llvm-6502/lib/CodeGen/SelectionDAG/LegalizeTypesSplit.cpp
Duncan Sands d1ba3338d1 Simplify using getIntPtrConstant.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@48355 91177308-0d34-0410-b5e6-96231b3b80d8
2008-03-14 05:23:57 +00:00

572 lines
21 KiB
C++

//===-- LegalizeTypesSplit.cpp - Vector Splitting for LegalizeTypes -------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements vector splitting support for LegalizeTypes. Vector
// splitting is the act of changing a computation in an invalid vector type to
// be a computation in multiple vectors of a smaller type. For example,
// implementing <128 x f32> operations in terms of two <64 x f32> operations.
//
//===----------------------------------------------------------------------===//
#include "LegalizeTypes.h"
using namespace llvm;
/// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a vector
/// type that needs to be split. This handles non-power of two vectors.
static void GetSplitDestVTs(MVT::ValueType InVT,
MVT::ValueType &Lo, MVT::ValueType &Hi) {
MVT::ValueType NewEltVT = MVT::getVectorElementType(InVT);
unsigned NumElements = MVT::getVectorNumElements(InVT);
if ((NumElements & (NumElements-1)) == 0) { // Simple power of two vector.
NumElements >>= 1;
Lo = Hi = MVT::getVectorType(NewEltVT, NumElements);
} else { // Non-power-of-two vectors.
unsigned NewNumElts_Lo = 1 << Log2_32(NumElements);
unsigned NewNumElts_Hi = NumElements - NewNumElts_Lo;
Lo = MVT::getVectorType(NewEltVT, NewNumElts_Lo);
Hi = MVT::getVectorType(NewEltVT, NewNumElts_Hi);
}
}
//===----------------------------------------------------------------------===//
// Result Vector Splitting
//===----------------------------------------------------------------------===//
/// SplitResult - This method is called when the specified result of the
/// specified node is found to need vector splitting. At this point, the node
/// may also have invalid operands or may have other results that need
/// legalization, we just know that (at least) one result needs vector
/// splitting.
void DAGTypeLegalizer::SplitResult(SDNode *N, unsigned ResNo) {
DEBUG(cerr << "Split node result: "; N->dump(&DAG); cerr << "\n");
SDOperand Lo, Hi;
#if 0
// See if the target wants to custom expand this node.
if (TLI.getOperationAction(N->getOpcode(), N->getValueType(0)) ==
TargetLowering::Custom) {
// If the target wants to, allow it to lower this itself.
if (SDNode *P = TLI.ExpandOperationResult(N, DAG)) {
// Everything that once used N now uses P. We are guaranteed that the
// result value types of N and the result value types of P match.
ReplaceNodeWith(N, P);
return;
}
}
#endif
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
cerr << "SplitResult #" << ResNo << ": ";
N->dump(&DAG); cerr << "\n";
#endif
assert(0 && "Do not know how to split the result of this operator!");
abort();
case ISD::UNDEF: SplitRes_UNDEF(N, Lo, Hi); break;
case ISD::LOAD: SplitRes_LOAD(cast<LoadSDNode>(N), Lo, Hi); break;
case ISD::BUILD_PAIR: SplitRes_BUILD_PAIR(N, Lo, Hi); break;
case ISD::INSERT_VECTOR_ELT:SplitRes_INSERT_VECTOR_ELT(N, Lo, Hi); break;
case ISD::VECTOR_SHUFFLE: SplitRes_VECTOR_SHUFFLE(N, Lo, Hi); break;
case ISD::BUILD_VECTOR: SplitRes_BUILD_VECTOR(N, Lo, Hi); break;
case ISD::CONCAT_VECTORS: SplitRes_CONCAT_VECTORS(N, Lo, Hi); break;
case ISD::BIT_CONVERT: SplitRes_BIT_CONVERT(N, Lo, Hi); break;
case ISD::CTTZ:
case ISD::CTLZ:
case ISD::CTPOP:
case ISD::FNEG:
case ISD::FABS:
case ISD::FSQRT:
case ISD::FSIN:
case ISD::FCOS:
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT:
case ISD::SINT_TO_FP:
case ISD::UINT_TO_FP: SplitRes_UnOp(N, Lo, Hi); break;
case ISD::ADD:
case ISD::SUB:
case ISD::MUL:
case ISD::FADD:
case ISD::FSUB:
case ISD::FMUL:
case ISD::SDIV:
case ISD::UDIV:
case ISD::FDIV:
case ISD::FPOW:
case ISD::AND:
case ISD::OR:
case ISD::XOR:
case ISD::UREM:
case ISD::SREM:
case ISD::FREM: SplitRes_BinOp(N, Lo, Hi); break;
case ISD::FPOWI: SplitRes_FPOWI(N, Lo, Hi); break;
case ISD::SELECT: SplitRes_SELECT(N, Lo, Hi); break;
}
// If Lo/Hi is null, the sub-method took care of registering results etc.
if (Lo.Val)
SetSplitOp(SDOperand(N, ResNo), Lo, Hi);
}
void DAGTypeLegalizer::SplitRes_UNDEF(SDNode *N, SDOperand &Lo, SDOperand &Hi) {
MVT::ValueType LoVT, HiVT;
GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
Lo = DAG.getNode(ISD::UNDEF, LoVT);
Hi = DAG.getNode(ISD::UNDEF, HiVT);
}
void DAGTypeLegalizer::SplitRes_LOAD(LoadSDNode *LD,
SDOperand &Lo, SDOperand &Hi) {
MVT::ValueType LoVT, HiVT;
GetSplitDestVTs(LD->getValueType(0), LoVT, HiVT);
SDOperand Ch = LD->getChain();
SDOperand Ptr = LD->getBasePtr();
const Value *SV = LD->getSrcValue();
int SVOffset = LD->getSrcValueOffset();
unsigned Alignment = LD->getAlignment();
bool isVolatile = LD->isVolatile();
Lo = DAG.getLoad(LoVT, Ch, Ptr, SV, SVOffset, isVolatile, Alignment);
unsigned IncrementSize = MVT::getSizeInBits(LoVT)/8;
Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr,
DAG.getIntPtrConstant(IncrementSize));
SVOffset += IncrementSize;
Alignment = MinAlign(Alignment, IncrementSize);
Hi = DAG.getLoad(HiVT, Ch, Ptr, SV, SVOffset, isVolatile, Alignment);
// Build a factor node to remember that this load is independent of the
// other one.
SDOperand TF = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1),
Hi.getValue(1));
// Legalized the chain result - switch anything that used the old chain to
// use the new one.
ReplaceValueWith(SDOperand(LD, 1), TF);
}
void DAGTypeLegalizer::SplitRes_BUILD_PAIR(SDNode *N, SDOperand &Lo,
SDOperand &Hi) {
Lo = N->getOperand(0);
Hi = N->getOperand(1);
}
void DAGTypeLegalizer::SplitRes_INSERT_VECTOR_ELT(SDNode *N, SDOperand &Lo,
SDOperand &Hi) {
GetSplitOp(N->getOperand(0), Lo, Hi);
unsigned Index = cast<ConstantSDNode>(N->getOperand(2))->getValue();
SDOperand ScalarOp = N->getOperand(1);
unsigned LoNumElts = MVT::getVectorNumElements(Lo.getValueType());
if (Index < LoNumElts)
Lo = DAG.getNode(ISD::INSERT_VECTOR_ELT, Lo.getValueType(), Lo, ScalarOp,
N->getOperand(2));
else
Hi = DAG.getNode(ISD::INSERT_VECTOR_ELT, Hi.getValueType(), Hi, ScalarOp,
DAG.getIntPtrConstant(Index - LoNumElts));
}
void DAGTypeLegalizer::SplitRes_VECTOR_SHUFFLE(SDNode *N,
SDOperand &Lo, SDOperand &Hi) {
// Build the low part.
SDOperand Mask = N->getOperand(2);
SmallVector<SDOperand, 16> Ops;
MVT::ValueType LoVT, HiVT;
GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
MVT::ValueType EltVT = MVT::getVectorElementType(LoVT);
unsigned LoNumElts = MVT::getVectorNumElements(LoVT);
unsigned NumElements = Mask.getNumOperands();
// Insert all of the elements from the input that are needed. We use
// buildvector of extractelement here because the input vectors will have
// to be legalized, so this makes the code simpler.
for (unsigned i = 0; i != LoNumElts; ++i) {
unsigned Idx = cast<ConstantSDNode>(Mask.getOperand(i))->getValue();
SDOperand InVec = N->getOperand(0);
if (Idx >= NumElements) {
InVec = N->getOperand(1);
Idx -= NumElements;
}
Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, EltVT, InVec,
DAG.getIntPtrConstant(Idx)));
}
Lo = DAG.getNode(ISD::BUILD_VECTOR, LoVT, &Ops[0], Ops.size());
Ops.clear();
for (unsigned i = LoNumElts; i != NumElements; ++i) {
unsigned Idx = cast<ConstantSDNode>(Mask.getOperand(i))->getValue();
SDOperand InVec = N->getOperand(0);
if (Idx >= NumElements) {
InVec = N->getOperand(1);
Idx -= NumElements;
}
Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, EltVT, InVec,
DAG.getIntPtrConstant(Idx)));
}
Hi = DAG.getNode(ISD::BUILD_VECTOR, HiVT, &Ops[0], Ops.size());
}
void DAGTypeLegalizer::SplitRes_BUILD_VECTOR(SDNode *N, SDOperand &Lo,
SDOperand &Hi) {
MVT::ValueType LoVT, HiVT;
GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
unsigned LoNumElts = MVT::getVectorNumElements(LoVT);
SmallVector<SDOperand, 8> LoOps(N->op_begin(), N->op_begin()+LoNumElts);
Lo = DAG.getNode(ISD::BUILD_VECTOR, LoVT, &LoOps[0], LoOps.size());
SmallVector<SDOperand, 8> HiOps(N->op_begin()+LoNumElts, N->op_end());
Hi = DAG.getNode(ISD::BUILD_VECTOR, HiVT, &HiOps[0], HiOps.size());
}
void DAGTypeLegalizer::SplitRes_CONCAT_VECTORS(SDNode *N,
SDOperand &Lo, SDOperand &Hi) {
// FIXME: Handle non-power-of-two vectors?
unsigned NumSubvectors = N->getNumOperands() / 2;
if (NumSubvectors == 1) {
Lo = N->getOperand(0);
Hi = N->getOperand(1);
return;
}
MVT::ValueType LoVT, HiVT;
GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
SmallVector<SDOperand, 8> LoOps(N->op_begin(), N->op_begin()+NumSubvectors);
Lo = DAG.getNode(ISD::CONCAT_VECTORS, LoVT, &LoOps[0], LoOps.size());
SmallVector<SDOperand, 8> HiOps(N->op_begin()+NumSubvectors, N->op_end());
Hi = DAG.getNode(ISD::CONCAT_VECTORS, HiVT, &HiOps[0], HiOps.size());
}
void DAGTypeLegalizer::SplitRes_BIT_CONVERT(SDNode *N,
SDOperand &Lo, SDOperand &Hi) {
// We know the result is a vector. The input may be either a vector or a
// scalar value.
MVT::ValueType LoVT, HiVT;
GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
SDOperand InOp = N->getOperand(0);
MVT::ValueType InVT = InOp.getValueType();
// Handle some special cases efficiently.
switch (getTypeAction(InVT)) {
default:
assert(false && "Unknown type action!");
case Legal:
case FloatToInt:
case Promote:
case Scalarize:
break;
case Expand:
// A scalar to vector conversion, where the scalar needs expansion.
// If the vector is being split in two then we can just convert the
// expanded pieces.
if (LoVT == HiVT) {
GetExpandedOp(InOp, Lo, Hi);
if (TLI.isBigEndian())
std::swap(Lo, Hi);
Lo = DAG.getNode(ISD::BIT_CONVERT, LoVT, Lo);
Hi = DAG.getNode(ISD::BIT_CONVERT, HiVT, Hi);
return;
}
break;
case Split:
// If the input is a vector that needs to be split, convert each split
// piece of the input now.
GetSplitOp(InOp, Lo, Hi);
Lo = DAG.getNode(ISD::BIT_CONVERT, LoVT, Lo);
Hi = DAG.getNode(ISD::BIT_CONVERT, HiVT, Hi);
return;
}
// In the general case, convert the input to an integer and split it by hand.
MVT::ValueType LoIntVT = MVT::getIntegerType(MVT::getSizeInBits(LoVT));
MVT::ValueType HiIntVT = MVT::getIntegerType(MVT::getSizeInBits(HiVT));
if (TLI.isBigEndian())
std::swap(LoIntVT, HiIntVT);
SplitInteger(BitConvertToInteger(InOp), LoIntVT, HiIntVT, Lo, Hi);
if (TLI.isBigEndian())
std::swap(Lo, Hi);
Lo = DAG.getNode(ISD::BIT_CONVERT, LoVT, Lo);
Hi = DAG.getNode(ISD::BIT_CONVERT, HiVT, Hi);
}
void DAGTypeLegalizer::SplitRes_BinOp(SDNode *N, SDOperand &Lo, SDOperand &Hi) {
SDOperand LHSLo, LHSHi;
GetSplitOp(N->getOperand(0), LHSLo, LHSHi);
SDOperand RHSLo, RHSHi;
GetSplitOp(N->getOperand(1), RHSLo, RHSHi);
Lo = DAG.getNode(N->getOpcode(), LHSLo.getValueType(), LHSLo, RHSLo);
Hi = DAG.getNode(N->getOpcode(), LHSHi.getValueType(), LHSHi, RHSHi);
}
void DAGTypeLegalizer::SplitRes_UnOp(SDNode *N, SDOperand &Lo, SDOperand &Hi) {
// Get the dest types. This doesn't always match input types, e.g. int_to_fp.
MVT::ValueType LoVT, HiVT;
GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
GetSplitOp(N->getOperand(0), Lo, Hi);
Lo = DAG.getNode(N->getOpcode(), LoVT, Lo);
Hi = DAG.getNode(N->getOpcode(), HiVT, Hi);
}
void DAGTypeLegalizer::SplitRes_FPOWI(SDNode *N, SDOperand &Lo, SDOperand &Hi) {
GetSplitOp(N->getOperand(0), Lo, Hi);
Lo = DAG.getNode(ISD::FPOWI, Lo.getValueType(), Lo, N->getOperand(1));
Hi = DAG.getNode(ISD::FPOWI, Lo.getValueType(), Hi, N->getOperand(1));
}
void DAGTypeLegalizer::SplitRes_SELECT(SDNode *N, SDOperand &Lo, SDOperand &Hi){
SDOperand LL, LH, RL, RH;
GetSplitOp(N->getOperand(1), LL, LH);
GetSplitOp(N->getOperand(2), RL, RH);
SDOperand Cond = N->getOperand(0);
Lo = DAG.getNode(ISD::SELECT, LL.getValueType(), Cond, LL, RL);
Hi = DAG.getNode(ISD::SELECT, LH.getValueType(), Cond, LH, RH);
}
//===----------------------------------------------------------------------===//
// Operand Vector Splitting
//===----------------------------------------------------------------------===//
/// SplitOperand - This method is called when the specified operand of the
/// specified node is found to need vector splitting. At this point, all of the
/// result types of the node are known to be legal, but other operands of the
/// node may need legalization as well as the specified one.
bool DAGTypeLegalizer::SplitOperand(SDNode *N, unsigned OpNo) {
DEBUG(cerr << "Split node operand: "; N->dump(&DAG); cerr << "\n");
SDOperand Res(0, 0);
#if 0
if (TLI.getOperationAction(N->getOpcode(), N->getValueType(0)) ==
TargetLowering::Custom)
Res = TLI.LowerOperation(SDOperand(N, 0), DAG);
#endif
if (Res.Val == 0) {
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
cerr << "SplitOperand Op #" << OpNo << ": ";
N->dump(&DAG); cerr << "\n";
#endif
assert(0 && "Do not know how to split this operator's operand!");
abort();
case ISD::STORE: Res = SplitOp_STORE(cast<StoreSDNode>(N), OpNo); break;
case ISD::RET: Res = SplitOp_RET(N, OpNo); break;
case ISD::BIT_CONVERT: Res = SplitOp_BIT_CONVERT(N); break;
case ISD::EXTRACT_VECTOR_ELT: Res = SplitOp_EXTRACT_VECTOR_ELT(N); break;
case ISD::EXTRACT_SUBVECTOR: Res = SplitOp_EXTRACT_SUBVECTOR(N); break;
case ISD::VECTOR_SHUFFLE: Res = SplitOp_VECTOR_SHUFFLE(N, OpNo); break;
}
}
// If the result is null, the sub-method took care of registering results etc.
if (!Res.Val) return false;
// If the result is N, the sub-method updated N in place. Check to see if any
// operands are new, and if so, mark them.
if (Res.Val == N) {
// Mark N as new and remark N and its operands. This allows us to correctly
// revisit N if it needs another step of promotion and allows us to visit
// any new operands to N.
ReanalyzeNode(N);
return true;
}
assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
"Invalid operand expansion");
ReplaceValueWith(SDOperand(N, 0), Res);
return false;
}
SDOperand DAGTypeLegalizer::SplitOp_STORE(StoreSDNode *N, unsigned OpNo) {
assert(OpNo == 1 && "Can only split the stored value");
SDOperand Ch = N->getChain();
SDOperand Ptr = N->getBasePtr();
int SVOffset = N->getSrcValueOffset();
unsigned Alignment = N->getAlignment();
bool isVol = N->isVolatile();
SDOperand Lo, Hi;
GetSplitOp(N->getOperand(1), Lo, Hi);
unsigned IncrementSize = MVT::getSizeInBits(Lo.getValueType())/8;
Lo = DAG.getStore(Ch, Lo, Ptr, N->getSrcValue(), SVOffset, isVol, Alignment);
// Increment the pointer to the other half.
Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr,
DAG.getIntPtrConstant(IncrementSize));
Hi = DAG.getStore(Ch, Hi, Ptr, N->getSrcValue(), SVOffset+IncrementSize,
isVol, MinAlign(Alignment, IncrementSize));
return DAG.getNode(ISD::TokenFactor, MVT::Other, Lo, Hi);
}
SDOperand DAGTypeLegalizer::SplitOp_RET(SDNode *N, unsigned OpNo) {
assert(N->getNumOperands() == 3 &&"Can only handle ret of one vector so far");
// FIXME: Returns of gcc generic vectors larger than a legal vector
// type should be returned by reference!
SDOperand Lo, Hi;
GetSplitOp(N->getOperand(1), Lo, Hi);
SDOperand Chain = N->getOperand(0); // The chain.
SDOperand Sign = N->getOperand(2); // Signness
return DAG.getNode(ISD::RET, MVT::Other, Chain, Lo, Sign, Hi, Sign);
}
SDOperand DAGTypeLegalizer::SplitOp_BIT_CONVERT(SDNode *N) {
// For example, i64 = BIT_CONVERT v4i16 on alpha. Typically the vector will
// end up being split all the way down to individual components. Convert the
// split pieces into integers and reassemble.
SDOperand Lo, Hi;
GetSplitOp(N->getOperand(0), Lo, Hi);
Lo = BitConvertToInteger(Lo);
Hi = BitConvertToInteger(Hi);
if (TLI.isBigEndian())
std::swap(Lo, Hi);
return DAG.getNode(ISD::BIT_CONVERT, N->getValueType(0),
JoinIntegers(Lo, Hi));
}
SDOperand DAGTypeLegalizer::SplitOp_EXTRACT_VECTOR_ELT(SDNode *N) {
SDOperand Vec = N->getOperand(0);
SDOperand Idx = N->getOperand(1);
MVT::ValueType VecVT = Vec.getValueType();
if (isa<ConstantSDNode>(Idx)) {
uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getValue();
assert(IdxVal < MVT::getVectorNumElements(VecVT) &&
"Invalid vector index!");
SDOperand Lo, Hi;
GetSplitOp(Vec, Lo, Hi);
uint64_t LoElts = MVT::getVectorNumElements(Lo.getValueType());
if (IdxVal < LoElts)
return DAG.UpdateNodeOperands(SDOperand(N, 0), Lo, Idx);
else
return DAG.UpdateNodeOperands(SDOperand(N, 0), Hi,
DAG.getConstant(IdxVal - LoElts,
Idx.getValueType()));
}
// Store the vector to the stack and load back the required element.
SDOperand StackPtr = DAG.CreateStackTemporary(VecVT);
SDOperand Store = DAG.getStore(DAG.getEntryNode(), Vec, StackPtr, NULL, 0);
// Add the offset to the index.
MVT::ValueType EltVT = MVT::getVectorElementType(VecVT);
unsigned EltSize = MVT::getSizeInBits(EltVT)/8; // FIXME: should be ABI size.
Idx = DAG.getNode(ISD::MUL, Idx.getValueType(), Idx,
DAG.getConstant(EltSize, Idx.getValueType()));
if (MVT::getSizeInBits(Idx.getValueType()) >
MVT::getSizeInBits(TLI.getPointerTy()))
Idx = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), Idx);
else
Idx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), Idx);
StackPtr = DAG.getNode(ISD::ADD, Idx.getValueType(), Idx, StackPtr);
return DAG.getLoad(EltVT, Store, StackPtr, NULL, 0);
}
SDOperand DAGTypeLegalizer::SplitOp_EXTRACT_SUBVECTOR(SDNode *N) {
// We know that the extracted result type is legal. For now, assume the index
// is a constant.
MVT::ValueType SubVT = N->getValueType(0);
SDOperand Idx = N->getOperand(1);
SDOperand Lo, Hi;
GetSplitOp(N->getOperand(0), Lo, Hi);
uint64_t LoElts = MVT::getVectorNumElements(Lo.getValueType());
uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getValue();
if (IdxVal < LoElts) {
assert(IdxVal + MVT::getVectorNumElements(SubVT) <= LoElts &&
"Extracted subvector crosses vector split!");
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SubVT, Lo, Idx);
} else {
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SubVT, Hi,
DAG.getConstant(IdxVal - LoElts, Idx.getValueType()));
}
}
SDOperand DAGTypeLegalizer::SplitOp_VECTOR_SHUFFLE(SDNode *N, unsigned OpNo) {
assert(OpNo == 2 && "Shuffle source type differs from result type?");
SDOperand Mask = N->getOperand(2);
unsigned MaskLength = MVT::getVectorNumElements(Mask.getValueType());
unsigned LargestMaskEntryPlusOne = 2 * MaskLength;
unsigned MinimumBitWidth = Log2_32_Ceil(LargestMaskEntryPlusOne);
// Look for a legal vector type to place the mask values in.
// Note that there may not be *any* legal vector-of-integer
// type for which the element type is legal!
for (MVT::SimpleValueType EltVT = MVT::FIRST_INTEGER_VALUETYPE;
EltVT <= MVT::LAST_INTEGER_VALUETYPE;
// Integer values types are consecutively numbered. Exploit this.
EltVT = MVT::SimpleValueType(EltVT + 1)) {
// Is the element type big enough to hold the values?
if (MVT::getSizeInBits(EltVT) < MinimumBitWidth)
// Nope.
continue;
// Is the vector type legal?
MVT::ValueType VecVT = MVT::getVectorType(EltVT, MaskLength);
if (!isTypeLegal(VecVT))
// Nope.
continue;
// If the element type is not legal, find a larger legal type to use for
// the BUILD_VECTOR operands. This is an ugly hack, but seems to work!
// FIXME: The real solution is to change VECTOR_SHUFFLE into a variadic
// node where the shuffle mask is a list of integer operands, #2 .. #2+n.
for (MVT::SimpleValueType OpVT = EltVT; OpVT <= MVT::LAST_INTEGER_VALUETYPE;
// Integer values types are consecutively numbered. Exploit this.
OpVT = MVT::SimpleValueType(OpVT + 1)) {
if (!isTypeLegal(OpVT))
continue;
// Success! Rebuild the vector using the legal types.
SmallVector<SDOperand, 16> Ops(MaskLength);
for (unsigned i = 0; i < MaskLength; ++i) {
uint64_t Idx =
cast<ConstantSDNode>(Mask.getOperand(i))->getValue();
Ops[i] = DAG.getConstant(Idx, OpVT);
}
return DAG.UpdateNodeOperands(SDOperand(N,0),
N->getOperand(0), N->getOperand(1),
DAG.getNode(ISD::BUILD_VECTOR,
VecVT, &Ops[0], Ops.size()));
}
// Continuing is pointless - failure is certain.
break;
}
assert(false && "Failed to find an appropriate mask type!");
return SDOperand(N, 0);
}