llvm-6502/lib/Target/X86/X86IntelAsmPrinter.cpp
Reid Spencer 3ed469ccd7 For PR786:
Turn on -Wunused and -Wno-unused-parameter. Clean up most of the resulting
fall out by removing unused variables. Remaining warnings have to do with
unused functions (I didn't want to delete code without review) and unused
variables in generated code. Maintainers should clean up the remaining
issues when they see them. All changes pass DejaGnu tests and Olden.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@31380 91177308-0d34-0410-b5e6-96231b3b80d8
2006-11-02 20:25:50 +00:00

530 lines
16 KiB
C++
Executable File

//===-- X86IntelAsmPrinter.cpp - Convert X86 LLVM code to Intel assembly --===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains a printer that converts from our internal representation
// of machine-dependent LLVM code to Intel format assembly language.
// This printer is the output mechanism used by `llc'.
//
//===----------------------------------------------------------------------===//
#include "X86IntelAsmPrinter.h"
#include "X86TargetAsmInfo.h"
#include "X86.h"
#include "llvm/CallingConv.h"
#include "llvm/Constants.h"
#include "llvm/Module.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/Support/Mangler.h"
#include "llvm/Target/TargetAsmInfo.h"
#include "llvm/Target/TargetOptions.h"
using namespace llvm;
std::string X86IntelAsmPrinter::getSectionForFunction(const Function &F) const {
// Intel asm always emits functions to _text.
return "_text";
}
/// runOnMachineFunction - This uses the printMachineInstruction()
/// method to print assembly for each instruction.
///
bool X86IntelAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
SetupMachineFunction(MF);
O << "\n\n";
// Print out constants referenced by the function
EmitConstantPool(MF.getConstantPool());
// Print out labels for the function.
const Function *F = MF.getFunction();
unsigned CC = F->getCallingConv();
// Populate function information map. Actually, We don't want to populate
// non-stdcall or non-fastcall functions' information right now.
if (CC == CallingConv::X86_StdCall || CC == CallingConv::X86_FastCall)
FunctionInfoMap[F] = *MF.getInfo<X86FunctionInfo>();
X86SharedAsmPrinter::decorateName(CurrentFnName, F);
SwitchToTextSection(getSectionForFunction(*F).c_str(), F);
switch (F->getLinkage()) {
default: assert(0 && "Unsupported linkage type!");
case Function::InternalLinkage:
EmitAlignment(4);
break;
case Function::DLLExportLinkage:
DLLExportedFns.insert(CurrentFnName);
//FALLS THROUGH
case Function::ExternalLinkage:
O << "\tpublic " << CurrentFnName << "\n";
EmitAlignment(4);
break;
}
O << CurrentFnName << "\tproc near\n";
// Print out code for the function.
for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
I != E; ++I) {
// Print a label for the basic block if there are any predecessors.
if (I->pred_begin() != I->pred_end()) {
printBasicBlockLabel(I, true);
O << '\n';
}
for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end();
II != E; ++II) {
// Print the assembly for the instruction.
O << "\t";
printMachineInstruction(II);
}
}
// Print out jump tables referenced by the function.
EmitJumpTableInfo(MF.getJumpTableInfo(), MF);
O << CurrentFnName << "\tendp\n";
// We didn't modify anything.
return false;
}
void X86IntelAsmPrinter::printSSECC(const MachineInstr *MI, unsigned Op) {
unsigned char value = MI->getOperand(Op).getImmedValue();
assert(value <= 7 && "Invalid ssecc argument!");
switch (value) {
case 0: O << "eq"; break;
case 1: O << "lt"; break;
case 2: O << "le"; break;
case 3: O << "unord"; break;
case 4: O << "neq"; break;
case 5: O << "nlt"; break;
case 6: O << "nle"; break;
case 7: O << "ord"; break;
}
}
void X86IntelAsmPrinter::printOp(const MachineOperand &MO,
const char *Modifier) {
const MRegisterInfo &RI = *TM.getRegisterInfo();
switch (MO.getType()) {
case MachineOperand::MO_Register:
if (MRegisterInfo::isPhysicalRegister(MO.getReg())) {
unsigned Reg = MO.getReg();
if (Modifier && strncmp(Modifier, "subreg", strlen("subreg")) == 0) {
MVT::ValueType VT = (strcmp(Modifier,"subreg64") == 0) ?
MVT::i64 : ((strcmp(Modifier, "subreg32") == 0) ? MVT::i32 :
((strcmp(Modifier,"subreg16") == 0) ? MVT::i16 :MVT::i8));
Reg = getX86SubSuperRegister(Reg, VT);
}
O << RI.get(Reg).Name;
} else
O << "reg" << MO.getReg();
return;
case MachineOperand::MO_Immediate:
O << MO.getImmedValue();
return;
case MachineOperand::MO_MachineBasicBlock:
printBasicBlockLabel(MO.getMachineBasicBlock());
return;
case MachineOperand::MO_ConstantPoolIndex: {
bool isMemOp = Modifier && !strcmp(Modifier, "mem");
if (!isMemOp) O << "OFFSET ";
O << "[" << TAI->getPrivateGlobalPrefix() << "CPI"
<< getFunctionNumber() << "_" << MO.getConstantPoolIndex();
int Offset = MO.getOffset();
if (Offset > 0)
O << " + " << Offset;
else if (Offset < 0)
O << Offset;
O << "]";
return;
}
case MachineOperand::MO_GlobalAddress: {
bool isCallOp = Modifier && !strcmp(Modifier, "call");
bool isMemOp = Modifier && !strcmp(Modifier, "mem");
GlobalValue *GV = MO.getGlobal();
std::string Name = Mang->getValueName(GV);
X86SharedAsmPrinter::decorateName(Name, GV);
if (!isMemOp && !isCallOp) O << "OFFSET ";
if (GV->hasDLLImportLinkage()) {
// FIXME: This should be fixed with full support of stdcall & fastcall
// CC's
O << "__imp_";
}
O << Name;
int Offset = MO.getOffset();
if (Offset > 0)
O << " + " << Offset;
else if (Offset < 0)
O << Offset;
return;
}
case MachineOperand::MO_ExternalSymbol: {
bool isCallOp = Modifier && !strcmp(Modifier, "call");
if (!isCallOp) O << "OFFSET ";
O << TAI->getGlobalPrefix() << MO.getSymbolName();
return;
}
default:
O << "<unknown operand type>"; return;
}
}
void X86IntelAsmPrinter::printMemReference(const MachineInstr *MI, unsigned Op,
const char *Modifier) {
assert(isMem(MI, Op) && "Invalid memory reference!");
const MachineOperand &BaseReg = MI->getOperand(Op);
int ScaleVal = MI->getOperand(Op+1).getImmedValue();
const MachineOperand &IndexReg = MI->getOperand(Op+2);
const MachineOperand &DispSpec = MI->getOperand(Op+3);
if (BaseReg.isFrameIndex()) {
O << "[frame slot #" << BaseReg.getFrameIndex();
if (DispSpec.getImmedValue())
O << " + " << DispSpec.getImmedValue();
O << "]";
return;
}
O << "[";
bool NeedPlus = false;
if (BaseReg.getReg()) {
printOp(BaseReg, Modifier);
NeedPlus = true;
}
if (IndexReg.getReg()) {
if (NeedPlus) O << " + ";
if (ScaleVal != 1)
O << ScaleVal << "*";
printOp(IndexReg, Modifier);
NeedPlus = true;
}
if (DispSpec.isGlobalAddress() || DispSpec.isConstantPoolIndex()) {
if (NeedPlus)
O << " + ";
printOp(DispSpec, "mem");
} else {
int DispVal = DispSpec.getImmedValue();
if (DispVal || (!BaseReg.getReg() && !IndexReg.getReg())) {
if (NeedPlus)
if (DispVal > 0)
O << " + ";
else {
O << " - ";
DispVal = -DispVal;
}
O << DispVal;
}
}
O << "]";
}
void X86IntelAsmPrinter::printPICLabel(const MachineInstr *MI, unsigned Op) {
O << "\"L" << getFunctionNumber() << "$pb\"\n";
O << "\"L" << getFunctionNumber() << "$pb\":";
}
bool X86IntelAsmPrinter::printAsmMRegister(const MachineOperand &MO,
const char Mode) {
const MRegisterInfo &RI = *TM.getRegisterInfo();
unsigned Reg = MO.getReg();
switch (Mode) {
default: return true; // Unknown mode.
case 'b': // Print QImode register
Reg = getX86SubSuperRegister(Reg, MVT::i8);
break;
case 'h': // Print QImode high register
Reg = getX86SubSuperRegister(Reg, MVT::i8, true);
break;
case 'w': // Print HImode register
Reg = getX86SubSuperRegister(Reg, MVT::i16);
break;
case 'k': // Print SImode register
Reg = getX86SubSuperRegister(Reg, MVT::i32);
break;
}
O << '%' << RI.get(Reg).Name;
return false;
}
/// PrintAsmOperand - Print out an operand for an inline asm expression.
///
bool X86IntelAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
unsigned AsmVariant,
const char *ExtraCode) {
// Does this asm operand have a single letter operand modifier?
if (ExtraCode && ExtraCode[0]) {
if (ExtraCode[1] != 0) return true; // Unknown modifier.
switch (ExtraCode[0]) {
default: return true; // Unknown modifier.
case 'b': // Print QImode register
case 'h': // Print QImode high register
case 'w': // Print HImode register
case 'k': // Print SImode register
return printAsmMRegister(MI->getOperand(OpNo), ExtraCode[0]);
}
}
printOperand(MI, OpNo);
return false;
}
bool X86IntelAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
unsigned OpNo,
unsigned AsmVariant,
const char *ExtraCode) {
if (ExtraCode && ExtraCode[0])
return true; // Unknown modifier.
printMemReference(MI, OpNo);
return false;
}
/// printMachineInstruction -- Print out a single X86 LLVM instruction
/// MI in Intel syntax to the current output stream.
///
void X86IntelAsmPrinter::printMachineInstruction(const MachineInstr *MI) {
++EmittedInsts;
// See if a truncate instruction can be turned into a nop.
switch (MI->getOpcode()) {
default: break;
case X86::TRUNC_64to32:
case X86::TRUNC_64to16:
case X86::TRUNC_32to16:
case X86::TRUNC_32to8:
case X86::TRUNC_16to8:
case X86::TRUNC_32_to8:
case X86::TRUNC_16_to8: {
const MachineOperand &MO0 = MI->getOperand(0);
const MachineOperand &MO1 = MI->getOperand(1);
unsigned Reg0 = MO0.getReg();
unsigned Reg1 = MO1.getReg();
unsigned Opc = MI->getOpcode();
if (Opc == X86::TRUNC_64to32)
Reg1 = getX86SubSuperRegister(Reg1, MVT::i32);
else if (Opc == X86::TRUNC_32to16 || Opc == X86::TRUNC_64to16)
Reg1 = getX86SubSuperRegister(Reg1, MVT::i16);
else
Reg1 = getX86SubSuperRegister(Reg1, MVT::i8);
O << TAI->getCommentString() << " TRUNCATE ";
if (Reg0 != Reg1)
O << "\n\t";
break;
}
case X86::PsMOVZX64rr32:
O << TAI->getCommentString() << " ZERO-EXTEND " << "\n\t";
break;
}
// Call the autogenerated instruction printer routines.
printInstruction(MI);
}
bool X86IntelAsmPrinter::doInitialization(Module &M) {
X86SharedAsmPrinter::doInitialization(M);
Mang->markCharUnacceptable('.');
O << "\t.686\n\t.model flat\n\n";
// Emit declarations for external functions.
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
if (I->isExternal()) {
std::string Name = Mang->getValueName(I);
X86SharedAsmPrinter::decorateName(Name, I);
O << "\textern " ;
if (I->hasDLLImportLinkage()) {
O << "__imp_";
}
O << Name << ":near\n";
}
// Emit declarations for external globals. Note that VC++ always declares
// external globals to have type byte, and if that's good enough for VC++...
for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
I != E; ++I) {
if (I->isExternal()) {
std::string Name = Mang->getValueName(I);
O << "\textern " ;
if (I->hasDLLImportLinkage()) {
O << "__imp_";
}
O << Name << ":byte\n";
}
}
return false;
}
bool X86IntelAsmPrinter::doFinalization(Module &M) {
const TargetData *TD = TM.getTargetData();
// Print out module-level global variables here.
for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
I != E; ++I) {
if (I->isExternal()) continue; // External global require no code
// Check to see if this is a special global used by LLVM, if so, emit it.
if (EmitSpecialLLVMGlobal(I))
continue;
std::string name = Mang->getValueName(I);
Constant *C = I->getInitializer();
unsigned Align = TD->getPreferredAlignmentLog(I);
bool bCustomSegment = false;
switch (I->getLinkage()) {
case GlobalValue::LinkOnceLinkage:
case GlobalValue::WeakLinkage:
SwitchToDataSection("");
O << name << "?\tsegment common 'COMMON'\n";
bCustomSegment = true;
// FIXME: the default alignment is 16 bytes, but 1, 2, 4, and 256
// are also available.
break;
case GlobalValue::AppendingLinkage:
SwitchToDataSection("");
O << name << "?\tsegment public 'DATA'\n";
bCustomSegment = true;
// FIXME: the default alignment is 16 bytes, but 1, 2, 4, and 256
// are also available.
break;
case GlobalValue::DLLExportLinkage:
DLLExportedGVs.insert(name);
// FALL THROUGH
case GlobalValue::ExternalLinkage:
O << "\tpublic " << name << "\n";
// FALL THROUGH
case GlobalValue::InternalLinkage:
SwitchToDataSection(TAI->getDataSection(), I);
break;
default:
assert(0 && "Unknown linkage type!");
}
if (!bCustomSegment)
EmitAlignment(Align, I);
O << name << ":\t\t\t\t" << TAI->getCommentString()
<< " " << I->getName() << '\n';
EmitGlobalConstant(C);
if (bCustomSegment)
O << name << "?\tends\n";
}
// Output linker support code for dllexported globals
if ((DLLExportedGVs.begin() != DLLExportedGVs.end()) ||
(DLLExportedFns.begin() != DLLExportedFns.end())) {
SwitchToDataSection("");
O << "; WARNING: The following code is valid only with MASM v8.x and (possible) higher\n"
<< "; This version of MASM is usually shipped with Microsoft Visual Studio 2005\n"
<< "; or (possible) further versions. Unfortunately, there is no way to support\n"
<< "; dllexported symbols in the earlier versions of MASM in fully automatic way\n\n";
O << "_drectve\t segment info alias('.drectve')\n";
}
for (std::set<std::string>::iterator i = DLLExportedGVs.begin(),
e = DLLExportedGVs.end();
i != e; ++i) {
O << "\t db ' /EXPORT:" << *i << ",data'\n";
}
for (std::set<std::string>::iterator i = DLLExportedFns.begin(),
e = DLLExportedFns.end();
i != e; ++i) {
O << "\t db ' /EXPORT:" << *i << "'\n";
}
if ((DLLExportedGVs.begin() != DLLExportedGVs.end()) ||
(DLLExportedFns.begin() != DLLExportedFns.end())) {
O << "_drectve\t ends\n";
}
// Bypass X86SharedAsmPrinter::doFinalization().
AsmPrinter::doFinalization(M);
SwitchToDataSection("");
O << "\tend\n";
return false; // success
}
void X86IntelAsmPrinter::EmitString(const ConstantArray *CVA) const {
unsigned NumElts = CVA->getNumOperands();
if (NumElts) {
// ML does not have escape sequences except '' for '. It also has a maximum
// string length of 255.
unsigned len = 0;
bool inString = false;
for (unsigned i = 0; i < NumElts; i++) {
int n = cast<ConstantInt>(CVA->getOperand(i))->getZExtValue() & 255;
if (len == 0)
O << "\tdb ";
if (n >= 32 && n <= 127) {
if (!inString) {
if (len > 0) {
O << ",'";
len += 2;
} else {
O << "'";
len++;
}
inString = true;
}
if (n == '\'') {
O << "'";
len++;
}
O << char(n);
} else {
if (inString) {
O << "'";
len++;
inString = false;
}
if (len > 0) {
O << ",";
len++;
}
O << n;
len += 1 + (n > 9) + (n > 99);
}
if (len > 60) {
if (inString) {
O << "'";
inString = false;
}
O << "\n";
len = 0;
}
}
if (len > 0) {
if (inString)
O << "'";
O << "\n";
}
}
}
// Include the auto-generated portion of the assembly writer.
#include "X86GenAsmWriter1.inc"