.getValueType() && "Not an inreg round!");
|
|
assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
|
|
"Cannot FP_ROUND_INREG integer types");
|
|
assert(EVT <= VT && "Not rounding down!");
|
|
break;
|
|
}
|
|
case ISD::AssertSext:
|
|
case ISD::AssertZext:
|
|
case ISD::SIGN_EXTEND_INREG: {
|
|
MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
|
|
assert(VT == N1.getValueType() && "Not an inreg extend!");
|
|
assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
|
|
"Cannot *_EXTEND_INREG FP types");
|
|
assert(EVT <= VT && "Not extending!");
|
|
}
|
|
|
|
default: break;
|
|
}
|
|
#endif
|
|
|
|
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
|
|
ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
|
|
if (N1C) {
|
|
if (Opcode == ISD::SIGN_EXTEND_INREG) {
|
|
int64_t Val = N1C->getValue();
|
|
unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT());
|
|
Val <<= 64-FromBits;
|
|
Val >>= 64-FromBits;
|
|
return getConstant(Val, VT);
|
|
}
|
|
|
|
if (N2C) {
|
|
uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
|
|
switch (Opcode) {
|
|
case ISD::ADD: return getConstant(C1 + C2, VT);
|
|
case ISD::SUB: return getConstant(C1 - C2, VT);
|
|
case ISD::MUL: return getConstant(C1 * C2, VT);
|
|
case ISD::UDIV:
|
|
if (C2) return getConstant(C1 / C2, VT);
|
|
break;
|
|
case ISD::UREM :
|
|
if (C2) return getConstant(C1 % C2, VT);
|
|
break;
|
|
case ISD::SDIV :
|
|
if (C2) return getConstant(N1C->getSignExtended() /
|
|
N2C->getSignExtended(), VT);
|
|
break;
|
|
case ISD::SREM :
|
|
if (C2) return getConstant(N1C->getSignExtended() %
|
|
N2C->getSignExtended(), VT);
|
|
break;
|
|
case ISD::AND : return getConstant(C1 & C2, VT);
|
|
case ISD::OR : return getConstant(C1 | C2, VT);
|
|
case ISD::XOR : return getConstant(C1 ^ C2, VT);
|
|
case ISD::SHL : return getConstant(C1 << C2, VT);
|
|
case ISD::SRL : return getConstant(C1 >> C2, VT);
|
|
case ISD::SRA : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
|
|
case ISD::ROTL :
|
|
return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)),
|
|
VT);
|
|
case ISD::ROTR :
|
|
return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)),
|
|
VT);
|
|
default: break;
|
|
}
|
|
} else { // Cannonicalize constant to RHS if commutative
|
|
if (isCommutativeBinOp(Opcode)) {
|
|
std::swap(N1C, N2C);
|
|
std::swap(N1, N2);
|
|
}
|
|
}
|
|
}
|
|
|
|
ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
|
|
ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
|
|
if (N1CFP) {
|
|
if (N2CFP) {
|
|
APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
|
|
APFloat::opStatus s;
|
|
switch (Opcode) {
|
|
case ISD::FADD:
|
|
s = V1.add(V2, APFloat::rmNearestTiesToEven);
|
|
if (s!=APFloat::opInvalidOp)
|
|
return getConstantFP(V1, VT);
|
|
break;
|
|
case ISD::FSUB:
|
|
s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
|
|
if (s!=APFloat::opInvalidOp)
|
|
return getConstantFP(V1, VT);
|
|
break;
|
|
case ISD::FMUL:
|
|
s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
|
|
if (s!=APFloat::opInvalidOp)
|
|
return getConstantFP(V1, VT);
|
|
break;
|
|
case ISD::FDIV:
|
|
s = V1.divide(V2, APFloat::rmNearestTiesToEven);
|
|
if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
|
|
return getConstantFP(V1, VT);
|
|
break;
|
|
case ISD::FREM :
|
|
s = V1.mod(V2, APFloat::rmNearestTiesToEven);
|
|
if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
|
|
return getConstantFP(V1, VT);
|
|
break;
|
|
case ISD::FCOPYSIGN:
|
|
V1.copySign(V2);
|
|
return getConstantFP(V1, VT);
|
|
default: break;
|
|
}
|
|
} else { // Cannonicalize constant to RHS if commutative
|
|
if (isCommutativeBinOp(Opcode)) {
|
|
std::swap(N1CFP, N2CFP);
|
|
std::swap(N1, N2);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Canonicalize an UNDEF to the RHS, even over a constant.
|
|
if (N1.getOpcode() == ISD::UNDEF) {
|
|
if (isCommutativeBinOp(Opcode)) {
|
|
std::swap(N1, N2);
|
|
} else {
|
|
switch (Opcode) {
|
|
case ISD::FP_ROUND_INREG:
|
|
case ISD::SIGN_EXTEND_INREG:
|
|
case ISD::SUB:
|
|
case ISD::FSUB:
|
|
case ISD::FDIV:
|
|
case ISD::FREM:
|
|
case ISD::SRA:
|
|
return N1; // fold op(undef, arg2) -> undef
|
|
case ISD::UDIV:
|
|
case ISD::SDIV:
|
|
case ISD::UREM:
|
|
case ISD::SREM:
|
|
case ISD::SRL:
|
|
case ISD::SHL:
|
|
if (!MVT::isVector(VT))
|
|
return getConstant(0, VT); // fold op(undef, arg2) -> 0
|
|
// For vectors, we can't easily build an all zero vector, just return
|
|
// the LHS.
|
|
return N2;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Fold a bunch of operators when the RHS is undef.
|
|
if (N2.getOpcode() == ISD::UNDEF) {
|
|
switch (Opcode) {
|
|
case ISD::ADD:
|
|
case ISD::ADDC:
|
|
case ISD::ADDE:
|
|
case ISD::SUB:
|
|
case ISD::FADD:
|
|
case ISD::FSUB:
|
|
case ISD::FMUL:
|
|
case ISD::FDIV:
|
|
case ISD::FREM:
|
|
case ISD::UDIV:
|
|
case ISD::SDIV:
|
|
case ISD::UREM:
|
|
case ISD::SREM:
|
|
case ISD::XOR:
|
|
return N2; // fold op(arg1, undef) -> undef
|
|
case ISD::MUL:
|
|
case ISD::AND:
|
|
case ISD::SRL:
|
|
case ISD::SHL:
|
|
if (!MVT::isVector(VT))
|
|
return getConstant(0, VT); // fold op(arg1, undef) -> 0
|
|
// For vectors, we can't easily build an all zero vector, just return
|
|
// the LHS.
|
|
return N1;
|
|
case ISD::OR:
|
|
if (!MVT::isVector(VT))
|
|
return getConstant(MVT::getIntVTBitMask(VT), VT);
|
|
// For vectors, we can't easily build an all one vector, just return
|
|
// the LHS.
|
|
return N1;
|
|
case ISD::SRA:
|
|
return N1;
|
|
}
|
|
}
|
|
|
|
// Fold operations.
|
|
switch (Opcode) {
|
|
case ISD::TokenFactor:
|
|
// Fold trivial token factors.
|
|
if (N1.getOpcode() == ISD::EntryToken) return N2;
|
|
if (N2.getOpcode() == ISD::EntryToken) return N1;
|
|
break;
|
|
|
|
case ISD::AND:
|
|
// (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's
|
|
// worth handling here.
|
|
if (N2C && N2C->getValue() == 0)
|
|
return N2;
|
|
break;
|
|
case ISD::OR:
|
|
case ISD::XOR:
|
|
// (X ^| 0) -> X. This commonly occurs when legalizing i64 values, so it's
|
|
// worth handling here.
|
|
if (N2C && N2C->getValue() == 0)
|
|
return N1;
|
|
break;
|
|
case ISD::FP_ROUND_INREG:
|
|
if (cast<VTSDNode>(N2)->getVT() == VT) return N1; // Not actually rounding.
|
|
break;
|
|
case ISD::SIGN_EXTEND_INREG: {
|
|
MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
|
|
if (EVT == VT) return N1; // Not actually extending
|
|
break;
|
|
}
|
|
case ISD::EXTRACT_VECTOR_ELT:
|
|
assert(N2C && "Bad EXTRACT_VECTOR_ELT!");
|
|
|
|
// EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
|
|
// expanding copies of large vectors from registers.
|
|
if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
|
|
N1.getNumOperands() > 0) {
|
|
unsigned Factor =
|
|
MVT::getVectorNumElements(N1.getOperand(0).getValueType());
|
|
return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
|
|
N1.getOperand(N2C->getValue() / Factor),
|
|
getConstant(N2C->getValue() % Factor, N2.getValueType()));
|
|
}
|
|
|
|
// EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
|
|
// expanding large vector constants.
|
|
if (N1.getOpcode() == ISD::BUILD_VECTOR)
|
|
return N1.getOperand(N2C->getValue());
|
|
|
|
// EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
|
|
// operations are lowered to scalars.
|
|
if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT)
|
|
if (ConstantSDNode *IEC = dyn_cast<ConstantSDNode>(N1.getOperand(2))) {
|
|
if (IEC == N2C)
|
|
return N1.getOperand(1);
|
|
else
|
|
return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
|
|
}
|
|
break;
|
|
case ISD::EXTRACT_ELEMENT:
|
|
assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
|
|
|
|
// EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
|
|
// 64-bit integers into 32-bit parts. Instead of building the extract of
|
|
// the BUILD_PAIR, only to have legalize rip it apart, just do it now.
|
|
if (N1.getOpcode() == ISD::BUILD_PAIR)
|
|
return N1.getOperand(N2C->getValue());
|
|
|
|
// EXTRACT_ELEMENT of a constant int is also very common.
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
|
|
unsigned Shift = MVT::getSizeInBits(VT) * N2C->getValue();
|
|
return getConstant(C->getValue() >> Shift, VT);
|
|
}
|
|
break;
|
|
|
|
// FIXME: figure out how to safely handle things like
|
|
// int foo(int x) { return 1 << (x & 255); }
|
|
// int bar() { return foo(256); }
|
|
#if 0
|
|
case ISD::SHL:
|
|
case ISD::SRL:
|
|
case ISD::SRA:
|
|
if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG &&
|
|
cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1)
|
|
return getNode(Opcode, VT, N1, N2.getOperand(0));
|
|
else if (N2.getOpcode() == ISD::AND)
|
|
if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) {
|
|
// If the and is only masking out bits that cannot effect the shift,
|
|
// eliminate the and.
|
|
unsigned NumBits = MVT::getSizeInBits(VT);
|
|
if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
|
|
return getNode(Opcode, VT, N1, N2.getOperand(0));
|
|
}
|
|
break;
|
|
#endif
|
|
}
|
|
|
|
// Memoize this node if possible.
|
|
SDNode *N;
|
|
SDVTList VTs = getVTList(VT);
|
|
if (VT != MVT::Flag) {
|
|
SDOperand Ops[] = { N1, N2 };
|
|
FoldingSetNodeID ID;
|
|
AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
|
|
void *IP = 0;
|
|
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
|
|
return SDOperand(E, 0);
|
|
N = new BinarySDNode(Opcode, VTs, N1, N2);
|
|
CSEMap.InsertNode(N, IP);
|
|
} else {
|
|
N = new BinarySDNode(Opcode, VTs, N1, N2);
|
|
}
|
|
|
|
AllNodes.push_back(N);
|
|
return SDOperand(N, 0);
|
|
}
|
|
|
|
SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
|
|
SDOperand N1, SDOperand N2, SDOperand N3) {
|
|
// Perform various simplifications.
|
|
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
|
|
ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
|
|
switch (Opcode) {
|
|
case ISD::SETCC: {
|
|
// Use FoldSetCC to simplify SETCC's.
|
|
SDOperand Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
|
|
if (Simp.Val) return Simp;
|
|
break;
|
|
}
|
|
case ISD::SELECT:
|
|
if (N1C)
|
|
if (N1C->getValue())
|
|
return N2; // select true, X, Y -> X
|
|
else
|
|
return N3; // select false, X, Y -> Y
|
|
|
|
if (N2 == N3) return N2; // select C, X, X -> X
|
|
break;
|
|
case ISD::BRCOND:
|
|
if (N2C)
|
|
if (N2C->getValue()) // Unconditional branch
|
|
return getNode(ISD::BR, MVT::Other, N1, N3);
|
|
else
|
|
return N1; // Never-taken branch
|
|
break;
|
|
case ISD::VECTOR_SHUFFLE:
|
|
assert(VT == N1.getValueType() && VT == N2.getValueType() &&
|
|
MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
|
|
N3.getOpcode() == ISD::BUILD_VECTOR &&
|
|
MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
|
|
"Illegal VECTOR_SHUFFLE node!");
|
|
break;
|
|
case ISD::BIT_CONVERT:
|
|
// Fold bit_convert nodes from a type to themselves.
|
|
if (N1.getValueType() == VT)
|
|
return N1;
|
|
break;
|
|
}
|
|
|
|
// Memoize node if it doesn't produce a flag.
|
|
SDNode *N;
|
|
SDVTList VTs = getVTList(VT);
|
|
if (VT != MVT::Flag) {
|
|
SDOperand Ops[] = { N1, N2, N3 };
|
|
FoldingSetNodeID ID;
|
|
AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
|
|
void *IP = 0;
|
|
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
|
|
return SDOperand(E, 0);
|
|
N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
|
|
CSEMap.InsertNode(N, IP);
|
|
} else {
|
|
N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
|
|
}
|
|
AllNodes.push_back(N);
|
|
return SDOperand(N, 0);
|
|
}
|
|
|
|
SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
|
|
SDOperand N1, SDOperand N2, SDOperand N3,
|
|
SDOperand N4) {
|
|
SDOperand Ops[] = { N1, N2, N3, N4 };
|
|
return getNode(Opcode, VT, Ops, 4);
|
|
}
|
|
|
|
SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
|
|
SDOperand N1, SDOperand N2, SDOperand N3,
|
|
SDOperand N4, SDOperand N5) {
|
|
SDOperand Ops[] = { N1, N2, N3, N4, N5 };
|
|
return getNode(Opcode, VT, Ops, 5);
|
|
}
|
|
|
|
SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
|
|
SDOperand Chain, SDOperand Ptr,
|
|
const Value *SV, int SVOffset,
|
|
bool isVolatile, unsigned Alignment) {
|
|
if (Alignment == 0) { // Ensure that codegen never sees alignment 0
|
|
const Type *Ty = 0;
|
|
if (VT != MVT::iPTR) {
|
|
Ty = MVT::getTypeForValueType(VT);
|
|
} else if (SV) {
|
|
const PointerType *PT = dyn_cast<PointerType>(SV->getType());
|
|
assert(PT && "Value for load must be a pointer");
|
|
Ty = PT->getElementType();
|
|
}
|
|
assert(Ty && "Could not get type information for load");
|
|
Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
|
|
}
|
|
SDVTList VTs = getVTList(VT, MVT::Other);
|
|
SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
|
|
SDOperand Ops[] = { Chain, Ptr, Undef };
|
|
FoldingSetNodeID ID;
|
|
AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
|
|
ID.AddInteger(ISD::UNINDEXED);
|
|
ID.AddInteger(ISD::NON_EXTLOAD);
|
|
ID.AddInteger(VT);
|
|
ID.AddPointer(SV);
|
|
ID.AddInteger(SVOffset);
|
|
ID.AddInteger(Alignment);
|
|
ID.AddInteger(isVolatile);
|
|
void *IP = 0;
|
|
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
|
|
return SDOperand(E, 0);
|
|
SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED,
|
|
ISD::NON_EXTLOAD, VT, SV, SVOffset, Alignment,
|
|
isVolatile);
|
|
CSEMap.InsertNode(N, IP);
|
|
AllNodes.push_back(N);
|
|
return SDOperand(N, 0);
|
|
}
|
|
|
|
SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT::ValueType VT,
|
|
SDOperand Chain, SDOperand Ptr,
|
|
const Value *SV,
|
|
int SVOffset, MVT::ValueType EVT,
|
|
bool isVolatile, unsigned Alignment) {
|
|
// If they are asking for an extending load from/to the same thing, return a
|
|
// normal load.
|
|
if (VT == EVT)
|
|
ExtType = ISD::NON_EXTLOAD;
|
|
|
|
if (MVT::isVector(VT))
|
|
assert(EVT == MVT::getVectorElementType(VT) && "Invalid vector extload!");
|
|
else
|
|
assert(EVT < VT && "Should only be an extending load, not truncating!");
|
|
assert((ExtType == ISD::EXTLOAD || MVT::isInteger(VT)) &&
|
|
"Cannot sign/zero extend a FP/Vector load!");
|
|
assert(MVT::isInteger(VT) == MVT::isInteger(EVT) &&
|
|
"Cannot convert from FP to Int or Int -> FP!");
|
|
|
|
if (Alignment == 0) { // Ensure that codegen never sees alignment 0
|
|
const Type *Ty = 0;
|
|
if (VT != MVT::iPTR) {
|
|
Ty = MVT::getTypeForValueType(VT);
|
|
} else if (SV) {
|
|
const PointerType *PT = dyn_cast<PointerType>(SV->getType());
|
|
assert(PT && "Value for load must be a pointer");
|
|
Ty = PT->getElementType();
|
|
}
|
|
assert(Ty && "Could not get type information for load");
|
|
Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
|
|
}
|
|
SDVTList VTs = getVTList(VT, MVT::Other);
|
|
SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
|
|
SDOperand Ops[] = { Chain, Ptr, Undef };
|
|
FoldingSetNodeID ID;
|
|
AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
|
|
ID.AddInteger(ISD::UNINDEXED);
|
|
ID.AddInteger(ExtType);
|
|
ID.AddInteger(EVT);
|
|
ID.AddPointer(SV);
|
|
ID.AddInteger(SVOffset);
|
|
ID.AddInteger(Alignment);
|
|
ID.AddInteger(isVolatile);
|
|
void *IP = 0;
|
|
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
|
|
return SDOperand(E, 0);
|
|
SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED, ExtType, EVT,
|
|
SV, SVOffset, Alignment, isVolatile);
|
|
CSEMap.InsertNode(N, IP);
|
|
AllNodes.push_back(N);
|
|
return SDOperand(N, 0);
|
|
}
|
|
|
|
SDOperand
|
|
SelectionDAG::getIndexedLoad(SDOperand OrigLoad, SDOperand Base,
|
|
SDOperand Offset, ISD::MemIndexedMode AM) {
|
|
LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
|
|
assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
|
|
"Load is already a indexed load!");
|
|
MVT::ValueType VT = OrigLoad.getValueType();
|
|
SDVTList VTs = getVTList(VT, Base.getValueType(), MVT::Other);
|
|
SDOperand Ops[] = { LD->getChain(), Base, Offset };
|
|
FoldingSetNodeID ID;
|
|
AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
|
|
ID.AddInteger(AM);
|
|
ID.AddInteger(LD->getExtensionType());
|
|
ID.AddInteger(LD->getLoadedVT());
|
|
ID.AddPointer(LD->getSrcValue());
|
|
ID.AddInteger(LD->getSrcValueOffset());
|
|
ID.AddInteger(LD->getAlignment());
|
|
ID.AddInteger(LD->isVolatile());
|
|
void *IP = 0;
|
|
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
|
|
return SDOperand(E, 0);
|
|
SDNode *N = new LoadSDNode(Ops, VTs, AM,
|
|
LD->getExtensionType(), LD->getLoadedVT(),
|
|
LD->getSrcValue(), LD->getSrcValueOffset(),
|
|
LD->getAlignment(), LD->isVolatile());
|
|
CSEMap.InsertNode(N, IP);
|
|
AllNodes.push_back(N);
|
|
return SDOperand(N, 0);
|
|
}
|
|
|
|
SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Val,
|
|
SDOperand Ptr, const Value *SV, int SVOffset,
|
|
bool isVolatile, unsigned Alignment) {
|
|
MVT::ValueType VT = Val.getValueType();
|
|
|
|
if (Alignment == 0) { // Ensure that codegen never sees alignment 0
|
|
const Type *Ty = 0;
|
|
if (VT != MVT::iPTR) {
|
|
Ty = MVT::getTypeForValueType(VT);
|
|
} else if (SV) {
|
|
const PointerType *PT = dyn_cast<PointerType>(SV->getType());
|
|
assert(PT && "Value for store must be a pointer");
|
|
Ty = PT->getElementType();
|
|
}
|
|
assert(Ty && "Could not get type information for store");
|
|
Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
|
|
}
|
|
SDVTList VTs = getVTList(MVT::Other);
|
|
SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
|
|
SDOperand Ops[] = { Chain, Val, Ptr, Undef };
|
|
FoldingSetNodeID ID;
|
|
AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
|
|
ID.AddInteger(ISD::UNINDEXED);
|
|
ID.AddInteger(false);
|
|
ID.AddInteger(VT);
|
|
ID.AddPointer(SV);
|
|
ID.AddInteger(SVOffset);
|
|
ID.AddInteger(Alignment);
|
|
ID.AddInteger(isVolatile);
|
|
void *IP = 0;
|
|
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
|
|
return SDOperand(E, 0);
|
|
SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
|
|
VT, SV, SVOffset, Alignment, isVolatile);
|
|
CSEMap.InsertNode(N, IP);
|
|
AllNodes.push_back(N);
|
|
return SDOperand(N, 0);
|
|
}
|
|
|
|
SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Val,
|
|
SDOperand Ptr, const Value *SV,
|
|
int SVOffset, MVT::ValueType SVT,
|
|
bool isVolatile, unsigned Alignment) {
|
|
MVT::ValueType VT = Val.getValueType();
|
|
bool isTrunc = VT != SVT;
|
|
|
|
assert(VT > SVT && "Not a truncation?");
|
|
assert(MVT::isInteger(VT) == MVT::isInteger(SVT) &&
|
|
"Can't do FP-INT conversion!");
|
|
|
|
if (Alignment == 0) { // Ensure that codegen never sees alignment 0
|
|
const Type *Ty = 0;
|
|
if (VT != MVT::iPTR) {
|
|
Ty = MVT::getTypeForValueType(VT);
|
|
} else if (SV) {
|
|
const PointerType *PT = dyn_cast<PointerType>(SV->getType());
|
|
assert(PT && "Value for store must be a pointer");
|
|
Ty = PT->getElementType();
|
|
}
|
|
assert(Ty && "Could not get type information for store");
|
|
Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
|
|
}
|
|
SDVTList VTs = getVTList(MVT::Other);
|
|
SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
|
|
SDOperand Ops[] = { Chain, Val, Ptr, Undef };
|
|
FoldingSetNodeID ID;
|
|
AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
|
|
ID.AddInteger(ISD::UNINDEXED);
|
|
ID.AddInteger(isTrunc);
|
|
ID.AddInteger(SVT);
|
|
ID.AddPointer(SV);
|
|
ID.AddInteger(SVOffset);
|
|
ID.AddInteger(Alignment);
|
|
ID.AddInteger(isVolatile);
|
|
void *IP = 0;
|
|
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
|
|
return SDOperand(E, 0);
|
|
SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, isTrunc,
|
|
SVT, SV, SVOffset, Alignment, isVolatile);
|
|
CSEMap.InsertNode(N, IP);
|
|
AllNodes.push_back(N);
|
|
return SDOperand(N, 0);
|
|
}
|
|
|
|
SDOperand
|
|
SelectionDAG::getIndexedStore(SDOperand OrigStore, SDOperand Base,
|
|
SDOperand Offset, ISD::MemIndexedMode AM) {
|
|
StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
|
|
assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
|
|
"Store is already a indexed store!");
|
|
SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
|
|
SDOperand Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
|
|
FoldingSetNodeID ID;
|
|
AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
|
|
ID.AddInteger(AM);
|
|
ID.AddInteger(ST->isTruncatingStore());
|
|
ID.AddInteger(ST->getStoredVT());
|
|
ID.AddPointer(ST->getSrcValue());
|
|
ID.AddInteger(ST->getSrcValueOffset());
|
|
ID.AddInteger(ST->getAlignment());
|
|
ID.AddInteger(ST->isVolatile());
|
|
void *IP = 0;
|
|
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
|
|
return SDOperand(E, 0);
|
|
SDNode *N = new StoreSDNode(Ops, VTs, AM,
|
|
ST->isTruncatingStore(), ST->getStoredVT(),
|
|
ST->getSrcValue(), ST->getSrcValueOffset(),
|
|
ST->getAlignment(), ST->isVolatile());
|
|
CSEMap.InsertNode(N, IP);
|
|
AllNodes.push_back(N);
|
|
return SDOperand(N, 0);
|
|
}
|
|
|
|
SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
|
|
SDOperand Chain, SDOperand Ptr,
|
|
SDOperand SV) {
|
|
SDOperand Ops[] = { Chain, Ptr, SV };
|
|
return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
|
|
}
|
|
|
|
SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
|
|
const SDOperand *Ops, unsigned NumOps) {
|
|
switch (NumOps) {
|
|
case 0: return getNode(Opcode, VT);
|
|
case 1: return getNode(Opcode, VT, Ops[0]);
|
|
case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
|
|
case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
|
|
default: break;
|
|
}
|
|
|
|
switch (Opcode) {
|
|
default: break;
|
|
case ISD::SELECT_CC: {
|
|
assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
|
|
assert(Ops[0].getValueType() == Ops[1].getValueType() &&
|
|
"LHS and RHS of condition must have same type!");
|
|
assert(Ops[2].getValueType() == Ops[3].getValueType() &&
|
|
"True and False arms of SelectCC must have same type!");
|
|
assert(Ops[2].getValueType() == VT &&
|
|
"select_cc node must be of same type as true and false value!");
|
|
break;
|
|
}
|
|
case ISD::BR_CC: {
|
|
assert(NumOps == 5 && "BR_CC takes 5 operands!");
|
|
assert(Ops[2].getValueType() == Ops[3].getValueType() &&
|
|
"LHS/RHS of comparison should match types!");
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Memoize nodes.
|
|
SDNode *N;
|
|
SDVTList VTs = getVTList(VT);
|
|
if (VT != MVT::Flag) {
|
|
FoldingSetNodeID ID;
|
|
AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
|
|
void *IP = 0;
|
|
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
|
|
return SDOperand(E, 0);
|
|
N = new SDNode(Opcode, VTs, Ops, NumOps);
|
|
CSEMap.InsertNode(N, IP);
|
|
} else {
|
|
N = new SDNode(Opcode, VTs, Ops, NumOps);
|
|
}
|
|
AllNodes.push_back(N);
|
|
return SDOperand(N, 0);
|
|
}
|
|
|
|
SDOperand SelectionDAG::getNode(unsigned Opcode,
|
|
std::vector<MVT::ValueType> &ResultTys,
|
|
const SDOperand *Ops, unsigned NumOps) {
|
|
return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
|
|
Ops, NumOps);
|
|
}
|
|
|
|
SDOperand SelectionDAG::getNode(unsigned Opcode,
|
|
const MVT::ValueType *VTs, unsigned NumVTs,
|
|
const SDOperand *Ops, unsigned NumOps) {
|
|
if (NumVTs == 1)
|
|
return getNode(Opcode, VTs[0], Ops, NumOps);
|
|
return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
|
|
}
|
|
|
|
SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
|
|
const SDOperand *Ops, unsigned NumOps) {
|
|
if (VTList.NumVTs == 1)
|
|
return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
|
|
|
|
switch (Opcode) {
|
|
// FIXME: figure out how to safely handle things like
|
|
// int foo(int x) { return 1 << (x & 255); }
|
|
// int bar() { return foo(256); }
|
|
#if 0
|
|
case ISD::SRA_PARTS:
|
|
case ISD::SRL_PARTS:
|
|
case ISD::SHL_PARTS:
|
|
if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
|
|
cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
|
|
return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
|
|
else if (N3.getOpcode() == ISD::AND)
|
|
if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
|
|
// If the and is only masking out bits that cannot effect the shift,
|
|
// eliminate the and.
|
|
unsigned NumBits = MVT::getSizeInBits(VT)*2;
|
|
if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
|
|
return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
|
|
}
|
|
break;
|
|
#endif
|
|
}
|
|
|
|
// Memoize the node unless it returns a flag.
|
|
SDNode *N;
|
|
if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
|
|
FoldingSetNodeID ID;
|
|
AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
|
|
void *IP = 0;
|
|
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
|
|
return SDOperand(E, 0);
|
|
if (NumOps == 1)
|
|
N = new UnarySDNode(Opcode, VTList, Ops[0]);
|
|
else if (NumOps == 2)
|
|
N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
|
|
else if (NumOps == 3)
|
|
N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
|
|
else
|
|
N = new SDNode(Opcode, VTList, Ops, NumOps);
|
|
CSEMap.InsertNode(N, IP);
|
|
} else {
|
|
if (NumOps == 1)
|
|
N = new UnarySDNode(Opcode, VTList, Ops[0]);
|
|
else if (NumOps == 2)
|
|
N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
|
|
else if (NumOps == 3)
|
|
N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
|
|
else
|
|
N = new SDNode(Opcode, VTList, Ops, NumOps);
|
|
}
|
|
AllNodes.push_back(N);
|
|
return SDOperand(N, 0);
|
|
}
|
|
|
|
SDVTList SelectionDAG::getVTList(MVT::ValueType VT) {
|
|
if (!MVT::isExtendedVT(VT))
|
|
return makeVTList(SDNode::getValueTypeList(VT), 1);
|
|
|
|
for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
|
|
E = VTList.end(); I != E; ++I) {
|
|
if (I->size() == 1 && (*I)[0] == VT)
|
|
return makeVTList(&(*I)[0], 1);
|
|
}
|
|
std::vector<MVT::ValueType> V;
|
|
V.push_back(VT);
|
|
VTList.push_front(V);
|
|
return makeVTList(&(*VTList.begin())[0], 1);
|
|
}
|
|
|
|
SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2) {
|
|
for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
|
|
E = VTList.end(); I != E; ++I) {
|
|
if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
|
|
return makeVTList(&(*I)[0], 2);
|
|
}
|
|
std::vector<MVT::ValueType> V;
|
|
V.push_back(VT1);
|
|
V.push_back(VT2);
|
|
VTList.push_front(V);
|
|
return makeVTList(&(*VTList.begin())[0], 2);
|
|
}
|
|
SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2,
|
|
MVT::ValueType VT3) {
|
|
for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
|
|
E = VTList.end(); I != E; ++I) {
|
|
if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
|
|
(*I)[2] == VT3)
|
|
return makeVTList(&(*I)[0], 3);
|
|
}
|
|
std::vector<MVT::ValueType> V;
|
|
V.push_back(VT1);
|
|
V.push_back(VT2);
|
|
V.push_back(VT3);
|
|
VTList.push_front(V);
|
|
return makeVTList(&(*VTList.begin())[0], 3);
|
|
}
|
|
|
|
SDVTList SelectionDAG::getVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
|
|
switch (NumVTs) {
|
|
case 0: assert(0 && "Cannot have nodes without results!");
|
|
case 1: return getVTList(VTs[0]);
|
|
case 2: return getVTList(VTs[0], VTs[1]);
|
|
case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
|
|
default: break;
|
|
}
|
|
|
|
for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
|
|
E = VTList.end(); I != E; ++I) {
|
|
if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
|
|
|
|
bool NoMatch = false;
|
|
for (unsigned i = 2; i != NumVTs; ++i)
|
|
if (VTs[i] != (*I)[i]) {
|
|
NoMatch = true;
|
|
break;
|
|
}
|
|
if (!NoMatch)
|
|
return makeVTList(&*I->begin(), NumVTs);
|
|
}
|
|
|
|
VTList.push_front(std::vector<MVT::ValueType>(VTs, VTs+NumVTs));
|
|
return makeVTList(&*VTList.begin()->begin(), NumVTs);
|
|
}
|
|
|
|
|
|
/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
|
|
/// specified operands. If the resultant node already exists in the DAG,
|
|
/// this does not modify the specified node, instead it returns the node that
|
|
/// already exists. If the resultant node does not exist in the DAG, the
|
|
/// input node is returned. As a degenerate case, if you specify the same
|
|
/// input operands as the node already has, the input node is returned.
|
|
SDOperand SelectionDAG::
|
|
UpdateNodeOperands(SDOperand InN, SDOperand Op) {
|
|
SDNode *N = InN.Val;
|
|
assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
|
|
|
|
// Check to see if there is no change.
|
|
if (Op == N->getOperand(0)) return InN;
|
|
|
|
// See if the modified node already exists.
|
|
void *InsertPos = 0;
|
|
if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
|
|
return SDOperand(Existing, InN.ResNo);
|
|
|
|
// Nope it doesn't. Remove the node from it's current place in the maps.
|
|
if (InsertPos)
|
|
RemoveNodeFromCSEMaps(N);
|
|
|
|
// Now we update the operands.
|
|
N->OperandList[0].Val->removeUser(N);
|
|
Op.Val->addUser(N);
|
|
N->OperandList[0] = Op;
|
|
|
|
// If this gets put into a CSE map, add it.
|
|
if (InsertPos) CSEMap.InsertNode(N, InsertPos);
|
|
return InN;
|
|
}
|
|
|
|
SDOperand SelectionDAG::
|
|
UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
|
|
SDNode *N = InN.Val;
|
|
assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
|
|
|
|
// Check to see if there is no change.
|
|
if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
|
|
return InN; // No operands changed, just return the input node.
|
|
|
|
// See if the modified node already exists.
|
|
void *InsertPos = 0;
|
|
if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
|
|
return SDOperand(Existing, InN.ResNo);
|
|
|
|
// Nope it doesn't. Remove the node from it's current place in the maps.
|
|
if (InsertPos)
|
|
RemoveNodeFromCSEMaps(N);
|
|
|
|
// Now we update the operands.
|
|
if (N->OperandList[0] != Op1) {
|
|
N->OperandList[0].Val->removeUser(N);
|
|
Op1.Val->addUser(N);
|
|
N->OperandList[0] = Op1;
|
|
}
|
|
if (N->OperandList[1] != Op2) {
|
|
N->OperandList[1].Val->removeUser(N);
|
|
Op2.Val->addUser(N);
|
|
N->OperandList[1] = Op2;
|
|
}
|
|
|
|
// If this gets put into a CSE map, add it.
|
|
if (InsertPos) CSEMap.InsertNode(N, InsertPos);
|
|
return InN;
|
|
}
|
|
|
|
SDOperand SelectionDAG::
|
|
UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
|
|
SDOperand Ops[] = { Op1, Op2, Op3 };
|
|
return UpdateNodeOperands(N, Ops, 3);
|
|
}
|
|
|
|
SDOperand SelectionDAG::
|
|
UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
|
|
SDOperand Op3, SDOperand Op4) {
|
|
SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
|
|
return UpdateNodeOperands(N, Ops, 4);
|
|
}
|
|
|
|
SDOperand SelectionDAG::
|
|
UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
|
|
SDOperand Op3, SDOperand Op4, SDOperand Op5) {
|
|
SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
|
|
return UpdateNodeOperands(N, Ops, 5);
|
|
}
|
|
|
|
|
|
SDOperand SelectionDAG::
|
|
UpdateNodeOperands(SDOperand InN, SDOperand *Ops, unsigned NumOps) {
|
|
SDNode *N = InN.Val;
|
|
assert(N->getNumOperands() == NumOps &&
|
|
"Update with wrong number of operands");
|
|
|
|
// Check to see if there is no change.
|
|
bool AnyChange = false;
|
|
for (unsigned i = 0; i != NumOps; ++i) {
|
|
if (Ops[i] != N->getOperand(i)) {
|
|
AnyChange = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// No operands changed, just return the input node.
|
|
if (!AnyChange) return InN;
|
|
|
|
// See if the modified node already exists.
|
|
void *InsertPos = 0;
|
|
if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
|
|
return SDOperand(Existing, InN.ResNo);
|
|
|
|
// Nope it doesn't. Remove the node from it's current place in the maps.
|
|
if (InsertPos)
|
|
RemoveNodeFromCSEMaps(N);
|
|
|
|
// Now we update the operands.
|
|
for (unsigned i = 0; i != NumOps; ++i) {
|
|
if (N->OperandList[i] != Ops[i]) {
|
|
N->OperandList[i].Val->removeUser(N);
|
|
Ops[i].Val->addUser(N);
|
|
N->OperandList[i] = Ops[i];
|
|
}
|
|
}
|
|
|
|
// If this gets put into a CSE map, add it.
|
|
if (InsertPos) CSEMap.InsertNode(N, InsertPos);
|
|
return InN;
|
|
}
|
|
|
|
|
|
/// MorphNodeTo - This frees the operands of the current node, resets the
|
|
/// opcode, types, and operands to the specified value. This should only be
|
|
/// used by the SelectionDAG class.
|
|
void SDNode::MorphNodeTo(unsigned Opc, SDVTList L,
|
|
const SDOperand *Ops, unsigned NumOps) {
|
|
NodeType = Opc;
|
|
ValueList = L.VTs;
|
|
NumValues = L.NumVTs;
|
|
|
|
// Clear the operands list, updating used nodes to remove this from their
|
|
// use list.
|
|
for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
|
|
I->Val->removeUser(this);
|
|
|
|
// If NumOps is larger than the # of operands we currently have, reallocate
|
|
// the operand list.
|
|
if (NumOps > NumOperands) {
|
|
if (OperandsNeedDelete)
|
|
delete [] OperandList;
|
|
OperandList = new SDOperand[NumOps];
|
|
OperandsNeedDelete = true;
|
|
}
|
|
|
|
// Assign the new operands.
|
|
NumOperands = NumOps;
|
|
|
|
for (unsigned i = 0, e = NumOps; i != e; ++i) {
|
|
OperandList[i] = Ops[i];
|
|
SDNode *N = OperandList[i].Val;
|
|
N->Uses.push_back(this);
|
|
}
|
|
}
|
|
|
|
/// SelectNodeTo - These are used for target selectors to *mutate* the
|
|
/// specified node to have the specified return type, Target opcode, and
|
|
/// operands. Note that target opcodes are stored as
|
|
/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
|
|
///
|
|
/// Note that SelectNodeTo returns the resultant node. If there is already a
|
|
/// node of the specified opcode and operands, it returns that node instead of
|
|
/// the current one.
|
|
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
|
|
MVT::ValueType VT) {
|
|
SDVTList VTs = getVTList(VT);
|
|
FoldingSetNodeID ID;
|
|
AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
|
|
void *IP = 0;
|
|
if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
|
|
return ON;
|
|
|
|
RemoveNodeFromCSEMaps(N);
|
|
|
|
N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
|
|
|
|
CSEMap.InsertNode(N, IP);
|
|
return N;
|
|
}
|
|
|
|
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
|
|
MVT::ValueType VT, SDOperand Op1) {
|
|
// If an identical node already exists, use it.
|
|
SDVTList VTs = getVTList(VT);
|
|
SDOperand Ops[] = { Op1 };
|
|
|
|
FoldingSetNodeID ID;
|
|
AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
|
|
void *IP = 0;
|
|
if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
|
|
return ON;
|
|
|
|
RemoveNodeFromCSEMaps(N);
|
|
N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
|
|
CSEMap.InsertNode(N, IP);
|
|
return N;
|
|
}
|
|
|
|
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
|
|
MVT::ValueType VT, SDOperand Op1,
|
|
SDOperand Op2) {
|
|
// If an identical node already exists, use it.
|
|
SDVTList VTs = getVTList(VT);
|
|
SDOperand Ops[] = { Op1, Op2 };
|
|
|
|
FoldingSetNodeID ID;
|
|
AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
|
|
void *IP = 0;
|
|
if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
|
|
return ON;
|
|
|
|
RemoveNodeFromCSEMaps(N);
|
|
|
|
N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
|
|
|
|
CSEMap.InsertNode(N, IP); // Memoize the new node.
|
|
return N;
|
|
}
|
|
|
|
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
|
|
MVT::ValueType VT, SDOperand Op1,
|
|
SDOperand Op2, SDOperand Op3) {
|
|
// If an identical node already exists, use it.
|
|
SDVTList VTs = getVTList(VT);
|
|
SDOperand Ops[] = { Op1, Op2, Op3 };
|
|
FoldingSetNodeID ID;
|
|
AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
|
|
void *IP = 0;
|
|
if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
|
|
return ON;
|
|
|
|
RemoveNodeFromCSEMaps(N);
|
|
|
|
N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
|
|
|
|
CSEMap.InsertNode(N, IP); // Memoize the new node.
|
|
return N;
|
|
}
|
|
|
|
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
|
|
MVT::ValueType VT, const SDOperand *Ops,
|
|
unsigned NumOps) {
|
|
// If an identical node already exists, use it.
|
|
SDVTList VTs = getVTList(VT);
|
|
FoldingSetNodeID ID;
|
|
AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
|
|
void *IP = 0;
|
|
if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
|
|
return ON;
|
|
|
|
RemoveNodeFromCSEMaps(N);
|
|
N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
|
|
|
|
CSEMap.InsertNode(N, IP); // Memoize the new node.
|
|
return N;
|
|
}
|
|
|
|
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
|
|
MVT::ValueType VT1, MVT::ValueType VT2,
|
|
SDOperand Op1, SDOperand Op2) {
|
|
SDVTList VTs = getVTList(VT1, VT2);
|
|
FoldingSetNodeID ID;
|
|
SDOperand Ops[] = { Op1, Op2 };
|
|
AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
|
|
void *IP = 0;
|
|
if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
|
|
return ON;
|
|
|
|
RemoveNodeFromCSEMaps(N);
|
|
N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
|
|
CSEMap.InsertNode(N, IP); // Memoize the new node.
|
|
return N;
|
|
}
|
|
|
|
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
|
|
MVT::ValueType VT1, MVT::ValueType VT2,
|
|
SDOperand Op1, SDOperand Op2,
|
|
SDOperand Op3) {
|
|
// If an identical node already exists, use it.
|
|
SDVTList VTs = getVTList(VT1, VT2);
|
|
SDOperand Ops[] = { Op1, Op2, Op3 };
|
|
FoldingSetNodeID ID;
|
|
AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
|
|
void *IP = 0;
|
|
if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
|
|
return ON;
|
|
|
|
RemoveNodeFromCSEMaps(N);
|
|
|
|
N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
|
|
CSEMap.InsertNode(N, IP); // Memoize the new node.
|
|
return N;
|
|
}
|
|
|
|
|
|
/// getTargetNode - These are used for target selectors to create a new node
|
|
/// with specified return type(s), target opcode, and operands.
|
|
///
|
|
/// Note that getTargetNode returns the resultant node. If there is already a
|
|
/// node of the specified opcode and operands, it returns that node instead of
|
|
/// the current one.
|
|
SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
|
|
return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
|
|
}
|
|
SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
|
|
SDOperand Op1) {
|
|
return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
|
|
}
|
|
SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
|
|
SDOperand Op1, SDOperand Op2) {
|
|
return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
|
|
}
|
|
SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
|
|
SDOperand Op1, SDOperand Op2,
|
|
SDOperand Op3) {
|
|
return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
|
|
}
|
|
SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
|
|
const SDOperand *Ops, unsigned NumOps) {
|
|
return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
|
|
}
|
|
SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
|
|
MVT::ValueType VT2, SDOperand Op1) {
|
|
const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
|
|
return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
|
|
}
|
|
SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
|
|
MVT::ValueType VT2, SDOperand Op1,
|
|
SDOperand Op2) {
|
|
const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
|
|
SDOperand Ops[] = { Op1, Op2 };
|
|
return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
|
|
}
|
|
SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
|
|
MVT::ValueType VT2, SDOperand Op1,
|
|
SDOperand Op2, SDOperand Op3) {
|
|
const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
|
|
SDOperand Ops[] = { Op1, Op2, Op3 };
|
|
return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
|
|
}
|
|
SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
|
|
MVT::ValueType VT2,
|
|
const SDOperand *Ops, unsigned NumOps) {
|
|
const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
|
|
return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
|
|
}
|
|
SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
|
|
MVT::ValueType VT2, MVT::ValueType VT3,
|
|
SDOperand Op1, SDOperand Op2) {
|
|
const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
|
|
SDOperand Ops[] = { Op1, Op2 };
|
|
return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
|
|
}
|
|
SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
|
|
MVT::ValueType VT2, MVT::ValueType VT3,
|
|
SDOperand Op1, SDOperand Op2,
|
|
SDOperand Op3) {
|
|
const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
|
|
SDOperand Ops[] = { Op1, Op2, Op3 };
|
|
return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 3).Val;
|
|
}
|
|
SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
|
|
MVT::ValueType VT2, MVT::ValueType VT3,
|
|
const SDOperand *Ops, unsigned NumOps) {
|
|
const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
|
|
return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
|
|
}
|
|
|
|
/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
|
|
/// This can cause recursive merging of nodes in the DAG.
|
|
///
|
|
/// This version assumes From/To have a single result value.
|
|
///
|
|
void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN,
|
|
std::vector<SDNode*> *Deleted) {
|
|
SDNode *From = FromN.Val, *To = ToN.Val;
|
|
assert(From->getNumValues() == 1 && To->getNumValues() == 1 &&
|
|
"Cannot replace with this method!");
|
|
assert(From != To && "Cannot replace uses of with self");
|
|
|
|
while (!From->use_empty()) {
|
|
// Process users until they are all gone.
|
|
SDNode *U = *From->use_begin();
|
|
|
|
// This node is about to morph, remove its old self from the CSE maps.
|
|
RemoveNodeFromCSEMaps(U);
|
|
|
|
for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
|
|
I != E; ++I)
|
|
if (I->Val == From) {
|
|
From->removeUser(U);
|
|
I->Val = To;
|
|
To->addUser(U);
|
|
}
|
|
|
|
// Now that we have modified U, add it back to the CSE maps. If it already
|
|
// exists there, recursively merge the results together.
|
|
if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
|
|
ReplaceAllUsesWith(U, Existing, Deleted);
|
|
// U is now dead.
|
|
if (Deleted) Deleted->push_back(U);
|
|
DeleteNodeNotInCSEMaps(U);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
|
|
/// This can cause recursive merging of nodes in the DAG.
|
|
///
|
|
/// This version assumes From/To have matching types and numbers of result
|
|
/// values.
|
|
///
|
|
void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
|
|
std::vector<SDNode*> *Deleted) {
|
|
assert(From != To && "Cannot replace uses of with self");
|
|
assert(From->getNumValues() == To->getNumValues() &&
|
|
"Cannot use this version of ReplaceAllUsesWith!");
|
|
if (From->getNumValues() == 1) { // If possible, use the faster version.
|
|
ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted);
|
|
return;
|
|
}
|
|
|
|
while (!From->use_empty()) {
|
|
// Process users until they are all gone.
|
|
SDNode *U = *From->use_begin();
|
|
|
|
// This node is about to morph, remove its old self from the CSE maps.
|
|
RemoveNodeFromCSEMaps(U);
|
|
|
|
for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
|
|
I != E; ++I)
|
|
if (I->Val == From) {
|
|
From->removeUser(U);
|
|
I->Val = To;
|
|
To->addUser(U);
|
|
}
|
|
|
|
// Now that we have modified U, add it back to the CSE maps. If it already
|
|
// exists there, recursively merge the results together.
|
|
if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
|
|
ReplaceAllUsesWith(U, Existing, Deleted);
|
|
// U is now dead.
|
|
if (Deleted) Deleted->push_back(U);
|
|
DeleteNodeNotInCSEMaps(U);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
|
|
/// This can cause recursive merging of nodes in the DAG.
|
|
///
|
|
/// This version can replace From with any result values. To must match the
|
|
/// number and types of values returned by From.
|
|
void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
|
|
const SDOperand *To,
|
|
std::vector<SDNode*> *Deleted) {
|
|
if (From->getNumValues() == 1 && To[0].Val->getNumValues() == 1) {
|
|
// Degenerate case handled above.
|
|
ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted);
|
|
return;
|
|
}
|
|
|
|
while (!From->use_empty()) {
|
|
// Process users until they are all gone.
|
|
SDNode *U = *From->use_begin();
|
|
|
|
// This node is about to morph, remove its old self from the CSE maps.
|
|
RemoveNodeFromCSEMaps(U);
|
|
|
|
for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
|
|
I != E; ++I)
|
|
if (I->Val == From) {
|
|
const SDOperand &ToOp = To[I->ResNo];
|
|
From->removeUser(U);
|
|
*I = ToOp;
|
|
ToOp.Val->addUser(U);
|
|
}
|
|
|
|
// Now that we have modified U, add it back to the CSE maps. If it already
|
|
// exists there, recursively merge the results together.
|
|
if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
|
|
ReplaceAllUsesWith(U, Existing, Deleted);
|
|
// U is now dead.
|
|
if (Deleted) Deleted->push_back(U);
|
|
DeleteNodeNotInCSEMaps(U);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
|
|
/// uses of other values produced by From.Val alone. The Deleted vector is
|
|
/// handled the same was as for ReplaceAllUsesWith.
|
|
void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
|
|
std::vector<SDNode*> &Deleted) {
|
|
assert(From != To && "Cannot replace a value with itself");
|
|
// Handle the simple, trivial, case efficiently.
|
|
if (From.Val->getNumValues() == 1 && To.Val->getNumValues() == 1) {
|
|
ReplaceAllUsesWith(From, To, &Deleted);
|
|
return;
|
|
}
|
|
|
|
// Get all of the users of From.Val. We want these in a nice,
|
|
// deterministically ordered and uniqued set, so we use a SmallSetVector.
|
|
SmallSetVector<SDNode*, 16> Users(From.Val->use_begin(), From.Val->use_end());
|
|
|
|
while (!Users.empty()) {
|
|
// We know that this user uses some value of From. If it is the right
|
|
// value, update it.
|
|
SDNode *User = Users.back();
|
|
Users.pop_back();
|
|
|
|
for (SDOperand *Op = User->OperandList,
|
|
*E = User->OperandList+User->NumOperands; Op != E; ++Op) {
|
|
if (*Op == From) {
|
|
// Okay, we know this user needs to be updated. Remove its old self
|
|
// from the CSE maps.
|
|
RemoveNodeFromCSEMaps(User);
|
|
|
|
// Update all operands that match "From".
|
|
for (; Op != E; ++Op) {
|
|
if (*Op == From) {
|
|
From.Val->removeUser(User);
|
|
*Op = To;
|
|
To.Val->addUser(User);
|
|
}
|
|
}
|
|
|
|
// Now that we have modified User, add it back to the CSE maps. If it
|
|
// already exists there, recursively merge the results together.
|
|
if (SDNode *Existing = AddNonLeafNodeToCSEMaps(User)) {
|
|
unsigned NumDeleted = Deleted.size();
|
|
ReplaceAllUsesWith(User, Existing, &Deleted);
|
|
|
|
// User is now dead.
|
|
Deleted.push_back(User);
|
|
DeleteNodeNotInCSEMaps(User);
|
|
|
|
// We have to be careful here, because ReplaceAllUsesWith could have
|
|
// deleted a user of From, which means there may be dangling pointers
|
|
// in the "Users" setvector. Scan over the deleted node pointers and
|
|
// remove them from the setvector.
|
|
for (unsigned i = NumDeleted, e = Deleted.size(); i != e; ++i)
|
|
Users.remove(Deleted[i]);
|
|
}
|
|
break; // Exit the operand scanning loop.
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
|
|
/// their allnodes order. It returns the maximum id.
|
|
unsigned SelectionDAG::AssignNodeIds() {
|
|
unsigned Id = 0;
|
|
for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
|
|
SDNode *N = I;
|
|
N->setNodeId(Id++);
|
|
}
|
|
return Id;
|
|
}
|
|
|
|
/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
|
|
/// based on their topological order. It returns the maximum id and a vector
|
|
/// of the SDNodes* in assigned order by reference.
|
|
unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
|
|
unsigned DAGSize = AllNodes.size();
|
|
std::vector<unsigned> InDegree(DAGSize);
|
|
std::vector<SDNode*> Sources;
|
|
|
|
// Use a two pass approach to avoid using a std::map which is slow.
|
|
unsigned Id = 0;
|
|
for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
|
|
SDNode *N = I;
|
|
N->setNodeId(Id++);
|
|
unsigned Degree = N->use_size();
|
|
InDegree[N->getNodeId()] = Degree;
|
|
if (Degree == 0)
|
|
Sources.push_back(N);
|
|
}
|
|
|
|
TopOrder.clear();
|
|
while (!Sources.empty()) {
|
|
SDNode *N = Sources.back();
|
|
Sources.pop_back();
|
|
TopOrder.push_back(N);
|
|
for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
|
|
SDNode *P = I->Val;
|
|
unsigned Degree = --InDegree[P->getNodeId()];
|
|
if (Degree == 0)
|
|
Sources.push_back(P);
|
|
}
|
|
}
|
|
|
|
// Second pass, assign the actual topological order as node ids.
|
|
Id = 0;
|
|
for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
|
|
TI != TE; ++TI)
|
|
(*TI)->setNodeId(Id++);
|
|
|
|
return Id;
|
|
}
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SDNode Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Out-of-line virtual method to give class a home.
|
|
void SDNode::ANCHOR() {}
|
|
void UnarySDNode::ANCHOR() {}
|
|
void BinarySDNode::ANCHOR() {}
|
|
void TernarySDNode::ANCHOR() {}
|
|
void HandleSDNode::ANCHOR() {}
|
|
void StringSDNode::ANCHOR() {}
|
|
void ConstantSDNode::ANCHOR() {}
|
|
void ConstantFPSDNode::ANCHOR() {}
|
|
void GlobalAddressSDNode::ANCHOR() {}
|
|
void FrameIndexSDNode::ANCHOR() {}
|
|
void JumpTableSDNode::ANCHOR() {}
|
|
void ConstantPoolSDNode::ANCHOR() {}
|
|
void BasicBlockSDNode::ANCHOR() {}
|
|
void SrcValueSDNode::ANCHOR() {}
|
|
void RegisterSDNode::ANCHOR() {}
|
|
void ExternalSymbolSDNode::ANCHOR() {}
|
|
void CondCodeSDNode::ANCHOR() {}
|
|
void VTSDNode::ANCHOR() {}
|
|
void LoadSDNode::ANCHOR() {}
|
|
void StoreSDNode::ANCHOR() {}
|
|
|
|
HandleSDNode::~HandleSDNode() {
|
|
SDVTList VTs = { 0, 0 };
|
|
MorphNodeTo(ISD::HANDLENODE, VTs, 0, 0); // Drops operand uses.
|
|
}
|
|
|
|
GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
|
|
MVT::ValueType VT, int o)
|
|
: SDNode(isa<GlobalVariable>(GA) &&
|
|
cast<GlobalVariable>(GA)->isThreadLocal() ?
|
|
// Thread Local
|
|
(isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
|
|
// Non Thread Local
|
|
(isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
|
|
getSDVTList(VT)), Offset(o) {
|
|
TheGlobal = const_cast<GlobalValue*>(GA);
|
|
}
|
|
|
|
/// Profile - Gather unique data for the node.
|
|
///
|
|
void SDNode::Profile(FoldingSetNodeID &ID) {
|
|
AddNodeIDNode(ID, this);
|
|
}
|
|
|
|
/// getValueTypeList - Return a pointer to the specified value type.
|
|
///
|
|
MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
|
|
static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
|
|
VTs[VT] = VT;
|
|
return &VTs[VT];
|
|
}
|
|
|
|
/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
|
|
/// indicated value. This method ignores uses of other values defined by this
|
|
/// operation.
|
|
bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
|
|
assert(Value < getNumValues() && "Bad value!");
|
|
|
|
// If there is only one value, this is easy.
|
|
if (getNumValues() == 1)
|
|
return use_size() == NUses;
|
|
if (use_size() < NUses) return false;
|
|
|
|
SDOperand TheValue(const_cast<SDNode *>(this), Value);
|
|
|
|
SmallPtrSet<SDNode*, 32> UsersHandled;
|
|
|
|
for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
|
|
SDNode *User = *UI;
|
|
if (User->getNumOperands() == 1 ||
|
|
UsersHandled.insert(User)) // First time we've seen this?
|
|
for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
|
|
if (User->getOperand(i) == TheValue) {
|
|
if (NUses == 0)
|
|
return false; // too many uses
|
|
--NUses;
|
|
}
|
|
}
|
|
|
|
// Found exactly the right number of uses?
|
|
return NUses == 0;
|
|
}
|
|
|
|
|
|
/// hasAnyUseOfValue - Return true if there are any use of the indicated
|
|
/// value. This method ignores uses of other values defined by this operation.
|
|
bool SDNode::hasAnyUseOfValue(unsigned Value) const {
|
|
assert(Value < getNumValues() && "Bad value!");
|
|
|
|
if (use_size() == 0) return false;
|
|
|
|
SDOperand TheValue(const_cast<SDNode *>(this), Value);
|
|
|
|
SmallPtrSet<SDNode*, 32> UsersHandled;
|
|
|
|
for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
|
|
SDNode *User = *UI;
|
|
if (User->getNumOperands() == 1 ||
|
|
UsersHandled.insert(User)) // First time we've seen this?
|
|
for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
|
|
if (User->getOperand(i) == TheValue) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
/// isOnlyUse - Return true if this node is the only use of N.
|
|
///
|
|
bool SDNode::isOnlyUse(SDNode *N) const {
|
|
bool Seen = false;
|
|
for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
|
|
SDNode *User = *I;
|
|
if (User == this)
|
|
Seen = true;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
return Seen;
|
|
}
|
|
|
|
/// isOperand - Return true if this node is an operand of N.
|
|
///
|
|
bool SDOperand::isOperand(SDNode *N) const {
|
|
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
|
|
if (*this == N->getOperand(i))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
bool SDNode::isOperand(SDNode *N) const {
|
|
for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
|
|
if (this == N->OperandList[i].Val)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
|
|
SmallPtrSet<SDNode *, 32> &Visited) {
|
|
if (found || !Visited.insert(N))
|
|
return;
|
|
|
|
for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
|
|
SDNode *Op = N->getOperand(i).Val;
|
|
if (Op == P) {
|
|
found = true;
|
|
return;
|
|
}
|
|
findPredecessor(Op, P, found, Visited);
|
|
}
|
|
}
|
|
|
|
/// isPredecessor - Return true if this node is a predecessor of N. This node
|
|
/// is either an operand of N or it can be reached by recursively traversing
|
|
/// up the operands.
|
|
/// NOTE: this is an expensive method. Use it carefully.
|
|
bool SDNode::isPredecessor(SDNode *N) const {
|
|
SmallPtrSet<SDNode *, 32> Visited;
|
|
bool found = false;
|
|
findPredecessor(N, this, found, Visited);
|
|
return found;
|
|
}
|
|
|
|
uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
|
|
assert(Num < NumOperands && "Invalid child # of SDNode!");
|
|
return cast<ConstantSDNode>(OperandList[Num])->getValue();
|
|
}
|
|
|
|
std::string SDNode::getOperationName(const SelectionDAG *G) const {
|
|
switch (getOpcode()) {
|
|
default:
|
|
if (getOpcode() < ISD::BUILTIN_OP_END)
|
|
return "<<Unknown DAG Node>>";
|
|
else {
|
|
if (G) {
|
|
if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
|
|
if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
|
|
return TII->getName(getOpcode()-ISD::BUILTIN_OP_END);
|
|
|
|
TargetLowering &TLI = G->getTargetLoweringInfo();
|
|
const char *Name =
|
|
TLI.getTargetNodeName(getOpcode());
|
|
if (Name) return Name;
|
|
}
|
|
|
|
return "<<Unknown Target Node>>";
|
|
}
|
|
|
|
case ISD::PCMARKER: return "PCMarker";
|
|
case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
|
|
case ISD::SRCVALUE: return "SrcValue";
|
|
case ISD::EntryToken: return "EntryToken";
|
|
case ISD::TokenFactor: return "TokenFactor";
|
|
case ISD::AssertSext: return "AssertSext";
|
|
case ISD::AssertZext: return "AssertZext";
|
|
|
|
case ISD::STRING: return "String";
|
|
case ISD::BasicBlock: return "BasicBlock";
|
|
case ISD::VALUETYPE: return "ValueType";
|
|
case ISD::Register: return "Register";
|
|
|
|
case ISD::Constant: return "Constant";
|
|
case ISD::ConstantFP: return "ConstantFP";
|
|
case ISD::GlobalAddress: return "GlobalAddress";
|
|
case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
|
|
case ISD::FrameIndex: return "FrameIndex";
|
|
case ISD::JumpTable: return "JumpTable";
|
|
case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
|
|
case ISD::RETURNADDR: return "RETURNADDR";
|
|
case ISD::FRAMEADDR: return "FRAMEADDR";
|
|
case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
|
|
case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
|
|
case ISD::EHSELECTION: return "EHSELECTION";
|
|
case ISD::EH_RETURN: return "EH_RETURN";
|
|
case ISD::ConstantPool: return "ConstantPool";
|
|
case ISD::ExternalSymbol: return "ExternalSymbol";
|
|
case ISD::INTRINSIC_WO_CHAIN: {
|
|
unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
|
|
return Intrinsic::getName((Intrinsic::ID)IID);
|
|
}
|
|
case ISD::INTRINSIC_VOID:
|
|
case ISD::INTRINSIC_W_CHAIN: {
|
|
unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
|
|
return Intrinsic::getName((Intrinsic::ID)IID);
|
|
}
|
|
|
|
case ISD::BUILD_VECTOR: return "BUILD_VECTOR";
|
|
case ISD::TargetConstant: return "TargetConstant";
|
|
case ISD::TargetConstantFP:return "TargetConstantFP";
|
|
case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
|
|
case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
|
|
case ISD::TargetFrameIndex: return "TargetFrameIndex";
|
|
case ISD::TargetJumpTable: return "TargetJumpTable";
|
|
case ISD::TargetConstantPool: return "TargetConstantPool";
|
|
case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
|
|
|
|
case ISD::CopyToReg: return "CopyToReg";
|
|
case ISD::CopyFromReg: return "CopyFromReg";
|
|
case ISD::UNDEF: return "undef";
|
|
case ISD::MERGE_VALUES: return "merge_values";
|
|
case ISD::INLINEASM: return "inlineasm";
|
|
case ISD::LABEL: return "label";
|
|
case ISD::HANDLENODE: return "handlenode";
|
|
case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
|
|
case ISD::CALL: return "call";
|
|
|
|
// Unary operators
|
|
case ISD::FABS: return "fabs";
|
|
case ISD::FNEG: return "fneg";
|
|
case ISD::FSQRT: return "fsqrt";
|
|
case ISD::FSIN: return "fsin";
|
|
case ISD::FCOS: return "fcos";
|
|
case ISD::FPOWI: return "fpowi";
|
|
|
|
// Binary operators
|
|
case ISD::ADD: return "add";
|
|
case ISD::SUB: return "sub";
|
|
case ISD::MUL: return "mul";
|
|
case ISD::MULHU: return "mulhu";
|
|
case ISD::MULHS: return "mulhs";
|
|
case ISD::SDIV: return "sdiv";
|
|
case ISD::UDIV: return "udiv";
|
|
case ISD::SREM: return "srem";
|
|
case ISD::UREM: return "urem";
|
|
case ISD::AND: return "and";
|
|
case ISD::OR: return "or";
|
|
case ISD::XOR: return "xor";
|
|
case ISD::SHL: return "shl";
|
|
case ISD::SRA: return "sra";
|
|
case ISD::SRL: return "srl";
|
|
case ISD::ROTL: return "rotl";
|
|
case ISD::ROTR: return "rotr";
|
|
case ISD::FADD: return "fadd";
|
|
case ISD::FSUB: return "fsub";
|
|
case ISD::FMUL: return "fmul";
|
|
case ISD::FDIV: return "fdiv";
|
|
case ISD::FREM: return "frem";
|
|
case ISD::FCOPYSIGN: return "fcopysign";
|
|
|
|
case ISD::SETCC: return "setcc";
|
|
case ISD::SELECT: return "select";
|
|
case ISD::SELECT_CC: return "select_cc";
|
|
case ISD::INSERT_VECTOR_ELT: return "insert_vector_elt";
|
|
case ISD::EXTRACT_VECTOR_ELT: return "extract_vector_elt";
|
|
case ISD::CONCAT_VECTORS: return "concat_vectors";
|
|
case ISD::EXTRACT_SUBVECTOR: return "extract_subvector";
|
|
case ISD::SCALAR_TO_VECTOR: return "scalar_to_vector";
|
|
case ISD::VECTOR_SHUFFLE: return "vector_shuffle";
|
|
case ISD::CARRY_FALSE: return "carry_false";
|
|
case ISD::ADDC: return "addc";
|
|
case ISD::ADDE: return "adde";
|
|
case ISD::SUBC: return "subc";
|
|
case ISD::SUBE: return "sube";
|
|
case ISD::SHL_PARTS: return "shl_parts";
|
|
case ISD::SRA_PARTS: return "sra_parts";
|
|
case ISD::SRL_PARTS: return "srl_parts";
|
|
|
|
case ISD::EXTRACT_SUBREG: return "extract_subreg";
|
|
case ISD::INSERT_SUBREG: return "insert_subreg";
|
|
|
|
// Conversion operators.
|
|
case ISD::SIGN_EXTEND: return "sign_extend";
|
|
case ISD::ZERO_EXTEND: return "zero_extend";
|
|
case ISD::ANY_EXTEND: return "any_extend";
|
|
case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
|
|
case ISD::TRUNCATE: return "truncate";
|
|
case ISD::FP_ROUND: return "fp_round";
|
|
case ISD::FP_ROUND_INREG: return "fp_round_inreg";
|
|
case ISD::FP_EXTEND: return "fp_extend";
|
|
|
|
case ISD::SINT_TO_FP: return "sint_to_fp";
|
|
case ISD::UINT_TO_FP: return "uint_to_fp";
|
|
case ISD::FP_TO_SINT: return "fp_to_sint";
|
|
case ISD::FP_TO_UINT: return "fp_to_uint";
|
|
case ISD::BIT_CONVERT: return "bit_convert";
|
|
|
|
// Control flow instructions
|
|
case ISD::BR: return "br";
|
|
case ISD::BRIND: return "brind";
|
|
case ISD::BR_JT: return "br_jt";
|
|
case ISD::BRCOND: return "brcond";
|
|
case ISD::BR_CC: return "br_cc";
|
|
case ISD::RET: return "ret";
|
|
case ISD::CALLSEQ_START: return "callseq_start";
|
|
case ISD::CALLSEQ_END: return "callseq_end";
|
|
|
|
// Other operators
|
|
case ISD::LOAD: return "load";
|
|
case ISD::STORE: return "store";
|
|
case ISD::VAARG: return "vaarg";
|
|
case ISD::VACOPY: return "vacopy";
|
|
case ISD::VAEND: return "vaend";
|
|
case ISD::VASTART: return "vastart";
|
|
case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
|
|
case ISD::EXTRACT_ELEMENT: return "extract_element";
|
|
case ISD::BUILD_PAIR: return "build_pair";
|
|
case ISD::STACKSAVE: return "stacksave";
|
|
case ISD::STACKRESTORE: return "stackrestore";
|
|
|
|
// Block memory operations.
|
|
case ISD::MEMSET: return "memset";
|
|
case ISD::MEMCPY: return "memcpy";
|
|
case ISD::MEMMOVE: return "memmove";
|
|
|
|
// Bit manipulation
|
|
case ISD::BSWAP: return "bswap";
|
|
case ISD::CTPOP: return "ctpop";
|
|
case ISD::CTTZ: return "cttz";
|
|
case ISD::CTLZ: return "ctlz";
|
|
|
|
// Debug info
|
|
case ISD::LOCATION: return "location";
|
|
case ISD::DEBUG_LOC: return "debug_loc";
|
|
|
|
// Trampolines
|
|
case ISD::TRAMPOLINE: return "trampoline";
|
|
|
|
case ISD::CONDCODE:
|
|
switch (cast<CondCodeSDNode>(this)->get()) {
|
|
default: assert(0 && "Unknown setcc condition!");
|
|
case ISD::SETOEQ: return "setoeq";
|
|
case ISD::SETOGT: return "setogt";
|
|
case ISD::SETOGE: return "setoge";
|
|
case ISD::SETOLT: return "setolt";
|
|
case ISD::SETOLE: return "setole";
|
|
case ISD::SETONE: return "setone";
|
|
|
|
case ISD::SETO: return "seto";
|
|
case ISD::SETUO: return "setuo";
|
|
case ISD::SETUEQ: return "setue";
|
|
case ISD::SETUGT: return "setugt";
|
|
case ISD::SETUGE: return "setuge";
|
|
case ISD::SETULT: return "setult";
|
|
case ISD::SETULE: return "setule";
|
|
case ISD::SETUNE: return "setune";
|
|
|
|
case ISD::SETEQ: return "seteq";
|
|
case ISD::SETGT: return "setgt";
|
|
case ISD::SETGE: return "setge";
|
|
case ISD::SETLT: return "setlt";
|
|
case ISD::SETLE: return "setle";
|
|
case ISD::SETNE: return "setne";
|
|
}
|
|
}
|
|
}
|
|
|
|
const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
|
|
switch (AM) {
|
|
default:
|
|
return "";
|
|
case ISD::PRE_INC:
|
|
return "<pre-inc>";
|
|
case ISD::PRE_DEC:
|
|
return "<pre-dec>";
|
|
case ISD::POST_INC:
|
|
return "<post-inc>";
|
|
case ISD::POST_DEC:
|
|
return "<post-dec>";
|
|
}
|
|
}
|
|
|
|
void SDNode::dump() const { dump(0); }
|
|
void SDNode::dump(const SelectionDAG *G) const {
|
|
cerr << (void*)this << ": ";
|
|
|
|
for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
|
|
if (i) cerr << ",";
|
|
if (getValueType(i) == MVT::Other)
|
|
cerr << "ch";
|
|
else
|
|
cerr << MVT::getValueTypeString(getValueType(i));
|
|
}
|
|
cerr << " = " << getOperationName(G);
|
|
|
|
cerr << " ";
|
|
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
|
|
if (i) cerr << ", ";
|
|
cerr << (void*)getOperand(i).Val;
|
|
if (unsigned RN = getOperand(i).ResNo)
|
|
cerr << ":" << RN;
|
|
}
|
|
|
|
if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
|
|
cerr << "<" << CSDN->getValue() << ">";
|
|
} else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
|
|
cerr << "<" << (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle ?
|
|
CSDN->getValueAPF().convertToFloat() :
|
|
CSDN->getValueAPF().convertToDouble()) << ">";
|
|
} else if (const GlobalAddressSDNode *GADN =
|
|
dyn_cast<GlobalAddressSDNode>(this)) {
|
|
int offset = GADN->getOffset();
|
|
cerr << "<";
|
|
WriteAsOperand(*cerr.stream(), GADN->getGlobal()) << ">";
|
|
if (offset > 0)
|
|
cerr << " + " << offset;
|
|
else
|
|
cerr << " " << offset;
|
|
} else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
|
|
cerr << "<" << FIDN->getIndex() << ">";
|
|
} else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
|
|
cerr << "<" << JTDN->getIndex() << ">";
|
|
} else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
|
|
int offset = CP->getOffset();
|
|
if (CP->isMachineConstantPoolEntry())
|
|
cerr << "<" << *CP->getMachineCPVal() << ">";
|
|
else
|
|
cerr << "<" << *CP->getConstVal() << ">";
|
|
if (offset > 0)
|
|
cerr << " + " << offset;
|
|
else
|
|
cerr << " " << offset;
|
|
} else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
|
|
cerr << "<";
|
|
const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
|
|
if (LBB)
|
|
cerr << LBB->getName() << " ";
|
|
cerr << (const void*)BBDN->getBasicBlock() << ">";
|
|
} else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
|
|
if (G && R->getReg() && MRegisterInfo::isPhysicalRegister(R->getReg())) {
|
|
cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
|
|
} else {
|
|
cerr << " #" << R->getReg();
|
|
}
|
|
} else if (const ExternalSymbolSDNode *ES =
|
|
dyn_cast<ExternalSymbolSDNode>(this)) {
|
|
cerr << "'" << ES->getSymbol() << "'";
|
|
} else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
|
|
if (M->getValue())
|
|
cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
|
|
else
|
|
cerr << "<null:" << M->getOffset() << ">";
|
|
} else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
|
|
cerr << ":" << MVT::getValueTypeString(N->getVT());
|
|
} else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
|
|
bool doExt = true;
|
|
switch (LD->getExtensionType()) {
|
|
default: doExt = false; break;
|
|
case ISD::EXTLOAD:
|
|
cerr << " <anyext ";
|
|
break;
|
|
case ISD::SEXTLOAD:
|
|
cerr << " <sext ";
|
|
break;
|
|
case ISD::ZEXTLOAD:
|
|
cerr << " <zext ";
|
|
break;
|
|
}
|
|
if (doExt)
|
|
cerr << MVT::getValueTypeString(LD->getLoadedVT()) << ">";
|
|
|
|
const char *AM = getIndexedModeName(LD->getAddressingMode());
|
|
if (*AM)
|
|
cerr << " " << AM;
|
|
} else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
|
|
if (ST->isTruncatingStore())
|
|
cerr << " <trunc "
|
|
<< MVT::getValueTypeString(ST->getStoredVT()) << ">";
|
|
|
|
const char *AM = getIndexedModeName(ST->getAddressingMode());
|
|
if (*AM)
|
|
cerr << " " << AM;
|
|
}
|
|
}
|
|
|
|
static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
|
|
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
|
|
if (N->getOperand(i).Val->hasOneUse())
|
|
DumpNodes(N->getOperand(i).Val, indent+2, G);
|
|
else
|
|
cerr << "\n" << std::string(indent+2, ' ')
|
|
<< (void*)N->getOperand(i).Val << ": <multiple use>";
|
|
|
|
|
|
cerr << "\n" << std::string(indent, ' ');
|
|
N->dump(G);
|
|
}
|
|
|
|
void SelectionDAG::dump() const {
|
|
cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
|
|
std::vector<const SDNode*> Nodes;
|
|
for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
|
|
I != E; ++I)
|
|
Nodes.push_back(I);
|
|
|
|
std::sort(Nodes.begin(), Nodes.end());
|
|
|
|
for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
|
|
if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
|
|
DumpNodes(Nodes[i], 2, this);
|
|
}
|
|
|
|
if (getRoot().Val) DumpNodes(getRoot().Val, 2, this);
|
|
|
|
cerr << "\n\n";
|
|
}
|
|
|
|
const Type *ConstantPoolSDNode::getType() const {
|
|
if (isMachineConstantPoolEntry())
|
|
return Val.MachineCPVal->getType();
|
|
return Val.ConstVal->getType();
|
|
}
|