llvm-6502/lib/Transforms/Utils/LoopUnrollRuntime.cpp
Mehdi Amini 529919ff31 DataLayout is mandatory, update the API to reflect it with references.
Summary:
Now that the DataLayout is a mandatory part of the module, let's start
cleaning the codebase. This patch is a first attempt at doing that.

This patch is not exactly NFC as for instance some places were passing
a nullptr instead of the DataLayout, possibly just because there was a
default value on the DataLayout argument to many functions in the API.
Even though it is not purely NFC, there is no change in the
validation.

I turned as many pointer to DataLayout to references, this helped
figuring out all the places where a nullptr could come up.

I had initially a local version of this patch broken into over 30
independant, commits but some later commit were cleaning the API and
touching part of the code modified in the previous commits, so it
seemed cleaner without the intermediate state.

Test Plan:

Reviewers: echristo

Subscribers: llvm-commits

From: Mehdi Amini <mehdi.amini@apple.com>

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231740 91177308-0d34-0410-b5e6-96231b3b80d8
2015-03-10 02:37:25 +00:00

420 lines
17 KiB
C++

//===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements some loop unrolling utilities for loops with run-time
// trip counts. See LoopUnroll.cpp for unrolling loops with compile-time
// trip counts.
//
// The functions in this file are used to generate extra code when the
// run-time trip count modulo the unroll factor is not 0. When this is the
// case, we need to generate code to execute these 'left over' iterations.
//
// The current strategy generates an if-then-else sequence prior to the
// unrolled loop to execute the 'left over' iterations. Other strategies
// include generate a loop before or after the unrolled loop.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/UnrollLoop.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/LoopIterator.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include <algorithm>
using namespace llvm;
#define DEBUG_TYPE "loop-unroll"
STATISTIC(NumRuntimeUnrolled,
"Number of loops unrolled with run-time trip counts");
/// Connect the unrolling prolog code to the original loop.
/// The unrolling prolog code contains code to execute the
/// 'extra' iterations if the run-time trip count modulo the
/// unroll count is non-zero.
///
/// This function performs the following:
/// - Create PHI nodes at prolog end block to combine values
/// that exit the prolog code and jump around the prolog.
/// - Add a PHI operand to a PHI node at the loop exit block
/// for values that exit the prolog and go around the loop.
/// - Branch around the original loop if the trip count is less
/// than the unroll factor.
///
static void ConnectProlog(Loop *L, Value *BECount, unsigned Count,
BasicBlock *LastPrologBB, BasicBlock *PrologEnd,
BasicBlock *OrigPH, BasicBlock *NewPH,
ValueToValueMapTy &VMap, AliasAnalysis *AA,
DominatorTree *DT, LoopInfo *LI, Pass *P) {
BasicBlock *Latch = L->getLoopLatch();
assert(Latch && "Loop must have a latch");
// Create a PHI node for each outgoing value from the original loop
// (which means it is an outgoing value from the prolog code too).
// The new PHI node is inserted in the prolog end basic block.
// The new PHI name is added as an operand of a PHI node in either
// the loop header or the loop exit block.
for (succ_iterator SBI = succ_begin(Latch), SBE = succ_end(Latch);
SBI != SBE; ++SBI) {
for (BasicBlock::iterator BBI = (*SBI)->begin();
PHINode *PN = dyn_cast<PHINode>(BBI); ++BBI) {
// Add a new PHI node to the prolog end block and add the
// appropriate incoming values.
PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName()+".unr",
PrologEnd->getTerminator());
// Adding a value to the new PHI node from the original loop preheader.
// This is the value that skips all the prolog code.
if (L->contains(PN)) {
NewPN->addIncoming(PN->getIncomingValueForBlock(NewPH), OrigPH);
} else {
NewPN->addIncoming(Constant::getNullValue(PN->getType()), OrigPH);
}
Value *V = PN->getIncomingValueForBlock(Latch);
if (Instruction *I = dyn_cast<Instruction>(V)) {
if (L->contains(I)) {
V = VMap[I];
}
}
// Adding a value to the new PHI node from the last prolog block
// that was created.
NewPN->addIncoming(V, LastPrologBB);
// Update the existing PHI node operand with the value from the
// new PHI node. How this is done depends on if the existing
// PHI node is in the original loop block, or the exit block.
if (L->contains(PN)) {
PN->setIncomingValue(PN->getBasicBlockIndex(NewPH), NewPN);
} else {
PN->addIncoming(NewPN, PrologEnd);
}
}
}
// Create a branch around the orignal loop, which is taken if there are no
// iterations remaining to be executed after running the prologue.
Instruction *InsertPt = PrologEnd->getTerminator();
assert(Count != 0 && "nonsensical Count!");
// If BECount <u (Count - 1) then (BECount + 1) & (Count - 1) == (BECount + 1)
// (since Count is a power of 2). This means %xtraiter is (BECount + 1) and
// and all of the iterations of this loop were executed by the prologue. Note
// that if BECount <u (Count - 1) then (BECount + 1) cannot unsigned-overflow.
Instruction *BrLoopExit =
new ICmpInst(InsertPt, ICmpInst::ICMP_ULT, BECount,
ConstantInt::get(BECount->getType(), Count - 1));
BasicBlock *Exit = L->getUniqueExitBlock();
assert(Exit && "Loop must have a single exit block only");
// Split the exit to maintain loop canonicalization guarantees
SmallVector<BasicBlock*, 4> Preds(pred_begin(Exit), pred_end(Exit));
SplitBlockPredecessors(Exit, Preds, ".unr-lcssa", AA, DT, LI,
P->mustPreserveAnalysisID(LCSSAID));
// Add the branch to the exit block (around the unrolled loop)
BranchInst::Create(Exit, NewPH, BrLoopExit, InsertPt);
InsertPt->eraseFromParent();
}
/// Create a clone of the blocks in a loop and connect them together.
/// If UnrollProlog is true, loop structure will not be cloned, otherwise a new
/// loop will be created including all cloned blocks, and the iterator of it
/// switches to count NewIter down to 0.
///
static void CloneLoopBlocks(Loop *L, Value *NewIter, const bool UnrollProlog,
BasicBlock *InsertTop, BasicBlock *InsertBot,
std::vector<BasicBlock *> &NewBlocks,
LoopBlocksDFS &LoopBlocks, ValueToValueMapTy &VMap,
LoopInfo *LI) {
BasicBlock *Preheader = L->getLoopPreheader();
BasicBlock *Header = L->getHeader();
BasicBlock *Latch = L->getLoopLatch();
Function *F = Header->getParent();
LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
Loop *NewLoop = 0;
Loop *ParentLoop = L->getParentLoop();
if (!UnrollProlog) {
NewLoop = new Loop();
if (ParentLoop)
ParentLoop->addChildLoop(NewLoop);
else
LI->addTopLevelLoop(NewLoop);
}
// For each block in the original loop, create a new copy,
// and update the value map with the newly created values.
for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".prol", F);
NewBlocks.push_back(NewBB);
if (NewLoop)
NewLoop->addBasicBlockToLoop(NewBB, *LI);
else if (ParentLoop)
ParentLoop->addBasicBlockToLoop(NewBB, *LI);
VMap[*BB] = NewBB;
if (Header == *BB) {
// For the first block, add a CFG connection to this newly
// created block.
InsertTop->getTerminator()->setSuccessor(0, NewBB);
}
if (Latch == *BB) {
// For the last block, if UnrollProlog is true, create a direct jump to
// InsertBot. If not, create a loop back to cloned head.
VMap.erase((*BB)->getTerminator());
BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]);
BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator());
if (UnrollProlog) {
LatchBR->eraseFromParent();
BranchInst::Create(InsertBot, NewBB);
} else {
PHINode *NewIdx = PHINode::Create(NewIter->getType(), 2, "prol.iter",
FirstLoopBB->getFirstNonPHI());
IRBuilder<> Builder(LatchBR);
Value *IdxSub =
Builder.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1),
NewIdx->getName() + ".sub");
Value *IdxCmp =
Builder.CreateIsNotNull(IdxSub, NewIdx->getName() + ".cmp");
BranchInst::Create(FirstLoopBB, InsertBot, IdxCmp, NewBB);
NewIdx->addIncoming(NewIter, InsertTop);
NewIdx->addIncoming(IdxSub, NewBB);
LatchBR->eraseFromParent();
}
}
}
// Change the incoming values to the ones defined in the preheader or
// cloned loop.
for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
PHINode *NewPHI = cast<PHINode>(VMap[I]);
if (UnrollProlog) {
VMap[I] = NewPHI->getIncomingValueForBlock(Preheader);
cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI);
} else {
unsigned idx = NewPHI->getBasicBlockIndex(Preheader);
NewPHI->setIncomingBlock(idx, InsertTop);
BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
idx = NewPHI->getBasicBlockIndex(Latch);
Value *InVal = NewPHI->getIncomingValue(idx);
NewPHI->setIncomingBlock(idx, NewLatch);
if (VMap[InVal])
NewPHI->setIncomingValue(idx, VMap[InVal]);
}
}
if (NewLoop) {
// Add unroll disable metadata to disable future unrolling for this loop.
SmallVector<Metadata *, 4> MDs;
// Reserve first location for self reference to the LoopID metadata node.
MDs.push_back(nullptr);
MDNode *LoopID = NewLoop->getLoopID();
if (LoopID) {
// First remove any existing loop unrolling metadata.
for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
bool IsUnrollMetadata = false;
MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
if (MD) {
const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll.");
}
if (!IsUnrollMetadata)
MDs.push_back(LoopID->getOperand(i));
}
}
LLVMContext &Context = NewLoop->getHeader()->getContext();
SmallVector<Metadata *, 1> DisableOperands;
DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable"));
MDNode *DisableNode = MDNode::get(Context, DisableOperands);
MDs.push_back(DisableNode);
MDNode *NewLoopID = MDNode::get(Context, MDs);
// Set operand 0 to refer to the loop id itself.
NewLoopID->replaceOperandWith(0, NewLoopID);
NewLoop->setLoopID(NewLoopID);
}
}
/// Insert code in the prolog code when unrolling a loop with a
/// run-time trip-count.
///
/// This method assumes that the loop unroll factor is total number
/// of loop bodes in the loop after unrolling. (Some folks refer
/// to the unroll factor as the number of *extra* copies added).
/// We assume also that the loop unroll factor is a power-of-two. So, after
/// unrolling the loop, the number of loop bodies executed is 2,
/// 4, 8, etc. Note - LLVM converts the if-then-sequence to a switch
/// instruction in SimplifyCFG.cpp. Then, the backend decides how code for
/// the switch instruction is generated.
///
/// extraiters = tripcount % loopfactor
/// if (extraiters == 0) jump Loop:
/// else jump Prol
/// Prol: LoopBody;
/// extraiters -= 1 // Omitted if unroll factor is 2.
/// if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2.
/// if (tripcount < loopfactor) jump End
/// Loop:
/// ...
/// End:
///
bool llvm::UnrollRuntimeLoopProlog(Loop *L, unsigned Count, LoopInfo *LI,
LPPassManager *LPM) {
// for now, only unroll loops that contain a single exit
if (!L->getExitingBlock())
return false;
// Make sure the loop is in canonical form, and there is a single
// exit block only.
if (!L->isLoopSimplifyForm() || !L->getUniqueExitBlock())
return false;
// Use Scalar Evolution to compute the trip count. This allows more
// loops to be unrolled than relying on induction var simplification
if (!LPM)
return false;
ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>();
if (!SE)
return false;
// Only unroll loops with a computable trip count and the trip count needs
// to be an int value (allowing a pointer type is a TODO item)
const SCEV *BECountSC = SE->getBackedgeTakenCount(L);
if (isa<SCEVCouldNotCompute>(BECountSC) ||
!BECountSC->getType()->isIntegerTy())
return false;
unsigned BEWidth = cast<IntegerType>(BECountSC->getType())->getBitWidth();
// Add 1 since the backedge count doesn't include the first loop iteration
const SCEV *TripCountSC =
SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1));
if (isa<SCEVCouldNotCompute>(TripCountSC))
return false;
// We only handle cases when the unroll factor is a power of 2.
// Count is the loop unroll factor, the number of extra copies added + 1.
if (!isPowerOf2_32(Count))
return false;
// This constraint lets us deal with an overflowing trip count easily; see the
// comment on ModVal below. This check is equivalent to `Log2(Count) <
// BEWidth`.
if (static_cast<uint64_t>(Count) > (1ULL << BEWidth))
return false;
// If this loop is nested, then the loop unroller changes the code in
// parent loop, so the Scalar Evolution pass needs to be run again
if (Loop *ParentLoop = L->getParentLoop())
SE->forgetLoop(ParentLoop);
// Grab analyses that we preserve.
auto *DTWP = LPM->getAnalysisIfAvailable<DominatorTreeWrapperPass>();
auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
BasicBlock *PH = L->getLoopPreheader();
BasicBlock *Header = L->getHeader();
BasicBlock *Latch = L->getLoopLatch();
// It helps to splits the original preheader twice, one for the end of the
// prolog code and one for a new loop preheader
BasicBlock *PEnd = SplitEdge(PH, Header, DT, LI);
BasicBlock *NewPH = SplitBlock(PEnd, PEnd->getTerminator(), DT, LI);
BranchInst *PreHeaderBR = cast<BranchInst>(PH->getTerminator());
const DataLayout &DL = Header->getModule()->getDataLayout();
// Compute the number of extra iterations required, which is:
// extra iterations = run-time trip count % (loop unroll factor + 1)
SCEVExpander Expander(*SE, DL, "loop-unroll");
Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(),
PreHeaderBR);
Value *BECount = Expander.expandCodeFor(BECountSC, BECountSC->getType(),
PreHeaderBR);
IRBuilder<> B(PreHeaderBR);
Value *ModVal = B.CreateAnd(TripCount, Count - 1, "xtraiter");
// If ModVal is zero, we know that either
// 1. there are no iteration to be run in the prologue loop
// OR
// 2. the addition computing TripCount overflowed
//
// If (2) is true, we know that TripCount really is (1 << BEWidth) and so the
// number of iterations that remain to be run in the original loop is a
// multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (we
// explicitly check this above).
Value *BranchVal = B.CreateIsNotNull(ModVal, "lcmp.mod");
// Branch to either the extra iterations or the cloned/unrolled loop
// We will fix up the true branch label when adding loop body copies
BranchInst::Create(PEnd, PEnd, BranchVal, PreHeaderBR);
assert(PreHeaderBR->isUnconditional() &&
PreHeaderBR->getSuccessor(0) == PEnd &&
"CFG edges in Preheader are not correct");
PreHeaderBR->eraseFromParent();
Function *F = Header->getParent();
// Get an ordered list of blocks in the loop to help with the ordering of the
// cloned blocks in the prolog code
LoopBlocksDFS LoopBlocks(L);
LoopBlocks.perform(LI);
//
// For each extra loop iteration, create a copy of the loop's basic blocks
// and generate a condition that branches to the copy depending on the
// number of 'left over' iterations.
//
std::vector<BasicBlock *> NewBlocks;
ValueToValueMapTy VMap;
bool UnrollPrologue = Count == 2;
// Clone all the basic blocks in the loop. If Count is 2, we don't clone
// the loop, otherwise we create a cloned loop to execute the extra
// iterations. This function adds the appropriate CFG connections.
CloneLoopBlocks(L, ModVal, UnrollPrologue, PH, PEnd, NewBlocks, LoopBlocks,
VMap, LI);
// Insert the cloned blocks into function just before the original loop
F->getBasicBlockList().splice(PEnd, F->getBasicBlockList(), NewBlocks[0],
F->end());
// Rewrite the cloned instruction operands to use the values
// created when the clone is created.
for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i) {
for (BasicBlock::iterator I = NewBlocks[i]->begin(),
E = NewBlocks[i]->end();
I != E; ++I) {
RemapInstruction(I, VMap,
RF_NoModuleLevelChanges | RF_IgnoreMissingEntries);
}
}
// Connect the prolog code to the original loop and update the
// PHI functions.
BasicBlock *LastLoopBB = cast<BasicBlock>(VMap[Latch]);
ConnectProlog(L, BECount, Count, LastLoopBB, PEnd, PH, NewPH, VMap,
/*AliasAnalysis*/ nullptr, DT, LI, LPM->getAsPass());
NumRuntimeUnrolled++;
return true;
}