llvm-6502/include/llvm/ADT/APInt.h
Chris Lattner fe8e14a6c9 This adds a bunch of static functions that implement unsigned
two's complement bignum arithmetic.  They could be used to
implement much of APInt, but the idea is they are enough to
implement APFloat as well, which the current APInt interface
is not suited for.

Patch by Neil Booth!



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@41124 91177308-0d34-0410-b5e6-96231b3b80d8
2007-08-16 15:56:55 +00:00

1356 lines
49 KiB
C++

//===-- llvm/Support/APInt.h - For Arbitrary Precision Integer -*- C++ -*--===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Sheng Zhou and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a class to represent arbitrary precision integral
// constant values and operations on them.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_APINT_H
#define LLVM_APINT_H
#include "llvm/Support/DataTypes.h"
#include <cassert>
#include <string>
#define HOST_CHAR_BIT 8
#define compileTimeAssert(cond) extern int CTAssert[(cond) ? 1 : -1]
#define integerPartWidth (HOST_CHAR_BIT * sizeof(llvm::integerPart))
namespace llvm {
/* An unsigned host type used as a single part of a multi-part
bignum. */
typedef uint64_t integerPart;
//===----------------------------------------------------------------------===//
// APInt Class
//===----------------------------------------------------------------------===//
/// APInt - This class represents arbitrary precision constant integral values.
/// It is a functional replacement for common case unsigned integer type like
/// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
/// integer sizes and large integer value types such as 3-bits, 15-bits, or more
/// than 64-bits of precision. APInt provides a variety of arithmetic operators
/// and methods to manipulate integer values of any bit-width. It supports both
/// the typical integer arithmetic and comparison operations as well as bitwise
/// manipulation.
///
/// The class has several invariants worth noting:
/// * All bit, byte, and word positions are zero-based.
/// * Once the bit width is set, it doesn't change except by the Truncate,
/// SignExtend, or ZeroExtend operations.
/// * All binary operators must be on APInt instances of the same bit width.
/// Attempting to use these operators on instances with different bit
/// widths will yield an assertion.
/// * The value is stored canonically as an unsigned value. For operations
/// where it makes a difference, there are both signed and unsigned variants
/// of the operation. For example, sdiv and udiv. However, because the bit
/// widths must be the same, operations such as Mul and Add produce the same
/// results regardless of whether the values are interpreted as signed or
/// not.
/// * In general, the class tries to follow the style of computation that LLVM
/// uses in its IR. This simplifies its use for LLVM.
///
/// @brief Class for arbitrary precision integers.
class APInt {
uint32_t BitWidth; ///< The number of bits in this APInt.
/// This union is used to store the integer value. When the
/// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
union {
uint64_t VAL; ///< Used to store the <= 64 bits integer value.
uint64_t *pVal; ///< Used to store the >64 bits integer value.
};
/// This enum is used to hold the constants we needed for APInt.
enum {
APINT_BITS_PER_WORD = sizeof(uint64_t) * 8, ///< Bits in a word
APINT_WORD_SIZE = sizeof(uint64_t) ///< Byte size of a word
};
/// This constructor is used only internally for speed of construction of
/// temporaries. It is unsafe for general use so it is not public.
/// @brief Fast internal constructor
APInt(uint64_t* val, uint32_t bits) : BitWidth(bits), pVal(val) { }
/// @returns true if the number of bits <= 64, false otherwise.
/// @brief Determine if this APInt just has one word to store value.
inline bool isSingleWord() const {
return BitWidth <= APINT_BITS_PER_WORD;
}
/// @returns the word position for the specified bit position.
/// @brief Determine which word a bit is in.
static inline uint32_t whichWord(uint32_t bitPosition) {
return bitPosition / APINT_BITS_PER_WORD;
}
/// @returns the bit position in a word for the specified bit position
/// in the APInt.
/// @brief Determine which bit in a word a bit is in.
static inline uint32_t whichBit(uint32_t bitPosition) {
return bitPosition % APINT_BITS_PER_WORD;
}
/// This method generates and returns a uint64_t (word) mask for a single
/// bit at a specific bit position. This is used to mask the bit in the
/// corresponding word.
/// @returns a uint64_t with only bit at "whichBit(bitPosition)" set
/// @brief Get a single bit mask.
static inline uint64_t maskBit(uint32_t bitPosition) {
return 1ULL << whichBit(bitPosition);
}
/// This method is used internally to clear the to "N" bits in the high order
/// word that are not used by the APInt. This is needed after the most
/// significant word is assigned a value to ensure that those bits are
/// zero'd out.
/// @brief Clear unused high order bits
inline APInt& clearUnusedBits() {
// Compute how many bits are used in the final word
uint32_t wordBits = BitWidth % APINT_BITS_PER_WORD;
if (wordBits == 0)
// If all bits are used, we want to leave the value alone. This also
// avoids the undefined behavior of >> when the shfit is the same size as
// the word size (64).
return *this;
// Mask out the hight bits.
uint64_t mask = ~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - wordBits);
if (isSingleWord())
VAL &= mask;
else
pVal[getNumWords() - 1] &= mask;
return *this;
}
/// @returns the corresponding word for the specified bit position.
/// @brief Get the word corresponding to a bit position
inline uint64_t getWord(uint32_t bitPosition) const {
return isSingleWord() ? VAL : pVal[whichWord(bitPosition)];
}
/// This is used by the constructors that take string arguments.
/// @brief Convert a char array into an APInt
void fromString(uint32_t numBits, const char *strStart, uint32_t slen,
uint8_t radix);
/// This is used by the toString method to divide by the radix. It simply
/// provides a more convenient form of divide for internal use since KnuthDiv
/// has specific constraints on its inputs. If those constraints are not met
/// then it provides a simpler form of divide.
/// @brief An internal division function for dividing APInts.
static void divide(const APInt LHS, uint32_t lhsWords,
const APInt &RHS, uint32_t rhsWords,
APInt *Quotient, APInt *Remainder);
#ifndef NDEBUG
/// @brief debug method
void dump() const;
#endif
public:
/// @name Constructors
/// @{
/// If isSigned is true then val is treated as if it were a signed value
/// (i.e. as an int64_t) and the appropriate sign extension to the bit width
/// will be done. Otherwise, no sign extension occurs (high order bits beyond
/// the range of val are zero filled).
/// @param numBits the bit width of the constructed APInt
/// @param val the initial value of the APInt
/// @param isSigned how to treat signedness of val
/// @brief Create a new APInt of numBits width, initialized as val.
APInt(uint32_t numBits, uint64_t val, bool isSigned = false);
/// Note that numWords can be smaller or larger than the corresponding bit
/// width but any extraneous bits will be dropped.
/// @param numBits the bit width of the constructed APInt
/// @param numWords the number of words in bigVal
/// @param bigVal a sequence of words to form the initial value of the APInt
/// @brief Construct an APInt of numBits width, initialized as bigVal[].
APInt(uint32_t numBits, uint32_t numWords, uint64_t bigVal[]);
/// This constructor interprets Val as a string in the given radix. The
/// interpretation stops when the first charater that is not suitable for the
/// radix is encountered. Acceptable radix values are 2, 8, 10 and 16. It is
/// an error for the value implied by the string to require more bits than
/// numBits.
/// @param numBits the bit width of the constructed APInt
/// @param val the string to be interpreted
/// @param radix the radix of Val to use for the intepretation
/// @brief Construct an APInt from a string representation.
APInt(uint32_t numBits, const std::string& val, uint8_t radix);
/// This constructor interprets the slen characters starting at StrStart as
/// a string in the given radix. The interpretation stops when the first
/// character that is not suitable for the radix is encountered. Acceptable
/// radix values are 2, 8, 10 and 16. It is an error for the value implied by
/// the string to require more bits than numBits.
/// @param numBits the bit width of the constructed APInt
/// @param strStart the start of the string to be interpreted
/// @param slen the maximum number of characters to interpret
/// @param radix the radix to use for the conversion
/// @brief Construct an APInt from a string representation.
APInt(uint32_t numBits, const char strStart[], uint32_t slen, uint8_t radix);
/// Simply makes *this a copy of that.
/// @brief Copy Constructor.
APInt(const APInt& that);
/// @brief Destructor.
~APInt();
/// @}
/// @name Value Tests
/// @{
/// This tests the high bit of this APInt to determine if it is set.
/// @returns true if this APInt is negative, false otherwise
/// @brief Determine sign of this APInt.
bool isNegative() const {
return (*this)[BitWidth - 1];
}
/// This tests the high bit of the APInt to determine if it is unset.
/// @brief Determine if this APInt Value is positive (not negative).
bool isPositive() const {
return !isNegative();
}
/// This tests if the value of this APInt is strictly positive (> 0).
/// @returns true if this APInt is Positive and not zero.
/// @brief Determine if this APInt Value is strictly positive.
inline bool isStrictlyPositive() const {
return isPositive() && (*this) != 0;
}
/// This checks to see if the value has all bits of the APInt are set or not.
/// @brief Determine if all bits are set
inline bool isAllOnesValue() const {
return countPopulation() == BitWidth;
}
/// This checks to see if the value of this APInt is the maximum unsigned
/// value for the APInt's bit width.
/// @brief Determine if this is the largest unsigned value.
bool isMaxValue() const {
return countPopulation() == BitWidth;
}
/// This checks to see if the value of this APInt is the maximum signed
/// value for the APInt's bit width.
/// @brief Determine if this is the largest signed value.
bool isMaxSignedValue() const {
return BitWidth == 1 ? VAL == 0 :
!isNegative() && countPopulation() == BitWidth - 1;
}
/// This checks to see if the value of this APInt is the minimum unsigned
/// value for the APInt's bit width.
/// @brief Determine if this is the smallest unsigned value.
bool isMinValue() const {
return countPopulation() == 0;
}
/// This checks to see if the value of this APInt is the minimum signed
/// value for the APInt's bit width.
/// @brief Determine if this is the smallest signed value.
bool isMinSignedValue() const {
return BitWidth == 1 ? VAL == 1 :
isNegative() && countPopulation() == 1;
}
/// @brief Check if this APInt has an N-bits integer value.
inline bool isIntN(uint32_t N) const {
assert(N && "N == 0 ???");
if (isSingleWord()) {
return VAL == (VAL & (~0ULL >> (64 - N)));
} else {
APInt Tmp(N, getNumWords(), pVal);
return Tmp == (*this);
}
}
/// @returns true if the argument APInt value is a power of two > 0.
bool isPowerOf2() const;
/// isSignBit - Return true if this is the value returned by getSignBit.
bool isSignBit() const { return isMinSignedValue(); }
/// This converts the APInt to a boolean value as a test against zero.
/// @brief Boolean conversion function.
inline bool getBoolValue() const {
return *this != 0;
}
/// getLimitedValue - If this value is smaller than the specified limit,
/// return it, otherwise return the limit value. This causes the value
/// to saturate to the limit.
uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
return (getActiveBits() > 64 || getZExtValue() > Limit) ?
Limit : getZExtValue();
}
/// @}
/// @name Value Generators
/// @{
/// @brief Gets maximum unsigned value of APInt for specific bit width.
static APInt getMaxValue(uint32_t numBits) {
return APInt(numBits, 0).set();
}
/// @brief Gets maximum signed value of APInt for a specific bit width.
static APInt getSignedMaxValue(uint32_t numBits) {
return APInt(numBits, 0).set().clear(numBits - 1);
}
/// @brief Gets minimum unsigned value of APInt for a specific bit width.
static APInt getMinValue(uint32_t numBits) {
return APInt(numBits, 0);
}
/// @brief Gets minimum signed value of APInt for a specific bit width.
static APInt getSignedMinValue(uint32_t numBits) {
return APInt(numBits, 0).set(numBits - 1);
}
/// getSignBit - This is just a wrapper function of getSignedMinValue(), and
/// it helps code readability when we want to get a SignBit.
/// @brief Get the SignBit for a specific bit width.
inline static APInt getSignBit(uint32_t BitWidth) {
return getSignedMinValue(BitWidth);
}
/// @returns the all-ones value for an APInt of the specified bit-width.
/// @brief Get the all-ones value.
static APInt getAllOnesValue(uint32_t numBits) {
return APInt(numBits, 0).set();
}
/// @returns the '0' value for an APInt of the specified bit-width.
/// @brief Get the '0' value.
static APInt getNullValue(uint32_t numBits) {
return APInt(numBits, 0);
}
/// Get an APInt with the same BitWidth as this APInt, just zero mask
/// the low bits and right shift to the least significant bit.
/// @returns the high "numBits" bits of this APInt.
APInt getHiBits(uint32_t numBits) const;
/// Get an APInt with the same BitWidth as this APInt, just zero mask
/// the high bits.
/// @returns the low "numBits" bits of this APInt.
APInt getLoBits(uint32_t numBits) const;
/// Constructs an APInt value that has a contiguous range of bits set. The
/// bits from loBit to hiBit will be set. All other bits will be zero. For
/// example, with parameters(32, 15, 0) you would get 0x0000FFFF. If hiBit is
/// less than loBit then the set bits "wrap". For example, with
/// parameters (32, 3, 28), you would get 0xF000000F.
/// @param numBits the intended bit width of the result
/// @param loBit the index of the lowest bit set.
/// @param hiBit the index of the highest bit set.
/// @returns An APInt value with the requested bits set.
/// @brief Get a value with a block of bits set.
static APInt getBitsSet(uint32_t numBits, uint32_t loBit, uint32_t hiBit) {
assert(hiBit < numBits && "hiBit out of range");
assert(loBit < numBits && "loBit out of range");
if (hiBit < loBit)
return getLowBitsSet(numBits, hiBit+1) |
getHighBitsSet(numBits, numBits-loBit+1);
return getLowBitsSet(numBits, hiBit-loBit+1).shl(loBit);
}
/// Constructs an APInt value that has the top hiBitsSet bits set.
/// @param numBits the bitwidth of the result
/// @param hiBitsSet the number of high-order bits set in the result.
/// @brief Get a value with high bits set
static APInt getHighBitsSet(uint32_t numBits, uint32_t hiBitsSet) {
assert(hiBitsSet <= numBits && "Too many bits to set!");
// Handle a degenerate case, to avoid shifting by word size
if (hiBitsSet == 0)
return APInt(numBits, 0);
uint32_t shiftAmt = numBits - hiBitsSet;
// For small values, return quickly
if (numBits <= APINT_BITS_PER_WORD)
return APInt(numBits, ~0ULL << shiftAmt);
return (~APInt(numBits, 0)).shl(shiftAmt);
}
/// Constructs an APInt value that has the bottom loBitsSet bits set.
/// @param numBits the bitwidth of the result
/// @param loBitsSet the number of low-order bits set in the result.
/// @brief Get a value with low bits set
static APInt getLowBitsSet(uint32_t numBits, uint32_t loBitsSet) {
assert(loBitsSet <= numBits && "Too many bits to set!");
// Handle a degenerate case, to avoid shifting by word size
if (loBitsSet == 0)
return APInt(numBits, 0);
if (loBitsSet == APINT_BITS_PER_WORD)
return APInt(numBits, -1ULL);
// For small values, return quickly
if (numBits < APINT_BITS_PER_WORD)
return APInt(numBits, (1ULL << loBitsSet) - 1);
return (~APInt(numBits, 0)).lshr(numBits - loBitsSet);
}
/// The hash value is computed as the sum of the words and the bit width.
/// @returns A hash value computed from the sum of the APInt words.
/// @brief Get a hash value based on this APInt
uint64_t getHashValue() const;
/// This function returns a pointer to the internal storage of the APInt.
/// This is useful for writing out the APInt in binary form without any
/// conversions.
inline const uint64_t* getRawData() const {
if (isSingleWord())
return &VAL;
return &pVal[0];
}
/// @}
/// @name Unary Operators
/// @{
/// @returns a new APInt value representing *this incremented by one
/// @brief Postfix increment operator.
inline const APInt operator++(int) {
APInt API(*this);
++(*this);
return API;
}
/// @returns *this incremented by one
/// @brief Prefix increment operator.
APInt& operator++();
/// @returns a new APInt representing *this decremented by one.
/// @brief Postfix decrement operator.
inline const APInt operator--(int) {
APInt API(*this);
--(*this);
return API;
}
/// @returns *this decremented by one.
/// @brief Prefix decrement operator.
APInt& operator--();
/// Performs a bitwise complement operation on this APInt.
/// @returns an APInt that is the bitwise complement of *this
/// @brief Unary bitwise complement operator.
APInt operator~() const;
/// Negates *this using two's complement logic.
/// @returns An APInt value representing the negation of *this.
/// @brief Unary negation operator
inline APInt operator-() const {
return APInt(BitWidth, 0) - (*this);
}
/// Performs logical negation operation on this APInt.
/// @returns true if *this is zero, false otherwise.
/// @brief Logical negation operator.
bool operator !() const;
/// @}
/// @name Assignment Operators
/// @{
/// @returns *this after assignment of RHS.
/// @brief Copy assignment operator.
APInt& operator=(const APInt& RHS);
/// The RHS value is assigned to *this. If the significant bits in RHS exceed
/// the bit width, the excess bits are truncated. If the bit width is larger
/// than 64, the value is zero filled in the unspecified high order bits.
/// @returns *this after assignment of RHS value.
/// @brief Assignment operator.
APInt& operator=(uint64_t RHS);
/// Performs a bitwise AND operation on this APInt and RHS. The result is
/// assigned to *this.
/// @returns *this after ANDing with RHS.
/// @brief Bitwise AND assignment operator.
APInt& operator&=(const APInt& RHS);
/// Performs a bitwise OR operation on this APInt and RHS. The result is
/// assigned *this;
/// @returns *this after ORing with RHS.
/// @brief Bitwise OR assignment operator.
APInt& operator|=(const APInt& RHS);
/// Performs a bitwise XOR operation on this APInt and RHS. The result is
/// assigned to *this.
/// @returns *this after XORing with RHS.
/// @brief Bitwise XOR assignment operator.
APInt& operator^=(const APInt& RHS);
/// Multiplies this APInt by RHS and assigns the result to *this.
/// @returns *this
/// @brief Multiplication assignment operator.
APInt& operator*=(const APInt& RHS);
/// Adds RHS to *this and assigns the result to *this.
/// @returns *this
/// @brief Addition assignment operator.
APInt& operator+=(const APInt& RHS);
/// Subtracts RHS from *this and assigns the result to *this.
/// @returns *this
/// @brief Subtraction assignment operator.
APInt& operator-=(const APInt& RHS);
/// Shifts *this left by shiftAmt and assigns the result to *this.
/// @returns *this after shifting left by shiftAmt
/// @brief Left-shift assignment function.
inline APInt& operator<<=(uint32_t shiftAmt) {
*this = shl(shiftAmt);
return *this;
}
/// @}
/// @name Binary Operators
/// @{
/// Performs a bitwise AND operation on *this and RHS.
/// @returns An APInt value representing the bitwise AND of *this and RHS.
/// @brief Bitwise AND operator.
APInt operator&(const APInt& RHS) const;
APInt And(const APInt& RHS) const {
return this->operator&(RHS);
}
/// Performs a bitwise OR operation on *this and RHS.
/// @returns An APInt value representing the bitwise OR of *this and RHS.
/// @brief Bitwise OR operator.
APInt operator|(const APInt& RHS) const;
APInt Or(const APInt& RHS) const {
return this->operator|(RHS);
}
/// Performs a bitwise XOR operation on *this and RHS.
/// @returns An APInt value representing the bitwise XOR of *this and RHS.
/// @brief Bitwise XOR operator.
APInt operator^(const APInt& RHS) const;
APInt Xor(const APInt& RHS) const {
return this->operator^(RHS);
}
/// Multiplies this APInt by RHS and returns the result.
/// @brief Multiplication operator.
APInt operator*(const APInt& RHS) const;
/// Adds RHS to this APInt and returns the result.
/// @brief Addition operator.
APInt operator+(const APInt& RHS) const;
APInt operator+(uint64_t RHS) const {
return (*this) + APInt(BitWidth, RHS);
}
/// Subtracts RHS from this APInt and returns the result.
/// @brief Subtraction operator.
APInt operator-(const APInt& RHS) const;
APInt operator-(uint64_t RHS) const {
return (*this) - APInt(BitWidth, RHS);
}
APInt operator<<(unsigned Bits) const {
return shl(Bits);
}
/// Arithmetic right-shift this APInt by shiftAmt.
/// @brief Arithmetic right-shift function.
APInt ashr(uint32_t shiftAmt) const;
/// Logical right-shift this APInt by shiftAmt.
/// @brief Logical right-shift function.
APInt lshr(uint32_t shiftAmt) const;
/// Left-shift this APInt by shiftAmt.
/// @brief Left-shift function.
APInt shl(uint32_t shiftAmt) const;
/// @brief Rotate left by rotateAmt.
APInt rotl(uint32_t rotateAmt) const;
/// @brief Rotate right by rotateAmt.
APInt rotr(uint32_t rotateAmt) const;
/// Perform an unsigned divide operation on this APInt by RHS. Both this and
/// RHS are treated as unsigned quantities for purposes of this division.
/// @returns a new APInt value containing the division result
/// @brief Unsigned division operation.
APInt udiv(const APInt& RHS) const;
/// Signed divide this APInt by APInt RHS.
/// @brief Signed division function for APInt.
inline APInt sdiv(const APInt& RHS) const {
if (isNegative())
if (RHS.isNegative())
return (-(*this)).udiv(-RHS);
else
return -((-(*this)).udiv(RHS));
else if (RHS.isNegative())
return -(this->udiv(-RHS));
return this->udiv(RHS);
}
/// Perform an unsigned remainder operation on this APInt with RHS being the
/// divisor. Both this and RHS are treated as unsigned quantities for purposes
/// of this operation. Note that this is a true remainder operation and not
/// a modulo operation because the sign follows the sign of the dividend
/// which is *this.
/// @returns a new APInt value containing the remainder result
/// @brief Unsigned remainder operation.
APInt urem(const APInt& RHS) const;
/// Signed remainder operation on APInt.
/// @brief Function for signed remainder operation.
inline APInt srem(const APInt& RHS) const {
if (isNegative())
if (RHS.isNegative())
return -((-(*this)).urem(-RHS));
else
return -((-(*this)).urem(RHS));
else if (RHS.isNegative())
return this->urem(-RHS);
return this->urem(RHS);
}
/// Sometimes it is convenient to divide two APInt values and obtain both
/// the quotient and remainder. This function does both operations in the
/// same computation making it a little more efficient.
/// @brief Dual division/remainder interface.
static void udivrem(const APInt &LHS, const APInt &RHS,
APInt &Quotient, APInt &Remainder);
static void sdivrem(const APInt &LHS, const APInt &RHS,
APInt &Quotient, APInt &Remainder)
{
if (LHS.isNegative()) {
if (RHS.isNegative())
APInt::udivrem(-LHS, -RHS, Quotient, Remainder);
else
APInt::udivrem(-LHS, RHS, Quotient, Remainder);
Quotient = -Quotient;
Remainder = -Remainder;
} else if (RHS.isNegative()) {
APInt::udivrem(LHS, -RHS, Quotient, Remainder);
Quotient = -Quotient;
} else {
APInt::udivrem(LHS, RHS, Quotient, Remainder);
}
}
/// @returns the bit value at bitPosition
/// @brief Array-indexing support.
bool operator[](uint32_t bitPosition) const;
/// @}
/// @name Comparison Operators
/// @{
/// Compares this APInt with RHS for the validity of the equality
/// relationship.
/// @brief Equality operator.
bool operator==(const APInt& RHS) const;
/// Compares this APInt with a uint64_t for the validity of the equality
/// relationship.
/// @returns true if *this == Val
/// @brief Equality operator.
bool operator==(uint64_t Val) const;
/// Compares this APInt with RHS for the validity of the equality
/// relationship.
/// @returns true if *this == Val
/// @brief Equality comparison.
bool eq(const APInt &RHS) const {
return (*this) == RHS;
}
/// Compares this APInt with RHS for the validity of the inequality
/// relationship.
/// @returns true if *this != Val
/// @brief Inequality operator.
inline bool operator!=(const APInt& RHS) const {
return !((*this) == RHS);
}
/// Compares this APInt with a uint64_t for the validity of the inequality
/// relationship.
/// @returns true if *this != Val
/// @brief Inequality operator.
inline bool operator!=(uint64_t Val) const {
return !((*this) == Val);
}
/// Compares this APInt with RHS for the validity of the inequality
/// relationship.
/// @returns true if *this != Val
/// @brief Inequality comparison
bool ne(const APInt &RHS) const {
return !((*this) == RHS);
}
/// Regards both *this and RHS as unsigned quantities and compares them for
/// the validity of the less-than relationship.
/// @returns true if *this < RHS when both are considered unsigned.
/// @brief Unsigned less than comparison
bool ult(const APInt& RHS) const;
/// Regards both *this and RHS as signed quantities and compares them for
/// validity of the less-than relationship.
/// @returns true if *this < RHS when both are considered signed.
/// @brief Signed less than comparison
bool slt(const APInt& RHS) const;
/// Regards both *this and RHS as unsigned quantities and compares them for
/// validity of the less-or-equal relationship.
/// @returns true if *this <= RHS when both are considered unsigned.
/// @brief Unsigned less or equal comparison
bool ule(const APInt& RHS) const {
return ult(RHS) || eq(RHS);
}
/// Regards both *this and RHS as signed quantities and compares them for
/// validity of the less-or-equal relationship.
/// @returns true if *this <= RHS when both are considered signed.
/// @brief Signed less or equal comparison
bool sle(const APInt& RHS) const {
return slt(RHS) || eq(RHS);
}
/// Regards both *this and RHS as unsigned quantities and compares them for
/// the validity of the greater-than relationship.
/// @returns true if *this > RHS when both are considered unsigned.
/// @brief Unsigned greather than comparison
bool ugt(const APInt& RHS) const {
return !ult(RHS) && !eq(RHS);
}
/// Regards both *this and RHS as signed quantities and compares them for
/// the validity of the greater-than relationship.
/// @returns true if *this > RHS when both are considered signed.
/// @brief Signed greather than comparison
bool sgt(const APInt& RHS) const {
return !slt(RHS) && !eq(RHS);
}
/// Regards both *this and RHS as unsigned quantities and compares them for
/// validity of the greater-or-equal relationship.
/// @returns true if *this >= RHS when both are considered unsigned.
/// @brief Unsigned greater or equal comparison
bool uge(const APInt& RHS) const {
return !ult(RHS);
}
/// Regards both *this and RHS as signed quantities and compares them for
/// validity of the greater-or-equal relationship.
/// @returns true if *this >= RHS when both are considered signed.
/// @brief Signed greather or equal comparison
bool sge(const APInt& RHS) const {
return !slt(RHS);
}
/// @}
/// @name Resizing Operators
/// @{
/// Truncate the APInt to a specified width. It is an error to specify a width
/// that is greater than or equal to the current width.
/// @brief Truncate to new width.
APInt &trunc(uint32_t width);
/// This operation sign extends the APInt to a new width. If the high order
/// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
/// It is an error to specify a width that is less than or equal to the
/// current width.
/// @brief Sign extend to a new width.
APInt &sext(uint32_t width);
/// This operation zero extends the APInt to a new width. The high order bits
/// are filled with 0 bits. It is an error to specify a width that is less
/// than or equal to the current width.
/// @brief Zero extend to a new width.
APInt &zext(uint32_t width);
/// Make this APInt have the bit width given by \p width. The value is sign
/// extended, truncated, or left alone to make it that width.
/// @brief Sign extend or truncate to width
APInt &sextOrTrunc(uint32_t width);
/// Make this APInt have the bit width given by \p width. The value is zero
/// extended, truncated, or left alone to make it that width.
/// @brief Zero extend or truncate to width
APInt &zextOrTrunc(uint32_t width);
/// @}
/// @name Bit Manipulation Operators
/// @{
/// @brief Set every bit to 1.
APInt& set();
/// Set the given bit to 1 whose position is given as "bitPosition".
/// @brief Set a given bit to 1.
APInt& set(uint32_t bitPosition);
/// @brief Set every bit to 0.
APInt& clear();
/// Set the given bit to 0 whose position is given as "bitPosition".
/// @brief Set a given bit to 0.
APInt& clear(uint32_t bitPosition);
/// @brief Toggle every bit to its opposite value.
APInt& flip();
/// Toggle a given bit to its opposite value whose position is given
/// as "bitPosition".
/// @brief Toggles a given bit to its opposite value.
APInt& flip(uint32_t bitPosition);
/// @}
/// @name Value Characterization Functions
/// @{
/// @returns the total number of bits.
inline uint32_t getBitWidth() const {
return BitWidth;
}
/// Here one word's bitwidth equals to that of uint64_t.
/// @returns the number of words to hold the integer value of this APInt.
/// @brief Get the number of words.
inline uint32_t getNumWords() const {
return (BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
}
/// This function returns the number of active bits which is defined as the
/// bit width minus the number of leading zeros. This is used in several
/// computations to see how "wide" the value is.
/// @brief Compute the number of active bits in the value
inline uint32_t getActiveBits() const {
return BitWidth - countLeadingZeros();
}
/// This function returns the number of active words in the value of this
/// APInt. This is used in conjunction with getActiveData to extract the raw
/// value of the APInt.
inline uint32_t getActiveWords() const {
return whichWord(getActiveBits()-1) + 1;
}
/// Computes the minimum bit width for this APInt while considering it to be
/// a signed (and probably negative) value. If the value is not negative,
/// this function returns the same value as getActiveBits(). Otherwise, it
/// returns the smallest bit width that will retain the negative value. For
/// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
/// for -1, this function will always return 1.
/// @brief Get the minimum bit size for this signed APInt
inline uint32_t getMinSignedBits() const {
if (isNegative())
return BitWidth - countLeadingOnes() + 1;
return getActiveBits();
}
/// This method attempts to return the value of this APInt as a zero extended
/// uint64_t. The bitwidth must be <= 64 or the value must fit within a
/// uint64_t. Otherwise an assertion will result.
/// @brief Get zero extended value
inline uint64_t getZExtValue() const {
if (isSingleWord())
return VAL;
assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
return pVal[0];
}
/// This method attempts to return the value of this APInt as a sign extended
/// int64_t. The bit width must be <= 64 or the value must fit within an
/// int64_t. Otherwise an assertion will result.
/// @brief Get sign extended value
inline int64_t getSExtValue() const {
if (isSingleWord())
return int64_t(VAL << (APINT_BITS_PER_WORD - BitWidth)) >>
(APINT_BITS_PER_WORD - BitWidth);
assert(getActiveBits() <= 64 && "Too many bits for int64_t");
return int64_t(pVal[0]);
}
/// This method determines how many bits are required to hold the APInt
/// equivalent of the string given by \p str of length \p slen.
/// @brief Get bits required for string value.
static uint32_t getBitsNeeded(const char* str, uint32_t slen, uint8_t radix);
/// countLeadingZeros - This function is an APInt version of the
/// countLeadingZeros_{32,64} functions in MathExtras.h. It counts the number
/// of zeros from the most significant bit to the first one bit.
/// @returns getNumWords() * APINT_BITS_PER_WORD if the value is zero.
/// @returns the number of zeros from the most significant bit to the first
/// one bits.
/// @brief Count the number of leading one bits.
uint32_t countLeadingZeros() const;
/// countLeadingOnes - This function counts the number of contiguous 1 bits
/// in the high order bits. The count stops when the first 0 bit is reached.
/// @returns 0 if the high order bit is not set
/// @returns the number of 1 bits from the most significant to the least
/// @brief Count the number of leading one bits.
uint32_t countLeadingOnes() const;
/// countTrailingZeros - This function is an APInt version of the
/// countTrailingZoers_{32,64} functions in MathExtras.h. It counts
/// the number of zeros from the least significant bit to the first one bit.
/// @returns getNumWords() * APINT_BITS_PER_WORD if the value is zero.
/// @returns the number of zeros from the least significant bit to the first
/// one bit.
/// @brief Count the number of trailing zero bits.
uint32_t countTrailingZeros() const;
/// countPopulation - This function is an APInt version of the
/// countPopulation_{32,64} functions in MathExtras.h. It counts the number
/// of 1 bits in the APInt value.
/// @returns 0 if the value is zero.
/// @returns the number of set bits.
/// @brief Count the number of bits set.
uint32_t countPopulation() const;
/// @}
/// @name Conversion Functions
/// @{
/// This is used internally to convert an APInt to a string.
/// @brief Converts an APInt to a std::string
std::string toString(uint8_t radix, bool wantSigned) const;
/// Considers the APInt to be unsigned and converts it into a string in the
/// radix given. The radix can be 2, 8, 10 or 16.
/// @returns a character interpretation of the APInt
/// @brief Convert unsigned APInt to string representation.
inline std::string toString(uint8_t radix = 10) const {
return toString(radix, false);
}
/// Considers the APInt to be unsigned and converts it into a string in the
/// radix given. The radix can be 2, 8, 10 or 16.
/// @returns a character interpretation of the APInt
/// @brief Convert unsigned APInt to string representation.
inline std::string toStringSigned(uint8_t radix = 10) const {
return toString(radix, true);
}
/// @returns a byte-swapped representation of this APInt Value.
APInt byteSwap() const;
/// @brief Converts this APInt to a double value.
double roundToDouble(bool isSigned) const;
/// @brief Converts this unsigned APInt to a double value.
double roundToDouble() const {
return roundToDouble(false);
}
/// @brief Converts this signed APInt to a double value.
double signedRoundToDouble() const {
return roundToDouble(true);
}
/// The conversion does not do a translation from integer to double, it just
/// re-interprets the bits as a double. Note that it is valid to do this on
/// any bit width. Exactly 64 bits will be translated.
/// @brief Converts APInt bits to a double
double bitsToDouble() const {
union {
uint64_t I;
double D;
} T;
T.I = (isSingleWord() ? VAL : pVal[0]);
return T.D;
}
/// The conversion does not do a translation from integer to float, it just
/// re-interprets the bits as a float. Note that it is valid to do this on
/// any bit width. Exactly 32 bits will be translated.
/// @brief Converts APInt bits to a double
float bitsToFloat() const {
union {
uint32_t I;
float F;
} T;
T.I = uint32_t((isSingleWord() ? VAL : pVal[0]));
return T.F;
}
/// The conversion does not do a translation from double to integer, it just
/// re-interprets the bits of the double. Note that it is valid to do this on
/// any bit width but bits from V may get truncated.
/// @brief Converts a double to APInt bits.
APInt& doubleToBits(double V) {
union {
uint64_t I;
double D;
} T;
T.D = V;
if (isSingleWord())
VAL = T.I;
else
pVal[0] = T.I;
return clearUnusedBits();
}
/// The conversion does not do a translation from float to integer, it just
/// re-interprets the bits of the float. Note that it is valid to do this on
/// any bit width but bits from V may get truncated.
/// @brief Converts a float to APInt bits.
APInt& floatToBits(float V) {
union {
uint32_t I;
float F;
} T;
T.F = V;
if (isSingleWord())
VAL = T.I;
else
pVal[0] = T.I;
return clearUnusedBits();
}
/// @}
/// @name Mathematics Operations
/// @{
/// @returns the floor log base 2 of this APInt.
inline uint32_t logBase2() const {
return BitWidth - 1 - countLeadingZeros();
}
/// @returns the log base 2 of this APInt if its an exact power of two, -1
/// otherwise
inline int32_t exactLogBase2() const {
if (!isPowerOf2())
return -1;
return logBase2();
}
/// @brief Compute the square root
APInt sqrt() const;
/// If *this is < 0 then return -(*this), otherwise *this;
/// @brief Get the absolute value;
APInt abs() const {
if (isNegative())
return -(*this);
return *this;
}
/// @}
/// @}
/// @name Building-block Operations for APInt and APFloat
/// @{
// These building block operations operate on a representation of
// arbitrary precision, two's-complement, bignum integer values.
// They should be sufficient to implement APInt and APFloat bignum
// requirements. Inputs are generally a pointer to the base of an
// array of integer parts, representing an unsigned bignum, and a
// count of how many parts there are.
/// Sets the least significant part of a bignum to the input value,
/// and zeroes out higher parts. */
static void tcSet(integerPart *, integerPart, unsigned int);
/// Assign one bignum to another.
static void tcAssign(integerPart *, const integerPart *, unsigned int);
/// Returns true if a bignum is zero, false otherwise.
static bool tcIsZero(const integerPart *, unsigned int);
/// Extract the given bit of a bignum; returns 0 or 1. Zero-based.
static int tcExtractBit(const integerPart *, unsigned int bit);
/// Set the given bit of a bignum. Zero-based.
static void tcSetBit(integerPart *, unsigned int bit);
/// Returns the bit number of the least or most significant set bit
/// of a number. If the input number has no bits set -1U is
/// returned.
static unsigned int tcLSB(const integerPart *, unsigned int);
static unsigned int tcMSB(const integerPart *, unsigned int);
/// Negate a bignum in-place.
static void tcNegate(integerPart *, unsigned int);
/// DST += RHS + CARRY where CARRY is zero or one. Returns the
/// carry flag.
static integerPart tcAdd(integerPart *, const integerPart *,
integerPart carry, unsigned);
/// DST -= RHS + CARRY where CARRY is zero or one. Returns the
/// carry flag.
static integerPart tcSubtract(integerPart *, const integerPart *,
integerPart carry, unsigned);
/// DST += SRC * MULTIPLIER + PART if add is true
/// DST = SRC * MULTIPLIER + PART if add is false
///
/// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC
/// they must start at the same point, i.e. DST == SRC.
///
/// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is
/// returned. Otherwise DST is filled with the least significant
/// DSTPARTS parts of the result, and if all of the omitted higher
/// parts were zero return zero, otherwise overflow occurred and
/// return one.
static int tcMultiplyPart(integerPart *dst, const integerPart *src,
integerPart multiplier, integerPart carry,
unsigned int srcParts, unsigned int dstParts,
bool add);
/// DST = LHS * RHS, where DST has the same width as the operands
/// and is filled with the least significant parts of the result.
/// Returns one if overflow occurred, otherwise zero. DST must be
/// disjoint from both operands.
static int tcMultiply(integerPart *, const integerPart *,
const integerPart *, unsigned);
/// DST = LHS * RHS, where DST has twice the width as the operands.
/// No overflow occurs. DST must be disjoint from both operands.
static void tcFullMultiply(integerPart *, const integerPart *,
const integerPart *, unsigned);
/// If RHS is zero LHS and REMAINDER are left unchanged, return one.
/// Otherwise set LHS to LHS / RHS with the fractional part
/// discarded, set REMAINDER to the remainder, return zero. i.e.
///
/// OLD_LHS = RHS * LHS + REMAINDER
///
/// SCRATCH is a bignum of the same size as the operands and result
/// for use by the routine; its contents need not be initialized
/// and are destroyed. LHS, REMAINDER and SCRATCH must be
/// distinct.
static int tcDivide(integerPart *lhs, const integerPart *rhs,
integerPart *remainder, integerPart *scratch,
unsigned int parts);
/// Shift a bignum left COUNT bits. Shifted in bits are zero.
/// There are no restrictions on COUNT.
static void tcShiftLeft(integerPart *, unsigned int parts,
unsigned int count);
/// Shift a bignum right COUNT bits. Shifted in bits are zero.
/// There are no restrictions on COUNT.
static void tcShiftRight(integerPart *, unsigned int parts,
unsigned int count);
/// The obvious AND, OR and XOR and complement operations.
static void tcAnd(integerPart *, const integerPart *, unsigned int);
static void tcOr(integerPart *, const integerPart *, unsigned int);
static void tcXor(integerPart *, const integerPart *, unsigned int);
static void tcComplement(integerPart *, unsigned int);
/// Comparison (unsigned) of two bignums.
static int tcCompare(const integerPart *, const integerPart *,
unsigned int);
/// Increment a bignum in-place. Return the carry flag.
static integerPart tcIncrement(integerPart *, unsigned int);
/// Set the least significant BITS and clear the rest.
static void tcSetLeastSignificantBits(integerPart *, unsigned int,
unsigned int bits);
/// @}
};
inline bool operator==(uint64_t V1, const APInt& V2) {
return V2 == V1;
}
inline bool operator!=(uint64_t V1, const APInt& V2) {
return V2 != V1;
}
namespace APIntOps {
/// @brief Determine the smaller of two APInts considered to be signed.
inline APInt smin(const APInt &A, const APInt &B) {
return A.slt(B) ? A : B;
}
/// @brief Determine the larger of two APInts considered to be signed.
inline APInt smax(const APInt &A, const APInt &B) {
return A.sgt(B) ? A : B;
}
/// @brief Determine the smaller of two APInts considered to be signed.
inline APInt umin(const APInt &A, const APInt &B) {
return A.ult(B) ? A : B;
}
/// @brief Determine the larger of two APInts considered to be unsigned.
inline APInt umax(const APInt &A, const APInt &B) {
return A.ugt(B) ? A : B;
}
/// @brief Check if the specified APInt has a N-bits integer value.
inline bool isIntN(uint32_t N, const APInt& APIVal) {
return APIVal.isIntN(N);
}
/// @returns true if the argument APInt value is a sequence of ones
/// starting at the least significant bit with the remainder zero.
inline bool isMask(uint32_t numBits, const APInt& APIVal) {
return APIVal.getBoolValue() && ((APIVal + APInt(numBits,1)) & APIVal) == 0;
}
/// @returns true if the argument APInt value contains a sequence of ones
/// with the remainder zero.
inline bool isShiftedMask(uint32_t numBits, const APInt& APIVal) {
return isMask(numBits, (APIVal - APInt(numBits,1)) | APIVal);
}
/// @returns a byte-swapped representation of the specified APInt Value.
inline APInt byteSwap(const APInt& APIVal) {
return APIVal.byteSwap();
}
/// @returns the floor log base 2 of the specified APInt value.
inline uint32_t logBase2(const APInt& APIVal) {
return APIVal.logBase2();
}
/// GreatestCommonDivisor - This function returns the greatest common
/// divisor of the two APInt values using Enclid's algorithm.
/// @returns the greatest common divisor of Val1 and Val2
/// @brief Compute GCD of two APInt values.
APInt GreatestCommonDivisor(const APInt& Val1, const APInt& Val2);
/// Treats the APInt as an unsigned value for conversion purposes.
/// @brief Converts the given APInt to a double value.
inline double RoundAPIntToDouble(const APInt& APIVal) {
return APIVal.roundToDouble();
}
/// Treats the APInt as a signed value for conversion purposes.
/// @brief Converts the given APInt to a double value.
inline double RoundSignedAPIntToDouble(const APInt& APIVal) {
return APIVal.signedRoundToDouble();
}
/// @brief Converts the given APInt to a float vlalue.
inline float RoundAPIntToFloat(const APInt& APIVal) {
return float(RoundAPIntToDouble(APIVal));
}
/// Treast the APInt as a signed value for conversion purposes.
/// @brief Converts the given APInt to a float value.
inline float RoundSignedAPIntToFloat(const APInt& APIVal) {
return float(APIVal.signedRoundToDouble());
}
/// RoundDoubleToAPInt - This function convert a double value to an APInt value.
/// @brief Converts the given double value into a APInt.
APInt RoundDoubleToAPInt(double Double, uint32_t width);
/// RoundFloatToAPInt - Converts a float value into an APInt value.
/// @brief Converts a float value into a APInt.
inline APInt RoundFloatToAPInt(float Float, uint32_t width) {
return RoundDoubleToAPInt(double(Float), width);
}
/// Arithmetic right-shift the APInt by shiftAmt.
/// @brief Arithmetic right-shift function.
inline APInt ashr(const APInt& LHS, uint32_t shiftAmt) {
return LHS.ashr(shiftAmt);
}
/// Logical right-shift the APInt by shiftAmt.
/// @brief Logical right-shift function.
inline APInt lshr(const APInt& LHS, uint32_t shiftAmt) {
return LHS.lshr(shiftAmt);
}
/// Left-shift the APInt by shiftAmt.
/// @brief Left-shift function.
inline APInt shl(const APInt& LHS, uint32_t shiftAmt) {
return LHS.shl(shiftAmt);
}
/// Signed divide APInt LHS by APInt RHS.
/// @brief Signed division function for APInt.
inline APInt sdiv(const APInt& LHS, const APInt& RHS) {
return LHS.sdiv(RHS);
}
/// Unsigned divide APInt LHS by APInt RHS.
/// @brief Unsigned division function for APInt.
inline APInt udiv(const APInt& LHS, const APInt& RHS) {
return LHS.udiv(RHS);
}
/// Signed remainder operation on APInt.
/// @brief Function for signed remainder operation.
inline APInt srem(const APInt& LHS, const APInt& RHS) {
return LHS.srem(RHS);
}
/// Unsigned remainder operation on APInt.
/// @brief Function for unsigned remainder operation.
inline APInt urem(const APInt& LHS, const APInt& RHS) {
return LHS.urem(RHS);
}
/// Performs multiplication on APInt values.
/// @brief Function for multiplication operation.
inline APInt mul(const APInt& LHS, const APInt& RHS) {
return LHS * RHS;
}
/// Performs addition on APInt values.
/// @brief Function for addition operation.
inline APInt add(const APInt& LHS, const APInt& RHS) {
return LHS + RHS;
}
/// Performs subtraction on APInt values.
/// @brief Function for subtraction operation.
inline APInt sub(const APInt& LHS, const APInt& RHS) {
return LHS - RHS;
}
/// Performs bitwise AND operation on APInt LHS and
/// APInt RHS.
/// @brief Bitwise AND function for APInt.
inline APInt And(const APInt& LHS, const APInt& RHS) {
return LHS & RHS;
}
/// Performs bitwise OR operation on APInt LHS and APInt RHS.
/// @brief Bitwise OR function for APInt.
inline APInt Or(const APInt& LHS, const APInt& RHS) {
return LHS | RHS;
}
/// Performs bitwise XOR operation on APInt.
/// @brief Bitwise XOR function for APInt.
inline APInt Xor(const APInt& LHS, const APInt& RHS) {
return LHS ^ RHS;
}
/// Performs a bitwise complement operation on APInt.
/// @brief Bitwise complement function.
inline APInt Not(const APInt& APIVal) {
return ~APIVal;
}
} // End of APIntOps namespace
} // End of llvm namespace
#endif