mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-07 11:33:44 +00:00
888e8e3a66
Summary: Runtime unrolling of loops needs to emit an expression to compute the loop's runtime trip-count. Avoid runtime unrolling if this computation will be expensive. Depends on D8993. Reviewers: atrick Subscribers: llvm-commits Differential Revision: http://reviews.llvm.org/D8994 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234846 91177308-0d34-0410-b5e6-96231b3b80d8
423 lines
17 KiB
C++
423 lines
17 KiB
C++
//===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements some loop unrolling utilities for loops with run-time
|
|
// trip counts. See LoopUnroll.cpp for unrolling loops with compile-time
|
|
// trip counts.
|
|
//
|
|
// The functions in this file are used to generate extra code when the
|
|
// run-time trip count modulo the unroll factor is not 0. When this is the
|
|
// case, we need to generate code to execute these 'left over' iterations.
|
|
//
|
|
// The current strategy generates an if-then-else sequence prior to the
|
|
// unrolled loop to execute the 'left over' iterations. Other strategies
|
|
// include generate a loop before or after the unrolled loop.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Utils/UnrollLoop.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/LoopIterator.h"
|
|
#include "llvm/Analysis/LoopPass.h"
|
|
#include "llvm/Analysis/ScalarEvolution.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpander.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/Cloning.h"
|
|
#include <algorithm>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "loop-unroll"
|
|
|
|
STATISTIC(NumRuntimeUnrolled,
|
|
"Number of loops unrolled with run-time trip counts");
|
|
|
|
/// Connect the unrolling prolog code to the original loop.
|
|
/// The unrolling prolog code contains code to execute the
|
|
/// 'extra' iterations if the run-time trip count modulo the
|
|
/// unroll count is non-zero.
|
|
///
|
|
/// This function performs the following:
|
|
/// - Create PHI nodes at prolog end block to combine values
|
|
/// that exit the prolog code and jump around the prolog.
|
|
/// - Add a PHI operand to a PHI node at the loop exit block
|
|
/// for values that exit the prolog and go around the loop.
|
|
/// - Branch around the original loop if the trip count is less
|
|
/// than the unroll factor.
|
|
///
|
|
static void ConnectProlog(Loop *L, Value *BECount, unsigned Count,
|
|
BasicBlock *LastPrologBB, BasicBlock *PrologEnd,
|
|
BasicBlock *OrigPH, BasicBlock *NewPH,
|
|
ValueToValueMapTy &VMap, AliasAnalysis *AA,
|
|
DominatorTree *DT, LoopInfo *LI, Pass *P) {
|
|
BasicBlock *Latch = L->getLoopLatch();
|
|
assert(Latch && "Loop must have a latch");
|
|
|
|
// Create a PHI node for each outgoing value from the original loop
|
|
// (which means it is an outgoing value from the prolog code too).
|
|
// The new PHI node is inserted in the prolog end basic block.
|
|
// The new PHI name is added as an operand of a PHI node in either
|
|
// the loop header or the loop exit block.
|
|
for (succ_iterator SBI = succ_begin(Latch), SBE = succ_end(Latch);
|
|
SBI != SBE; ++SBI) {
|
|
for (BasicBlock::iterator BBI = (*SBI)->begin();
|
|
PHINode *PN = dyn_cast<PHINode>(BBI); ++BBI) {
|
|
|
|
// Add a new PHI node to the prolog end block and add the
|
|
// appropriate incoming values.
|
|
PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName()+".unr",
|
|
PrologEnd->getTerminator());
|
|
// Adding a value to the new PHI node from the original loop preheader.
|
|
// This is the value that skips all the prolog code.
|
|
if (L->contains(PN)) {
|
|
NewPN->addIncoming(PN->getIncomingValueForBlock(NewPH), OrigPH);
|
|
} else {
|
|
NewPN->addIncoming(Constant::getNullValue(PN->getType()), OrigPH);
|
|
}
|
|
|
|
Value *V = PN->getIncomingValueForBlock(Latch);
|
|
if (Instruction *I = dyn_cast<Instruction>(V)) {
|
|
if (L->contains(I)) {
|
|
V = VMap[I];
|
|
}
|
|
}
|
|
// Adding a value to the new PHI node from the last prolog block
|
|
// that was created.
|
|
NewPN->addIncoming(V, LastPrologBB);
|
|
|
|
// Update the existing PHI node operand with the value from the
|
|
// new PHI node. How this is done depends on if the existing
|
|
// PHI node is in the original loop block, or the exit block.
|
|
if (L->contains(PN)) {
|
|
PN->setIncomingValue(PN->getBasicBlockIndex(NewPH), NewPN);
|
|
} else {
|
|
PN->addIncoming(NewPN, PrologEnd);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Create a branch around the orignal loop, which is taken if there are no
|
|
// iterations remaining to be executed after running the prologue.
|
|
Instruction *InsertPt = PrologEnd->getTerminator();
|
|
|
|
assert(Count != 0 && "nonsensical Count!");
|
|
|
|
// If BECount <u (Count - 1) then (BECount + 1) & (Count - 1) == (BECount + 1)
|
|
// (since Count is a power of 2). This means %xtraiter is (BECount + 1) and
|
|
// and all of the iterations of this loop were executed by the prologue. Note
|
|
// that if BECount <u (Count - 1) then (BECount + 1) cannot unsigned-overflow.
|
|
Instruction *BrLoopExit =
|
|
new ICmpInst(InsertPt, ICmpInst::ICMP_ULT, BECount,
|
|
ConstantInt::get(BECount->getType(), Count - 1));
|
|
BasicBlock *Exit = L->getUniqueExitBlock();
|
|
assert(Exit && "Loop must have a single exit block only");
|
|
// Split the exit to maintain loop canonicalization guarantees
|
|
SmallVector<BasicBlock*, 4> Preds(pred_begin(Exit), pred_end(Exit));
|
|
SplitBlockPredecessors(Exit, Preds, ".unr-lcssa", AA, DT, LI,
|
|
P->mustPreserveAnalysisID(LCSSAID));
|
|
// Add the branch to the exit block (around the unrolled loop)
|
|
BranchInst::Create(Exit, NewPH, BrLoopExit, InsertPt);
|
|
InsertPt->eraseFromParent();
|
|
}
|
|
|
|
/// Create a clone of the blocks in a loop and connect them together.
|
|
/// If UnrollProlog is true, loop structure will not be cloned, otherwise a new
|
|
/// loop will be created including all cloned blocks, and the iterator of it
|
|
/// switches to count NewIter down to 0.
|
|
///
|
|
static void CloneLoopBlocks(Loop *L, Value *NewIter, const bool UnrollProlog,
|
|
BasicBlock *InsertTop, BasicBlock *InsertBot,
|
|
std::vector<BasicBlock *> &NewBlocks,
|
|
LoopBlocksDFS &LoopBlocks, ValueToValueMapTy &VMap,
|
|
LoopInfo *LI) {
|
|
BasicBlock *Preheader = L->getLoopPreheader();
|
|
BasicBlock *Header = L->getHeader();
|
|
BasicBlock *Latch = L->getLoopLatch();
|
|
Function *F = Header->getParent();
|
|
LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
|
|
LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
|
|
Loop *NewLoop = 0;
|
|
Loop *ParentLoop = L->getParentLoop();
|
|
if (!UnrollProlog) {
|
|
NewLoop = new Loop();
|
|
if (ParentLoop)
|
|
ParentLoop->addChildLoop(NewLoop);
|
|
else
|
|
LI->addTopLevelLoop(NewLoop);
|
|
}
|
|
|
|
// For each block in the original loop, create a new copy,
|
|
// and update the value map with the newly created values.
|
|
for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
|
|
BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".prol", F);
|
|
NewBlocks.push_back(NewBB);
|
|
|
|
if (NewLoop)
|
|
NewLoop->addBasicBlockToLoop(NewBB, *LI);
|
|
else if (ParentLoop)
|
|
ParentLoop->addBasicBlockToLoop(NewBB, *LI);
|
|
|
|
VMap[*BB] = NewBB;
|
|
if (Header == *BB) {
|
|
// For the first block, add a CFG connection to this newly
|
|
// created block.
|
|
InsertTop->getTerminator()->setSuccessor(0, NewBB);
|
|
|
|
}
|
|
if (Latch == *BB) {
|
|
// For the last block, if UnrollProlog is true, create a direct jump to
|
|
// InsertBot. If not, create a loop back to cloned head.
|
|
VMap.erase((*BB)->getTerminator());
|
|
BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]);
|
|
BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator());
|
|
if (UnrollProlog) {
|
|
LatchBR->eraseFromParent();
|
|
BranchInst::Create(InsertBot, NewBB);
|
|
} else {
|
|
PHINode *NewIdx = PHINode::Create(NewIter->getType(), 2, "prol.iter",
|
|
FirstLoopBB->getFirstNonPHI());
|
|
IRBuilder<> Builder(LatchBR);
|
|
Value *IdxSub =
|
|
Builder.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1),
|
|
NewIdx->getName() + ".sub");
|
|
Value *IdxCmp =
|
|
Builder.CreateIsNotNull(IdxSub, NewIdx->getName() + ".cmp");
|
|
BranchInst::Create(FirstLoopBB, InsertBot, IdxCmp, NewBB);
|
|
NewIdx->addIncoming(NewIter, InsertTop);
|
|
NewIdx->addIncoming(IdxSub, NewBB);
|
|
LatchBR->eraseFromParent();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Change the incoming values to the ones defined in the preheader or
|
|
// cloned loop.
|
|
for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
|
|
PHINode *NewPHI = cast<PHINode>(VMap[I]);
|
|
if (UnrollProlog) {
|
|
VMap[I] = NewPHI->getIncomingValueForBlock(Preheader);
|
|
cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI);
|
|
} else {
|
|
unsigned idx = NewPHI->getBasicBlockIndex(Preheader);
|
|
NewPHI->setIncomingBlock(idx, InsertTop);
|
|
BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
|
|
idx = NewPHI->getBasicBlockIndex(Latch);
|
|
Value *InVal = NewPHI->getIncomingValue(idx);
|
|
NewPHI->setIncomingBlock(idx, NewLatch);
|
|
if (VMap[InVal])
|
|
NewPHI->setIncomingValue(idx, VMap[InVal]);
|
|
}
|
|
}
|
|
if (NewLoop) {
|
|
// Add unroll disable metadata to disable future unrolling for this loop.
|
|
SmallVector<Metadata *, 4> MDs;
|
|
// Reserve first location for self reference to the LoopID metadata node.
|
|
MDs.push_back(nullptr);
|
|
MDNode *LoopID = NewLoop->getLoopID();
|
|
if (LoopID) {
|
|
// First remove any existing loop unrolling metadata.
|
|
for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
|
|
bool IsUnrollMetadata = false;
|
|
MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
|
|
if (MD) {
|
|
const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
|
|
IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll.");
|
|
}
|
|
if (!IsUnrollMetadata)
|
|
MDs.push_back(LoopID->getOperand(i));
|
|
}
|
|
}
|
|
|
|
LLVMContext &Context = NewLoop->getHeader()->getContext();
|
|
SmallVector<Metadata *, 1> DisableOperands;
|
|
DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable"));
|
|
MDNode *DisableNode = MDNode::get(Context, DisableOperands);
|
|
MDs.push_back(DisableNode);
|
|
|
|
MDNode *NewLoopID = MDNode::get(Context, MDs);
|
|
// Set operand 0 to refer to the loop id itself.
|
|
NewLoopID->replaceOperandWith(0, NewLoopID);
|
|
NewLoop->setLoopID(NewLoopID);
|
|
}
|
|
}
|
|
|
|
/// Insert code in the prolog code when unrolling a loop with a
|
|
/// run-time trip-count.
|
|
///
|
|
/// This method assumes that the loop unroll factor is total number
|
|
/// of loop bodes in the loop after unrolling. (Some folks refer
|
|
/// to the unroll factor as the number of *extra* copies added).
|
|
/// We assume also that the loop unroll factor is a power-of-two. So, after
|
|
/// unrolling the loop, the number of loop bodies executed is 2,
|
|
/// 4, 8, etc. Note - LLVM converts the if-then-sequence to a switch
|
|
/// instruction in SimplifyCFG.cpp. Then, the backend decides how code for
|
|
/// the switch instruction is generated.
|
|
///
|
|
/// extraiters = tripcount % loopfactor
|
|
/// if (extraiters == 0) jump Loop:
|
|
/// else jump Prol
|
|
/// Prol: LoopBody;
|
|
/// extraiters -= 1 // Omitted if unroll factor is 2.
|
|
/// if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2.
|
|
/// if (tripcount < loopfactor) jump End
|
|
/// Loop:
|
|
/// ...
|
|
/// End:
|
|
///
|
|
bool llvm::UnrollRuntimeLoopProlog(Loop *L, unsigned Count,
|
|
bool AllowExpensiveTripCount, LoopInfo *LI,
|
|
LPPassManager *LPM) {
|
|
// for now, only unroll loops that contain a single exit
|
|
if (!L->getExitingBlock())
|
|
return false;
|
|
|
|
// Make sure the loop is in canonical form, and there is a single
|
|
// exit block only.
|
|
if (!L->isLoopSimplifyForm() || !L->getUniqueExitBlock())
|
|
return false;
|
|
|
|
// Use Scalar Evolution to compute the trip count. This allows more
|
|
// loops to be unrolled than relying on induction var simplification
|
|
if (!LPM)
|
|
return false;
|
|
ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>();
|
|
if (!SE)
|
|
return false;
|
|
|
|
// Only unroll loops with a computable trip count and the trip count needs
|
|
// to be an int value (allowing a pointer type is a TODO item)
|
|
const SCEV *BECountSC = SE->getBackedgeTakenCount(L);
|
|
if (isa<SCEVCouldNotCompute>(BECountSC) ||
|
|
!BECountSC->getType()->isIntegerTy())
|
|
return false;
|
|
|
|
unsigned BEWidth = cast<IntegerType>(BECountSC->getType())->getBitWidth();
|
|
|
|
// Add 1 since the backedge count doesn't include the first loop iteration
|
|
const SCEV *TripCountSC =
|
|
SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1));
|
|
if (isa<SCEVCouldNotCompute>(TripCountSC))
|
|
return false;
|
|
|
|
BasicBlock *Header = L->getHeader();
|
|
const DataLayout &DL = Header->getModule()->getDataLayout();
|
|
SCEVExpander Expander(*SE, DL, "loop-unroll");
|
|
if (!AllowExpensiveTripCount && Expander.isHighCostExpansion(TripCountSC, L))
|
|
return false;
|
|
|
|
// We only handle cases when the unroll factor is a power of 2.
|
|
// Count is the loop unroll factor, the number of extra copies added + 1.
|
|
if (!isPowerOf2_32(Count))
|
|
return false;
|
|
|
|
// This constraint lets us deal with an overflowing trip count easily; see the
|
|
// comment on ModVal below.
|
|
if (Log2_32(Count) > BEWidth)
|
|
return false;
|
|
|
|
// If this loop is nested, then the loop unroller changes the code in
|
|
// parent loop, so the Scalar Evolution pass needs to be run again
|
|
if (Loop *ParentLoop = L->getParentLoop())
|
|
SE->forgetLoop(ParentLoop);
|
|
|
|
// Grab analyses that we preserve.
|
|
auto *DTWP = LPM->getAnalysisIfAvailable<DominatorTreeWrapperPass>();
|
|
auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
|
|
|
|
BasicBlock *PH = L->getLoopPreheader();
|
|
BasicBlock *Latch = L->getLoopLatch();
|
|
// It helps to splits the original preheader twice, one for the end of the
|
|
// prolog code and one for a new loop preheader
|
|
BasicBlock *PEnd = SplitEdge(PH, Header, DT, LI);
|
|
BasicBlock *NewPH = SplitBlock(PEnd, PEnd->getTerminator(), DT, LI);
|
|
BranchInst *PreHeaderBR = cast<BranchInst>(PH->getTerminator());
|
|
|
|
// Compute the number of extra iterations required, which is:
|
|
// extra iterations = run-time trip count % (loop unroll factor + 1)
|
|
Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(),
|
|
PreHeaderBR);
|
|
Value *BECount = Expander.expandCodeFor(BECountSC, BECountSC->getType(),
|
|
PreHeaderBR);
|
|
|
|
IRBuilder<> B(PreHeaderBR);
|
|
Value *ModVal = B.CreateAnd(TripCount, Count - 1, "xtraiter");
|
|
|
|
// If ModVal is zero, we know that either
|
|
// 1. there are no iteration to be run in the prologue loop
|
|
// OR
|
|
// 2. the addition computing TripCount overflowed
|
|
//
|
|
// If (2) is true, we know that TripCount really is (1 << BEWidth) and so the
|
|
// number of iterations that remain to be run in the original loop is a
|
|
// multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (we
|
|
// explicitly check this above).
|
|
|
|
Value *BranchVal = B.CreateIsNotNull(ModVal, "lcmp.mod");
|
|
|
|
// Branch to either the extra iterations or the cloned/unrolled loop
|
|
// We will fix up the true branch label when adding loop body copies
|
|
BranchInst::Create(PEnd, PEnd, BranchVal, PreHeaderBR);
|
|
assert(PreHeaderBR->isUnconditional() &&
|
|
PreHeaderBR->getSuccessor(0) == PEnd &&
|
|
"CFG edges in Preheader are not correct");
|
|
PreHeaderBR->eraseFromParent();
|
|
Function *F = Header->getParent();
|
|
// Get an ordered list of blocks in the loop to help with the ordering of the
|
|
// cloned blocks in the prolog code
|
|
LoopBlocksDFS LoopBlocks(L);
|
|
LoopBlocks.perform(LI);
|
|
|
|
//
|
|
// For each extra loop iteration, create a copy of the loop's basic blocks
|
|
// and generate a condition that branches to the copy depending on the
|
|
// number of 'left over' iterations.
|
|
//
|
|
std::vector<BasicBlock *> NewBlocks;
|
|
ValueToValueMapTy VMap;
|
|
|
|
bool UnrollPrologue = Count == 2;
|
|
|
|
// Clone all the basic blocks in the loop. If Count is 2, we don't clone
|
|
// the loop, otherwise we create a cloned loop to execute the extra
|
|
// iterations. This function adds the appropriate CFG connections.
|
|
CloneLoopBlocks(L, ModVal, UnrollPrologue, PH, PEnd, NewBlocks, LoopBlocks,
|
|
VMap, LI);
|
|
|
|
// Insert the cloned blocks into function just before the original loop
|
|
F->getBasicBlockList().splice(PEnd, F->getBasicBlockList(), NewBlocks[0],
|
|
F->end());
|
|
|
|
// Rewrite the cloned instruction operands to use the values
|
|
// created when the clone is created.
|
|
for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i) {
|
|
for (BasicBlock::iterator I = NewBlocks[i]->begin(),
|
|
E = NewBlocks[i]->end();
|
|
I != E; ++I) {
|
|
RemapInstruction(I, VMap,
|
|
RF_NoModuleLevelChanges | RF_IgnoreMissingEntries);
|
|
}
|
|
}
|
|
|
|
// Connect the prolog code to the original loop and update the
|
|
// PHI functions.
|
|
BasicBlock *LastLoopBB = cast<BasicBlock>(VMap[Latch]);
|
|
ConnectProlog(L, BECount, Count, LastLoopBB, PEnd, PH, NewPH, VMap,
|
|
/*AliasAnalysis*/ nullptr, DT, LI, LPM->getAsPass());
|
|
NumRuntimeUnrolled++;
|
|
return true;
|
|
}
|