mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-14 16:33:28 +00:00
00de509022
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@856 91177308-0d34-0410-b5e6-96231b3b80d8
303 lines
10 KiB
C++
303 lines
10 KiB
C++
//===-- llvm/Value.h - Definition of the Value class -------------*- C++ -*--=//
|
|
//
|
|
// This file defines the very important Value class. This is subclassed by a
|
|
// bunch of other important classes, like Def, Method, Module, Type, etc...
|
|
//
|
|
// This file also defines the Use<> template for users of value.
|
|
//
|
|
// This file also defines the isa<X>(), cast<X>(), and dyn_cast<X>() templates.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_VALUE_H
|
|
#define LLVM_VALUE_H
|
|
|
|
#include <vector>
|
|
#include "llvm/Annotation.h"
|
|
#include "llvm/AbstractTypeUser.h"
|
|
|
|
class User;
|
|
class Type;
|
|
class ConstPoolVal;
|
|
class MethodArgument;
|
|
class Instruction;
|
|
class BasicBlock;
|
|
class GlobalValue;
|
|
class Method;
|
|
class GlobalVariable;
|
|
class Module;
|
|
class SymbolTable;
|
|
template<class ValueSubclass, class ItemParentType, class SymTabType>
|
|
class ValueHolder;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Value Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
class Value : public Annotable, // Values are annotable
|
|
public AbstractTypeUser { // Values use potentially abstract types
|
|
public:
|
|
enum ValueTy {
|
|
TypeVal, // This is an instance of Type
|
|
ConstantVal, // This is an instance of ConstPoolVal
|
|
MethodArgumentVal, // This is an instance of MethodArgument
|
|
InstructionVal, // This is an instance of Instruction
|
|
BasicBlockVal, // This is an instance of BasicBlock
|
|
MethodVal, // This is an instance of Method
|
|
GlobalVariableVal, // This is an instance of GlobalVariable
|
|
ModuleVal, // This is an instance of Module
|
|
};
|
|
|
|
private:
|
|
vector<User *> Uses;
|
|
string Name;
|
|
PATypeHandle<Type> Ty;
|
|
ValueTy VTy;
|
|
|
|
Value(const Value &); // Do not implement
|
|
protected:
|
|
inline void setType(const Type *ty) { Ty = ty; }
|
|
public:
|
|
Value(const Type *Ty, ValueTy vty, const string &name = "");
|
|
virtual ~Value();
|
|
|
|
// Support for debugging
|
|
void dump() const;
|
|
|
|
// All values can potentially be typed
|
|
inline const Type *getType() const { return Ty; }
|
|
|
|
// All values can potentially be named...
|
|
inline bool hasName() const { return Name != ""; }
|
|
inline const string &getName() const { return Name; }
|
|
|
|
virtual void setName(const string &name, SymbolTable * = 0) {
|
|
Name = name;
|
|
}
|
|
|
|
// Methods for determining the subtype of this Value. The getValueType()
|
|
// method returns the type of the value directly. The cast*() methods are
|
|
// equivalent to using dynamic_cast<>... if the cast is successful, this is
|
|
// returned, otherwise you get a null pointer.
|
|
//
|
|
// The family of functions Val->cast<type>Asserting() is used in the same
|
|
// way as the Val->cast<type>() instructions, but they assert the expected
|
|
// type instead of checking it at runtime.
|
|
//
|
|
inline ValueTy getValueType() const { return VTy; }
|
|
|
|
// replaceAllUsesWith - Go through the uses list for this definition and make
|
|
// each use point to "D" instead of "this". After this completes, 'this's
|
|
// use list should be empty.
|
|
//
|
|
void replaceAllUsesWith(Value *D);
|
|
|
|
// refineAbstractType - This function is implemented because we use
|
|
// potentially abstract types, and these types may be resolved to more
|
|
// concrete types after we are constructed.
|
|
//
|
|
virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
|
|
|
|
//----------------------------------------------------------------------
|
|
// Methods for handling the vector of uses of this Value.
|
|
//
|
|
typedef vector<User*>::iterator use_iterator;
|
|
typedef vector<User*>::const_iterator use_const_iterator;
|
|
|
|
inline unsigned use_size() const { return Uses.size(); }
|
|
inline bool use_empty() const { return Uses.empty(); }
|
|
inline use_iterator use_begin() { return Uses.begin(); }
|
|
inline use_const_iterator use_begin() const { return Uses.begin(); }
|
|
inline use_iterator use_end() { return Uses.end(); }
|
|
inline use_const_iterator use_end() const { return Uses.end(); }
|
|
inline User *use_back() { return Uses.back(); }
|
|
inline const User *use_back() const { return Uses.back(); }
|
|
|
|
inline void use_push_back(User *I) { Uses.push_back(I); }
|
|
User *use_remove(use_iterator &I);
|
|
|
|
inline void addUse(User *I) { Uses.push_back(I); }
|
|
void killUse(User *I);
|
|
};
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// UseTy Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// UseTy and it's friendly typedefs (Use) are here to make keeping the "use"
|
|
// list of a definition node up-to-date really easy.
|
|
//
|
|
template<class ValueSubclass>
|
|
class UseTy {
|
|
ValueSubclass *Val;
|
|
User *U;
|
|
public:
|
|
inline UseTy<ValueSubclass>(ValueSubclass *v, User *user) {
|
|
Val = v; U = user;
|
|
if (Val) Val->addUse(U);
|
|
}
|
|
|
|
inline ~UseTy<ValueSubclass>() { if (Val) Val->killUse(U); }
|
|
|
|
inline operator ValueSubclass *() const { return Val; }
|
|
|
|
inline UseTy<ValueSubclass>(const UseTy<ValueSubclass> &user) {
|
|
Val = 0;
|
|
U = user.U;
|
|
operator=(user.Val);
|
|
}
|
|
inline ValueSubclass *operator=(ValueSubclass *V) {
|
|
if (Val) Val->killUse(U);
|
|
Val = V;
|
|
if (V) V->addUse(U);
|
|
return V;
|
|
}
|
|
|
|
inline ValueSubclass *operator->() { return Val; }
|
|
inline const ValueSubclass *operator->() const { return Val; }
|
|
|
|
inline ValueSubclass *get() { return Val; }
|
|
inline const ValueSubclass *get() const { return Val; }
|
|
|
|
inline UseTy<ValueSubclass> &operator=(const UseTy<ValueSubclass> &user) {
|
|
if (Val) Val->killUse(U);
|
|
Val = user.Val;
|
|
Val->addUse(U);
|
|
return *this;
|
|
}
|
|
};
|
|
|
|
typedef UseTy<Value> Use; // Provide Use as a common UseTy type
|
|
|
|
// real_type - Provide a macro to get the real type of a value that might be
|
|
// a use. This provides a typedef 'Type' that is the argument type for all
|
|
// non UseTy types, and is the contained pointer type of the use if it is a
|
|
// UseTy.
|
|
//
|
|
template <class X> class real_type { typedef X Type; };
|
|
template <class X> class real_type <class UseTy<X> > { typedef X *Type; };
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Type Checking Templates
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// isa<X> - Return true if the parameter to the template is an instance of the
|
|
// template type argument. Used like this:
|
|
//
|
|
// if (isa<Type>(myVal)) { ... }
|
|
//
|
|
template <class X, class Y>
|
|
inline bool isa(Y Val) {
|
|
assert(Val && "isa<Ty>(NULL) invoked!");
|
|
return X::classof(Val);
|
|
}
|
|
|
|
|
|
// cast<X> - Return the argument parameter cast to the specified type. This
|
|
// casting operator asserts that the type is correct, so it does not return null
|
|
// on failure. But it will correctly return NULL when the input is NULL.
|
|
// Used Like this:
|
|
//
|
|
// cast< Instruction>(myVal)->getParent()
|
|
// cast<const Instruction>(myVal)->getParent()
|
|
//
|
|
template <class X, class Y>
|
|
inline X *cast(Y Val) {
|
|
assert(isa<X>(Val) && "cast<Ty>() argument of uncompatible type!");
|
|
return (X*)(real_type<Y>::Type)Val;
|
|
}
|
|
|
|
// cast_or_null<X> - Functionally identical to cast, except that a null value is
|
|
// accepted.
|
|
//
|
|
template <class X, class Y>
|
|
inline X *cast_or_null(Y Val) {
|
|
assert((Val == 0 || isa<X>(Val)) &&
|
|
"cast_or_null<Ty>() argument of uncompatible type!");
|
|
return (X*)(real_type<Y>::Type)Val;
|
|
}
|
|
|
|
|
|
// dyn_cast<X> - Return the argument parameter cast to the specified type. This
|
|
// casting operator returns null if the argument is of the wrong type, so it can
|
|
// be used to test for a type as well as cast if successful. This should be
|
|
// used in the context of an if statement like this:
|
|
//
|
|
// if (const Instruction *I = dyn_cast<const Instruction>(myVal)) { ... }
|
|
//
|
|
|
|
template <class X, class Y>
|
|
inline X *dyn_cast(Y Val) {
|
|
return isa<X>(Val) ? cast<X>(Val) : 0;
|
|
}
|
|
|
|
// dyn_cast_or_null<X> - Functionally identical to dyn_cast, except that a null
|
|
// value is accepted.
|
|
//
|
|
template <class X, class Y>
|
|
inline X *dyn_cast_or_null(Y Val) {
|
|
return (Val && isa<X>(Val)) ? cast<X>(Val) : 0;
|
|
}
|
|
|
|
|
|
// isa - Provide some specializations of isa so that we have to include the
|
|
// subtype header files to test to see if the value is a subclass...
|
|
//
|
|
template <> inline bool isa<Type, const Value*>(const Value *Val) {
|
|
return Val->getValueType() == Value::TypeVal;
|
|
}
|
|
template <> inline bool isa<Type, Value*>(Value *Val) {
|
|
return Val->getValueType() == Value::TypeVal;
|
|
}
|
|
template <> inline bool isa<ConstPoolVal, const Value*>(const Value *Val) {
|
|
return Val->getValueType() == Value::ConstantVal;
|
|
}
|
|
template <> inline bool isa<ConstPoolVal, Value*>(Value *Val) {
|
|
return Val->getValueType() == Value::ConstantVal;
|
|
}
|
|
template <> inline bool isa<MethodArgument, const Value*>(const Value *Val) {
|
|
return Val->getValueType() == Value::MethodArgumentVal;
|
|
}
|
|
template <> inline bool isa<MethodArgument, Value*>(Value *Val) {
|
|
return Val->getValueType() == Value::MethodArgumentVal;
|
|
}
|
|
template <> inline bool isa<Instruction, const Value*>(const Value *Val) {
|
|
return Val->getValueType() == Value::InstructionVal;
|
|
}
|
|
template <> inline bool isa<Instruction, Value*>(Value *Val) {
|
|
return Val->getValueType() == Value::InstructionVal;
|
|
}
|
|
template <> inline bool isa<BasicBlock, const Value*>(const Value *Val) {
|
|
return Val->getValueType() == Value::BasicBlockVal;
|
|
}
|
|
template <> inline bool isa<BasicBlock, Value*>(Value *Val) {
|
|
return Val->getValueType() == Value::BasicBlockVal;
|
|
}
|
|
template <> inline bool isa<Method, const Value*>(const Value *Val) {
|
|
return Val->getValueType() == Value::MethodVal;
|
|
}
|
|
template <> inline bool isa<Method, Value*>(Value *Val) {
|
|
return Val->getValueType() == Value::MethodVal;
|
|
}
|
|
template <> inline bool isa<GlobalVariable, const Value*>(const Value *Val) {
|
|
return Val->getValueType() == Value::GlobalVariableVal;
|
|
}
|
|
template <> inline bool isa<GlobalVariable, Value*>(Value *Val) {
|
|
return Val->getValueType() == Value::GlobalVariableVal;
|
|
}
|
|
template <> inline bool isa<GlobalValue, const Value*>(const Value *Val) {
|
|
return isa<GlobalVariable>(Val) || isa<Method>(Val);
|
|
}
|
|
template <> inline bool isa<GlobalValue, Value*>(Value *Val) {
|
|
return isa<GlobalVariable>(Val) || isa<Method>(Val);
|
|
}
|
|
template <> inline bool isa<Module, const Value*>(const Value *Val) {
|
|
return Val->getValueType() == Value::ModuleVal;
|
|
}
|
|
template <> inline bool isa<Module, Value*>(Value *Val) {
|
|
return Val->getValueType() == Value::ModuleVal;
|
|
}
|
|
|
|
#endif
|