llvm-6502/lib/Target/X86/X86TargetMachine.cpp
Jim Grosbach fa85eb6237 Fix PR6696 and PR6663
When a frame pointer is not otherwise required, and dynamic stack alignment
is necessary solely due to the spilling of a register with larger alignment
requirements than the default stack alignment, the frame pointer can be both
used as a general purpose register and a frame pointer. That goes poorly, for
obvious reasons. This patch brings back a bit of old logic for identifying
the use of such registers and conservatively reserves the frame pointer
during register allocation in such cases.

For now, implement for X86 only since it's 32-bit linux which is hitting this,
and we want a targeted fix for 2.7. As a follow-on, this will be expanded
to handle other targets, as theoretically the problem could arise elsewhere
as well.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@100559 91177308-0d34-0410-b5e6-96231b3b80d8
2010-04-06 20:26:37 +00:00

219 lines
7.5 KiB
C++

//===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the X86 specific subclass of TargetMachine.
//
//===----------------------------------------------------------------------===//
#include "X86MCAsmInfo.h"
#include "X86TargetMachine.h"
#include "X86.h"
#include "llvm/PassManager.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Target/TargetRegistry.h"
using namespace llvm;
static MCAsmInfo *createMCAsmInfo(const Target &T, StringRef TT) {
Triple TheTriple(TT);
switch (TheTriple.getOS()) {
case Triple::Darwin:
return new X86MCAsmInfoDarwin(TheTriple);
case Triple::MinGW32:
case Triple::MinGW64:
case Triple::Cygwin:
case Triple::Win32:
return new X86MCAsmInfoCOFF(TheTriple);
default:
return new X86ELFMCAsmInfo(TheTriple);
}
}
extern "C" void LLVMInitializeX86Target() {
// Register the target.
RegisterTargetMachine<X86_32TargetMachine> X(TheX86_32Target);
RegisterTargetMachine<X86_64TargetMachine> Y(TheX86_64Target);
// Register the target asm info.
RegisterAsmInfoFn A(TheX86_32Target, createMCAsmInfo);
RegisterAsmInfoFn B(TheX86_64Target, createMCAsmInfo);
// Register the code emitter.
TargetRegistry::RegisterCodeEmitter(TheX86_32Target,
createX86_32MCCodeEmitter);
TargetRegistry::RegisterCodeEmitter(TheX86_64Target,
createX86_64MCCodeEmitter);
// Register the asm backend.
TargetRegistry::RegisterAsmBackend(TheX86_32Target,
createX86_32AsmBackend);
TargetRegistry::RegisterAsmBackend(TheX86_64Target,
createX86_64AsmBackend);
}
X86_32TargetMachine::X86_32TargetMachine(const Target &T, const std::string &TT,
const std::string &FS)
: X86TargetMachine(T, TT, FS, false) {
}
X86_64TargetMachine::X86_64TargetMachine(const Target &T, const std::string &TT,
const std::string &FS)
: X86TargetMachine(T, TT, FS, true) {
}
/// X86TargetMachine ctor - Create an X86 target.
///
X86TargetMachine::X86TargetMachine(const Target &T, const std::string &TT,
const std::string &FS, bool is64Bit)
: LLVMTargetMachine(T, TT),
Subtarget(TT, FS, is64Bit),
DataLayout(Subtarget.getDataLayout()),
FrameInfo(TargetFrameInfo::StackGrowsDown,
Subtarget.getStackAlignment(),
(Subtarget.isTargetWin64() ? -40 :
(Subtarget.is64Bit() ? -8 : -4))),
InstrInfo(*this), JITInfo(*this), TLInfo(*this), ELFWriterInfo(*this) {
DefRelocModel = getRelocationModel();
// If no relocation model was picked, default as appropriate for the target.
if (getRelocationModel() == Reloc::Default) {
if (!Subtarget.isTargetDarwin())
setRelocationModel(Reloc::Static);
else if (Subtarget.is64Bit())
setRelocationModel(Reloc::PIC_);
else
setRelocationModel(Reloc::DynamicNoPIC);
}
assert(getRelocationModel() != Reloc::Default &&
"Relocation mode not picked");
// ELF and X86-64 don't have a distinct DynamicNoPIC model. DynamicNoPIC
// is defined as a model for code which may be used in static or dynamic
// executables but not necessarily a shared library. On X86-32 we just
// compile in -static mode, in x86-64 we use PIC.
if (getRelocationModel() == Reloc::DynamicNoPIC) {
if (is64Bit)
setRelocationModel(Reloc::PIC_);
else if (!Subtarget.isTargetDarwin())
setRelocationModel(Reloc::Static);
}
// If we are on Darwin, disallow static relocation model in X86-64 mode, since
// the Mach-O file format doesn't support it.
if (getRelocationModel() == Reloc::Static &&
Subtarget.isTargetDarwin() &&
is64Bit)
setRelocationModel(Reloc::PIC_);
// Determine the PICStyle based on the target selected.
if (getRelocationModel() == Reloc::Static) {
// Unless we're in PIC or DynamicNoPIC mode, set the PIC style to None.
Subtarget.setPICStyle(PICStyles::None);
} else if (Subtarget.isTargetCygMing()) {
Subtarget.setPICStyle(PICStyles::None);
} else if (Subtarget.isTargetDarwin()) {
if (Subtarget.is64Bit())
Subtarget.setPICStyle(PICStyles::RIPRel);
else if (getRelocationModel() == Reloc::PIC_)
Subtarget.setPICStyle(PICStyles::StubPIC);
else {
assert(getRelocationModel() == Reloc::DynamicNoPIC);
Subtarget.setPICStyle(PICStyles::StubDynamicNoPIC);
}
} else if (Subtarget.isTargetELF()) {
if (Subtarget.is64Bit())
Subtarget.setPICStyle(PICStyles::RIPRel);
else
Subtarget.setPICStyle(PICStyles::GOT);
}
// Finally, if we have "none" as our PIC style, force to static mode.
if (Subtarget.getPICStyle() == PICStyles::None)
setRelocationModel(Reloc::Static);
}
//===----------------------------------------------------------------------===//
// Pass Pipeline Configuration
//===----------------------------------------------------------------------===//
bool X86TargetMachine::addInstSelector(PassManagerBase &PM,
CodeGenOpt::Level OptLevel) {
// Install an instruction selector.
PM.add(createX86ISelDag(*this, OptLevel));
// Install a pass to insert x87 FP_REG_KILL instructions, as needed.
PM.add(createX87FPRegKillInserterPass());
return false;
}
bool X86TargetMachine::addPreRegAlloc(PassManagerBase &PM,
CodeGenOpt::Level OptLevel) {
PM.add(createX86MaxStackAlignmentHeuristicPass());
return false; // -print-machineinstr shouldn't print after this.
}
bool X86TargetMachine::addPostRegAlloc(PassManagerBase &PM,
CodeGenOpt::Level OptLevel) {
PM.add(createX86FloatingPointStackifierPass());
return true; // -print-machineinstr should print after this.
}
bool X86TargetMachine::addPreEmitPass(PassManagerBase &PM,
CodeGenOpt::Level OptLevel) {
if (OptLevel != CodeGenOpt::None && Subtarget.hasSSE2()) {
PM.add(createSSEDomainFixPass());
return true;
}
return false;
}
bool X86TargetMachine::addCodeEmitter(PassManagerBase &PM,
CodeGenOpt::Level OptLevel,
JITCodeEmitter &JCE) {
// FIXME: Move this to TargetJITInfo!
// On Darwin, do not override 64-bit setting made in X86TargetMachine().
if (DefRelocModel == Reloc::Default &&
(!Subtarget.isTargetDarwin() || !Subtarget.is64Bit())) {
setRelocationModel(Reloc::Static);
Subtarget.setPICStyle(PICStyles::None);
}
PM.add(createX86JITCodeEmitterPass(*this, JCE));
return false;
}
void X86TargetMachine::setCodeModelForStatic() {
if (getCodeModel() != CodeModel::Default) return;
// For static codegen, if we're not already set, use Small codegen.
setCodeModel(CodeModel::Small);
}
void X86TargetMachine::setCodeModelForJIT() {
if (getCodeModel() != CodeModel::Default) return;
// 64-bit JIT places everything in the same buffer except external functions.
if (Subtarget.is64Bit())
setCodeModel(CodeModel::Large);
else
setCodeModel(CodeModel::Small);
}