llvm-6502/include/llvm/Support/CallSite.h
Gabor Greif c8b82ccbcf Introduce ImmutableCallSite, useful for contexts where no mutation
is necessary. Inherits from new templated baseclass CallSiteBase<>
which is highly customizable. Base CallSite on it too, in a configuration
that allows full mutation.
Adapt some call sites in analyses to employ ImmutableCallSite.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@100100 91177308-0d34-0410-b5e6-96231b3b80d8
2010-04-01 08:21:08 +00:00

272 lines
9.6 KiB
C++

//===-- llvm/Support/CallSite.h - Abstract Call & Invoke instrs -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the CallSite class, which is a handy wrapper for code that
// wants to treat Call and Invoke instructions in a generic way. When in non-
// mutation context (e.g. an analysis) ImmutableCallSite should be used.
// Finally, when some degree of customization is necessary between these two
// extremes, CallSiteBase<> can be supplied with fine-tuned parameters.
//
// NOTE: These classes are supposed to have "value semantics". So they should be
// passed by value, not by reference; they should not be "new"ed or "delete"d.
// They are efficiently copyable, assignable and constructable, with cost
// equivalent to copying a pointer (notice that they have only a single data
// member). The internal representation carries a flag which indicates which of
// the two variants is enclosed. This allows for cheaper checks when various
// accessors of CallSite are employed.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_CALLSITE_H
#define LLVM_SUPPORT_CALLSITE_H
#include "llvm/Attributes.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/BasicBlock.h"
#include "llvm/CallingConv.h"
#include "llvm/Instruction.h"
namespace llvm {
class CallInst;
class InvokeInst;
template <typename FunTy = const Function,
typename ValTy = const Value,
typename UserTy = const User,
typename InstrTy = const Instruction,
typename CallTy = const CallInst,
typename InvokeTy = const InvokeInst,
typename IterTy = User::const_op_iterator>
class CallSiteBase {
protected:
PointerIntPair<InstrTy*, 1, bool> I;
public:
CallSiteBase() : I(0, false) {}
CallSiteBase(CallTy *CI) : I(reinterpret_cast<InstrTy*>(CI), true) {}
CallSiteBase(InvokeTy *II) : I(reinterpret_cast<InstrTy*>(II), false) {}
CallSiteBase(ValTy *II) { *this = get(II); }
CallSiteBase(InstrTy *II) {
assert(II && "Null instruction given?");
*this = get(II);
assert(I.getPointer());
}
/// CallSiteBase::get - This static method is sort of like a constructor. It
/// will create an appropriate call site for a Call or Invoke instruction, but
/// it can also create a null initialized CallSiteBase object for something
/// which is NOT a call site.
///
static CallSiteBase get(ValTy *V) {
if (InstrTy *II = dyn_cast<InstrTy>(V)) {
if (II->getOpcode() == Instruction::Call)
return CallSiteBase(reinterpret_cast<CallTy*>(II));
else if (II->getOpcode() == Instruction::Invoke)
return CallSiteBase(reinterpret_cast<InvokeTy*>(II));
}
return CallSiteBase();
}
/// isCall - true if a CallInst is enclosed.
/// Note that !isCall() does not mean it is an InvokeInst enclosed,
/// it also could signify a NULL Instruction pointer.
bool isCall() const { return I.getInt(); }
/// isInvoke - true if a InvokeInst is enclosed.
///
bool isInvoke() const { return getInstruction() && !I.getInt(); }
InstrTy *getInstruction() const { return I.getPointer(); }
InstrTy *operator->() const { return I.getPointer(); }
operator bool() const { return I.getPointer(); }
/// getCalledValue - Return the pointer to function that is being called...
///
ValTy *getCalledValue() const {
assert(getInstruction() && "Not a call or invoke instruction!");
return *getCallee();
}
/// getCalledFunction - Return the function being called if this is a direct
/// call, otherwise return null (if it's an indirect call).
///
FunTy *getCalledFunction() const {
return dyn_cast<FunTy>(getCalledValue());
}
/// setCalledFunction - Set the callee to the specified value...
///
void setCalledFunction(Value *V) {
assert(getInstruction() && "Not a call or invoke instruction!");
*getCallee() = V;
}
/// isCallee - Determine whether the passed iterator points to the
/// callee operand's Use.
///
bool isCallee(value_use_iterator<UserTy> UI) const {
return getCallee() == &UI.getUse();
}
ValTy *getArgument(unsigned ArgNo) const {
assert(arg_begin() + ArgNo < arg_end() && "Argument # out of range!");
return *(arg_begin()+ArgNo);
}
void setArgument(unsigned ArgNo, Value* newVal) {
assert(getInstruction() && "Not a call or invoke instruction!");
assert(arg_begin() + ArgNo < arg_end() && "Argument # out of range!");
getInstruction()->setOperand(getArgumentOffset() + ArgNo, newVal);
}
/// Given a value use iterator, returns the argument that corresponds to it.
/// Iterator must actually correspond to an argument.
unsigned getArgumentNo(value_use_iterator<UserTy> I) const {
assert(getInstruction() && "Not a call or invoke instruction!");
assert(arg_begin() <= &I.getUse() && &I.getUse() < arg_end()
&& "Argument # out of range!");
return &I.getUse() - arg_begin();
}
/// arg_iterator - The type of iterator to use when looping over actual
/// arguments at this call site...
typedef IterTy arg_iterator;
/// arg_begin/arg_end - Return iterators corresponding to the actual argument
/// list for a call site.
IterTy arg_begin() const {
assert(getInstruction() && "Not a call or invoke instruction!");
// Skip non-arguments
return (*this)->op_begin() + getArgumentOffset();
}
IterTy arg_end() const { return (*this)->op_end() - getArgumentEndOffset(); }
bool arg_empty() const { return arg_end() == arg_begin(); }
unsigned arg_size() const { return unsigned(arg_end() - arg_begin()); }
private:
/// Returns the operand number of the first argument
unsigned getArgumentOffset() const {
if (isCall())
return 1; // Skip Function (ATM)
else
return 0; // Args are at the front
}
unsigned getArgumentEndOffset() const {
if (isCall())
return 0; // Unchanged (ATM)
else
return 3; // Skip BB, BB, Function
}
IterTy getCallee() const {
// FIXME: this is slow, since we do not have the fast versions
// of the op_*() functions here. See CallSite::getCallee.
//
if (isCall())
return getInstruction()->op_begin(); // Unchanged (ATM)
else
return getInstruction()->op_end() - 3; // Skip BB, BB, Function
}
};
/// ImmutableCallSite - establish a view to a call site for examination
class ImmutableCallSite : public CallSiteBase<> {
typedef CallSiteBase<> _Base;
public:
ImmutableCallSite(const Value* V) : _Base(V) {}
ImmutableCallSite(const CallInst *CI) : _Base(CI) {}
ImmutableCallSite(const InvokeInst *II) : _Base(II) {}
ImmutableCallSite(const Instruction *II) : _Base(II) {}
};
class CallSite : public CallSiteBase<Function, Value, User, Instruction,
CallInst, InvokeInst, User::op_iterator> {
typedef CallSiteBase<Function, Value, User, Instruction,
CallInst, InvokeInst, User::op_iterator> _Base;
public:
CallSite() {}
CallSite(_Base B) : _Base(B) {}
CallSite(CallInst *CI) : _Base(CI) {}
CallSite(InvokeInst *II) : _Base(II) {}
CallSite(Instruction *II) : _Base(II) {}
bool operator==(const CallSite &CS) const { return I == CS.I; }
bool operator!=(const CallSite &CS) const { return I != CS.I; }
/// CallSite::get - This static method is sort of like a constructor. It will
/// create an appropriate call site for a Call or Invoke instruction, but it
/// can also create a null initialized CallSite object for something which is
/// NOT a call site.
///
static CallSite get(Value *V) {
return _Base::get(V);
}
/// getCallingConv/setCallingConv - get or set the calling convention of the
/// call.
CallingConv::ID getCallingConv() const;
void setCallingConv(CallingConv::ID CC);
/// getAttributes/setAttributes - get or set the parameter attributes of
/// the call.
const AttrListPtr &getAttributes() const;
void setAttributes(const AttrListPtr &PAL);
/// paramHasAttr - whether the call or the callee has the given attribute.
bool paramHasAttr(uint16_t i, Attributes attr) const;
/// @brief Extract the alignment for a call or parameter (0=unknown).
uint16_t getParamAlignment(uint16_t i) const;
/// @brief Return true if the call should not be inlined.
bool isNoInline() const;
void setIsNoInline(bool Value = true);
/// @brief Determine if the call does not access memory.
bool doesNotAccessMemory() const;
void setDoesNotAccessMemory(bool doesNotAccessMemory = true);
/// @brief Determine if the call does not access or only reads memory.
bool onlyReadsMemory() const;
void setOnlyReadsMemory(bool onlyReadsMemory = true);
/// @brief Determine if the call cannot return.
bool doesNotReturn() const;
void setDoesNotReturn(bool doesNotReturn = true);
/// @brief Determine if the call cannot unwind.
bool doesNotThrow() const;
void setDoesNotThrow(bool doesNotThrow = true);
/// getType - Return the type of the instruction that generated this call site
///
const Type *getType() const { return (*this)->getType(); }
/// getCaller - Return the caller function for this call site
///
Function *getCaller() const { return (*this)->getParent()->getParent(); }
/// hasArgument - Returns true if this CallSite passes the given Value* as an
/// argument to the called function.
bool hasArgument(const Value *Arg) const;
bool operator<(const CallSite &CS) const {
return getInstruction() < CS.getInstruction();
}
private:
User::op_iterator getCallee() const;
};
} // End llvm namespace
#endif