llvm-6502/test/CodeGen/Mips/cconv/arguments-hard-float.ll
Daniel Sanders c90bd4a882 [mips] Add calling convention tests covering O32, N32, and N64.
Summary:
I had difficulty finding tests for the N32 and N64 ABI so I've added a
collection of calling convention tests based on the document MIPS ABIs
Described (MD00305), the MIPSpro N32 Handbook, and the SYSV ABI. Where the
documents/implementations disagree, I've used GCC to resolve the conflict.

A few interesting details:
* For N32, LLVM uses 64-bit pointers when saving $ra despite pointers being
  32-bit. I've yet to find a supporting statement in the ABI documentation but
  the current behaviour matches GCC.

* For O32, the non-variable portion of a varargs argument list is also subject
  to the rule that floating-point is passed via GPR's (on N32/N64 only the
  variable portion is subject to this rule). This agrees with GCC's behaviour
  and the SYSV ABI but contradicts part of the MIPSpro N32 Handbook which talks about O32's behaviour.

* The N32 implementation has the wrong callee-saved register list.
  (I already have a fix for this but will commit it as a follow-up).

I've left RUN-TODO lines in for O32 on MIPS64. I don't plan to support this case
for now but we should revisit it.

Reviewers: matheusalmeida, vmedic

Reviewed By: matheusalmeida

Differential Revision: http://reviews.llvm.org/D3339

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206370 91177308-0d34-0410-b5e6-96231b3b80d8
2014-04-16 09:59:46 +00:00

212 lines
10 KiB
LLVM

; RUN: llc -march=mips -relocation-model=static < %s | FileCheck --check-prefix=ALL --check-prefix=SYM32 --check-prefix=O32 --check-prefix=O32BE %s
; RUN: llc -march=mipsel -relocation-model=static < %s | FileCheck --check-prefix=ALL --check-prefix=SYM32 --check-prefix=O32 --check-prefix=O32LE %s
; RUN-TODO: llc -march=mips64 -relocation-model=static -mattr=-n64,+o32 < %s | FileCheck --check-prefix=ALL --check-prefix=SYM32 --check-prefix=O32 %s
; RUN-TODO: llc -march=mips64el -relocation-model=static -mattr=-n64,+o32 < %s | FileCheck --check-prefix=ALL --check-prefix=SYM32 --check-prefix=O32 %s
; RUN: llc -march=mips64 -relocation-model=static -mattr=-n64,+n32 < %s | FileCheck --check-prefix=ALL --check-prefix=SYM32 --check-prefix=NEW %s
; RUN: llc -march=mips64el -relocation-model=static -mattr=-n64,+n32 < %s | FileCheck --check-prefix=ALL --check-prefix=SYM32 --check-prefix=NEW %s
; RUN: llc -march=mips64 -relocation-model=static -mattr=-n64,+n64 < %s | FileCheck --check-prefix=ALL --check-prefix=SYM64 --check-prefix=NEW %s
; RUN: llc -march=mips64el -relocation-model=static -mattr=-n64,+n64 < %s | FileCheck --check-prefix=ALL --check-prefix=SYM64 --check-prefix=NEW %s
; Test the floating point arguments for all ABI's and byte orders as specified
; by section 5 of MD00305 (MIPS ABIs Described).
;
; N32/N64 are identical in this area so their checks have been combined into
; the 'NEW' prefix (the N stands for New).
@bytes = global [11 x i8] zeroinitializer
@dwords = global [11 x i64] zeroinitializer
@floats = global [11 x float] zeroinitializer
@doubles = global [11 x double] zeroinitializer
define void @double_args(double %a, double %b, double %c, double %d, double %e,
double %f, double %g, double %h, double %i) nounwind {
entry:
%0 = getelementptr [11 x double]* @doubles, i32 0, i32 1
store volatile double %a, double* %0
%1 = getelementptr [11 x double]* @doubles, i32 0, i32 2
store volatile double %b, double* %1
%2 = getelementptr [11 x double]* @doubles, i32 0, i32 3
store volatile double %c, double* %2
%3 = getelementptr [11 x double]* @doubles, i32 0, i32 4
store volatile double %d, double* %3
%4 = getelementptr [11 x double]* @doubles, i32 0, i32 5
store volatile double %e, double* %4
%5 = getelementptr [11 x double]* @doubles, i32 0, i32 6
store volatile double %f, double* %5
%6 = getelementptr [11 x double]* @doubles, i32 0, i32 7
store volatile double %g, double* %6
%7 = getelementptr [11 x double]* @doubles, i32 0, i32 8
store volatile double %h, double* %7
%8 = getelementptr [11 x double]* @doubles, i32 0, i32 9
store volatile double %i, double* %8
ret void
}
; ALL-LABEL: double_args:
; We won't test the way the global address is calculated in this test. This is
; just to get the register number for the other checks.
; SYM32-DAG: addiu [[R2:\$[0-9]+]], ${{[0-9]+}}, %lo(doubles)
; SYM64-DAG: ld [[R2:\$[0-9]]], %got_disp(doubles)(
; The first argument is floating point so floating point registers are used.
; The first argument is the same for O32/N32/N64 but the second argument differs
; by register
; ALL-DAG: sdc1 $f12, 8([[R2]])
; O32-DAG: sdc1 $f14, 16([[R2]])
; NEW-DAG: sdc1 $f13, 16([[R2]])
; O32 has run out of argument registers and starts using the stack
; O32-DAG: ldc1 [[F1:\$f[0-9]+]], 16($sp)
; O32-DAG: sdc1 [[F1]], 24([[R2]])
; NEW-DAG: sdc1 $f14, 24([[R2]])
; O32-DAG: ldc1 [[F1:\$f[0-9]+]], 24($sp)
; O32-DAG: sdc1 [[F1]], 32([[R2]])
; NEW-DAG: sdc1 $f15, 32([[R2]])
; O32-DAG: ldc1 [[F1:\$f[0-9]+]], 32($sp)
; O32-DAG: sdc1 [[F1]], 40([[R2]])
; NEW-DAG: sdc1 $f16, 40([[R2]])
; O32-DAG: ldc1 [[F1:\$f[0-9]+]], 40($sp)
; O32-DAG: sdc1 [[F1]], 48([[R2]])
; NEW-DAG: sdc1 $f17, 48([[R2]])
; O32-DAG: ldc1 [[F1:\$f[0-9]+]], 48($sp)
; O32-DAG: sdc1 [[F1]], 56([[R2]])
; NEW-DAG: sdc1 $f18, 56([[R2]])
; O32-DAG: ldc1 [[F1:\$f[0-9]+]], 56($sp)
; O32-DAG: sdc1 [[F1]], 64([[R2]])
; NEW-DAG: sdc1 $f19, 64([[R2]])
; N32/N64 have run out of registers and start using the stack too
; O32-DAG: ldc1 [[F1:\$f[0-9]+]], 64($sp)
; O32-DAG: sdc1 [[F1]], 72([[R2]])
; NEW-DAG: ldc1 [[F1:\$f[0-9]+]], 0($sp)
; NEW-DAG: sdc1 [[F1]], 72([[R2]])
define void @float_args(float %a, float %b, float %c, float %d, float %e,
float %f, float %g, float %h, float %i) nounwind {
entry:
%0 = getelementptr [11 x float]* @floats, i32 0, i32 1
store volatile float %a, float* %0
%1 = getelementptr [11 x float]* @floats, i32 0, i32 2
store volatile float %b, float* %1
%2 = getelementptr [11 x float]* @floats, i32 0, i32 3
store volatile float %c, float* %2
%3 = getelementptr [11 x float]* @floats, i32 0, i32 4
store volatile float %d, float* %3
%4 = getelementptr [11 x float]* @floats, i32 0, i32 5
store volatile float %e, float* %4
%5 = getelementptr [11 x float]* @floats, i32 0, i32 6
store volatile float %f, float* %5
%6 = getelementptr [11 x float]* @floats, i32 0, i32 7
store volatile float %g, float* %6
%7 = getelementptr [11 x float]* @floats, i32 0, i32 8
store volatile float %h, float* %7
%8 = getelementptr [11 x float]* @floats, i32 0, i32 9
store volatile float %i, float* %8
ret void
}
; ALL-LABEL: float_args:
; We won't test the way the global address is calculated in this test. This is
; just to get the register number for the other checks.
; SYM32-DAG: addiu [[R1:\$[0-9]+]], ${{[0-9]+}}, %lo(floats)
; SYM64-DAG: ld [[R1:\$[0-9]]], %got_disp(floats)(
; The first argument is floating point so floating point registers are used.
; The first argument is the same for O32/N32/N64 but the second argument differs
; by register
; ALL-DAG: swc1 $f12, 4([[R1]])
; O32-DAG: swc1 $f14, 8([[R1]])
; NEW-DAG: swc1 $f13, 8([[R1]])
; O32 has run out of argument registers and (in theory) starts using the stack
; I've yet to find a reference in the documentation about this but GCC uses up
; the remaining two argument slots in the GPR's first. We'll do the same for
; compatibility.
; O32-DAG: sw $6, 12([[R1]])
; NEW-DAG: swc1 $f14, 12([[R1]])
; O32-DAG: sw $7, 16([[R1]])
; NEW-DAG: swc1 $f15, 16([[R1]])
; O32 is definitely out of registers now and switches to the stack.
; O32-DAG: lwc1 [[F1:\$f[0-9]+]], 16($sp)
; O32-DAG: swc1 [[F1]], 20([[R1]])
; NEW-DAG: swc1 $f16, 20([[R1]])
; O32-DAG: lwc1 [[F1:\$f[0-9]+]], 20($sp)
; O32-DAG: swc1 [[F1]], 24([[R1]])
; NEW-DAG: swc1 $f17, 24([[R1]])
; O32-DAG: lwc1 [[F1:\$f[0-9]+]], 24($sp)
; O32-DAG: swc1 [[F1]], 28([[R1]])
; NEW-DAG: swc1 $f18, 28([[R1]])
; O32-DAG: lwc1 [[F1:\$f[0-9]+]], 28($sp)
; O32-DAG: swc1 [[F1]], 32([[R1]])
; NEW-DAG: swc1 $f19, 32([[R1]])
; N32/N64 have run out of registers and start using the stack too
; O32-DAG: lwc1 [[F1:\$f[0-9]+]], 32($sp)
; O32-DAG: swc1 [[F1]], 36([[R1]])
; NEW-DAG: lwc1 [[F1:\$f[0-9]+]], 0($sp)
; NEW-DAG: swc1 [[F1]], 36([[R1]])
define void @double_arg2(i8 %a, double %b) nounwind {
entry:
%0 = getelementptr [11 x i8]* @bytes, i32 0, i32 1
store volatile i8 %a, i8* %0
%1 = getelementptr [11 x double]* @doubles, i32 0, i32 1
store volatile double %b, double* %1
ret void
}
; ALL-LABEL: double_arg2:
; We won't test the way the global address is calculated in this test. This is
; just to get the register number for the other checks.
; SYM32-DAG: addiu [[R1:\$[0-9]+]], ${{[0-9]+}}, %lo(bytes)
; SYM64-DAG: ld [[R1:\$[0-9]]], %got_disp(bytes)(
; SYM32-DAG: addiu [[R2:\$[0-9]+]], ${{[0-9]+}}, %lo(doubles)
; SYM64-DAG: ld [[R2:\$[0-9]]], %got_disp(doubles)(
; The first argument is the same in O32/N32/N64.
; ALL-DAG: sb $4, 1([[R1]])
; The first argument isn't floating point so floating point registers are not
; used in O32, but N32/N64 will still use them.
; The second slot is insufficiently aligned for double on O32 so it is skipped.
; Also, double occupies two slots on O32 and only one for N32/N64.
; O32LE-DAG: mtc1 $6, [[F1:\$f[0-9]*[02468]+]]
; O32LE-DAG: mtc1 $7, [[F2:\$f[0-9]*[13579]+]]
; O32BE-DAG: mtc1 $6, [[F2:\$f[0-9]*[13579]+]]
; O32BE-DAG: mtc1 $7, [[F1:\$f[0-9]*[02468]+]]
; O32-DAG: sdc1 [[F1]], 8([[R2]])
; NEW-DAG: sdc1 $f13, 8([[R2]])
define void @float_arg2(i8 %a, float %b) nounwind {
entry:
%0 = getelementptr [11 x i8]* @bytes, i32 0, i32 1
store volatile i8 %a, i8* %0
%1 = getelementptr [11 x float]* @floats, i32 0, i32 1
store volatile float %b, float* %1
ret void
}
; ALL-LABEL: float_arg2:
; We won't test the way the global address is calculated in this test. This is
; just to get the register number for the other checks.
; SYM32-DAG: addiu [[R1:\$[0-9]+]], ${{[0-9]+}}, %lo(bytes)
; SYM64-DAG: ld [[R1:\$[0-9]]], %got_disp(bytes)(
; SYM32-DAG: addiu [[R2:\$[0-9]+]], ${{[0-9]+}}, %lo(floats)
; SYM64-DAG: ld [[R2:\$[0-9]]], %got_disp(floats)(
; The first argument is the same in O32/N32/N64.
; ALL-DAG: sb $4, 1([[R1]])
; The first argument isn't floating point so floating point registers are not
; used in O32, but N32/N64 will still use them.
; MD00305 and GCC disagree on this one. MD00305 says that floats are treated
; as 8-byte aligned and occupy two slots on O32. GCC is treating them as 4-byte
; aligned and occupying one slot. We'll use GCC's definition.
; O32-DAG: sw $5, 4([[R2]])
; NEW-DAG: swc1 $f13, 4([[R2]])