llvm-6502/lib/Target/PowerPC/AsmParser/PPCAsmParser.cpp
Bill Schmidt f38cc38fa6 [PowerPC] Support powerpc64le as a syntax-checking target.
This patch provides basic support for powerpc64le as an LLVM target.
However, use of this target will not actually generate little-endian
code.  Instead, use of the target will cause the correct little-endian
built-in defines to be generated, so that code that tests for
__LITTLE_ENDIAN__, for example, will be correctly parsed for
syntax-only testing.  Code generation will otherwise be the same as
powerpc64 (big-endian), for now.

The patch leaves open the possibility of creating a little-endian
PowerPC64 back end, but there is no immediate intent to create such a
thing.

The LLVM portions of this patch simply add ppc64le coverage everywhere
that ppc64 coverage currently exists.  There is nothing of any import
worth testing until such time as little-endian code generation is
implemented.  In the corresponding Clang patch, there is a new test
case variant to ensure that correct built-in defines for little-endian
code are generated.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187179 91177308-0d34-0410-b5e6-96231b3b80d8
2013-07-26 01:35:43 +00:00

1345 lines
42 KiB
C++

//===-- PPCAsmParser.cpp - Parse PowerPC asm to MCInst instructions ---------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/PPCMCTargetDesc.h"
#include "MCTargetDesc/PPCMCExpr.h"
#include "llvm/MC/MCTargetAsmParser.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCParser/MCAsmLexer.h"
#include "llvm/MC/MCParser/MCAsmParser.h"
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
namespace {
static unsigned RRegs[32] = {
PPC::R0, PPC::R1, PPC::R2, PPC::R3,
PPC::R4, PPC::R5, PPC::R6, PPC::R7,
PPC::R8, PPC::R9, PPC::R10, PPC::R11,
PPC::R12, PPC::R13, PPC::R14, PPC::R15,
PPC::R16, PPC::R17, PPC::R18, PPC::R19,
PPC::R20, PPC::R21, PPC::R22, PPC::R23,
PPC::R24, PPC::R25, PPC::R26, PPC::R27,
PPC::R28, PPC::R29, PPC::R30, PPC::R31
};
static unsigned RRegsNoR0[32] = {
PPC::ZERO,
PPC::R1, PPC::R2, PPC::R3,
PPC::R4, PPC::R5, PPC::R6, PPC::R7,
PPC::R8, PPC::R9, PPC::R10, PPC::R11,
PPC::R12, PPC::R13, PPC::R14, PPC::R15,
PPC::R16, PPC::R17, PPC::R18, PPC::R19,
PPC::R20, PPC::R21, PPC::R22, PPC::R23,
PPC::R24, PPC::R25, PPC::R26, PPC::R27,
PPC::R28, PPC::R29, PPC::R30, PPC::R31
};
static unsigned XRegs[32] = {
PPC::X0, PPC::X1, PPC::X2, PPC::X3,
PPC::X4, PPC::X5, PPC::X6, PPC::X7,
PPC::X8, PPC::X9, PPC::X10, PPC::X11,
PPC::X12, PPC::X13, PPC::X14, PPC::X15,
PPC::X16, PPC::X17, PPC::X18, PPC::X19,
PPC::X20, PPC::X21, PPC::X22, PPC::X23,
PPC::X24, PPC::X25, PPC::X26, PPC::X27,
PPC::X28, PPC::X29, PPC::X30, PPC::X31
};
static unsigned XRegsNoX0[32] = {
PPC::ZERO8,
PPC::X1, PPC::X2, PPC::X3,
PPC::X4, PPC::X5, PPC::X6, PPC::X7,
PPC::X8, PPC::X9, PPC::X10, PPC::X11,
PPC::X12, PPC::X13, PPC::X14, PPC::X15,
PPC::X16, PPC::X17, PPC::X18, PPC::X19,
PPC::X20, PPC::X21, PPC::X22, PPC::X23,
PPC::X24, PPC::X25, PPC::X26, PPC::X27,
PPC::X28, PPC::X29, PPC::X30, PPC::X31
};
static unsigned FRegs[32] = {
PPC::F0, PPC::F1, PPC::F2, PPC::F3,
PPC::F4, PPC::F5, PPC::F6, PPC::F7,
PPC::F8, PPC::F9, PPC::F10, PPC::F11,
PPC::F12, PPC::F13, PPC::F14, PPC::F15,
PPC::F16, PPC::F17, PPC::F18, PPC::F19,
PPC::F20, PPC::F21, PPC::F22, PPC::F23,
PPC::F24, PPC::F25, PPC::F26, PPC::F27,
PPC::F28, PPC::F29, PPC::F30, PPC::F31
};
static unsigned VRegs[32] = {
PPC::V0, PPC::V1, PPC::V2, PPC::V3,
PPC::V4, PPC::V5, PPC::V6, PPC::V7,
PPC::V8, PPC::V9, PPC::V10, PPC::V11,
PPC::V12, PPC::V13, PPC::V14, PPC::V15,
PPC::V16, PPC::V17, PPC::V18, PPC::V19,
PPC::V20, PPC::V21, PPC::V22, PPC::V23,
PPC::V24, PPC::V25, PPC::V26, PPC::V27,
PPC::V28, PPC::V29, PPC::V30, PPC::V31
};
static unsigned CRBITRegs[32] = {
PPC::CR0LT, PPC::CR0GT, PPC::CR0EQ, PPC::CR0UN,
PPC::CR1LT, PPC::CR1GT, PPC::CR1EQ, PPC::CR1UN,
PPC::CR2LT, PPC::CR2GT, PPC::CR2EQ, PPC::CR2UN,
PPC::CR3LT, PPC::CR3GT, PPC::CR3EQ, PPC::CR3UN,
PPC::CR4LT, PPC::CR4GT, PPC::CR4EQ, PPC::CR4UN,
PPC::CR5LT, PPC::CR5GT, PPC::CR5EQ, PPC::CR5UN,
PPC::CR6LT, PPC::CR6GT, PPC::CR6EQ, PPC::CR6UN,
PPC::CR7LT, PPC::CR7GT, PPC::CR7EQ, PPC::CR7UN
};
static unsigned CRRegs[8] = {
PPC::CR0, PPC::CR1, PPC::CR2, PPC::CR3,
PPC::CR4, PPC::CR5, PPC::CR6, PPC::CR7
};
// Evaluate an expression containing condition register
// or condition register field symbols. Returns positive
// value on success, or -1 on error.
static int64_t
EvaluateCRExpr(const MCExpr *E) {
switch (E->getKind()) {
case MCExpr::Target:
return -1;
case MCExpr::Constant: {
int64_t Res = cast<MCConstantExpr>(E)->getValue();
return Res < 0 ? -1 : Res;
}
case MCExpr::SymbolRef: {
const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(E);
StringRef Name = SRE->getSymbol().getName();
if (Name == "lt") return 0;
if (Name == "gt") return 1;
if (Name == "eq") return 2;
if (Name == "so") return 3;
if (Name == "un") return 3;
if (Name == "cr0") return 0;
if (Name == "cr1") return 1;
if (Name == "cr2") return 2;
if (Name == "cr3") return 3;
if (Name == "cr4") return 4;
if (Name == "cr5") return 5;
if (Name == "cr6") return 6;
if (Name == "cr7") return 7;
return -1;
}
case MCExpr::Unary:
return -1;
case MCExpr::Binary: {
const MCBinaryExpr *BE = cast<MCBinaryExpr>(E);
int64_t LHSVal = EvaluateCRExpr(BE->getLHS());
int64_t RHSVal = EvaluateCRExpr(BE->getRHS());
int64_t Res;
if (LHSVal < 0 || RHSVal < 0)
return -1;
switch (BE->getOpcode()) {
default: return -1;
case MCBinaryExpr::Add: Res = LHSVal + RHSVal; break;
case MCBinaryExpr::Mul: Res = LHSVal * RHSVal; break;
}
return Res < 0 ? -1 : Res;
}
}
llvm_unreachable("Invalid expression kind!");
}
struct PPCOperand;
class PPCAsmParser : public MCTargetAsmParser {
MCSubtargetInfo &STI;
MCAsmParser &Parser;
bool IsPPC64;
MCAsmParser &getParser() const { return Parser; }
MCAsmLexer &getLexer() const { return Parser.getLexer(); }
void Warning(SMLoc L, const Twine &Msg) { Parser.Warning(L, Msg); }
bool Error(SMLoc L, const Twine &Msg) { return Parser.Error(L, Msg); }
bool isPPC64() const { return IsPPC64; }
bool MatchRegisterName(const AsmToken &Tok,
unsigned &RegNo, int64_t &IntVal);
virtual bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc);
const MCExpr *ExtractModifierFromExpr(const MCExpr *E,
PPCMCExpr::VariantKind &Variant);
const MCExpr *FixupVariantKind(const MCExpr *E);
bool ParseExpression(const MCExpr *&EVal);
bool ParseOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands);
bool ParseDirectiveWord(unsigned Size, SMLoc L);
bool ParseDirectiveTC(unsigned Size, SMLoc L);
bool ParseDirectiveMachine(SMLoc L);
bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
SmallVectorImpl<MCParsedAsmOperand*> &Operands,
MCStreamer &Out, unsigned &ErrorInfo,
bool MatchingInlineAsm);
void ProcessInstruction(MCInst &Inst,
const SmallVectorImpl<MCParsedAsmOperand*> &Ops);
/// @name Auto-generated Match Functions
/// {
#define GET_ASSEMBLER_HEADER
#include "PPCGenAsmMatcher.inc"
/// }
public:
PPCAsmParser(MCSubtargetInfo &_STI, MCAsmParser &_Parser)
: MCTargetAsmParser(), STI(_STI), Parser(_Parser) {
// Check for 64-bit vs. 32-bit pointer mode.
Triple TheTriple(STI.getTargetTriple());
IsPPC64 = (TheTriple.getArch() == Triple::ppc64 ||
TheTriple.getArch() == Triple::ppc64le);
// Initialize the set of available features.
setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
}
virtual bool ParseInstruction(ParseInstructionInfo &Info,
StringRef Name, SMLoc NameLoc,
SmallVectorImpl<MCParsedAsmOperand*> &Operands);
virtual bool ParseDirective(AsmToken DirectiveID);
unsigned validateTargetOperandClass(MCParsedAsmOperand *Op, unsigned Kind);
};
/// PPCOperand - Instances of this class represent a parsed PowerPC machine
/// instruction.
struct PPCOperand : public MCParsedAsmOperand {
enum KindTy {
Token,
Immediate,
Expression,
TLSRegister
} Kind;
SMLoc StartLoc, EndLoc;
bool IsPPC64;
struct TokOp {
const char *Data;
unsigned Length;
};
struct ImmOp {
int64_t Val;
};
struct ExprOp {
const MCExpr *Val;
int64_t CRVal; // Cached result of EvaluateCRExpr(Val)
};
struct TLSRegOp {
const MCSymbolRefExpr *Sym;
};
union {
struct TokOp Tok;
struct ImmOp Imm;
struct ExprOp Expr;
struct TLSRegOp TLSReg;
};
PPCOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {}
public:
PPCOperand(const PPCOperand &o) : MCParsedAsmOperand() {
Kind = o.Kind;
StartLoc = o.StartLoc;
EndLoc = o.EndLoc;
IsPPC64 = o.IsPPC64;
switch (Kind) {
case Token:
Tok = o.Tok;
break;
case Immediate:
Imm = o.Imm;
break;
case Expression:
Expr = o.Expr;
break;
case TLSRegister:
TLSReg = o.TLSReg;
break;
}
}
/// getStartLoc - Get the location of the first token of this operand.
SMLoc getStartLoc() const { return StartLoc; }
/// getEndLoc - Get the location of the last token of this operand.
SMLoc getEndLoc() const { return EndLoc; }
/// isPPC64 - True if this operand is for an instruction in 64-bit mode.
bool isPPC64() const { return IsPPC64; }
int64_t getImm() const {
assert(Kind == Immediate && "Invalid access!");
return Imm.Val;
}
const MCExpr *getExpr() const {
assert(Kind == Expression && "Invalid access!");
return Expr.Val;
}
int64_t getExprCRVal() const {
assert(Kind == Expression && "Invalid access!");
return Expr.CRVal;
}
const MCExpr *getTLSReg() const {
assert(Kind == TLSRegister && "Invalid access!");
return TLSReg.Sym;
}
unsigned getReg() const {
assert(isRegNumber() && "Invalid access!");
return (unsigned) Imm.Val;
}
unsigned getCCReg() const {
assert(isCCRegNumber() && "Invalid access!");
return (unsigned) (Kind == Immediate ? Imm.Val : Expr.CRVal);
}
unsigned getCRBit() const {
assert(isCRBitNumber() && "Invalid access!");
return (unsigned) (Kind == Immediate ? Imm.Val : Expr.CRVal);
}
unsigned getCRBitMask() const {
assert(isCRBitMask() && "Invalid access!");
return 7 - countTrailingZeros<uint64_t>(Imm.Val);
}
bool isToken() const { return Kind == Token; }
bool isImm() const { return Kind == Immediate || Kind == Expression; }
bool isU5Imm() const { return Kind == Immediate && isUInt<5>(getImm()); }
bool isS5Imm() const { return Kind == Immediate && isInt<5>(getImm()); }
bool isU6Imm() const { return Kind == Immediate && isUInt<6>(getImm()); }
bool isU16Imm() const { return Kind == Expression ||
(Kind == Immediate && isUInt<16>(getImm())); }
bool isS16Imm() const { return Kind == Expression ||
(Kind == Immediate && isInt<16>(getImm())); }
bool isS16ImmX4() const { return Kind == Expression ||
(Kind == Immediate && isInt<16>(getImm()) &&
(getImm() & 3) == 0); }
bool isS17Imm() const { return Kind == Expression ||
(Kind == Immediate && isInt<17>(getImm())); }
bool isTLSReg() const { return Kind == TLSRegister; }
bool isDirectBr() const { return Kind == Expression ||
(Kind == Immediate && isInt<26>(getImm()) &&
(getImm() & 3) == 0); }
bool isCondBr() const { return Kind == Expression ||
(Kind == Immediate && isInt<16>(getImm()) &&
(getImm() & 3) == 0); }
bool isRegNumber() const { return Kind == Immediate && isUInt<5>(getImm()); }
bool isCCRegNumber() const { return (Kind == Expression
&& isUInt<3>(getExprCRVal())) ||
(Kind == Immediate
&& isUInt<3>(getImm())); }
bool isCRBitNumber() const { return (Kind == Expression
&& isUInt<5>(getExprCRVal())) ||
(Kind == Immediate
&& isUInt<5>(getImm())); }
bool isCRBitMask() const { return Kind == Immediate && isUInt<8>(getImm()) &&
isPowerOf2_32(getImm()); }
bool isMem() const { return false; }
bool isReg() const { return false; }
void addRegOperands(MCInst &Inst, unsigned N) const {
llvm_unreachable("addRegOperands");
}
void addRegGPRCOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateReg(RRegs[getReg()]));
}
void addRegGPRCNoR0Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateReg(RRegsNoR0[getReg()]));
}
void addRegG8RCOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateReg(XRegs[getReg()]));
}
void addRegG8RCNoX0Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateReg(XRegsNoX0[getReg()]));
}
void addRegGxRCOperands(MCInst &Inst, unsigned N) const {
if (isPPC64())
addRegG8RCOperands(Inst, N);
else
addRegGPRCOperands(Inst, N);
}
void addRegGxRCNoR0Operands(MCInst &Inst, unsigned N) const {
if (isPPC64())
addRegG8RCNoX0Operands(Inst, N);
else
addRegGPRCNoR0Operands(Inst, N);
}
void addRegF4RCOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateReg(FRegs[getReg()]));
}
void addRegF8RCOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateReg(FRegs[getReg()]));
}
void addRegVRRCOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateReg(VRegs[getReg()]));
}
void addRegCRBITRCOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateReg(CRBITRegs[getCRBit()]));
}
void addRegCRRCOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateReg(CRRegs[getCCReg()]));
}
void addCRBitMaskOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateReg(CRRegs[getCRBitMask()]));
}
void addImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
if (Kind == Immediate)
Inst.addOperand(MCOperand::CreateImm(getImm()));
else
Inst.addOperand(MCOperand::CreateExpr(getExpr()));
}
void addBranchTargetOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
if (Kind == Immediate)
Inst.addOperand(MCOperand::CreateImm(getImm() / 4));
else
Inst.addOperand(MCOperand::CreateExpr(getExpr()));
}
void addTLSRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateExpr(getTLSReg()));
}
StringRef getToken() const {
assert(Kind == Token && "Invalid access!");
return StringRef(Tok.Data, Tok.Length);
}
virtual void print(raw_ostream &OS) const;
static PPCOperand *CreateToken(StringRef Str, SMLoc S, bool IsPPC64) {
PPCOperand *Op = new PPCOperand(Token);
Op->Tok.Data = Str.data();
Op->Tok.Length = Str.size();
Op->StartLoc = S;
Op->EndLoc = S;
Op->IsPPC64 = IsPPC64;
return Op;
}
static PPCOperand *CreateImm(int64_t Val, SMLoc S, SMLoc E, bool IsPPC64) {
PPCOperand *Op = new PPCOperand(Immediate);
Op->Imm.Val = Val;
Op->StartLoc = S;
Op->EndLoc = E;
Op->IsPPC64 = IsPPC64;
return Op;
}
static PPCOperand *CreateExpr(const MCExpr *Val,
SMLoc S, SMLoc E, bool IsPPC64) {
PPCOperand *Op = new PPCOperand(Expression);
Op->Expr.Val = Val;
Op->Expr.CRVal = EvaluateCRExpr(Val);
Op->StartLoc = S;
Op->EndLoc = E;
Op->IsPPC64 = IsPPC64;
return Op;
}
static PPCOperand *CreateTLSReg(const MCSymbolRefExpr *Sym,
SMLoc S, SMLoc E, bool IsPPC64) {
PPCOperand *Op = new PPCOperand(TLSRegister);
Op->TLSReg.Sym = Sym;
Op->StartLoc = S;
Op->EndLoc = E;
Op->IsPPC64 = IsPPC64;
return Op;
}
static PPCOperand *CreateFromMCExpr(const MCExpr *Val,
SMLoc S, SMLoc E, bool IsPPC64) {
if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val))
return CreateImm(CE->getValue(), S, E, IsPPC64);
if (const MCSymbolRefExpr *SRE = dyn_cast<MCSymbolRefExpr>(Val))
if (SRE->getKind() == MCSymbolRefExpr::VK_PPC_TLS)
return CreateTLSReg(SRE, S, E, IsPPC64);
return CreateExpr(Val, S, E, IsPPC64);
}
};
} // end anonymous namespace.
void PPCOperand::print(raw_ostream &OS) const {
switch (Kind) {
case Token:
OS << "'" << getToken() << "'";
break;
case Immediate:
OS << getImm();
break;
case Expression:
getExpr()->print(OS);
break;
case TLSRegister:
getTLSReg()->print(OS);
break;
}
}
void PPCAsmParser::
ProcessInstruction(MCInst &Inst,
const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
int Opcode = Inst.getOpcode();
switch (Opcode) {
case PPC::LAx: {
MCInst TmpInst;
TmpInst.setOpcode(PPC::LA);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(2));
TmpInst.addOperand(Inst.getOperand(1));
Inst = TmpInst;
break;
}
case PPC::SUBI: {
MCInst TmpInst;
int64_t N = Inst.getOperand(2).getImm();
TmpInst.setOpcode(PPC::ADDI);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(1));
TmpInst.addOperand(MCOperand::CreateImm(-N));
Inst = TmpInst;
break;
}
case PPC::SUBIS: {
MCInst TmpInst;
int64_t N = Inst.getOperand(2).getImm();
TmpInst.setOpcode(PPC::ADDIS);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(1));
TmpInst.addOperand(MCOperand::CreateImm(-N));
Inst = TmpInst;
break;
}
case PPC::SUBIC: {
MCInst TmpInst;
int64_t N = Inst.getOperand(2).getImm();
TmpInst.setOpcode(PPC::ADDIC);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(1));
TmpInst.addOperand(MCOperand::CreateImm(-N));
Inst = TmpInst;
break;
}
case PPC::SUBICo: {
MCInst TmpInst;
int64_t N = Inst.getOperand(2).getImm();
TmpInst.setOpcode(PPC::ADDICo);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(1));
TmpInst.addOperand(MCOperand::CreateImm(-N));
Inst = TmpInst;
break;
}
case PPC::EXTLWI:
case PPC::EXTLWIo: {
MCInst TmpInst;
int64_t N = Inst.getOperand(2).getImm();
int64_t B = Inst.getOperand(3).getImm();
TmpInst.setOpcode(Opcode == PPC::EXTLWI? PPC::RLWINM : PPC::RLWINMo);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(1));
TmpInst.addOperand(MCOperand::CreateImm(B));
TmpInst.addOperand(MCOperand::CreateImm(0));
TmpInst.addOperand(MCOperand::CreateImm(N - 1));
Inst = TmpInst;
break;
}
case PPC::EXTRWI:
case PPC::EXTRWIo: {
MCInst TmpInst;
int64_t N = Inst.getOperand(2).getImm();
int64_t B = Inst.getOperand(3).getImm();
TmpInst.setOpcode(Opcode == PPC::EXTRWI? PPC::RLWINM : PPC::RLWINMo);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(1));
TmpInst.addOperand(MCOperand::CreateImm(B + N));
TmpInst.addOperand(MCOperand::CreateImm(32 - N));
TmpInst.addOperand(MCOperand::CreateImm(31));
Inst = TmpInst;
break;
}
case PPC::INSLWI:
case PPC::INSLWIo: {
MCInst TmpInst;
int64_t N = Inst.getOperand(2).getImm();
int64_t B = Inst.getOperand(3).getImm();
TmpInst.setOpcode(Opcode == PPC::INSLWI? PPC::RLWIMI : PPC::RLWIMIo);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(1));
TmpInst.addOperand(MCOperand::CreateImm(32 - B));
TmpInst.addOperand(MCOperand::CreateImm(B));
TmpInst.addOperand(MCOperand::CreateImm((B + N) - 1));
Inst = TmpInst;
break;
}
case PPC::INSRWI:
case PPC::INSRWIo: {
MCInst TmpInst;
int64_t N = Inst.getOperand(2).getImm();
int64_t B = Inst.getOperand(3).getImm();
TmpInst.setOpcode(Opcode == PPC::INSRWI? PPC::RLWIMI : PPC::RLWIMIo);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(1));
TmpInst.addOperand(MCOperand::CreateImm(32 - (B + N)));
TmpInst.addOperand(MCOperand::CreateImm(B));
TmpInst.addOperand(MCOperand::CreateImm((B + N) - 1));
Inst = TmpInst;
break;
}
case PPC::ROTRWI:
case PPC::ROTRWIo: {
MCInst TmpInst;
int64_t N = Inst.getOperand(2).getImm();
TmpInst.setOpcode(Opcode == PPC::ROTRWI? PPC::RLWINM : PPC::RLWINMo);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(1));
TmpInst.addOperand(MCOperand::CreateImm(32 - N));
TmpInst.addOperand(MCOperand::CreateImm(0));
TmpInst.addOperand(MCOperand::CreateImm(31));
Inst = TmpInst;
break;
}
case PPC::SLWI:
case PPC::SLWIo: {
MCInst TmpInst;
int64_t N = Inst.getOperand(2).getImm();
TmpInst.setOpcode(Opcode == PPC::SLWI? PPC::RLWINM : PPC::RLWINMo);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(1));
TmpInst.addOperand(MCOperand::CreateImm(N));
TmpInst.addOperand(MCOperand::CreateImm(0));
TmpInst.addOperand(MCOperand::CreateImm(31 - N));
Inst = TmpInst;
break;
}
case PPC::SRWI:
case PPC::SRWIo: {
MCInst TmpInst;
int64_t N = Inst.getOperand(2).getImm();
TmpInst.setOpcode(Opcode == PPC::SRWI? PPC::RLWINM : PPC::RLWINMo);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(1));
TmpInst.addOperand(MCOperand::CreateImm(32 - N));
TmpInst.addOperand(MCOperand::CreateImm(N));
TmpInst.addOperand(MCOperand::CreateImm(31));
Inst = TmpInst;
break;
}
case PPC::CLRRWI:
case PPC::CLRRWIo: {
MCInst TmpInst;
int64_t N = Inst.getOperand(2).getImm();
TmpInst.setOpcode(Opcode == PPC::CLRRWI? PPC::RLWINM : PPC::RLWINMo);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(1));
TmpInst.addOperand(MCOperand::CreateImm(0));
TmpInst.addOperand(MCOperand::CreateImm(0));
TmpInst.addOperand(MCOperand::CreateImm(31 - N));
Inst = TmpInst;
break;
}
case PPC::CLRLSLWI:
case PPC::CLRLSLWIo: {
MCInst TmpInst;
int64_t B = Inst.getOperand(2).getImm();
int64_t N = Inst.getOperand(3).getImm();
TmpInst.setOpcode(Opcode == PPC::CLRLSLWI? PPC::RLWINM : PPC::RLWINMo);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(1));
TmpInst.addOperand(MCOperand::CreateImm(N));
TmpInst.addOperand(MCOperand::CreateImm(B - N));
TmpInst.addOperand(MCOperand::CreateImm(31 - N));
Inst = TmpInst;
break;
}
case PPC::EXTLDI:
case PPC::EXTLDIo: {
MCInst TmpInst;
int64_t N = Inst.getOperand(2).getImm();
int64_t B = Inst.getOperand(3).getImm();
TmpInst.setOpcode(Opcode == PPC::EXTLDI? PPC::RLDICR : PPC::RLDICRo);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(1));
TmpInst.addOperand(MCOperand::CreateImm(B));
TmpInst.addOperand(MCOperand::CreateImm(N - 1));
Inst = TmpInst;
break;
}
case PPC::EXTRDI:
case PPC::EXTRDIo: {
MCInst TmpInst;
int64_t N = Inst.getOperand(2).getImm();
int64_t B = Inst.getOperand(3).getImm();
TmpInst.setOpcode(Opcode == PPC::EXTRDI? PPC::RLDICL : PPC::RLDICLo);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(1));
TmpInst.addOperand(MCOperand::CreateImm(B + N));
TmpInst.addOperand(MCOperand::CreateImm(64 - N));
Inst = TmpInst;
break;
}
case PPC::INSRDI:
case PPC::INSRDIo: {
MCInst TmpInst;
int64_t N = Inst.getOperand(2).getImm();
int64_t B = Inst.getOperand(3).getImm();
TmpInst.setOpcode(Opcode == PPC::INSRDI? PPC::RLDIMI : PPC::RLDIMIo);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(1));
TmpInst.addOperand(MCOperand::CreateImm(64 - (B + N)));
TmpInst.addOperand(MCOperand::CreateImm(B));
Inst = TmpInst;
break;
}
case PPC::ROTRDI:
case PPC::ROTRDIo: {
MCInst TmpInst;
int64_t N = Inst.getOperand(2).getImm();
TmpInst.setOpcode(Opcode == PPC::ROTRDI? PPC::RLDICL : PPC::RLDICLo);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(1));
TmpInst.addOperand(MCOperand::CreateImm(64 - N));
TmpInst.addOperand(MCOperand::CreateImm(0));
Inst = TmpInst;
break;
}
case PPC::SLDI:
case PPC::SLDIo: {
MCInst TmpInst;
int64_t N = Inst.getOperand(2).getImm();
TmpInst.setOpcode(Opcode == PPC::SLDI? PPC::RLDICR : PPC::RLDICRo);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(1));
TmpInst.addOperand(MCOperand::CreateImm(N));
TmpInst.addOperand(MCOperand::CreateImm(63 - N));
Inst = TmpInst;
break;
}
case PPC::SRDI:
case PPC::SRDIo: {
MCInst TmpInst;
int64_t N = Inst.getOperand(2).getImm();
TmpInst.setOpcode(Opcode == PPC::SRDI? PPC::RLDICL : PPC::RLDICLo);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(1));
TmpInst.addOperand(MCOperand::CreateImm(64 - N));
TmpInst.addOperand(MCOperand::CreateImm(N));
Inst = TmpInst;
break;
}
case PPC::CLRRDI:
case PPC::CLRRDIo: {
MCInst TmpInst;
int64_t N = Inst.getOperand(2).getImm();
TmpInst.setOpcode(Opcode == PPC::CLRRDI? PPC::RLDICR : PPC::RLDICRo);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(1));
TmpInst.addOperand(MCOperand::CreateImm(0));
TmpInst.addOperand(MCOperand::CreateImm(63 - N));
Inst = TmpInst;
break;
}
case PPC::CLRLSLDI:
case PPC::CLRLSLDIo: {
MCInst TmpInst;
int64_t B = Inst.getOperand(2).getImm();
int64_t N = Inst.getOperand(3).getImm();
TmpInst.setOpcode(Opcode == PPC::CLRLSLDI? PPC::RLDIC : PPC::RLDICo);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(1));
TmpInst.addOperand(MCOperand::CreateImm(N));
TmpInst.addOperand(MCOperand::CreateImm(B - N));
Inst = TmpInst;
break;
}
}
}
bool PPCAsmParser::
MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
SmallVectorImpl<MCParsedAsmOperand*> &Operands,
MCStreamer &Out, unsigned &ErrorInfo,
bool MatchingInlineAsm) {
MCInst Inst;
switch (MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm)) {
default: break;
case Match_Success:
// Post-process instructions (typically extended mnemonics)
ProcessInstruction(Inst, Operands);
Inst.setLoc(IDLoc);
Out.EmitInstruction(Inst);
return false;
case Match_MissingFeature:
return Error(IDLoc, "instruction use requires an option to be enabled");
case Match_MnemonicFail:
return Error(IDLoc, "unrecognized instruction mnemonic");
case Match_InvalidOperand: {
SMLoc ErrorLoc = IDLoc;
if (ErrorInfo != ~0U) {
if (ErrorInfo >= Operands.size())
return Error(IDLoc, "too few operands for instruction");
ErrorLoc = ((PPCOperand*)Operands[ErrorInfo])->getStartLoc();
if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
}
return Error(ErrorLoc, "invalid operand for instruction");
}
}
llvm_unreachable("Implement any new match types added!");
}
bool PPCAsmParser::
MatchRegisterName(const AsmToken &Tok, unsigned &RegNo, int64_t &IntVal) {
if (Tok.is(AsmToken::Identifier)) {
StringRef Name = Tok.getString();
if (Name.equals_lower("lr")) {
RegNo = isPPC64()? PPC::LR8 : PPC::LR;
IntVal = 8;
return false;
} else if (Name.equals_lower("ctr")) {
RegNo = isPPC64()? PPC::CTR8 : PPC::CTR;
IntVal = 9;
return false;
} else if (Name.equals_lower("vrsave")) {
RegNo = PPC::VRSAVE;
IntVal = 256;
return false;
} else if (Name.substr(0, 1).equals_lower("r") &&
!Name.substr(1).getAsInteger(10, IntVal) && IntVal < 32) {
RegNo = isPPC64()? XRegs[IntVal] : RRegs[IntVal];
return false;
} else if (Name.substr(0, 1).equals_lower("f") &&
!Name.substr(1).getAsInteger(10, IntVal) && IntVal < 32) {
RegNo = FRegs[IntVal];
return false;
} else if (Name.substr(0, 1).equals_lower("v") &&
!Name.substr(1).getAsInteger(10, IntVal) && IntVal < 32) {
RegNo = VRegs[IntVal];
return false;
} else if (Name.substr(0, 2).equals_lower("cr") &&
!Name.substr(2).getAsInteger(10, IntVal) && IntVal < 8) {
RegNo = CRRegs[IntVal];
return false;
}
}
return true;
}
bool PPCAsmParser::
ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) {
const AsmToken &Tok = Parser.getTok();
StartLoc = Tok.getLoc();
EndLoc = Tok.getEndLoc();
RegNo = 0;
int64_t IntVal;
if (!MatchRegisterName(Tok, RegNo, IntVal)) {
Parser.Lex(); // Eat identifier token.
return false;
}
return Error(StartLoc, "invalid register name");
}
/// Extract \code @l/@ha \endcode modifier from expression. Recursively scan
/// the expression and check for VK_PPC_LO/HI/HA
/// symbol variants. If all symbols with modifier use the same
/// variant, return the corresponding PPCMCExpr::VariantKind,
/// and a modified expression using the default symbol variant.
/// Otherwise, return NULL.
const MCExpr *PPCAsmParser::
ExtractModifierFromExpr(const MCExpr *E,
PPCMCExpr::VariantKind &Variant) {
MCContext &Context = getParser().getContext();
Variant = PPCMCExpr::VK_PPC_None;
switch (E->getKind()) {
case MCExpr::Target:
case MCExpr::Constant:
return 0;
case MCExpr::SymbolRef: {
const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(E);
switch (SRE->getKind()) {
case MCSymbolRefExpr::VK_PPC_LO:
Variant = PPCMCExpr::VK_PPC_LO;
break;
case MCSymbolRefExpr::VK_PPC_HI:
Variant = PPCMCExpr::VK_PPC_HI;
break;
case MCSymbolRefExpr::VK_PPC_HA:
Variant = PPCMCExpr::VK_PPC_HA;
break;
case MCSymbolRefExpr::VK_PPC_HIGHER:
Variant = PPCMCExpr::VK_PPC_HIGHER;
break;
case MCSymbolRefExpr::VK_PPC_HIGHERA:
Variant = PPCMCExpr::VK_PPC_HIGHERA;
break;
case MCSymbolRefExpr::VK_PPC_HIGHEST:
Variant = PPCMCExpr::VK_PPC_HIGHEST;
break;
case MCSymbolRefExpr::VK_PPC_HIGHESTA:
Variant = PPCMCExpr::VK_PPC_HIGHESTA;
break;
default:
return 0;
}
return MCSymbolRefExpr::Create(&SRE->getSymbol(), Context);
}
case MCExpr::Unary: {
const MCUnaryExpr *UE = cast<MCUnaryExpr>(E);
const MCExpr *Sub = ExtractModifierFromExpr(UE->getSubExpr(), Variant);
if (!Sub)
return 0;
return MCUnaryExpr::Create(UE->getOpcode(), Sub, Context);
}
case MCExpr::Binary: {
const MCBinaryExpr *BE = cast<MCBinaryExpr>(E);
PPCMCExpr::VariantKind LHSVariant, RHSVariant;
const MCExpr *LHS = ExtractModifierFromExpr(BE->getLHS(), LHSVariant);
const MCExpr *RHS = ExtractModifierFromExpr(BE->getRHS(), RHSVariant);
if (!LHS && !RHS)
return 0;
if (!LHS) LHS = BE->getLHS();
if (!RHS) RHS = BE->getRHS();
if (LHSVariant == PPCMCExpr::VK_PPC_None)
Variant = RHSVariant;
else if (RHSVariant == PPCMCExpr::VK_PPC_None)
Variant = LHSVariant;
else if (LHSVariant == RHSVariant)
Variant = LHSVariant;
else
return 0;
return MCBinaryExpr::Create(BE->getOpcode(), LHS, RHS, Context);
}
}
llvm_unreachable("Invalid expression kind!");
}
/// Find all VK_TLSGD/VK_TLSLD symbol references in expression and replace
/// them by VK_PPC_TLSGD/VK_PPC_TLSLD. This is necessary to avoid having
/// _GLOBAL_OFFSET_TABLE_ created via ELFObjectWriter::RelocNeedsGOT.
/// FIXME: This is a hack.
const MCExpr *PPCAsmParser::
FixupVariantKind(const MCExpr *E) {
MCContext &Context = getParser().getContext();
switch (E->getKind()) {
case MCExpr::Target:
case MCExpr::Constant:
return E;
case MCExpr::SymbolRef: {
const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(E);
MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None;
switch (SRE->getKind()) {
case MCSymbolRefExpr::VK_TLSGD:
Variant = MCSymbolRefExpr::VK_PPC_TLSGD;
break;
case MCSymbolRefExpr::VK_TLSLD:
Variant = MCSymbolRefExpr::VK_PPC_TLSLD;
break;
default:
return E;
}
return MCSymbolRefExpr::Create(&SRE->getSymbol(), Variant, Context);
}
case MCExpr::Unary: {
const MCUnaryExpr *UE = cast<MCUnaryExpr>(E);
const MCExpr *Sub = FixupVariantKind(UE->getSubExpr());
if (Sub == UE->getSubExpr())
return E;
return MCUnaryExpr::Create(UE->getOpcode(), Sub, Context);
}
case MCExpr::Binary: {
const MCBinaryExpr *BE = cast<MCBinaryExpr>(E);
const MCExpr *LHS = FixupVariantKind(BE->getLHS());
const MCExpr *RHS = FixupVariantKind(BE->getRHS());
if (LHS == BE->getLHS() && RHS == BE->getRHS())
return E;
return MCBinaryExpr::Create(BE->getOpcode(), LHS, RHS, Context);
}
}
llvm_unreachable("Invalid expression kind!");
}
/// Parse an expression. This differs from the default "parseExpression"
/// in that it handles complex \code @l/@ha \endcode modifiers.
bool PPCAsmParser::
ParseExpression(const MCExpr *&EVal) {
if (getParser().parseExpression(EVal))
return true;
EVal = FixupVariantKind(EVal);
PPCMCExpr::VariantKind Variant;
const MCExpr *E = ExtractModifierFromExpr(EVal, Variant);
if (E)
EVal = PPCMCExpr::Create(Variant, E, false, getParser().getContext());
return false;
}
bool PPCAsmParser::
ParseOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
SMLoc S = Parser.getTok().getLoc();
SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
const MCExpr *EVal;
PPCOperand *Op;
// Attempt to parse the next token as an immediate
switch (getLexer().getKind()) {
// Special handling for register names. These are interpreted
// as immediates corresponding to the register number.
case AsmToken::Percent:
Parser.Lex(); // Eat the '%'.
unsigned RegNo;
int64_t IntVal;
if (!MatchRegisterName(Parser.getTok(), RegNo, IntVal)) {
Parser.Lex(); // Eat the identifier token.
Op = PPCOperand::CreateImm(IntVal, S, E, isPPC64());
Operands.push_back(Op);
return false;
}
return Error(S, "invalid register name");
// All other expressions
case AsmToken::LParen:
case AsmToken::Plus:
case AsmToken::Minus:
case AsmToken::Integer:
case AsmToken::Identifier:
case AsmToken::Dot:
case AsmToken::Dollar:
if (!ParseExpression(EVal))
break;
/* fall through */
default:
return Error(S, "unknown operand");
}
// Push the parsed operand into the list of operands
Op = PPCOperand::CreateFromMCExpr(EVal, S, E, isPPC64());
Operands.push_back(Op);
// Check whether this is a TLS call expression
bool TLSCall = false;
if (const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(EVal))
TLSCall = Ref->getSymbol().getName() == "__tls_get_addr";
if (TLSCall && getLexer().is(AsmToken::LParen)) {
const MCExpr *TLSSym;
Parser.Lex(); // Eat the '('.
S = Parser.getTok().getLoc();
if (ParseExpression(TLSSym))
return Error(S, "invalid TLS call expression");
if (getLexer().isNot(AsmToken::RParen))
return Error(Parser.getTok().getLoc(), "missing ')'");
E = Parser.getTok().getLoc();
Parser.Lex(); // Eat the ')'.
Op = PPCOperand::CreateFromMCExpr(TLSSym, S, E, isPPC64());
Operands.push_back(Op);
}
// Otherwise, check for D-form memory operands
if (!TLSCall && getLexer().is(AsmToken::LParen)) {
Parser.Lex(); // Eat the '('.
S = Parser.getTok().getLoc();
int64_t IntVal;
switch (getLexer().getKind()) {
case AsmToken::Percent:
Parser.Lex(); // Eat the '%'.
unsigned RegNo;
if (MatchRegisterName(Parser.getTok(), RegNo, IntVal))
return Error(S, "invalid register name");
Parser.Lex(); // Eat the identifier token.
break;
case AsmToken::Integer:
if (getParser().parseAbsoluteExpression(IntVal) ||
IntVal < 0 || IntVal > 31)
return Error(S, "invalid register number");
break;
default:
return Error(S, "invalid memory operand");
}
if (getLexer().isNot(AsmToken::RParen))
return Error(Parser.getTok().getLoc(), "missing ')'");
E = Parser.getTok().getLoc();
Parser.Lex(); // Eat the ')'.
Op = PPCOperand::CreateImm(IntVal, S, E, isPPC64());
Operands.push_back(Op);
}
return false;
}
/// Parse an instruction mnemonic followed by its operands.
bool PPCAsmParser::
ParseInstruction(ParseInstructionInfo &Info, StringRef Name, SMLoc NameLoc,
SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
// The first operand is the token for the instruction name.
// If the next character is a '+' or '-', we need to add it to the
// instruction name, to match what TableGen is doing.
if (getLexer().is(AsmToken::Plus)) {
getLexer().Lex();
char *NewOpcode = new char[Name.size() + 1];
memcpy(NewOpcode, Name.data(), Name.size());
NewOpcode[Name.size()] = '+';
Name = StringRef(NewOpcode, Name.size() + 1);
}
if (getLexer().is(AsmToken::Minus)) {
getLexer().Lex();
char *NewOpcode = new char[Name.size() + 1];
memcpy(NewOpcode, Name.data(), Name.size());
NewOpcode[Name.size()] = '-';
Name = StringRef(NewOpcode, Name.size() + 1);
}
// If the instruction ends in a '.', we need to create a separate
// token for it, to match what TableGen is doing.
size_t Dot = Name.find('.');
StringRef Mnemonic = Name.slice(0, Dot);
Operands.push_back(PPCOperand::CreateToken(Mnemonic, NameLoc, isPPC64()));
if (Dot != StringRef::npos) {
SMLoc DotLoc = SMLoc::getFromPointer(NameLoc.getPointer() + Dot);
StringRef DotStr = Name.slice(Dot, StringRef::npos);
Operands.push_back(PPCOperand::CreateToken(DotStr, DotLoc, isPPC64()));
}
// If there are no more operands then finish
if (getLexer().is(AsmToken::EndOfStatement))
return false;
// Parse the first operand
if (ParseOperand(Operands))
return true;
while (getLexer().isNot(AsmToken::EndOfStatement) &&
getLexer().is(AsmToken::Comma)) {
// Consume the comma token
getLexer().Lex();
// Parse the next operand
if (ParseOperand(Operands))
return true;
}
return false;
}
/// ParseDirective parses the PPC specific directives
bool PPCAsmParser::ParseDirective(AsmToken DirectiveID) {
StringRef IDVal = DirectiveID.getIdentifier();
if (IDVal == ".word")
return ParseDirectiveWord(2, DirectiveID.getLoc());
if (IDVal == ".llong")
return ParseDirectiveWord(8, DirectiveID.getLoc());
if (IDVal == ".tc")
return ParseDirectiveTC(isPPC64()? 8 : 4, DirectiveID.getLoc());
if (IDVal == ".machine")
return ParseDirectiveMachine(DirectiveID.getLoc());
return true;
}
/// ParseDirectiveWord
/// ::= .word [ expression (, expression)* ]
bool PPCAsmParser::ParseDirectiveWord(unsigned Size, SMLoc L) {
if (getLexer().isNot(AsmToken::EndOfStatement)) {
for (;;) {
const MCExpr *Value;
if (getParser().parseExpression(Value))
return true;
getParser().getStreamer().EmitValue(Value, Size);
if (getLexer().is(AsmToken::EndOfStatement))
break;
if (getLexer().isNot(AsmToken::Comma))
return Error(L, "unexpected token in directive");
Parser.Lex();
}
}
Parser.Lex();
return false;
}
/// ParseDirectiveTC
/// ::= .tc [ symbol (, expression)* ]
bool PPCAsmParser::ParseDirectiveTC(unsigned Size, SMLoc L) {
// Skip TC symbol, which is only used with XCOFF.
while (getLexer().isNot(AsmToken::EndOfStatement)
&& getLexer().isNot(AsmToken::Comma))
Parser.Lex();
if (getLexer().isNot(AsmToken::Comma))
return Error(L, "unexpected token in directive");
Parser.Lex();
// Align to word size.
getParser().getStreamer().EmitValueToAlignment(Size);
// Emit expressions.
return ParseDirectiveWord(Size, L);
}
/// ParseDirectiveMachine
/// ::= .machine [ cpu | "push" | "pop" ]
bool PPCAsmParser::ParseDirectiveMachine(SMLoc L) {
if (getLexer().isNot(AsmToken::Identifier) &&
getLexer().isNot(AsmToken::String))
return Error(L, "unexpected token in directive");
StringRef CPU = Parser.getTok().getIdentifier();
Parser.Lex();
// FIXME: Right now, the parser always allows any available
// instruction, so the .machine directive is not useful.
// Implement ".machine any" (by doing nothing) for the benefit
// of existing assembler code. Likewise, we can then implement
// ".machine push" and ".machine pop" as no-op.
if (CPU != "any" && CPU != "push" && CPU != "pop")
return Error(L, "unrecognized machine type");
if (getLexer().isNot(AsmToken::EndOfStatement))
return Error(L, "unexpected token in directive");
return false;
}
/// Force static initialization.
extern "C" void LLVMInitializePowerPCAsmParser() {
RegisterMCAsmParser<PPCAsmParser> A(ThePPC32Target);
RegisterMCAsmParser<PPCAsmParser> B(ThePPC64Target);
RegisterMCAsmParser<PPCAsmParser> C(ThePPC64LETarget);
}
#define GET_REGISTER_MATCHER
#define GET_MATCHER_IMPLEMENTATION
#include "PPCGenAsmMatcher.inc"
// Define this matcher function after the auto-generated include so we
// have the match class enum definitions.
unsigned PPCAsmParser::validateTargetOperandClass(MCParsedAsmOperand *AsmOp,
unsigned Kind) {
// If the kind is a token for a literal immediate, check if our asm
// operand matches. This is for InstAliases which have a fixed-value
// immediate in the syntax.
int64_t ImmVal;
switch (Kind) {
case MCK_0: ImmVal = 0; break;
case MCK_1: ImmVal = 1; break;
default: return Match_InvalidOperand;
}
PPCOperand *Op = static_cast<PPCOperand*>(AsmOp);
if (Op->isImm() && Op->getImm() == ImmVal)
return Match_Success;
return Match_InvalidOperand;
}