llvm-6502/lib/Bytecode/Writer/InstructionWriter.cpp
2002-05-06 16:15:30 +00:00

273 lines
9.6 KiB
C++

//===-- WriteInst.cpp - Functions for writing instructions -------*- C++ -*--=//
//
// This file implements the routines for encoding instruction opcodes to a
// bytecode stream.
//
// Note that the performance of this library is not terribly important, because
// it shouldn't be used by JIT type applications... so it is not a huge focus
// at least. :)
//
//===----------------------------------------------------------------------===//
#include "WriterInternals.h"
#include "llvm/Module.h"
#include "llvm/Function.h"
#include "llvm/BasicBlock.h"
#include "llvm/DerivedTypes.h"
#include "llvm/iOther.h"
#include "llvm/iTerminators.h"
#include <algorithm>
typedef unsigned char uchar;
// outputInstructionFormat0 - Output those wierd instructions that have a large
// number of operands or have large operands themselves...
//
// Format: [opcode] [type] [numargs] [arg0] [arg1] ... [arg<numargs-1>]
//
static void outputInstructionFormat0(const Instruction *I,
const SlotCalculator &Table,
unsigned Type, std::deque<uchar> &Out) {
// Opcode must have top two bits clear...
output_vbr(I->getOpcode() << 2, Out); // Instruction Opcode ID
output_vbr(Type, Out); // Result type
unsigned NumArgs = I->getNumOperands();
output_vbr(NumArgs + isa<CastInst>(I), Out);
for (unsigned i = 0; i < NumArgs; ++i) {
int Slot = Table.getValSlot(I->getOperand(i));
assert(Slot >= 0 && "No slot number for value!?!?");
output_vbr((unsigned)Slot, Out);
}
if (isa<CastInst>(I)) {
int Slot = Table.getValSlot(I->getType());
assert(Slot != -1 && "Cast return type unknown?");
output_vbr((unsigned)Slot, Out);
}
align32(Out); // We must maintain correct alignment!
}
// outputInstrVarArgsCall - Output the obsurdly annoying varargs function calls.
// This are more annoying than most because the signature of the call does not
// tell us anything about the types of the arguments in the varargs portion.
// Because of this, we encode (as type 0) all of the argument types explicitly
// before the argument value. This really sucks, but you shouldn't be using
// varargs functions in your code! *death to printf*!
//
// Format: [opcode] [type] [numargs] [arg0] [arg1] ... [arg<numargs-1>]
//
static void outputInstrVarArgsCall(const Instruction *I,
const SlotCalculator &Table, unsigned Type,
std::deque<uchar> &Out) {
assert(isa<CallInst>(I) || isa<InvokeInst>(I));
// Opcode must have top two bits clear...
output_vbr(I->getOpcode() << 2, Out); // Instruction Opcode ID
output_vbr(Type, Out); // Result type (varargs type)
unsigned NumArgs = I->getNumOperands();
output_vbr(NumArgs*2, Out);
// TODO: Don't need to emit types for the fixed types of the varargs function
// prototype...
// The type for the function has already been emitted in the type field of the
// instruction. Just emit the slot # now.
int Slot = Table.getValSlot(I->getOperand(0));
assert(Slot >= 0 && "No slot number for value!?!?");
output_vbr((unsigned)Slot, Out);
// Output a dummy field to fill Arg#2 in the reader that is currently unused
// for varargs calls. This is a gross hack to make the code simpler, but we
// aren't really doing very small bytecode for varargs calls anyways.
// FIXME in the future: Smaller bytecode for varargs calls
output_vbr(0, Out);
for (unsigned i = 1; i < NumArgs; ++i) {
// Output Arg Type ID
Slot = Table.getValSlot(I->getOperand(i)->getType());
assert(Slot >= 0 && "No slot number for value!?!?");
output_vbr((unsigned)Slot, Out);
// Output arg ID itself
Slot = Table.getValSlot(I->getOperand(i));
assert(Slot >= 0 && "No slot number for value!?!?");
output_vbr((unsigned)Slot, Out);
}
align32(Out); // We must maintain correct alignment!
}
// outputInstructionFormat1 - Output one operand instructions, knowing that no
// operand index is >= 2^12.
//
static void outputInstructionFormat1(const Instruction *I,
const SlotCalculator &Table, int *Slots,
unsigned Type, std::deque<uchar> &Out) {
unsigned Opcode = I->getOpcode(); // Instruction Opcode ID
// bits Instruction format:
// --------------------------
// 01-00: Opcode type, fixed to 1.
// 07-02: Opcode
// 19-08: Resulting type plane
// 31-20: Operand #1 (if set to (2^12-1), then zero operands)
//
unsigned Bits = 1 | (Opcode << 2) | (Type << 8) | (Slots[0] << 20);
// cerr << "1 " << IType << " " << Type << " " << Slots[0] << endl;
output(Bits, Out);
}
// outputInstructionFormat2 - Output two operand instructions, knowing that no
// operand index is >= 2^8.
//
static void outputInstructionFormat2(const Instruction *I,
const SlotCalculator &Table, int *Slots,
unsigned Type, std::deque<uchar> &Out) {
unsigned Opcode = I->getOpcode(); // Instruction Opcode ID
// bits Instruction format:
// --------------------------
// 01-00: Opcode type, fixed to 2.
// 07-02: Opcode
// 15-08: Resulting type plane
// 23-16: Operand #1
// 31-24: Operand #2
//
unsigned Bits = 2 | (Opcode << 2) | (Type << 8) |
(Slots[0] << 16) | (Slots[1] << 24);
// cerr << "2 " << IType << " " << Type << " " << Slots[0] << " "
// << Slots[1] << endl;
output(Bits, Out);
}
// outputInstructionFormat3 - Output three operand instructions, knowing that no
// operand index is >= 2^6.
//
static void outputInstructionFormat3(const Instruction *I,
const SlotCalculator &Table, int *Slots,
unsigned Type, std::deque<uchar> &Out) {
unsigned Opcode = I->getOpcode(); // Instruction Opcode ID
// bits Instruction format:
// --------------------------
// 01-00: Opcode type, fixed to 3.
// 07-02: Opcode
// 13-08: Resulting type plane
// 19-14: Operand #1
// 25-20: Operand #2
// 31-26: Operand #3
//
unsigned Bits = 3 | (Opcode << 2) | (Type << 8) |
(Slots[0] << 14) | (Slots[1] << 20) | (Slots[2] << 26);
//cerr << "3 " << IType << " " << Type << " " << Slots[0] << " "
// << Slots[1] << " " << Slots[2] << endl;
output(Bits, Out);
}
void BytecodeWriter::processInstruction(const Instruction *I) {
assert(I->getOpcode() < 64 && "Opcode too big???");
unsigned NumOperands = I->getNumOperands();
int MaxOpSlot = 0;
int Slots[3]; Slots[0] = (1 << 12)-1; // Marker to signify 0 operands
for (unsigned i = 0; i < NumOperands; ++i) {
const Value *Def = I->getOperand(i);
int slot = Table.getValSlot(Def);
assert(slot != -1 && "Broken bytecode!");
if (slot > MaxOpSlot) MaxOpSlot = slot;
if (i < 3) Slots[i] = slot;
}
// Figure out which type to encode with the instruction. Typically we want
// the type of the first parameter, as opposed to the type of the instruction
// (for example, with setcc, we always know it returns bool, but the type of
// the first param is actually interesting). But if we have no arguments
// we take the type of the instruction itself.
//
const Type *Ty;
switch (I->getOpcode()) {
case Instruction::Malloc:
case Instruction::Alloca:
Ty = I->getType(); // Malloc & Alloca ALWAYS want to encode the return type
break;
case Instruction::Store:
Ty = I->getOperand(1)->getType(); // Encode the pointer type...
assert(isa<PointerType>(Ty) && "Store to nonpointer type!?!?");
break;
default: // Otherwise use the default behavior...
Ty = NumOperands ? I->getOperand(0)->getType() : I->getType();
break;
}
unsigned Type;
int Slot = Table.getValSlot(Ty);
assert(Slot != -1 && "Type not available!!?!");
Type = (unsigned)Slot;
// Make sure that we take the type number into consideration. We don't want
// to overflow the field size for the instruction format we select.
//
if (Slot > MaxOpSlot) MaxOpSlot = Slot;
// Handle the special case for cast...
if (isa<CastInst>(I)) {
// Cast has to encode the destination type as the second argument in the
// packet, or else we won't know what type to cast to!
Slots[1] = Table.getValSlot(I->getType());
assert(Slots[1] != -1 && "Cast return type unknown?");
if (Slots[1] > MaxOpSlot) MaxOpSlot = Slots[1];
NumOperands++;
} else if (const CallInst *CI = dyn_cast<CallInst>(I)) {// Handle VarArg calls
PointerType *Ty = cast<PointerType>(CI->getCalledValue()->getType());
if (cast<FunctionType>(Ty->getElementType())->isVarArg()) {
outputInstrVarArgsCall(I, Table, Type, Out);
return;
}
} else if (const InvokeInst *II = dyn_cast<InvokeInst>(I)) { // ... & Invokes
PointerType *Ty = cast<PointerType>(II->getCalledValue()->getType());
if (cast<FunctionType>(Ty->getElementType())->isVarArg()) {
outputInstrVarArgsCall(I, Table, Type, Out);
return;
}
}
// Decide which instruction encoding to use. This is determined primarily by
// the number of operands, and secondarily by whether or not the max operand
// will fit into the instruction encoding. More operands == fewer bits per
// operand.
//
switch (NumOperands) {
case 0:
case 1:
if (MaxOpSlot < (1 << 12)-1) { // -1 because we use 4095 to indicate 0 ops
outputInstructionFormat1(I, Table, Slots, Type, Out);
return;
}
break;
case 2:
if (MaxOpSlot < (1 << 8)) {
outputInstructionFormat2(I, Table, Slots, Type, Out);
return;
}
break;
case 3:
if (MaxOpSlot < (1 << 6)) {
outputInstructionFormat3(I, Table, Slots, Type, Out);
return;
}
break;
}
// If we weren't handled before here, we either have a large number of
// operands or a large operand index that we are refering to.
outputInstructionFormat0(I, Table, Type, Out);
}