mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-23 15:29:51 +00:00
f5a90561b0
This takes the linking of libxul on linux from 6m54.931s to 5m39.840s. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129009 91177308-0d34-0410-b5e6-96231b3b80d8
554 lines
19 KiB
C++
554 lines
19 KiB
C++
//===-- ValueEnumerator.cpp - Number values and types for bitcode writer --===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the ValueEnumerator class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "ValueEnumerator.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/TypeSymbolTable.h"
|
|
#include "llvm/ValueSymbolTable.h"
|
|
#include "llvm/Instructions.h"
|
|
#include <algorithm>
|
|
using namespace llvm;
|
|
|
|
static bool isIntegerValue(const std::pair<const Value*, unsigned> &V) {
|
|
return V.first->getType()->isIntegerTy();
|
|
}
|
|
|
|
/// ValueEnumerator - Enumerate module-level information.
|
|
ValueEnumerator::ValueEnumerator(const Module *M) {
|
|
// Enumerate the global variables.
|
|
for (Module::const_global_iterator I = M->global_begin(),
|
|
E = M->global_end(); I != E; ++I)
|
|
EnumerateValue(I);
|
|
|
|
// Enumerate the functions.
|
|
for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) {
|
|
EnumerateValue(I);
|
|
EnumerateAttributes(cast<Function>(I)->getAttributes());
|
|
}
|
|
|
|
// Enumerate the aliases.
|
|
for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
|
|
I != E; ++I)
|
|
EnumerateValue(I);
|
|
|
|
// Remember what is the cutoff between globalvalue's and other constants.
|
|
unsigned FirstConstant = Values.size();
|
|
|
|
// Enumerate the global variable initializers.
|
|
for (Module::const_global_iterator I = M->global_begin(),
|
|
E = M->global_end(); I != E; ++I)
|
|
if (I->hasInitializer())
|
|
EnumerateValue(I->getInitializer());
|
|
|
|
// Enumerate the aliasees.
|
|
for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
|
|
I != E; ++I)
|
|
EnumerateValue(I->getAliasee());
|
|
|
|
// Enumerate types used by the type symbol table.
|
|
EnumerateTypeSymbolTable(M->getTypeSymbolTable());
|
|
|
|
// Insert constants and metadata that are named at module level into the slot
|
|
// pool so that the module symbol table can refer to them...
|
|
EnumerateValueSymbolTable(M->getValueSymbolTable());
|
|
EnumerateNamedMetadata(M);
|
|
|
|
SmallVector<std::pair<unsigned, MDNode*>, 8> MDs;
|
|
|
|
// Enumerate types used by function bodies and argument lists.
|
|
for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
|
|
|
|
for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
|
|
I != E; ++I)
|
|
EnumerateType(I->getType());
|
|
|
|
for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
|
|
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;++I){
|
|
for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
|
|
OI != E; ++OI) {
|
|
if (MDNode *MD = dyn_cast<MDNode>(*OI))
|
|
if (MD->isFunctionLocal() && MD->getFunction())
|
|
// These will get enumerated during function-incorporation.
|
|
continue;
|
|
EnumerateOperandType(*OI);
|
|
}
|
|
EnumerateType(I->getType());
|
|
if (const CallInst *CI = dyn_cast<CallInst>(I))
|
|
EnumerateAttributes(CI->getAttributes());
|
|
else if (const InvokeInst *II = dyn_cast<InvokeInst>(I))
|
|
EnumerateAttributes(II->getAttributes());
|
|
|
|
// Enumerate metadata attached with this instruction.
|
|
MDs.clear();
|
|
I->getAllMetadataOtherThanDebugLoc(MDs);
|
|
for (unsigned i = 0, e = MDs.size(); i != e; ++i)
|
|
EnumerateMetadata(MDs[i].second);
|
|
|
|
if (!I->getDebugLoc().isUnknown()) {
|
|
MDNode *Scope, *IA;
|
|
I->getDebugLoc().getScopeAndInlinedAt(Scope, IA, I->getContext());
|
|
if (Scope) EnumerateMetadata(Scope);
|
|
if (IA) EnumerateMetadata(IA);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Optimize constant ordering.
|
|
OptimizeConstants(FirstConstant, Values.size());
|
|
|
|
OptimizeTypes();
|
|
|
|
// Now that we rearranged the type table, rebuild TypeMap.
|
|
for (unsigned i = 0, e = Types.size(); i != e; ++i)
|
|
TypeMap[Types[i]] = i+1;
|
|
}
|
|
|
|
struct TypeAndDeps {
|
|
const Type *Ty;
|
|
unsigned NumDeps;
|
|
};
|
|
|
|
static int CompareByDeps(const void *a, const void *b) {
|
|
const TypeAndDeps &ta = *(const TypeAndDeps*) a;
|
|
const TypeAndDeps &tb = *(const TypeAndDeps*) b;
|
|
return ta.NumDeps - tb.NumDeps;
|
|
}
|
|
|
|
static void VisitType(const Type *Ty, SmallPtrSet<const Type*, 16> &Visited,
|
|
std::vector<const Type*> &Out) {
|
|
if (Visited.count(Ty))
|
|
return;
|
|
|
|
Visited.insert(Ty);
|
|
|
|
for (Type::subtype_iterator I2 = Ty->subtype_begin(),
|
|
E2 = Ty->subtype_end(); I2 != E2; ++I2) {
|
|
const Type *InnerType = I2->get();
|
|
VisitType(InnerType, Visited, Out);
|
|
}
|
|
|
|
Out.push_back(Ty);
|
|
}
|
|
|
|
void ValueEnumerator::OptimizeTypes(void) {
|
|
// If the types form a DAG, this will compute a topological sort and
|
|
// no forward references will be needed when reading them in.
|
|
// If there are cycles, this is a simple but reasonable heuristic for
|
|
// the minimum feedback arc set problem.
|
|
const unsigned NumTypes = Types.size();
|
|
std::vector<TypeAndDeps> TypeDeps;
|
|
TypeDeps.resize(NumTypes);
|
|
|
|
for (unsigned I = 0; I < NumTypes; ++I) {
|
|
const Type *Ty = Types[I];
|
|
TypeDeps[I].Ty = Ty;
|
|
TypeDeps[I].NumDeps = 0;
|
|
}
|
|
|
|
for (unsigned I = 0; I < NumTypes; ++I) {
|
|
const Type *Ty = TypeDeps[I].Ty;
|
|
for (Type::subtype_iterator I2 = Ty->subtype_begin(),
|
|
E2 = Ty->subtype_end(); I2 != E2; ++I2) {
|
|
const Type *InnerType = I2->get();
|
|
unsigned InnerIndex = TypeMap.lookup(InnerType) - 1;
|
|
TypeDeps[InnerIndex].NumDeps++;
|
|
}
|
|
}
|
|
array_pod_sort(TypeDeps.begin(), TypeDeps.end(), CompareByDeps);
|
|
|
|
SmallPtrSet<const Type*, 16> Visited;
|
|
Types.clear();
|
|
Types.reserve(NumTypes);
|
|
for (unsigned I = 0; I < NumTypes; ++I) {
|
|
VisitType(TypeDeps[I].Ty, Visited, Types);
|
|
}
|
|
}
|
|
|
|
unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const {
|
|
InstructionMapType::const_iterator I = InstructionMap.find(Inst);
|
|
assert (I != InstructionMap.end() && "Instruction is not mapped!");
|
|
return I->second;
|
|
}
|
|
|
|
void ValueEnumerator::setInstructionID(const Instruction *I) {
|
|
InstructionMap[I] = InstructionCount++;
|
|
}
|
|
|
|
unsigned ValueEnumerator::getValueID(const Value *V) const {
|
|
if (isa<MDNode>(V) || isa<MDString>(V)) {
|
|
ValueMapType::const_iterator I = MDValueMap.find(V);
|
|
assert(I != MDValueMap.end() && "Value not in slotcalculator!");
|
|
return I->second-1;
|
|
}
|
|
|
|
ValueMapType::const_iterator I = ValueMap.find(V);
|
|
assert(I != ValueMap.end() && "Value not in slotcalculator!");
|
|
return I->second-1;
|
|
}
|
|
|
|
// Optimize constant ordering.
|
|
namespace {
|
|
struct CstSortPredicate {
|
|
ValueEnumerator &VE;
|
|
explicit CstSortPredicate(ValueEnumerator &ve) : VE(ve) {}
|
|
bool operator()(const std::pair<const Value*, unsigned> &LHS,
|
|
const std::pair<const Value*, unsigned> &RHS) {
|
|
// Sort by plane.
|
|
if (LHS.first->getType() != RHS.first->getType())
|
|
return VE.getTypeID(LHS.first->getType()) <
|
|
VE.getTypeID(RHS.first->getType());
|
|
// Then by frequency.
|
|
return LHS.second > RHS.second;
|
|
}
|
|
};
|
|
}
|
|
|
|
/// OptimizeConstants - Reorder constant pool for denser encoding.
|
|
void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) {
|
|
if (CstStart == CstEnd || CstStart+1 == CstEnd) return;
|
|
|
|
CstSortPredicate P(*this);
|
|
std::stable_sort(Values.begin()+CstStart, Values.begin()+CstEnd, P);
|
|
|
|
// Ensure that integer constants are at the start of the constant pool. This
|
|
// is important so that GEP structure indices come before gep constant exprs.
|
|
std::partition(Values.begin()+CstStart, Values.begin()+CstEnd,
|
|
isIntegerValue);
|
|
|
|
// Rebuild the modified portion of ValueMap.
|
|
for (; CstStart != CstEnd; ++CstStart)
|
|
ValueMap[Values[CstStart].first] = CstStart+1;
|
|
}
|
|
|
|
|
|
/// EnumerateTypeSymbolTable - Insert all of the types in the specified symbol
|
|
/// table.
|
|
void ValueEnumerator::EnumerateTypeSymbolTable(const TypeSymbolTable &TST) {
|
|
for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end();
|
|
TI != TE; ++TI)
|
|
EnumerateType(TI->second);
|
|
}
|
|
|
|
/// EnumerateValueSymbolTable - Insert all of the values in the specified symbol
|
|
/// table into the values table.
|
|
void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) {
|
|
for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end();
|
|
VI != VE; ++VI)
|
|
EnumerateValue(VI->getValue());
|
|
}
|
|
|
|
/// EnumerateNamedMetadata - Insert all of the values referenced by
|
|
/// named metadata in the specified module.
|
|
void ValueEnumerator::EnumerateNamedMetadata(const Module *M) {
|
|
for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
|
|
E = M->named_metadata_end(); I != E; ++I)
|
|
EnumerateNamedMDNode(I);
|
|
}
|
|
|
|
void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) {
|
|
for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i)
|
|
EnumerateMetadata(MD->getOperand(i));
|
|
}
|
|
|
|
/// EnumerateMDNodeOperands - Enumerate all non-function-local values
|
|
/// and types referenced by the given MDNode.
|
|
void ValueEnumerator::EnumerateMDNodeOperands(const MDNode *N) {
|
|
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
|
|
if (Value *V = N->getOperand(i)) {
|
|
if (isa<MDNode>(V) || isa<MDString>(V))
|
|
EnumerateMetadata(V);
|
|
else if (!isa<Instruction>(V) && !isa<Argument>(V))
|
|
EnumerateValue(V);
|
|
} else
|
|
EnumerateType(Type::getVoidTy(N->getContext()));
|
|
}
|
|
}
|
|
|
|
void ValueEnumerator::EnumerateMetadata(const Value *MD) {
|
|
assert((isa<MDNode>(MD) || isa<MDString>(MD)) && "Invalid metadata kind");
|
|
|
|
// Enumerate the type of this value.
|
|
EnumerateType(MD->getType());
|
|
|
|
const MDNode *N = dyn_cast<MDNode>(MD);
|
|
|
|
// In the module-level pass, skip function-local nodes themselves, but
|
|
// do walk their operands.
|
|
if (N && N->isFunctionLocal() && N->getFunction()) {
|
|
EnumerateMDNodeOperands(N);
|
|
return;
|
|
}
|
|
|
|
// Check to see if it's already in!
|
|
unsigned &MDValueID = MDValueMap[MD];
|
|
if (MDValueID) {
|
|
// Increment use count.
|
|
MDValues[MDValueID-1].second++;
|
|
return;
|
|
}
|
|
MDValues.push_back(std::make_pair(MD, 1U));
|
|
MDValueID = MDValues.size();
|
|
|
|
// Enumerate all non-function-local operands.
|
|
if (N)
|
|
EnumerateMDNodeOperands(N);
|
|
}
|
|
|
|
/// EnumerateFunctionLocalMetadataa - Incorporate function-local metadata
|
|
/// information reachable from the given MDNode.
|
|
void ValueEnumerator::EnumerateFunctionLocalMetadata(const MDNode *N) {
|
|
assert(N->isFunctionLocal() && N->getFunction() &&
|
|
"EnumerateFunctionLocalMetadata called on non-function-local mdnode!");
|
|
|
|
// Enumerate the type of this value.
|
|
EnumerateType(N->getType());
|
|
|
|
// Check to see if it's already in!
|
|
unsigned &MDValueID = MDValueMap[N];
|
|
if (MDValueID) {
|
|
// Increment use count.
|
|
MDValues[MDValueID-1].second++;
|
|
return;
|
|
}
|
|
MDValues.push_back(std::make_pair(N, 1U));
|
|
MDValueID = MDValues.size();
|
|
|
|
// To incoroporate function-local information visit all function-local
|
|
// MDNodes and all function-local values they reference.
|
|
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
|
|
if (Value *V = N->getOperand(i)) {
|
|
if (MDNode *O = dyn_cast<MDNode>(V)) {
|
|
if (O->isFunctionLocal() && O->getFunction())
|
|
EnumerateFunctionLocalMetadata(O);
|
|
} else if (isa<Instruction>(V) || isa<Argument>(V))
|
|
EnumerateValue(V);
|
|
}
|
|
|
|
// Also, collect all function-local MDNodes for easy access.
|
|
FunctionLocalMDs.push_back(N);
|
|
}
|
|
|
|
void ValueEnumerator::EnumerateValue(const Value *V) {
|
|
assert(!V->getType()->isVoidTy() && "Can't insert void values!");
|
|
assert(!isa<MDNode>(V) && !isa<MDString>(V) &&
|
|
"EnumerateValue doesn't handle Metadata!");
|
|
|
|
// Check to see if it's already in!
|
|
unsigned &ValueID = ValueMap[V];
|
|
if (ValueID) {
|
|
// Increment use count.
|
|
Values[ValueID-1].second++;
|
|
return;
|
|
}
|
|
|
|
// Enumerate the type of this value.
|
|
EnumerateType(V->getType());
|
|
|
|
if (const Constant *C = dyn_cast<Constant>(V)) {
|
|
if (isa<GlobalValue>(C)) {
|
|
// Initializers for globals are handled explicitly elsewhere.
|
|
} else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
|
|
// Do not enumerate the initializers for an array of simple characters.
|
|
// The initializers just polute the value table, and we emit the strings
|
|
// specially.
|
|
} else if (C->getNumOperands()) {
|
|
// If a constant has operands, enumerate them. This makes sure that if a
|
|
// constant has uses (for example an array of const ints), that they are
|
|
// inserted also.
|
|
|
|
// We prefer to enumerate them with values before we enumerate the user
|
|
// itself. This makes it more likely that we can avoid forward references
|
|
// in the reader. We know that there can be no cycles in the constants
|
|
// graph that don't go through a global variable.
|
|
for (User::const_op_iterator I = C->op_begin(), E = C->op_end();
|
|
I != E; ++I)
|
|
if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress.
|
|
EnumerateValue(*I);
|
|
|
|
// Finally, add the value. Doing this could make the ValueID reference be
|
|
// dangling, don't reuse it.
|
|
Values.push_back(std::make_pair(V, 1U));
|
|
ValueMap[V] = Values.size();
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Add the value.
|
|
Values.push_back(std::make_pair(V, 1U));
|
|
ValueID = Values.size();
|
|
}
|
|
|
|
|
|
void ValueEnumerator::EnumerateType(const Type *Ty) {
|
|
unsigned &TypeID = TypeMap[Ty];
|
|
|
|
// We've already seen this type.
|
|
if (TypeID)
|
|
return;
|
|
|
|
// First time we saw this type, add it.
|
|
Types.push_back(Ty);
|
|
TypeID = Types.size();
|
|
|
|
// Enumerate subtypes.
|
|
for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end();
|
|
I != E; ++I)
|
|
EnumerateType(*I);
|
|
}
|
|
|
|
// Enumerate the types for the specified value. If the value is a constant,
|
|
// walk through it, enumerating the types of the constant.
|
|
void ValueEnumerator::EnumerateOperandType(const Value *V) {
|
|
EnumerateType(V->getType());
|
|
|
|
if (const Constant *C = dyn_cast<Constant>(V)) {
|
|
// If this constant is already enumerated, ignore it, we know its type must
|
|
// be enumerated.
|
|
if (ValueMap.count(V)) return;
|
|
|
|
// This constant may have operands, make sure to enumerate the types in
|
|
// them.
|
|
for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
|
|
const User *Op = C->getOperand(i);
|
|
|
|
// Don't enumerate basic blocks here, this happens as operands to
|
|
// blockaddress.
|
|
if (isa<BasicBlock>(Op)) continue;
|
|
|
|
EnumerateOperandType(Op);
|
|
}
|
|
|
|
if (const MDNode *N = dyn_cast<MDNode>(V)) {
|
|
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
|
|
if (Value *Elem = N->getOperand(i))
|
|
EnumerateOperandType(Elem);
|
|
}
|
|
} else if (isa<MDString>(V) || isa<MDNode>(V))
|
|
EnumerateMetadata(V);
|
|
}
|
|
|
|
void ValueEnumerator::EnumerateAttributes(const AttrListPtr &PAL) {
|
|
if (PAL.isEmpty()) return; // null is always 0.
|
|
// Do a lookup.
|
|
unsigned &Entry = AttributeMap[PAL.getRawPointer()];
|
|
if (Entry == 0) {
|
|
// Never saw this before, add it.
|
|
Attributes.push_back(PAL);
|
|
Entry = Attributes.size();
|
|
}
|
|
}
|
|
|
|
|
|
void ValueEnumerator::incorporateFunction(const Function &F) {
|
|
InstructionCount = 0;
|
|
NumModuleValues = Values.size();
|
|
NumModuleMDValues = MDValues.size();
|
|
|
|
// Adding function arguments to the value table.
|
|
for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
|
|
I != E; ++I)
|
|
EnumerateValue(I);
|
|
|
|
FirstFuncConstantID = Values.size();
|
|
|
|
// Add all function-level constants to the value table.
|
|
for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
|
|
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I)
|
|
for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
|
|
OI != E; ++OI) {
|
|
if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) ||
|
|
isa<InlineAsm>(*OI))
|
|
EnumerateValue(*OI);
|
|
}
|
|
BasicBlocks.push_back(BB);
|
|
ValueMap[BB] = BasicBlocks.size();
|
|
}
|
|
|
|
// Optimize the constant layout.
|
|
OptimizeConstants(FirstFuncConstantID, Values.size());
|
|
|
|
// Add the function's parameter attributes so they are available for use in
|
|
// the function's instruction.
|
|
EnumerateAttributes(F.getAttributes());
|
|
|
|
FirstInstID = Values.size();
|
|
|
|
SmallVector<MDNode *, 8> FnLocalMDVector;
|
|
// Add all of the instructions.
|
|
for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
|
|
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) {
|
|
for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
|
|
OI != E; ++OI) {
|
|
if (MDNode *MD = dyn_cast<MDNode>(*OI))
|
|
if (MD->isFunctionLocal() && MD->getFunction())
|
|
// Enumerate metadata after the instructions they might refer to.
|
|
FnLocalMDVector.push_back(MD);
|
|
}
|
|
|
|
SmallVector<std::pair<unsigned, MDNode*>, 8> MDs;
|
|
I->getAllMetadataOtherThanDebugLoc(MDs);
|
|
for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
|
|
MDNode *N = MDs[i].second;
|
|
if (N->isFunctionLocal() && N->getFunction())
|
|
FnLocalMDVector.push_back(N);
|
|
}
|
|
|
|
if (!I->getType()->isVoidTy())
|
|
EnumerateValue(I);
|
|
}
|
|
}
|
|
|
|
// Add all of the function-local metadata.
|
|
for (unsigned i = 0, e = FnLocalMDVector.size(); i != e; ++i)
|
|
EnumerateFunctionLocalMetadata(FnLocalMDVector[i]);
|
|
}
|
|
|
|
void ValueEnumerator::purgeFunction() {
|
|
/// Remove purged values from the ValueMap.
|
|
for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i)
|
|
ValueMap.erase(Values[i].first);
|
|
for (unsigned i = NumModuleMDValues, e = MDValues.size(); i != e; ++i)
|
|
MDValueMap.erase(MDValues[i].first);
|
|
for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i)
|
|
ValueMap.erase(BasicBlocks[i]);
|
|
|
|
Values.resize(NumModuleValues);
|
|
MDValues.resize(NumModuleMDValues);
|
|
BasicBlocks.clear();
|
|
FunctionLocalMDs.clear();
|
|
}
|
|
|
|
static void IncorporateFunctionInfoGlobalBBIDs(const Function *F,
|
|
DenseMap<const BasicBlock*, unsigned> &IDMap) {
|
|
unsigned Counter = 0;
|
|
for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
|
|
IDMap[BB] = ++Counter;
|
|
}
|
|
|
|
/// getGlobalBasicBlockID - This returns the function-specific ID for the
|
|
/// specified basic block. This is relatively expensive information, so it
|
|
/// should only be used by rare constructs such as address-of-label.
|
|
unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const {
|
|
unsigned &Idx = GlobalBasicBlockIDs[BB];
|
|
if (Idx != 0)
|
|
return Idx-1;
|
|
|
|
IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs);
|
|
return getGlobalBasicBlockID(BB);
|
|
}
|
|
|