llvm-6502/lib/Target/X86/X86RegisterInfo.cpp
Jim Grosbach b58f498f75 Add register-reuse to frame-index register scavenging. When a target uses
a virtual register to eliminate a frame index, it can return that register
and the constant stored there to PEI to track. When scavenging to allocate
for those registers, PEI then tracks the last-used register and value, and
if it is still available and matches the value for the next index, reuses
the existing value rather and removes the re-materialization instructions.
Fancier tracking and adjustment of scavenger allocations to keep more
values live for longer is possible, but not yet implemented and would likely
be better done via a different, less special-purpose, approach to the
problem.

eliminateFrameIndex() is modified so the target implementations can return
the registers they wish to be tracked for reuse.

ARM Thumb1 implements and utilizes the new mechanism. All other targets are
simply modified to adjust for the changed eliminateFrameIndex() prototype.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@83467 91177308-0d34-0410-b5e6-96231b3b80d8
2009-10-07 17:12:56 +00:00

1516 lines
55 KiB
C++

//===- X86RegisterInfo.cpp - X86 Register Information -----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the X86 implementation of the TargetRegisterInfo class.
// This file is responsible for the frame pointer elimination optimization
// on X86.
//
//===----------------------------------------------------------------------===//
#include "X86.h"
#include "X86RegisterInfo.h"
#include "X86InstrBuilder.h"
#include "X86MachineFunctionInfo.h"
#include "X86Subtarget.h"
#include "X86TargetMachine.h"
#include "llvm/Constants.h"
#include "llvm/Function.h"
#include "llvm/Type.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineLocation.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/Target/TargetFrameInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
using namespace llvm;
X86RegisterInfo::X86RegisterInfo(X86TargetMachine &tm,
const TargetInstrInfo &tii)
: X86GenRegisterInfo(tm.getSubtarget<X86Subtarget>().is64Bit() ?
X86::ADJCALLSTACKDOWN64 :
X86::ADJCALLSTACKDOWN32,
tm.getSubtarget<X86Subtarget>().is64Bit() ?
X86::ADJCALLSTACKUP64 :
X86::ADJCALLSTACKUP32),
TM(tm), TII(tii) {
// Cache some information.
const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
Is64Bit = Subtarget->is64Bit();
IsWin64 = Subtarget->isTargetWin64();
StackAlign = TM.getFrameInfo()->getStackAlignment();
if (Is64Bit) {
SlotSize = 8;
StackPtr = X86::RSP;
FramePtr = X86::RBP;
} else {
SlotSize = 4;
StackPtr = X86::ESP;
FramePtr = X86::EBP;
}
}
/// getDwarfRegNum - This function maps LLVM register identifiers to the DWARF
/// specific numbering, used in debug info and exception tables.
int X86RegisterInfo::getDwarfRegNum(unsigned RegNo, bool isEH) const {
const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
unsigned Flavour = DWARFFlavour::X86_64;
if (!Subtarget->is64Bit()) {
if (Subtarget->isTargetDarwin()) {
if (isEH)
Flavour = DWARFFlavour::X86_32_DarwinEH;
else
Flavour = DWARFFlavour::X86_32_Generic;
} else if (Subtarget->isTargetCygMing()) {
// Unsupported by now, just quick fallback
Flavour = DWARFFlavour::X86_32_Generic;
} else {
Flavour = DWARFFlavour::X86_32_Generic;
}
}
return X86GenRegisterInfo::getDwarfRegNumFull(RegNo, Flavour);
}
/// getX86RegNum - This function maps LLVM register identifiers to their X86
/// specific numbering, which is used in various places encoding instructions.
unsigned X86RegisterInfo::getX86RegNum(unsigned RegNo) {
switch(RegNo) {
case X86::RAX: case X86::EAX: case X86::AX: case X86::AL: return N86::EAX;
case X86::RCX: case X86::ECX: case X86::CX: case X86::CL: return N86::ECX;
case X86::RDX: case X86::EDX: case X86::DX: case X86::DL: return N86::EDX;
case X86::RBX: case X86::EBX: case X86::BX: case X86::BL: return N86::EBX;
case X86::RSP: case X86::ESP: case X86::SP: case X86::SPL: case X86::AH:
return N86::ESP;
case X86::RBP: case X86::EBP: case X86::BP: case X86::BPL: case X86::CH:
return N86::EBP;
case X86::RSI: case X86::ESI: case X86::SI: case X86::SIL: case X86::DH:
return N86::ESI;
case X86::RDI: case X86::EDI: case X86::DI: case X86::DIL: case X86::BH:
return N86::EDI;
case X86::R8: case X86::R8D: case X86::R8W: case X86::R8B:
return N86::EAX;
case X86::R9: case X86::R9D: case X86::R9W: case X86::R9B:
return N86::ECX;
case X86::R10: case X86::R10D: case X86::R10W: case X86::R10B:
return N86::EDX;
case X86::R11: case X86::R11D: case X86::R11W: case X86::R11B:
return N86::EBX;
case X86::R12: case X86::R12D: case X86::R12W: case X86::R12B:
return N86::ESP;
case X86::R13: case X86::R13D: case X86::R13W: case X86::R13B:
return N86::EBP;
case X86::R14: case X86::R14D: case X86::R14W: case X86::R14B:
return N86::ESI;
case X86::R15: case X86::R15D: case X86::R15W: case X86::R15B:
return N86::EDI;
case X86::ST0: case X86::ST1: case X86::ST2: case X86::ST3:
case X86::ST4: case X86::ST5: case X86::ST6: case X86::ST7:
return RegNo-X86::ST0;
case X86::XMM0: case X86::XMM8: case X86::MM0:
return 0;
case X86::XMM1: case X86::XMM9: case X86::MM1:
return 1;
case X86::XMM2: case X86::XMM10: case X86::MM2:
return 2;
case X86::XMM3: case X86::XMM11: case X86::MM3:
return 3;
case X86::XMM4: case X86::XMM12: case X86::MM4:
return 4;
case X86::XMM5: case X86::XMM13: case X86::MM5:
return 5;
case X86::XMM6: case X86::XMM14: case X86::MM6:
return 6;
case X86::XMM7: case X86::XMM15: case X86::MM7:
return 7;
default:
assert(isVirtualRegister(RegNo) && "Unknown physical register!");
llvm_unreachable("Register allocator hasn't allocated reg correctly yet!");
return 0;
}
}
const TargetRegisterClass *
X86RegisterInfo::getMatchingSuperRegClass(const TargetRegisterClass *A,
const TargetRegisterClass *B,
unsigned SubIdx) const {
switch (SubIdx) {
default: return 0;
case 1:
// 8-bit
if (B == &X86::GR8RegClass) {
if (A->getSize() == 2 || A->getSize() == 4 || A->getSize() == 8)
return A;
} else if (B == &X86::GR8_ABCD_LRegClass || B == &X86::GR8_ABCD_HRegClass) {
if (A == &X86::GR64RegClass || A == &X86::GR64_ABCDRegClass ||
A == &X86::GR64_NOREXRegClass ||
A == &X86::GR64_NOSPRegClass ||
A == &X86::GR64_NOREX_NOSPRegClass)
return &X86::GR64_ABCDRegClass;
else if (A == &X86::GR32RegClass || A == &X86::GR32_ABCDRegClass ||
A == &X86::GR32_NOREXRegClass ||
A == &X86::GR32_NOSPRegClass)
return &X86::GR32_ABCDRegClass;
else if (A == &X86::GR16RegClass || A == &X86::GR16_ABCDRegClass ||
A == &X86::GR16_NOREXRegClass)
return &X86::GR16_ABCDRegClass;
} else if (B == &X86::GR8_NOREXRegClass) {
if (A == &X86::GR64RegClass || A == &X86::GR64_NOREXRegClass ||
A == &X86::GR64_NOSPRegClass || A == &X86::GR64_NOREX_NOSPRegClass)
return &X86::GR64_NOREXRegClass;
else if (A == &X86::GR64_ABCDRegClass)
return &X86::GR64_ABCDRegClass;
else if (A == &X86::GR32RegClass || A == &X86::GR32_NOREXRegClass ||
A == &X86::GR32_NOSPRegClass)
return &X86::GR32_NOREXRegClass;
else if (A == &X86::GR32_ABCDRegClass)
return &X86::GR32_ABCDRegClass;
else if (A == &X86::GR16RegClass || A == &X86::GR16_NOREXRegClass)
return &X86::GR16_NOREXRegClass;
else if (A == &X86::GR16_ABCDRegClass)
return &X86::GR16_ABCDRegClass;
}
break;
case 2:
// 8-bit hi
if (B == &X86::GR8_ABCD_HRegClass) {
if (A == &X86::GR64RegClass || A == &X86::GR64_ABCDRegClass ||
A == &X86::GR64_NOREXRegClass ||
A == &X86::GR64_NOSPRegClass ||
A == &X86::GR64_NOREX_NOSPRegClass)
return &X86::GR64_ABCDRegClass;
else if (A == &X86::GR32RegClass || A == &X86::GR32_ABCDRegClass ||
A == &X86::GR32_NOREXRegClass || A == &X86::GR32_NOSPRegClass)
return &X86::GR32_ABCDRegClass;
else if (A == &X86::GR16RegClass || A == &X86::GR16_ABCDRegClass ||
A == &X86::GR16_NOREXRegClass)
return &X86::GR16_ABCDRegClass;
}
break;
case 3:
// 16-bit
if (B == &X86::GR16RegClass) {
if (A->getSize() == 4 || A->getSize() == 8)
return A;
} else if (B == &X86::GR16_ABCDRegClass) {
if (A == &X86::GR64RegClass || A == &X86::GR64_ABCDRegClass ||
A == &X86::GR64_NOREXRegClass ||
A == &X86::GR64_NOSPRegClass ||
A == &X86::GR64_NOREX_NOSPRegClass)
return &X86::GR64_ABCDRegClass;
else if (A == &X86::GR32RegClass || A == &X86::GR32_ABCDRegClass ||
A == &X86::GR32_NOREXRegClass || A == &X86::GR32_NOSPRegClass)
return &X86::GR32_ABCDRegClass;
} else if (B == &X86::GR16_NOREXRegClass) {
if (A == &X86::GR64RegClass || A == &X86::GR64_NOREXRegClass ||
A == &X86::GR64_NOSPRegClass || A == &X86::GR64_NOREX_NOSPRegClass)
return &X86::GR64_NOREXRegClass;
else if (A == &X86::GR64_ABCDRegClass)
return &X86::GR64_ABCDRegClass;
else if (A == &X86::GR32RegClass || A == &X86::GR32_NOREXRegClass ||
A == &X86::GR32_NOSPRegClass)
return &X86::GR32_NOREXRegClass;
else if (A == &X86::GR32_ABCDRegClass)
return &X86::GR64_ABCDRegClass;
}
break;
case 4:
// 32-bit
if (B == &X86::GR32RegClass || B == &X86::GR32_NOSPRegClass) {
if (A->getSize() == 8)
return A;
} else if (B == &X86::GR32_ABCDRegClass) {
if (A == &X86::GR64RegClass || A == &X86::GR64_ABCDRegClass ||
A == &X86::GR64_NOREXRegClass ||
A == &X86::GR64_NOSPRegClass ||
A == &X86::GR64_NOREX_NOSPRegClass)
return &X86::GR64_ABCDRegClass;
} else if (B == &X86::GR32_NOREXRegClass) {
if (A == &X86::GR64RegClass || A == &X86::GR64_NOREXRegClass ||
A == &X86::GR64_NOSPRegClass || A == &X86::GR64_NOREX_NOSPRegClass)
return &X86::GR64_NOREXRegClass;
else if (A == &X86::GR64_ABCDRegClass)
return &X86::GR64_ABCDRegClass;
}
break;
}
return 0;
}
const TargetRegisterClass *
X86RegisterInfo::getPointerRegClass(unsigned Kind) const {
switch (Kind) {
default: llvm_unreachable("Unexpected Kind in getPointerRegClass!");
case 0: // Normal GPRs.
if (TM.getSubtarget<X86Subtarget>().is64Bit())
return &X86::GR64RegClass;
return &X86::GR32RegClass;
case 1: // Normal GRPs except the stack pointer (for encoding reasons).
if (TM.getSubtarget<X86Subtarget>().is64Bit())
return &X86::GR64_NOSPRegClass;
return &X86::GR32_NOSPRegClass;
}
}
const TargetRegisterClass *
X86RegisterInfo::getCrossCopyRegClass(const TargetRegisterClass *RC) const {
if (RC == &X86::CCRRegClass) {
if (Is64Bit)
return &X86::GR64RegClass;
else
return &X86::GR32RegClass;
}
return NULL;
}
const unsigned *
X86RegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
bool callsEHReturn = false;
if (MF) {
const MachineFrameInfo *MFI = MF->getFrameInfo();
const MachineModuleInfo *MMI = MFI->getMachineModuleInfo();
callsEHReturn = (MMI ? MMI->callsEHReturn() : false);
}
static const unsigned CalleeSavedRegs32Bit[] = {
X86::ESI, X86::EDI, X86::EBX, X86::EBP, 0
};
static const unsigned CalleeSavedRegs32EHRet[] = {
X86::EAX, X86::EDX, X86::ESI, X86::EDI, X86::EBX, X86::EBP, 0
};
static const unsigned CalleeSavedRegs64Bit[] = {
X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0
};
static const unsigned CalleeSavedRegs64EHRet[] = {
X86::RAX, X86::RDX, X86::RBX, X86::R12,
X86::R13, X86::R14, X86::R15, X86::RBP, 0
};
static const unsigned CalleeSavedRegsWin64[] = {
X86::RBX, X86::RBP, X86::RDI, X86::RSI,
X86::R12, X86::R13, X86::R14, X86::R15,
X86::XMM6, X86::XMM7, X86::XMM8, X86::XMM9,
X86::XMM10, X86::XMM11, X86::XMM12, X86::XMM13,
X86::XMM14, X86::XMM15, 0
};
if (Is64Bit) {
if (IsWin64)
return CalleeSavedRegsWin64;
else
return (callsEHReturn ? CalleeSavedRegs64EHRet : CalleeSavedRegs64Bit);
} else {
return (callsEHReturn ? CalleeSavedRegs32EHRet : CalleeSavedRegs32Bit);
}
}
const TargetRegisterClass* const*
X86RegisterInfo::getCalleeSavedRegClasses(const MachineFunction *MF) const {
bool callsEHReturn = false;
if (MF) {
const MachineFrameInfo *MFI = MF->getFrameInfo();
const MachineModuleInfo *MMI = MFI->getMachineModuleInfo();
callsEHReturn = (MMI ? MMI->callsEHReturn() : false);
}
static const TargetRegisterClass * const CalleeSavedRegClasses32Bit[] = {
&X86::GR32RegClass, &X86::GR32RegClass,
&X86::GR32RegClass, &X86::GR32RegClass, 0
};
static const TargetRegisterClass * const CalleeSavedRegClasses32EHRet[] = {
&X86::GR32RegClass, &X86::GR32RegClass,
&X86::GR32RegClass, &X86::GR32RegClass,
&X86::GR32RegClass, &X86::GR32RegClass, 0
};
static const TargetRegisterClass * const CalleeSavedRegClasses64Bit[] = {
&X86::GR64RegClass, &X86::GR64RegClass,
&X86::GR64RegClass, &X86::GR64RegClass,
&X86::GR64RegClass, &X86::GR64RegClass, 0
};
static const TargetRegisterClass * const CalleeSavedRegClasses64EHRet[] = {
&X86::GR64RegClass, &X86::GR64RegClass,
&X86::GR64RegClass, &X86::GR64RegClass,
&X86::GR64RegClass, &X86::GR64RegClass,
&X86::GR64RegClass, &X86::GR64RegClass, 0
};
static const TargetRegisterClass * const CalleeSavedRegClassesWin64[] = {
&X86::GR64RegClass, &X86::GR64RegClass,
&X86::GR64RegClass, &X86::GR64RegClass,
&X86::GR64RegClass, &X86::GR64RegClass,
&X86::GR64RegClass, &X86::GR64RegClass,
&X86::VR128RegClass, &X86::VR128RegClass,
&X86::VR128RegClass, &X86::VR128RegClass,
&X86::VR128RegClass, &X86::VR128RegClass,
&X86::VR128RegClass, &X86::VR128RegClass,
&X86::VR128RegClass, &X86::VR128RegClass, 0
};
if (Is64Bit) {
if (IsWin64)
return CalleeSavedRegClassesWin64;
else
return (callsEHReturn ?
CalleeSavedRegClasses64EHRet : CalleeSavedRegClasses64Bit);
} else {
return (callsEHReturn ?
CalleeSavedRegClasses32EHRet : CalleeSavedRegClasses32Bit);
}
}
BitVector X86RegisterInfo::getReservedRegs(const MachineFunction &MF) const {
BitVector Reserved(getNumRegs());
// Set the stack-pointer register and its aliases as reserved.
Reserved.set(X86::RSP);
Reserved.set(X86::ESP);
Reserved.set(X86::SP);
Reserved.set(X86::SPL);
// Set the frame-pointer register and its aliases as reserved if needed.
if (hasFP(MF)) {
Reserved.set(X86::RBP);
Reserved.set(X86::EBP);
Reserved.set(X86::BP);
Reserved.set(X86::BPL);
}
// Mark the x87 stack registers as reserved, since they don't behave normally
// with respect to liveness. We don't fully model the effects of x87 stack
// pushes and pops after stackification.
Reserved.set(X86::ST0);
Reserved.set(X86::ST1);
Reserved.set(X86::ST2);
Reserved.set(X86::ST3);
Reserved.set(X86::ST4);
Reserved.set(X86::ST5);
Reserved.set(X86::ST6);
Reserved.set(X86::ST7);
return Reserved;
}
//===----------------------------------------------------------------------===//
// Stack Frame Processing methods
//===----------------------------------------------------------------------===//
static unsigned calculateMaxStackAlignment(const MachineFrameInfo *FFI) {
unsigned MaxAlign = 0;
for (int i = FFI->getObjectIndexBegin(),
e = FFI->getObjectIndexEnd(); i != e; ++i) {
if (FFI->isDeadObjectIndex(i))
continue;
unsigned Align = FFI->getObjectAlignment(i);
MaxAlign = std::max(MaxAlign, Align);
}
return MaxAlign;
}
/// hasFP - Return true if the specified function should have a dedicated frame
/// pointer register. This is true if the function has variable sized allocas
/// or if frame pointer elimination is disabled.
bool X86RegisterInfo::hasFP(const MachineFunction &MF) const {
const MachineFrameInfo *MFI = MF.getFrameInfo();
const MachineModuleInfo *MMI = MFI->getMachineModuleInfo();
return (NoFramePointerElim ||
needsStackRealignment(MF) ||
MFI->hasVarSizedObjects() ||
MFI->isFrameAddressTaken() ||
MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() ||
(MMI && MMI->callsUnwindInit()));
}
bool X86RegisterInfo::needsStackRealignment(const MachineFunction &MF) const {
const MachineFrameInfo *MFI = MF.getFrameInfo();
// FIXME: Currently we don't support stack realignment for functions with
// variable-sized allocas
return (RealignStack &&
(MFI->getMaxAlignment() > StackAlign &&
!MFI->hasVarSizedObjects()));
}
bool X86RegisterInfo::hasReservedCallFrame(MachineFunction &MF) const {
return !MF.getFrameInfo()->hasVarSizedObjects();
}
bool X86RegisterInfo::hasReservedSpillSlot(MachineFunction &MF, unsigned Reg,
int &FrameIdx) const {
if (Reg == FramePtr && hasFP(MF)) {
FrameIdx = MF.getFrameInfo()->getObjectIndexBegin();
return true;
}
return false;
}
int
X86RegisterInfo::getFrameIndexOffset(MachineFunction &MF, int FI) const {
const TargetFrameInfo &TFI = *MF.getTarget().getFrameInfo();
MachineFrameInfo *MFI = MF.getFrameInfo();
int Offset = MFI->getObjectOffset(FI) - TFI.getOffsetOfLocalArea();
uint64_t StackSize = MFI->getStackSize();
if (needsStackRealignment(MF)) {
if (FI < 0) {
// Skip the saved EBP.
Offset += SlotSize;
} else {
unsigned Align = MFI->getObjectAlignment(FI);
assert( (-(Offset + StackSize)) % Align == 0);
Align = 0;
return Offset + StackSize;
}
// FIXME: Support tail calls
} else {
if (!hasFP(MF))
return Offset + StackSize;
// Skip the saved EBP.
Offset += SlotSize;
// Skip the RETADDR move area
X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
if (TailCallReturnAddrDelta < 0)
Offset -= TailCallReturnAddrDelta;
}
return Offset;
}
void X86RegisterInfo::
eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
MachineBasicBlock::iterator I) const {
if (!hasReservedCallFrame(MF)) {
// If the stack pointer can be changed after prologue, turn the
// adjcallstackup instruction into a 'sub ESP, <amt>' and the
// adjcallstackdown instruction into 'add ESP, <amt>'
// TODO: consider using push / pop instead of sub + store / add
MachineInstr *Old = I;
uint64_t Amount = Old->getOperand(0).getImm();
if (Amount != 0) {
// We need to keep the stack aligned properly. To do this, we round the
// amount of space needed for the outgoing arguments up to the next
// alignment boundary.
Amount = (Amount + StackAlign - 1) / StackAlign * StackAlign;
MachineInstr *New = 0;
if (Old->getOpcode() == getCallFrameSetupOpcode()) {
New = BuildMI(MF, Old->getDebugLoc(),
TII.get(Is64Bit ? X86::SUB64ri32 : X86::SUB32ri),
StackPtr)
.addReg(StackPtr)
.addImm(Amount);
} else {
assert(Old->getOpcode() == getCallFrameDestroyOpcode());
// Factor out the amount the callee already popped.
uint64_t CalleeAmt = Old->getOperand(1).getImm();
Amount -= CalleeAmt;
if (Amount) {
unsigned Opc = (Amount < 128) ?
(Is64Bit ? X86::ADD64ri8 : X86::ADD32ri8) :
(Is64Bit ? X86::ADD64ri32 : X86::ADD32ri);
New = BuildMI(MF, Old->getDebugLoc(), TII.get(Opc), StackPtr)
.addReg(StackPtr)
.addImm(Amount);
}
}
if (New) {
// The EFLAGS implicit def is dead.
New->getOperand(3).setIsDead();
// Replace the pseudo instruction with a new instruction.
MBB.insert(I, New);
}
}
} else if (I->getOpcode() == getCallFrameDestroyOpcode()) {
// If we are performing frame pointer elimination and if the callee pops
// something off the stack pointer, add it back. We do this until we have
// more advanced stack pointer tracking ability.
if (uint64_t CalleeAmt = I->getOperand(1).getImm()) {
unsigned Opc = (CalleeAmt < 128) ?
(Is64Bit ? X86::SUB64ri8 : X86::SUB32ri8) :
(Is64Bit ? X86::SUB64ri32 : X86::SUB32ri);
MachineInstr *Old = I;
MachineInstr *New =
BuildMI(MF, Old->getDebugLoc(), TII.get(Opc),
StackPtr)
.addReg(StackPtr)
.addImm(CalleeAmt);
// The EFLAGS implicit def is dead.
New->getOperand(3).setIsDead();
MBB.insert(I, New);
}
}
MBB.erase(I);
}
unsigned
X86RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
int SPAdj, int *Value,
RegScavenger *RS) const{
assert(SPAdj == 0 && "Unexpected");
unsigned i = 0;
MachineInstr &MI = *II;
MachineFunction &MF = *MI.getParent()->getParent();
while (!MI.getOperand(i).isFI()) {
++i;
assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!");
}
int FrameIndex = MI.getOperand(i).getIndex();
unsigned BasePtr;
if (needsStackRealignment(MF))
BasePtr = (FrameIndex < 0 ? FramePtr : StackPtr);
else
BasePtr = (hasFP(MF) ? FramePtr : StackPtr);
// This must be part of a four operand memory reference. Replace the
// FrameIndex with base register with EBP. Add an offset to the offset.
MI.getOperand(i).ChangeToRegister(BasePtr, false);
// Now add the frame object offset to the offset from EBP.
if (MI.getOperand(i+3).isImm()) {
// Offset is a 32-bit integer.
int Offset = getFrameIndexOffset(MF, FrameIndex) +
(int)(MI.getOperand(i + 3).getImm());
MI.getOperand(i + 3).ChangeToImmediate(Offset);
} else {
// Offset is symbolic. This is extremely rare.
uint64_t Offset = getFrameIndexOffset(MF, FrameIndex) +
(uint64_t)MI.getOperand(i+3).getOffset();
MI.getOperand(i+3).setOffset(Offset);
}
return 0;
}
void
X86RegisterInfo::processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
RegScavenger *RS) const {
MachineFrameInfo *MFI = MF.getFrameInfo();
// Calculate and set max stack object alignment early, so we can decide
// whether we will need stack realignment (and thus FP).
unsigned MaxAlign = std::max(MFI->getMaxAlignment(),
calculateMaxStackAlignment(MFI));
MFI->setMaxAlignment(MaxAlign);
X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
int32_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
if (TailCallReturnAddrDelta < 0) {
// create RETURNADDR area
// arg
// arg
// RETADDR
// { ...
// RETADDR area
// ...
// }
// [EBP]
MFI->CreateFixedObject(-TailCallReturnAddrDelta,
(-1U*SlotSize)+TailCallReturnAddrDelta);
}
if (hasFP(MF)) {
assert((TailCallReturnAddrDelta <= 0) &&
"The Delta should always be zero or negative");
const TargetFrameInfo &TFI = *MF.getTarget().getFrameInfo();
// Create a frame entry for the EBP register that must be saved.
int FrameIdx = MFI->CreateFixedObject(SlotSize,
-(int)SlotSize +
TFI.getOffsetOfLocalArea() +
TailCallReturnAddrDelta);
assert(FrameIdx == MFI->getObjectIndexBegin() &&
"Slot for EBP register must be last in order to be found!");
FrameIdx = 0;
}
}
/// emitSPUpdate - Emit a series of instructions to increment / decrement the
/// stack pointer by a constant value.
static
void emitSPUpdate(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
unsigned StackPtr, int64_t NumBytes, bool Is64Bit,
const TargetInstrInfo &TII) {
bool isSub = NumBytes < 0;
uint64_t Offset = isSub ? -NumBytes : NumBytes;
unsigned Opc = isSub
? ((Offset < 128) ?
(Is64Bit ? X86::SUB64ri8 : X86::SUB32ri8) :
(Is64Bit ? X86::SUB64ri32 : X86::SUB32ri))
: ((Offset < 128) ?
(Is64Bit ? X86::ADD64ri8 : X86::ADD32ri8) :
(Is64Bit ? X86::ADD64ri32 : X86::ADD32ri));
uint64_t Chunk = (1LL << 31) - 1;
DebugLoc DL = (MBBI != MBB.end() ? MBBI->getDebugLoc() :
DebugLoc::getUnknownLoc());
while (Offset) {
uint64_t ThisVal = (Offset > Chunk) ? Chunk : Offset;
MachineInstr *MI =
BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
.addReg(StackPtr)
.addImm(ThisVal);
MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
Offset -= ThisVal;
}
}
/// mergeSPUpdatesUp - Merge two stack-manipulating instructions upper iterator.
static
void mergeSPUpdatesUp(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
unsigned StackPtr, uint64_t *NumBytes = NULL) {
if (MBBI == MBB.begin()) return;
MachineBasicBlock::iterator PI = prior(MBBI);
unsigned Opc = PI->getOpcode();
if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
PI->getOperand(0).getReg() == StackPtr) {
if (NumBytes)
*NumBytes += PI->getOperand(2).getImm();
MBB.erase(PI);
} else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
PI->getOperand(0).getReg() == StackPtr) {
if (NumBytes)
*NumBytes -= PI->getOperand(2).getImm();
MBB.erase(PI);
}
}
/// mergeSPUpdatesUp - Merge two stack-manipulating instructions lower iterator.
static
void mergeSPUpdatesDown(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &MBBI,
unsigned StackPtr, uint64_t *NumBytes = NULL) {
// FIXME: THIS ISN'T RUN!!!
return;
if (MBBI == MBB.end()) return;
MachineBasicBlock::iterator NI = next(MBBI);
if (NI == MBB.end()) return;
unsigned Opc = NI->getOpcode();
if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
NI->getOperand(0).getReg() == StackPtr) {
if (NumBytes)
*NumBytes -= NI->getOperand(2).getImm();
MBB.erase(NI);
MBBI = NI;
} else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
NI->getOperand(0).getReg() == StackPtr) {
if (NumBytes)
*NumBytes += NI->getOperand(2).getImm();
MBB.erase(NI);
MBBI = NI;
}
}
/// mergeSPUpdates - Checks the instruction before/after the passed
/// instruction. If it is an ADD/SUB instruction it is deleted argument and the
/// stack adjustment is returned as a positive value for ADD and a negative for
/// SUB.
static int mergeSPUpdates(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &MBBI,
unsigned StackPtr,
bool doMergeWithPrevious) {
if ((doMergeWithPrevious && MBBI == MBB.begin()) ||
(!doMergeWithPrevious && MBBI == MBB.end()))
return 0;
MachineBasicBlock::iterator PI = doMergeWithPrevious ? prior(MBBI) : MBBI;
MachineBasicBlock::iterator NI = doMergeWithPrevious ? 0 : next(MBBI);
unsigned Opc = PI->getOpcode();
int Offset = 0;
if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
PI->getOperand(0).getReg() == StackPtr){
Offset += PI->getOperand(2).getImm();
MBB.erase(PI);
if (!doMergeWithPrevious) MBBI = NI;
} else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
PI->getOperand(0).getReg() == StackPtr) {
Offset -= PI->getOperand(2).getImm();
MBB.erase(PI);
if (!doMergeWithPrevious) MBBI = NI;
}
return Offset;
}
void X86RegisterInfo::emitCalleeSavedFrameMoves(MachineFunction &MF,
unsigned LabelId,
unsigned FramePtr) const {
MachineFrameInfo *MFI = MF.getFrameInfo();
MachineModuleInfo *MMI = MFI->getMachineModuleInfo();
if (!MMI) return;
// Add callee saved registers to move list.
const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
if (CSI.empty()) return;
std::vector<MachineMove> &Moves = MMI->getFrameMoves();
const TargetData *TD = MF.getTarget().getTargetData();
bool HasFP = hasFP(MF);
// Calculate amount of bytes used for return address storing.
int stackGrowth =
(MF.getTarget().getFrameInfo()->getStackGrowthDirection() ==
TargetFrameInfo::StackGrowsUp ?
TD->getPointerSize() : -TD->getPointerSize());
// FIXME: This is dirty hack. The code itself is pretty mess right now.
// It should be rewritten from scratch and generalized sometimes.
// Determine maximum offset (minumum due to stack growth).
int64_t MaxOffset = 0;
for (std::vector<CalleeSavedInfo>::const_iterator
I = CSI.begin(), E = CSI.end(); I != E; ++I)
MaxOffset = std::min(MaxOffset,
MFI->getObjectOffset(I->getFrameIdx()));
// Calculate offsets.
int64_t saveAreaOffset = (HasFP ? 3 : 2) * stackGrowth;
for (std::vector<CalleeSavedInfo>::const_iterator
I = CSI.begin(), E = CSI.end(); I != E; ++I) {
int64_t Offset = MFI->getObjectOffset(I->getFrameIdx());
unsigned Reg = I->getReg();
Offset = MaxOffset - Offset + saveAreaOffset;
// Don't output a new machine move if we're re-saving the frame
// pointer. This happens when the PrologEpilogInserter has inserted an extra
// "PUSH" of the frame pointer -- the "emitPrologue" method automatically
// generates one when frame pointers are used. If we generate a "machine
// move" for this extra "PUSH", the linker will lose track of the fact that
// the frame pointer should have the value of the first "PUSH" when it's
// trying to unwind.
//
// FIXME: This looks inelegant. It's possibly correct, but it's covering up
// another bug. I.e., one where we generate a prolog like this:
//
// pushl %ebp
// movl %esp, %ebp
// pushl %ebp
// pushl %esi
// ...
//
// The immediate re-push of EBP is unnecessary. At the least, it's an
// optimization bug. EBP can be used as a scratch register in certain
// cases, but probably not when we have a frame pointer.
if (HasFP && FramePtr == Reg)
continue;
MachineLocation CSDst(MachineLocation::VirtualFP, Offset);
MachineLocation CSSrc(Reg);
Moves.push_back(MachineMove(LabelId, CSDst, CSSrc));
}
}
/// emitPrologue - Push callee-saved registers onto the stack, which
/// automatically adjust the stack pointer. Adjust the stack pointer to allocate
/// space for local variables. Also emit labels used by the exception handler to
/// generate the exception handling frames.
void X86RegisterInfo::emitPrologue(MachineFunction &MF) const {
MachineBasicBlock &MBB = MF.front(); // Prologue goes in entry BB.
MachineBasicBlock::iterator MBBI = MBB.begin();
MachineFrameInfo *MFI = MF.getFrameInfo();
const Function *Fn = MF.getFunction();
const X86Subtarget *Subtarget = &MF.getTarget().getSubtarget<X86Subtarget>();
MachineModuleInfo *MMI = MFI->getMachineModuleInfo();
X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
bool needsFrameMoves = (MMI && MMI->hasDebugInfo()) ||
!Fn->doesNotThrow() || UnwindTablesMandatory;
uint64_t MaxAlign = MFI->getMaxAlignment(); // Desired stack alignment.
uint64_t StackSize = MFI->getStackSize(); // Number of bytes to allocate.
bool HasFP = hasFP(MF);
DebugLoc DL;
// Add RETADDR move area to callee saved frame size.
int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
if (TailCallReturnAddrDelta < 0)
X86FI->setCalleeSavedFrameSize(
X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta);
// If this is x86-64 and the Red Zone is not disabled, if we are a leaf
// function, and use up to 128 bytes of stack space, don't have a frame
// pointer, calls, or dynamic alloca then we do not need to adjust the
// stack pointer (we fit in the Red Zone).
if (Is64Bit && !Fn->hasFnAttr(Attribute::NoRedZone) &&
!needsStackRealignment(MF) &&
!MFI->hasVarSizedObjects() && // No dynamic alloca.
!MFI->hasCalls() && // No calls.
!Subtarget->isTargetWin64()) { // Win64 has no Red Zone
uint64_t MinSize = X86FI->getCalleeSavedFrameSize();
if (HasFP) MinSize += SlotSize;
StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0);
MFI->setStackSize(StackSize);
} else if (Subtarget->isTargetWin64()) {
// We need to always allocate 32 bytes as register spill area.
// FIXME: We might reuse these 32 bytes for leaf functions.
StackSize += 32;
MFI->setStackSize(StackSize);
}
// Insert stack pointer adjustment for later moving of return addr. Only
// applies to tail call optimized functions where the callee argument stack
// size is bigger than the callers.
if (TailCallReturnAddrDelta < 0) {
MachineInstr *MI =
BuildMI(MBB, MBBI, DL, TII.get(Is64Bit? X86::SUB64ri32 : X86::SUB32ri),
StackPtr)
.addReg(StackPtr)
.addImm(-TailCallReturnAddrDelta);
MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
}
// Mapping for machine moves:
//
// DST: VirtualFP AND
// SRC: VirtualFP => DW_CFA_def_cfa_offset
// ELSE => DW_CFA_def_cfa
//
// SRC: VirtualFP AND
// DST: Register => DW_CFA_def_cfa_register
//
// ELSE
// OFFSET < 0 => DW_CFA_offset_extended_sf
// REG < 64 => DW_CFA_offset + Reg
// ELSE => DW_CFA_offset_extended
std::vector<MachineMove> &Moves = MMI->getFrameMoves();
const TargetData *TD = MF.getTarget().getTargetData();
uint64_t NumBytes = 0;
int stackGrowth =
(MF.getTarget().getFrameInfo()->getStackGrowthDirection() ==
TargetFrameInfo::StackGrowsUp ?
TD->getPointerSize() : -TD->getPointerSize());
if (HasFP) {
// Calculate required stack adjustment.
uint64_t FrameSize = StackSize - SlotSize;
if (needsStackRealignment(MF))
FrameSize = (FrameSize + MaxAlign - 1) / MaxAlign * MaxAlign;
NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize();
// Get the offset of the stack slot for the EBP register, which is
// guaranteed to be the last slot by processFunctionBeforeFrameFinalized.
// Update the frame offset adjustment.
MFI->setOffsetAdjustment(-NumBytes);
// Save EBP/RBP into the appropriate stack slot.
BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r))
.addReg(FramePtr, RegState::Kill);
if (needsFrameMoves) {
// Mark the place where EBP/RBP was saved.
unsigned FrameLabelId = MMI->NextLabelID();
BuildMI(MBB, MBBI, DL, TII.get(X86::DBG_LABEL)).addImm(FrameLabelId);
// Define the current CFA rule to use the provided offset.
if (StackSize) {
MachineLocation SPDst(MachineLocation::VirtualFP);
MachineLocation SPSrc(MachineLocation::VirtualFP, 2 * stackGrowth);
Moves.push_back(MachineMove(FrameLabelId, SPDst, SPSrc));
} else {
// FIXME: Verify & implement for FP
MachineLocation SPDst(StackPtr);
MachineLocation SPSrc(StackPtr, stackGrowth);
Moves.push_back(MachineMove(FrameLabelId, SPDst, SPSrc));
}
// Change the rule for the FramePtr to be an "offset" rule.
MachineLocation FPDst(MachineLocation::VirtualFP,
2 * stackGrowth);
MachineLocation FPSrc(FramePtr);
Moves.push_back(MachineMove(FrameLabelId, FPDst, FPSrc));
}
// Update EBP with the new base value...
BuildMI(MBB, MBBI, DL,
TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), FramePtr)
.addReg(StackPtr);
if (needsFrameMoves) {
// Mark effective beginning of when frame pointer becomes valid.
unsigned FrameLabelId = MMI->NextLabelID();
BuildMI(MBB, MBBI, DL, TII.get(X86::DBG_LABEL)).addImm(FrameLabelId);
// Define the current CFA to use the EBP/RBP register.
MachineLocation FPDst(FramePtr);
MachineLocation FPSrc(MachineLocation::VirtualFP);
Moves.push_back(MachineMove(FrameLabelId, FPDst, FPSrc));
}
// Mark the FramePtr as live-in in every block except the entry.
for (MachineFunction::iterator I = next(MF.begin()), E = MF.end();
I != E; ++I)
I->addLiveIn(FramePtr);
// Realign stack
if (needsStackRealignment(MF)) {
MachineInstr *MI =
BuildMI(MBB, MBBI, DL,
TII.get(Is64Bit ? X86::AND64ri32 : X86::AND32ri),
StackPtr).addReg(StackPtr).addImm(-MaxAlign);
// The EFLAGS implicit def is dead.
MI->getOperand(3).setIsDead();
}
} else {
NumBytes = StackSize - X86FI->getCalleeSavedFrameSize();
}
// Skip the callee-saved push instructions.
bool PushedRegs = false;
int StackOffset = 2 * stackGrowth;
while (MBBI != MBB.end() &&
(MBBI->getOpcode() == X86::PUSH32r ||
MBBI->getOpcode() == X86::PUSH64r)) {
PushedRegs = true;
++MBBI;
if (!HasFP && needsFrameMoves) {
// Mark callee-saved push instruction.
unsigned LabelId = MMI->NextLabelID();
BuildMI(MBB, MBBI, DL, TII.get(X86::DBG_LABEL)).addImm(LabelId);
// Define the current CFA rule to use the provided offset.
unsigned Ptr = StackSize ?
MachineLocation::VirtualFP : StackPtr;
MachineLocation SPDst(Ptr);
MachineLocation SPSrc(Ptr, StackOffset);
Moves.push_back(MachineMove(LabelId, SPDst, SPSrc));
StackOffset += stackGrowth;
}
}
if (MBBI != MBB.end())
DL = MBBI->getDebugLoc();
// Adjust stack pointer: ESP -= numbytes.
if (NumBytes >= 4096 && Subtarget->isTargetCygMing()) {
// Check, whether EAX is livein for this function.
bool isEAXAlive = false;
for (MachineRegisterInfo::livein_iterator
II = MF.getRegInfo().livein_begin(),
EE = MF.getRegInfo().livein_end(); (II != EE) && !isEAXAlive; ++II) {
unsigned Reg = II->first;
isEAXAlive = (Reg == X86::EAX || Reg == X86::AX ||
Reg == X86::AH || Reg == X86::AL);
}
// Function prologue calls _alloca to probe the stack when allocating more
// than 4k bytes in one go. Touching the stack at 4K increments is necessary
// to ensure that the guard pages used by the OS virtual memory manager are
// allocated in correct sequence.
if (!isEAXAlive) {
BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
.addImm(NumBytes);
BuildMI(MBB, MBBI, DL, TII.get(X86::CALLpcrel32))
.addExternalSymbol("_alloca");
} else {
// Save EAX
BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r))
.addReg(X86::EAX, RegState::Kill);
// Allocate NumBytes-4 bytes on stack. We'll also use 4 already
// allocated bytes for EAX.
BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
.addImm(NumBytes - 4);
BuildMI(MBB, MBBI, DL, TII.get(X86::CALLpcrel32))
.addExternalSymbol("_alloca");
// Restore EAX
MachineInstr *MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm),
X86::EAX),
StackPtr, false, NumBytes - 4);
MBB.insert(MBBI, MI);
}
} else if (NumBytes) {
// If there is an SUB32ri of ESP immediately before this instruction, merge
// the two. This can be the case when tail call elimination is enabled and
// the callee has more arguments then the caller.
NumBytes -= mergeSPUpdates(MBB, MBBI, StackPtr, true);
// If there is an ADD32ri or SUB32ri of ESP immediately after this
// instruction, merge the two instructions.
mergeSPUpdatesDown(MBB, MBBI, StackPtr, &NumBytes);
if (NumBytes)
emitSPUpdate(MBB, MBBI, StackPtr, -(int64_t)NumBytes, Is64Bit, TII);
}
if ((NumBytes || PushedRegs) && needsFrameMoves) {
// Mark end of stack pointer adjustment.
unsigned LabelId = MMI->NextLabelID();
BuildMI(MBB, MBBI, DL, TII.get(X86::DBG_LABEL)).addImm(LabelId);
if (!HasFP && NumBytes) {
// Define the current CFA rule to use the provided offset.
if (StackSize) {
MachineLocation SPDst(MachineLocation::VirtualFP);
MachineLocation SPSrc(MachineLocation::VirtualFP,
-StackSize + stackGrowth);
Moves.push_back(MachineMove(LabelId, SPDst, SPSrc));
} else {
// FIXME: Verify & implement for FP
MachineLocation SPDst(StackPtr);
MachineLocation SPSrc(StackPtr, stackGrowth);
Moves.push_back(MachineMove(LabelId, SPDst, SPSrc));
}
}
// Emit DWARF info specifying the offsets of the callee-saved registers.
if (PushedRegs)
emitCalleeSavedFrameMoves(MF, LabelId, HasFP ? FramePtr : StackPtr);
}
}
void X86RegisterInfo::emitEpilogue(MachineFunction &MF,
MachineBasicBlock &MBB) const {
const MachineFrameInfo *MFI = MF.getFrameInfo();
X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
MachineBasicBlock::iterator MBBI = prior(MBB.end());
unsigned RetOpcode = MBBI->getOpcode();
DebugLoc DL = MBBI->getDebugLoc();
switch (RetOpcode) {
default:
llvm_unreachable("Can only insert epilog into returning blocks");
case X86::RET:
case X86::RETI:
case X86::TCRETURNdi:
case X86::TCRETURNri:
case X86::TCRETURNri64:
case X86::TCRETURNdi64:
case X86::EH_RETURN:
case X86::EH_RETURN64:
case X86::TAILJMPd:
case X86::TAILJMPr:
case X86::TAILJMPm:
break; // These are ok
}
// Get the number of bytes to allocate from the FrameInfo.
uint64_t StackSize = MFI->getStackSize();
uint64_t MaxAlign = MFI->getMaxAlignment();
unsigned CSSize = X86FI->getCalleeSavedFrameSize();
uint64_t NumBytes = 0;
if (hasFP(MF)) {
// Calculate required stack adjustment.
uint64_t FrameSize = StackSize - SlotSize;
if (needsStackRealignment(MF))
FrameSize = (FrameSize + MaxAlign - 1)/MaxAlign*MaxAlign;
NumBytes = FrameSize - CSSize;
// Pop EBP.
BuildMI(MBB, MBBI, DL,
TII.get(Is64Bit ? X86::POP64r : X86::POP32r), FramePtr);
} else {
NumBytes = StackSize - CSSize;
}
// Skip the callee-saved pop instructions.
MachineBasicBlock::iterator LastCSPop = MBBI;
while (MBBI != MBB.begin()) {
MachineBasicBlock::iterator PI = prior(MBBI);
unsigned Opc = PI->getOpcode();
if (Opc != X86::POP32r && Opc != X86::POP64r &&
!PI->getDesc().isTerminator())
break;
--MBBI;
}
DL = MBBI->getDebugLoc();
// If there is an ADD32ri or SUB32ri of ESP immediately before this
// instruction, merge the two instructions.
if (NumBytes || MFI->hasVarSizedObjects())
mergeSPUpdatesUp(MBB, MBBI, StackPtr, &NumBytes);
// If dynamic alloca is used, then reset esp to point to the last callee-saved
// slot before popping them off! Same applies for the case, when stack was
// realigned.
if (needsStackRealignment(MF)) {
// We cannot use LEA here, because stack pointer was realigned. We need to
// deallocate local frame back.
if (CSSize) {
emitSPUpdate(MBB, MBBI, StackPtr, NumBytes, Is64Bit, TII);
MBBI = prior(LastCSPop);
}
BuildMI(MBB, MBBI, DL,
TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr),
StackPtr).addReg(FramePtr);
} else if (MFI->hasVarSizedObjects()) {
if (CSSize) {
unsigned Opc = Is64Bit ? X86::LEA64r : X86::LEA32r;
MachineInstr *MI =
addLeaRegOffset(BuildMI(MF, DL, TII.get(Opc), StackPtr),
FramePtr, false, -CSSize);
MBB.insert(MBBI, MI);
} else {
BuildMI(MBB, MBBI, DL,
TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), StackPtr)
.addReg(FramePtr);
}
} else if (NumBytes) {
// Adjust stack pointer back: ESP += numbytes.
emitSPUpdate(MBB, MBBI, StackPtr, NumBytes, Is64Bit, TII);
}
// We're returning from function via eh_return.
if (RetOpcode == X86::EH_RETURN || RetOpcode == X86::EH_RETURN64) {
MBBI = prior(MBB.end());
MachineOperand &DestAddr = MBBI->getOperand(0);
assert(DestAddr.isReg() && "Offset should be in register!");
BuildMI(MBB, MBBI, DL,
TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr),
StackPtr).addReg(DestAddr.getReg());
} else if (RetOpcode == X86::TCRETURNri || RetOpcode == X86::TCRETURNdi ||
RetOpcode== X86::TCRETURNri64 || RetOpcode == X86::TCRETURNdi64) {
// Tail call return: adjust the stack pointer and jump to callee.
MBBI = prior(MBB.end());
MachineOperand &JumpTarget = MBBI->getOperand(0);
MachineOperand &StackAdjust = MBBI->getOperand(1);
assert(StackAdjust.isImm() && "Expecting immediate value.");
// Adjust stack pointer.
int StackAdj = StackAdjust.getImm();
int MaxTCDelta = X86FI->getTCReturnAddrDelta();
int Offset = 0;
assert(MaxTCDelta <= 0 && "MaxTCDelta should never be positive");
// Incoporate the retaddr area.
Offset = StackAdj-MaxTCDelta;
assert(Offset >= 0 && "Offset should never be negative");
if (Offset) {
// Check for possible merge with preceeding ADD instruction.
Offset += mergeSPUpdates(MBB, MBBI, StackPtr, true);
emitSPUpdate(MBB, MBBI, StackPtr, Offset, Is64Bit, TII);
}
// Jump to label or value in register.
if (RetOpcode == X86::TCRETURNdi|| RetOpcode == X86::TCRETURNdi64)
BuildMI(MBB, MBBI, DL, TII.get(X86::TAILJMPd)).
addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset());
else if (RetOpcode== X86::TCRETURNri64)
BuildMI(MBB, MBBI, DL, TII.get(X86::TAILJMPr64), JumpTarget.getReg());
else
BuildMI(MBB, MBBI, DL, TII.get(X86::TAILJMPr), JumpTarget.getReg());
// Delete the pseudo instruction TCRETURN.
MBB.erase(MBBI);
} else if ((RetOpcode == X86::RET || RetOpcode == X86::RETI) &&
(X86FI->getTCReturnAddrDelta() < 0)) {
// Add the return addr area delta back since we are not tail calling.
int delta = -1*X86FI->getTCReturnAddrDelta();
MBBI = prior(MBB.end());
// Check for possible merge with preceeding ADD instruction.
delta += mergeSPUpdates(MBB, MBBI, StackPtr, true);
emitSPUpdate(MBB, MBBI, StackPtr, delta, Is64Bit, TII);
}
}
unsigned X86RegisterInfo::getRARegister() const {
return Is64Bit ? X86::RIP // Should have dwarf #16.
: X86::EIP; // Should have dwarf #8.
}
unsigned X86RegisterInfo::getFrameRegister(MachineFunction &MF) const {
return hasFP(MF) ? FramePtr : StackPtr;
}
void
X86RegisterInfo::getInitialFrameState(std::vector<MachineMove> &Moves) const {
// Calculate amount of bytes used for return address storing
int stackGrowth = (Is64Bit ? -8 : -4);
// Initial state of the frame pointer is esp+4.
MachineLocation Dst(MachineLocation::VirtualFP);
MachineLocation Src(StackPtr, stackGrowth);
Moves.push_back(MachineMove(0, Dst, Src));
// Add return address to move list
MachineLocation CSDst(StackPtr, stackGrowth);
MachineLocation CSSrc(getRARegister());
Moves.push_back(MachineMove(0, CSDst, CSSrc));
}
unsigned X86RegisterInfo::getEHExceptionRegister() const {
llvm_unreachable("What is the exception register");
return 0;
}
unsigned X86RegisterInfo::getEHHandlerRegister() const {
llvm_unreachable("What is the exception handler register");
return 0;
}
namespace llvm {
unsigned getX86SubSuperRegister(unsigned Reg, EVT VT, bool High) {
switch (VT.getSimpleVT().SimpleTy) {
default: return Reg;
case MVT::i8:
if (High) {
switch (Reg) {
default: return 0;
case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
return X86::AH;
case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
return X86::DH;
case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
return X86::CH;
case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
return X86::BH;
}
} else {
switch (Reg) {
default: return 0;
case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
return X86::AL;
case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
return X86::DL;
case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
return X86::CL;
case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
return X86::BL;
case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
return X86::SIL;
case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
return X86::DIL;
case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
return X86::BPL;
case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
return X86::SPL;
case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
return X86::R8B;
case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
return X86::R9B;
case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
return X86::R10B;
case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
return X86::R11B;
case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
return X86::R12B;
case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
return X86::R13B;
case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
return X86::R14B;
case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
return X86::R15B;
}
}
case MVT::i16:
switch (Reg) {
default: return Reg;
case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
return X86::AX;
case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
return X86::DX;
case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
return X86::CX;
case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
return X86::BX;
case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
return X86::SI;
case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
return X86::DI;
case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
return X86::BP;
case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
return X86::SP;
case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
return X86::R8W;
case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
return X86::R9W;
case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
return X86::R10W;
case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
return X86::R11W;
case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
return X86::R12W;
case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
return X86::R13W;
case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
return X86::R14W;
case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
return X86::R15W;
}
case MVT::i32:
switch (Reg) {
default: return Reg;
case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
return X86::EAX;
case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
return X86::EDX;
case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
return X86::ECX;
case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
return X86::EBX;
case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
return X86::ESI;
case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
return X86::EDI;
case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
return X86::EBP;
case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
return X86::ESP;
case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
return X86::R8D;
case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
return X86::R9D;
case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
return X86::R10D;
case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
return X86::R11D;
case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
return X86::R12D;
case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
return X86::R13D;
case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
return X86::R14D;
case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
return X86::R15D;
}
case MVT::i64:
switch (Reg) {
default: return Reg;
case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
return X86::RAX;
case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
return X86::RDX;
case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
return X86::RCX;
case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
return X86::RBX;
case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
return X86::RSI;
case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
return X86::RDI;
case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
return X86::RBP;
case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
return X86::RSP;
case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
return X86::R8;
case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
return X86::R9;
case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
return X86::R10;
case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
return X86::R11;
case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
return X86::R12;
case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
return X86::R13;
case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
return X86::R14;
case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
return X86::R15;
}
}
return Reg;
}
}
#include "X86GenRegisterInfo.inc"
namespace {
struct VISIBILITY_HIDDEN MSAC : public MachineFunctionPass {
static char ID;
MSAC() : MachineFunctionPass(&ID) {}
virtual bool runOnMachineFunction(MachineFunction &MF) {
MachineFrameInfo *FFI = MF.getFrameInfo();
MachineRegisterInfo &RI = MF.getRegInfo();
// Calculate max stack alignment of all already allocated stack objects.
unsigned MaxAlign = calculateMaxStackAlignment(FFI);
// Be over-conservative: scan over all vreg defs and find, whether vector
// registers are used. If yes - there is probability, that vector register
// will be spilled and thus stack needs to be aligned properly.
for (unsigned RegNum = TargetRegisterInfo::FirstVirtualRegister;
RegNum < RI.getLastVirtReg(); ++RegNum)
MaxAlign = std::max(MaxAlign, RI.getRegClass(RegNum)->getAlignment());
if (FFI->getMaxAlignment() == MaxAlign)
return false;
FFI->setMaxAlignment(MaxAlign);
return true;
}
virtual const char *getPassName() const {
return "X86 Maximal Stack Alignment Calculator";
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
MachineFunctionPass::getAnalysisUsage(AU);
}
};
char MSAC::ID = 0;
}
FunctionPass*
llvm::createX86MaxStackAlignmentCalculatorPass() { return new MSAC(); }