mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-15 20:29:48 +00:00
273fd11da9
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216351 91177308-0d34-0410-b5e6-96231b3b80d8
1031 lines
38 KiB
C++
1031 lines
38 KiB
C++
//===- PassManager.h - Pass management infrastructure -----------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
/// \file
|
|
///
|
|
/// This header defines various interfaces for pass management in LLVM. There
|
|
/// is no "pass" interface in LLVM per se. Instead, an instance of any class
|
|
/// which supports a method to 'run' it over a unit of IR can be used as
|
|
/// a pass. A pass manager is generally a tool to collect a sequence of passes
|
|
/// which run over a particular IR construct, and run each of them in sequence
|
|
/// over each such construct in the containing IR construct. As there is no
|
|
/// containing IR construct for a Module, a manager for passes over modules
|
|
/// forms the base case which runs its managed passes in sequence over the
|
|
/// single module provided.
|
|
///
|
|
/// The core IR library provides managers for running passes over
|
|
/// modules and functions.
|
|
///
|
|
/// * FunctionPassManager can run over a Module, runs each pass over
|
|
/// a Function.
|
|
/// * ModulePassManager must be directly run, runs each pass over the Module.
|
|
///
|
|
/// Note that the implementations of the pass managers use concept-based
|
|
/// polymorphism as outlined in the "Value Semantics and Concept-based
|
|
/// Polymorphism" talk (or its abbreviated sibling "Inheritance Is The Base
|
|
/// Class of Evil") by Sean Parent:
|
|
/// * http://github.com/sean-parent/sean-parent.github.com/wiki/Papers-and-Presentations
|
|
/// * http://www.youtube.com/watch?v=_BpMYeUFXv8
|
|
/// * http://channel9.msdn.com/Events/GoingNative/2013/Inheritance-Is-The-Base-Class-of-Evil
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_IR_PASSMANAGER_H
|
|
#define LLVM_IR_PASSMANAGER_H
|
|
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/Support/type_traits.h"
|
|
#include <list>
|
|
#include <memory>
|
|
#include <vector>
|
|
|
|
namespace llvm {
|
|
|
|
class Module;
|
|
class Function;
|
|
|
|
/// \brief An abstract set of preserved analyses following a transformation pass
|
|
/// run.
|
|
///
|
|
/// When a transformation pass is run, it can return a set of analyses whose
|
|
/// results were preserved by that transformation. The default set is "none",
|
|
/// and preserving analyses must be done explicitly.
|
|
///
|
|
/// There is also an explicit all state which can be used (for example) when
|
|
/// the IR is not mutated at all.
|
|
class PreservedAnalyses {
|
|
public:
|
|
// We have to explicitly define all the special member functions because MSVC
|
|
// refuses to generate them.
|
|
PreservedAnalyses() {}
|
|
PreservedAnalyses(const PreservedAnalyses &Arg)
|
|
: PreservedPassIDs(Arg.PreservedPassIDs) {}
|
|
PreservedAnalyses(PreservedAnalyses &&Arg)
|
|
: PreservedPassIDs(std::move(Arg.PreservedPassIDs)) {}
|
|
friend void swap(PreservedAnalyses &LHS, PreservedAnalyses &RHS) {
|
|
using std::swap;
|
|
swap(LHS.PreservedPassIDs, RHS.PreservedPassIDs);
|
|
}
|
|
PreservedAnalyses &operator=(PreservedAnalyses RHS) {
|
|
swap(*this, RHS);
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Convenience factory function for the empty preserved set.
|
|
static PreservedAnalyses none() { return PreservedAnalyses(); }
|
|
|
|
/// \brief Construct a special preserved set that preserves all passes.
|
|
static PreservedAnalyses all() {
|
|
PreservedAnalyses PA;
|
|
PA.PreservedPassIDs.insert((void *)AllPassesID);
|
|
return PA;
|
|
}
|
|
|
|
/// \brief Mark a particular pass as preserved, adding it to the set.
|
|
template <typename PassT> void preserve() {
|
|
if (!areAllPreserved())
|
|
PreservedPassIDs.insert(PassT::ID());
|
|
}
|
|
|
|
/// \brief Intersect this set with another in place.
|
|
///
|
|
/// This is a mutating operation on this preserved set, removing all
|
|
/// preserved passes which are not also preserved in the argument.
|
|
void intersect(const PreservedAnalyses &Arg) {
|
|
if (Arg.areAllPreserved())
|
|
return;
|
|
if (areAllPreserved()) {
|
|
PreservedPassIDs = Arg.PreservedPassIDs;
|
|
return;
|
|
}
|
|
for (void *P : PreservedPassIDs)
|
|
if (!Arg.PreservedPassIDs.count(P))
|
|
PreservedPassIDs.erase(P);
|
|
}
|
|
|
|
/// \brief Intersect this set with a temporary other set in place.
|
|
///
|
|
/// This is a mutating operation on this preserved set, removing all
|
|
/// preserved passes which are not also preserved in the argument.
|
|
void intersect(PreservedAnalyses &&Arg) {
|
|
if (Arg.areAllPreserved())
|
|
return;
|
|
if (areAllPreserved()) {
|
|
PreservedPassIDs = std::move(Arg.PreservedPassIDs);
|
|
return;
|
|
}
|
|
for (void *P : PreservedPassIDs)
|
|
if (!Arg.PreservedPassIDs.count(P))
|
|
PreservedPassIDs.erase(P);
|
|
}
|
|
|
|
/// \brief Query whether a pass is marked as preserved by this set.
|
|
template <typename PassT> bool preserved() const {
|
|
return preserved(PassT::ID());
|
|
}
|
|
|
|
/// \brief Query whether an abstract pass ID is marked as preserved by this
|
|
/// set.
|
|
bool preserved(void *PassID) const {
|
|
return PreservedPassIDs.count((void *)AllPassesID) ||
|
|
PreservedPassIDs.count(PassID);
|
|
}
|
|
|
|
private:
|
|
// Note that this must not be -1 or -2 as those are already used by the
|
|
// SmallPtrSet.
|
|
static const uintptr_t AllPassesID = (intptr_t)(-3);
|
|
|
|
bool areAllPreserved() const {
|
|
return PreservedPassIDs.count((void *)AllPassesID);
|
|
}
|
|
|
|
SmallPtrSet<void *, 2> PreservedPassIDs;
|
|
};
|
|
|
|
/// \brief Implementation details of the pass manager interfaces.
|
|
namespace detail {
|
|
|
|
/// \brief Template for the abstract base class used to dispatch
|
|
/// polymorphically over pass objects.
|
|
template <typename IRUnitT, typename AnalysisManagerT> struct PassConcept {
|
|
// Boiler plate necessary for the container of derived classes.
|
|
virtual ~PassConcept() {}
|
|
|
|
/// \brief The polymorphic API which runs the pass over a given IR entity.
|
|
///
|
|
/// Note that actual pass object can omit the analysis manager argument if
|
|
/// desired. Also that the analysis manager may be null if there is no
|
|
/// analysis manager in the pass pipeline.
|
|
virtual PreservedAnalyses run(IRUnitT IR, AnalysisManagerT *AM) = 0;
|
|
|
|
/// \brief Polymorphic method to access the name of a pass.
|
|
virtual StringRef name() = 0;
|
|
};
|
|
|
|
/// \brief SFINAE metafunction for computing whether \c PassT has a run method
|
|
/// accepting an \c AnalysisManagerT.
|
|
template <typename IRUnitT, typename AnalysisManagerT, typename PassT,
|
|
typename ResultT>
|
|
class PassRunAcceptsAnalysisManager {
|
|
typedef char SmallType;
|
|
struct BigType {
|
|
char a, b;
|
|
};
|
|
|
|
template <typename T, ResultT (T::*)(IRUnitT, AnalysisManagerT *)>
|
|
struct Checker;
|
|
|
|
template <typename T> static SmallType f(Checker<T, &T::run> *);
|
|
template <typename T> static BigType f(...);
|
|
|
|
public:
|
|
enum { Value = sizeof(f<PassT>(nullptr)) == sizeof(SmallType) };
|
|
};
|
|
|
|
/// \brief A template wrapper used to implement the polymorphic API.
|
|
///
|
|
/// Can be instantiated for any object which provides a \c run method accepting
|
|
/// an \c IRUnitT. It requires the pass to be a copyable object. When the
|
|
/// \c run method also accepts an \c AnalysisManagerT*, we pass it along.
|
|
template <typename IRUnitT, typename AnalysisManagerT, typename PassT,
|
|
bool AcceptsAnalysisManager = PassRunAcceptsAnalysisManager<
|
|
IRUnitT, AnalysisManagerT, PassT, PreservedAnalyses>::Value>
|
|
struct PassModel;
|
|
|
|
/// \brief Specialization of \c PassModel for passes that accept an analyis
|
|
/// manager.
|
|
template <typename IRUnitT, typename AnalysisManagerT, typename PassT>
|
|
struct PassModel<IRUnitT, AnalysisManagerT, PassT, true>
|
|
: PassConcept<IRUnitT, AnalysisManagerT> {
|
|
explicit PassModel(PassT Pass) : Pass(std::move(Pass)) {}
|
|
// We have to explicitly define all the special member functions because MSVC
|
|
// refuses to generate them.
|
|
PassModel(const PassModel &Arg) : Pass(Arg.Pass) {}
|
|
PassModel(PassModel &&Arg) : Pass(std::move(Arg.Pass)) {}
|
|
friend void swap(PassModel &LHS, PassModel &RHS) {
|
|
using std::swap;
|
|
swap(LHS.Pass, RHS.Pass);
|
|
}
|
|
PassModel &operator=(PassModel RHS) {
|
|
swap(*this, RHS);
|
|
return *this;
|
|
}
|
|
|
|
PreservedAnalyses run(IRUnitT IR, AnalysisManagerT *AM) override {
|
|
return Pass.run(IR, AM);
|
|
}
|
|
StringRef name() override { return PassT::name(); }
|
|
PassT Pass;
|
|
};
|
|
|
|
/// \brief Specialization of \c PassModel for passes that accept an analyis
|
|
/// manager.
|
|
template <typename IRUnitT, typename AnalysisManagerT, typename PassT>
|
|
struct PassModel<IRUnitT, AnalysisManagerT, PassT, false>
|
|
: PassConcept<IRUnitT, AnalysisManagerT> {
|
|
explicit PassModel(PassT Pass) : Pass(std::move(Pass)) {}
|
|
// We have to explicitly define all the special member functions because MSVC
|
|
// refuses to generate them.
|
|
PassModel(const PassModel &Arg) : Pass(Arg.Pass) {}
|
|
PassModel(PassModel &&Arg) : Pass(std::move(Arg.Pass)) {}
|
|
friend void swap(PassModel &LHS, PassModel &RHS) {
|
|
using std::swap;
|
|
swap(LHS.Pass, RHS.Pass);
|
|
}
|
|
PassModel &operator=(PassModel RHS) {
|
|
swap(*this, RHS);
|
|
return *this;
|
|
}
|
|
|
|
PreservedAnalyses run(IRUnitT IR, AnalysisManagerT *AM) override {
|
|
return Pass.run(IR);
|
|
}
|
|
StringRef name() override { return PassT::name(); }
|
|
PassT Pass;
|
|
};
|
|
|
|
/// \brief Abstract concept of an analysis result.
|
|
///
|
|
/// This concept is parameterized over the IR unit that this result pertains
|
|
/// to.
|
|
template <typename IRUnitT> struct AnalysisResultConcept {
|
|
virtual ~AnalysisResultConcept() {}
|
|
|
|
/// \brief Method to try and mark a result as invalid.
|
|
///
|
|
/// When the outer analysis manager detects a change in some underlying
|
|
/// unit of the IR, it will call this method on all of the results cached.
|
|
///
|
|
/// This method also receives a set of preserved analyses which can be used
|
|
/// to avoid invalidation because the pass which changed the underlying IR
|
|
/// took care to update or preserve the analysis result in some way.
|
|
///
|
|
/// \returns true if the result is indeed invalid (the default).
|
|
virtual bool invalidate(IRUnitT IR, const PreservedAnalyses &PA) = 0;
|
|
};
|
|
|
|
/// \brief SFINAE metafunction for computing whether \c ResultT provides an
|
|
/// \c invalidate member function.
|
|
template <typename IRUnitT, typename ResultT> class ResultHasInvalidateMethod {
|
|
typedef char SmallType;
|
|
struct BigType {
|
|
char a, b;
|
|
};
|
|
|
|
template <typename T, bool (T::*)(IRUnitT, const PreservedAnalyses &)>
|
|
struct Checker;
|
|
|
|
template <typename T> static SmallType f(Checker<T, &T::invalidate> *);
|
|
template <typename T> static BigType f(...);
|
|
|
|
public:
|
|
enum { Value = sizeof(f<ResultT>(nullptr)) == sizeof(SmallType) };
|
|
};
|
|
|
|
/// \brief Wrapper to model the analysis result concept.
|
|
///
|
|
/// By default, this will implement the invalidate method with a trivial
|
|
/// implementation so that the actual analysis result doesn't need to provide
|
|
/// an invalidation handler. It is only selected when the invalidation handler
|
|
/// is not part of the ResultT's interface.
|
|
template <typename IRUnitT, typename PassT, typename ResultT,
|
|
bool HasInvalidateHandler =
|
|
ResultHasInvalidateMethod<IRUnitT, ResultT>::Value>
|
|
struct AnalysisResultModel;
|
|
|
|
/// \brief Specialization of \c AnalysisResultModel which provides the default
|
|
/// invalidate functionality.
|
|
template <typename IRUnitT, typename PassT, typename ResultT>
|
|
struct AnalysisResultModel<IRUnitT, PassT, ResultT, false>
|
|
: AnalysisResultConcept<IRUnitT> {
|
|
explicit AnalysisResultModel(ResultT Result) : Result(std::move(Result)) {}
|
|
// We have to explicitly define all the special member functions because MSVC
|
|
// refuses to generate them.
|
|
AnalysisResultModel(const AnalysisResultModel &Arg) : Result(Arg.Result) {}
|
|
AnalysisResultModel(AnalysisResultModel &&Arg)
|
|
: Result(std::move(Arg.Result)) {}
|
|
friend void swap(AnalysisResultModel &LHS, AnalysisResultModel &RHS) {
|
|
using std::swap;
|
|
swap(LHS.Result, RHS.Result);
|
|
}
|
|
AnalysisResultModel &operator=(AnalysisResultModel RHS) {
|
|
swap(*this, RHS);
|
|
return *this;
|
|
}
|
|
|
|
/// \brief The model bases invalidation solely on being in the preserved set.
|
|
//
|
|
// FIXME: We should actually use two different concepts for analysis results
|
|
// rather than two different models, and avoid the indirect function call for
|
|
// ones that use the trivial behavior.
|
|
bool invalidate(IRUnitT, const PreservedAnalyses &PA) override {
|
|
return !PA.preserved(PassT::ID());
|
|
}
|
|
|
|
ResultT Result;
|
|
};
|
|
|
|
/// \brief Specialization of \c AnalysisResultModel which delegates invalidate
|
|
/// handling to \c ResultT.
|
|
template <typename IRUnitT, typename PassT, typename ResultT>
|
|
struct AnalysisResultModel<IRUnitT, PassT, ResultT, true>
|
|
: AnalysisResultConcept<IRUnitT> {
|
|
explicit AnalysisResultModel(ResultT Result) : Result(std::move(Result)) {}
|
|
// We have to explicitly define all the special member functions because MSVC
|
|
// refuses to generate them.
|
|
AnalysisResultModel(const AnalysisResultModel &Arg) : Result(Arg.Result) {}
|
|
AnalysisResultModel(AnalysisResultModel &&Arg)
|
|
: Result(std::move(Arg.Result)) {}
|
|
friend void swap(AnalysisResultModel &LHS, AnalysisResultModel &RHS) {
|
|
using std::swap;
|
|
swap(LHS.Result, RHS.Result);
|
|
}
|
|
AnalysisResultModel &operator=(AnalysisResultModel RHS) {
|
|
swap(*this, RHS);
|
|
return *this;
|
|
}
|
|
|
|
/// \brief The model delegates to the \c ResultT method.
|
|
bool invalidate(IRUnitT IR, const PreservedAnalyses &PA) override {
|
|
return Result.invalidate(IR, PA);
|
|
}
|
|
|
|
ResultT Result;
|
|
};
|
|
|
|
/// \brief Abstract concept of an analysis pass.
|
|
///
|
|
/// This concept is parameterized over the IR unit that it can run over and
|
|
/// produce an analysis result.
|
|
template <typename IRUnitT, typename AnalysisManagerT>
|
|
struct AnalysisPassConcept {
|
|
virtual ~AnalysisPassConcept() {}
|
|
|
|
/// \brief Method to run this analysis over a unit of IR.
|
|
/// \returns A unique_ptr to the analysis result object to be queried by
|
|
/// users.
|
|
virtual std::unique_ptr<AnalysisResultConcept<IRUnitT>>
|
|
run(IRUnitT IR, AnalysisManagerT *AM) = 0;
|
|
};
|
|
|
|
/// \brief Wrapper to model the analysis pass concept.
|
|
///
|
|
/// Can wrap any type which implements a suitable \c run method. The method
|
|
/// must accept the IRUnitT as an argument and produce an object which can be
|
|
/// wrapped in a \c AnalysisResultModel.
|
|
template <typename IRUnitT, typename AnalysisManagerT, typename PassT,
|
|
bool AcceptsAnalysisManager = PassRunAcceptsAnalysisManager<
|
|
IRUnitT, AnalysisManagerT, PassT, typename PassT::Result>::Value>
|
|
struct AnalysisPassModel;
|
|
|
|
/// \brief Specialization of \c AnalysisPassModel which passes an
|
|
/// \c AnalysisManager to PassT's run method.
|
|
template <typename IRUnitT, typename AnalysisManagerT, typename PassT>
|
|
struct AnalysisPassModel<IRUnitT, AnalysisManagerT, PassT, true>
|
|
: AnalysisPassConcept<IRUnitT, AnalysisManagerT> {
|
|
explicit AnalysisPassModel(PassT Pass) : Pass(std::move(Pass)) {}
|
|
// We have to explicitly define all the special member functions because MSVC
|
|
// refuses to generate them.
|
|
AnalysisPassModel(const AnalysisPassModel &Arg) : Pass(Arg.Pass) {}
|
|
AnalysisPassModel(AnalysisPassModel &&Arg) : Pass(std::move(Arg.Pass)) {}
|
|
friend void swap(AnalysisPassModel &LHS, AnalysisPassModel &RHS) {
|
|
using std::swap;
|
|
swap(LHS.Pass, RHS.Pass);
|
|
}
|
|
AnalysisPassModel &operator=(AnalysisPassModel RHS) {
|
|
swap(*this, RHS);
|
|
return *this;
|
|
}
|
|
|
|
// FIXME: Replace PassT::Result with type traits when we use C++11.
|
|
typedef AnalysisResultModel<IRUnitT, PassT, typename PassT::Result>
|
|
ResultModelT;
|
|
|
|
/// \brief The model delegates to the \c PassT::run method.
|
|
///
|
|
/// The return is wrapped in an \c AnalysisResultModel.
|
|
std::unique_ptr<AnalysisResultConcept<IRUnitT>>
|
|
run(IRUnitT IR, AnalysisManagerT *AM) override {
|
|
return make_unique<ResultModelT>(Pass.run(IR, AM));
|
|
}
|
|
|
|
PassT Pass;
|
|
};
|
|
|
|
/// \brief Specialization of \c AnalysisPassModel which does not pass an
|
|
/// \c AnalysisManager to PassT's run method.
|
|
template <typename IRUnitT, typename AnalysisManagerT, typename PassT>
|
|
struct AnalysisPassModel<IRUnitT, AnalysisManagerT, PassT, false>
|
|
: AnalysisPassConcept<IRUnitT, AnalysisManagerT> {
|
|
explicit AnalysisPassModel(PassT Pass) : Pass(std::move(Pass)) {}
|
|
// We have to explicitly define all the special member functions because MSVC
|
|
// refuses to generate them.
|
|
AnalysisPassModel(const AnalysisPassModel &Arg) : Pass(Arg.Pass) {}
|
|
AnalysisPassModel(AnalysisPassModel &&Arg) : Pass(std::move(Arg.Pass)) {}
|
|
friend void swap(AnalysisPassModel &LHS, AnalysisPassModel &RHS) {
|
|
using std::swap;
|
|
swap(LHS.Pass, RHS.Pass);
|
|
}
|
|
AnalysisPassModel &operator=(AnalysisPassModel RHS) {
|
|
swap(*this, RHS);
|
|
return *this;
|
|
}
|
|
|
|
// FIXME: Replace PassT::Result with type traits when we use C++11.
|
|
typedef AnalysisResultModel<IRUnitT, PassT, typename PassT::Result>
|
|
ResultModelT;
|
|
|
|
/// \brief The model delegates to the \c PassT::run method.
|
|
///
|
|
/// The return is wrapped in an \c AnalysisResultModel.
|
|
std::unique_ptr<AnalysisResultConcept<IRUnitT>>
|
|
run(IRUnitT IR, AnalysisManagerT *) override {
|
|
return make_unique<ResultModelT>(Pass.run(IR));
|
|
}
|
|
|
|
PassT Pass;
|
|
};
|
|
|
|
} // End namespace detail
|
|
|
|
class ModuleAnalysisManager;
|
|
|
|
class ModulePassManager {
|
|
public:
|
|
// We have to explicitly define all the special member functions because MSVC
|
|
// refuses to generate them.
|
|
ModulePassManager() {}
|
|
ModulePassManager(ModulePassManager &&Arg) : Passes(std::move(Arg.Passes)) {}
|
|
ModulePassManager &operator=(ModulePassManager &&RHS) {
|
|
Passes = std::move(RHS.Passes);
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Run all of the module passes in this module pass manager over
|
|
/// a module.
|
|
///
|
|
/// This method should only be called for a single module as there is the
|
|
/// expectation that the lifetime of a pass is bounded to that of a module.
|
|
PreservedAnalyses run(Module *M, ModuleAnalysisManager *AM = nullptr);
|
|
|
|
template <typename ModulePassT> void addPass(ModulePassT Pass) {
|
|
Passes.emplace_back(new ModulePassModel<ModulePassT>(std::move(Pass)));
|
|
}
|
|
|
|
static StringRef name() { return "ModulePassManager"; }
|
|
|
|
private:
|
|
// Pull in the concept type and model template specialized for modules.
|
|
typedef detail::PassConcept<Module *, ModuleAnalysisManager>
|
|
ModulePassConcept;
|
|
template <typename PassT>
|
|
struct ModulePassModel
|
|
: detail::PassModel<Module *, ModuleAnalysisManager, PassT> {
|
|
ModulePassModel(PassT Pass)
|
|
: detail::PassModel<Module *, ModuleAnalysisManager, PassT>(
|
|
std::move(Pass)) {}
|
|
};
|
|
|
|
ModulePassManager(const ModulePassManager &) LLVM_DELETED_FUNCTION;
|
|
ModulePassManager &operator=(const ModulePassManager &) LLVM_DELETED_FUNCTION;
|
|
|
|
std::vector<std::unique_ptr<ModulePassConcept>> Passes;
|
|
};
|
|
|
|
class FunctionAnalysisManager;
|
|
|
|
class FunctionPassManager {
|
|
public:
|
|
// We have to explicitly define all the special member functions because MSVC
|
|
// refuses to generate them.
|
|
FunctionPassManager() {}
|
|
FunctionPassManager(FunctionPassManager &&Arg)
|
|
: Passes(std::move(Arg.Passes)) {}
|
|
FunctionPassManager &operator=(FunctionPassManager &&RHS) {
|
|
Passes = std::move(RHS.Passes);
|
|
return *this;
|
|
}
|
|
|
|
template <typename FunctionPassT> void addPass(FunctionPassT Pass) {
|
|
Passes.emplace_back(new FunctionPassModel<FunctionPassT>(std::move(Pass)));
|
|
}
|
|
|
|
PreservedAnalyses run(Function *F, FunctionAnalysisManager *AM = nullptr);
|
|
|
|
static StringRef name() { return "FunctionPassManager"; }
|
|
|
|
private:
|
|
// Pull in the concept type and model template specialized for functions.
|
|
typedef detail::PassConcept<Function *, FunctionAnalysisManager>
|
|
FunctionPassConcept;
|
|
template <typename PassT>
|
|
struct FunctionPassModel
|
|
: detail::PassModel<Function *, FunctionAnalysisManager, PassT> {
|
|
FunctionPassModel(PassT Pass)
|
|
: detail::PassModel<Function *, FunctionAnalysisManager, PassT>(
|
|
std::move(Pass)) {}
|
|
};
|
|
|
|
FunctionPassManager(const FunctionPassManager &) LLVM_DELETED_FUNCTION;
|
|
FunctionPassManager &
|
|
operator=(const FunctionPassManager &) LLVM_DELETED_FUNCTION;
|
|
|
|
std::vector<std::unique_ptr<FunctionPassConcept>> Passes;
|
|
};
|
|
|
|
namespace detail {
|
|
|
|
/// \brief A CRTP base used to implement analysis managers.
|
|
///
|
|
/// This class template serves as the boiler plate of an analysis manager. Any
|
|
/// analysis manager can be implemented on top of this base class. Any
|
|
/// implementation will be required to provide specific hooks:
|
|
///
|
|
/// - getResultImpl
|
|
/// - getCachedResultImpl
|
|
/// - invalidateImpl
|
|
///
|
|
/// The details of the call pattern are within.
|
|
template <typename DerivedT, typename IRUnitT> class AnalysisManagerBase {
|
|
DerivedT *derived_this() { return static_cast<DerivedT *>(this); }
|
|
const DerivedT *derived_this() const {
|
|
return static_cast<const DerivedT *>(this);
|
|
}
|
|
|
|
AnalysisManagerBase(const AnalysisManagerBase &) LLVM_DELETED_FUNCTION;
|
|
AnalysisManagerBase &
|
|
operator=(const AnalysisManagerBase &) LLVM_DELETED_FUNCTION;
|
|
|
|
protected:
|
|
typedef detail::AnalysisResultConcept<IRUnitT> ResultConceptT;
|
|
typedef detail::AnalysisPassConcept<IRUnitT, DerivedT> PassConceptT;
|
|
|
|
// FIXME: Provide template aliases for the models when we're using C++11 in
|
|
// a mode supporting them.
|
|
|
|
// We have to explicitly define all the special member functions because MSVC
|
|
// refuses to generate them.
|
|
AnalysisManagerBase() {}
|
|
AnalysisManagerBase(AnalysisManagerBase &&Arg)
|
|
: AnalysisPasses(std::move(Arg.AnalysisPasses)) {}
|
|
AnalysisManagerBase &operator=(AnalysisManagerBase &&RHS) {
|
|
AnalysisPasses = std::move(RHS.AnalysisPasses);
|
|
return *this;
|
|
}
|
|
|
|
public:
|
|
/// \brief Get the result of an analysis pass for this module.
|
|
///
|
|
/// If there is not a valid cached result in the manager already, this will
|
|
/// re-run the analysis to produce a valid result.
|
|
template <typename PassT> typename PassT::Result &getResult(IRUnitT IR) {
|
|
assert(AnalysisPasses.count(PassT::ID()) &&
|
|
"This analysis pass was not registered prior to being queried");
|
|
|
|
ResultConceptT &ResultConcept =
|
|
derived_this()->getResultImpl(PassT::ID(), IR);
|
|
typedef detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result>
|
|
ResultModelT;
|
|
return static_cast<ResultModelT &>(ResultConcept).Result;
|
|
}
|
|
|
|
/// \brief Get the cached result of an analysis pass for this module.
|
|
///
|
|
/// This method never runs the analysis.
|
|
///
|
|
/// \returns null if there is no cached result.
|
|
template <typename PassT>
|
|
typename PassT::Result *getCachedResult(IRUnitT IR) const {
|
|
assert(AnalysisPasses.count(PassT::ID()) &&
|
|
"This analysis pass was not registered prior to being queried");
|
|
|
|
ResultConceptT *ResultConcept =
|
|
derived_this()->getCachedResultImpl(PassT::ID(), IR);
|
|
if (!ResultConcept)
|
|
return nullptr;
|
|
|
|
typedef detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result>
|
|
ResultModelT;
|
|
return &static_cast<ResultModelT *>(ResultConcept)->Result;
|
|
}
|
|
|
|
/// \brief Register an analysis pass with the manager.
|
|
///
|
|
/// This provides an initialized and set-up analysis pass to the analysis
|
|
/// manager. Whomever is setting up analysis passes must use this to populate
|
|
/// the manager with all of the analysis passes available.
|
|
template <typename PassT> void registerPass(PassT Pass) {
|
|
assert(!AnalysisPasses.count(PassT::ID()) &&
|
|
"Registered the same analysis pass twice!");
|
|
typedef detail::AnalysisPassModel<IRUnitT, DerivedT, PassT> PassModelT;
|
|
AnalysisPasses[PassT::ID()].reset(new PassModelT(std::move(Pass)));
|
|
}
|
|
|
|
/// \brief Invalidate a specific analysis pass for an IR module.
|
|
///
|
|
/// Note that the analysis result can disregard invalidation.
|
|
template <typename PassT> void invalidate(Module *M) {
|
|
assert(AnalysisPasses.count(PassT::ID()) &&
|
|
"This analysis pass was not registered prior to being invalidated");
|
|
derived_this()->invalidateImpl(PassT::ID(), M);
|
|
}
|
|
|
|
/// \brief Invalidate analyses cached for an IR unit.
|
|
///
|
|
/// Walk through all of the analyses pertaining to this unit of IR and
|
|
/// invalidate them unless they are preserved by the PreservedAnalyses set.
|
|
void invalidate(IRUnitT IR, const PreservedAnalyses &PA) {
|
|
derived_this()->invalidateImpl(IR, PA);
|
|
}
|
|
|
|
protected:
|
|
/// \brief Lookup a registered analysis pass.
|
|
PassConceptT &lookupPass(void *PassID) {
|
|
typename AnalysisPassMapT::iterator PI = AnalysisPasses.find(PassID);
|
|
assert(PI != AnalysisPasses.end() &&
|
|
"Analysis passes must be registered prior to being queried!");
|
|
return *PI->second;
|
|
}
|
|
|
|
/// \brief Lookup a registered analysis pass.
|
|
const PassConceptT &lookupPass(void *PassID) const {
|
|
typename AnalysisPassMapT::const_iterator PI = AnalysisPasses.find(PassID);
|
|
assert(PI != AnalysisPasses.end() &&
|
|
"Analysis passes must be registered prior to being queried!");
|
|
return *PI->second;
|
|
}
|
|
|
|
private:
|
|
/// \brief Map type from module analysis pass ID to pass concept pointer.
|
|
typedef DenseMap<void *, std::unique_ptr<PassConceptT>> AnalysisPassMapT;
|
|
|
|
/// \brief Collection of module analysis passes, indexed by ID.
|
|
AnalysisPassMapT AnalysisPasses;
|
|
};
|
|
|
|
} // End namespace detail
|
|
|
|
/// \brief A module analysis pass manager with lazy running and caching of
|
|
/// results.
|
|
class ModuleAnalysisManager
|
|
: public detail::AnalysisManagerBase<ModuleAnalysisManager, Module *> {
|
|
friend class detail::AnalysisManagerBase<ModuleAnalysisManager, Module *>;
|
|
typedef detail::AnalysisManagerBase<ModuleAnalysisManager, Module *> BaseT;
|
|
typedef BaseT::ResultConceptT ResultConceptT;
|
|
typedef BaseT::PassConceptT PassConceptT;
|
|
|
|
public:
|
|
// We have to explicitly define all the special member functions because MSVC
|
|
// refuses to generate them.
|
|
ModuleAnalysisManager() {}
|
|
ModuleAnalysisManager(ModuleAnalysisManager &&Arg)
|
|
: BaseT(std::move(static_cast<BaseT &>(Arg))),
|
|
ModuleAnalysisResults(std::move(Arg.ModuleAnalysisResults)) {}
|
|
ModuleAnalysisManager &operator=(ModuleAnalysisManager &&RHS) {
|
|
BaseT::operator=(std::move(static_cast<BaseT &>(RHS)));
|
|
ModuleAnalysisResults = std::move(RHS.ModuleAnalysisResults);
|
|
return *this;
|
|
}
|
|
|
|
private:
|
|
ModuleAnalysisManager(const ModuleAnalysisManager &) LLVM_DELETED_FUNCTION;
|
|
ModuleAnalysisManager &
|
|
operator=(const ModuleAnalysisManager &) LLVM_DELETED_FUNCTION;
|
|
|
|
/// \brief Get a module pass result, running the pass if necessary.
|
|
ResultConceptT &getResultImpl(void *PassID, Module *M);
|
|
|
|
/// \brief Get a cached module pass result or return null.
|
|
ResultConceptT *getCachedResultImpl(void *PassID, Module *M) const;
|
|
|
|
/// \brief Invalidate a module pass result.
|
|
void invalidateImpl(void *PassID, Module *M);
|
|
|
|
/// \brief Invalidate results across a module.
|
|
void invalidateImpl(Module *M, const PreservedAnalyses &PA);
|
|
|
|
/// \brief Map type from module analysis pass ID to pass result concept
|
|
/// pointer.
|
|
typedef DenseMap<void *,
|
|
std::unique_ptr<detail::AnalysisResultConcept<Module *>>>
|
|
ModuleAnalysisResultMapT;
|
|
|
|
/// \brief Cache of computed module analysis results for this module.
|
|
ModuleAnalysisResultMapT ModuleAnalysisResults;
|
|
};
|
|
|
|
/// \brief A function analysis manager to coordinate and cache analyses run over
|
|
/// a module.
|
|
class FunctionAnalysisManager
|
|
: public detail::AnalysisManagerBase<FunctionAnalysisManager, Function *> {
|
|
friend class detail::AnalysisManagerBase<FunctionAnalysisManager, Function *>;
|
|
typedef detail::AnalysisManagerBase<FunctionAnalysisManager, Function *>
|
|
BaseT;
|
|
typedef BaseT::ResultConceptT ResultConceptT;
|
|
typedef BaseT::PassConceptT PassConceptT;
|
|
|
|
public:
|
|
// Most public APIs are inherited from the CRTP base class.
|
|
|
|
// We have to explicitly define all the special member functions because MSVC
|
|
// refuses to generate them.
|
|
FunctionAnalysisManager() {}
|
|
FunctionAnalysisManager(FunctionAnalysisManager &&Arg)
|
|
: BaseT(std::move(static_cast<BaseT &>(Arg))),
|
|
FunctionAnalysisResults(std::move(Arg.FunctionAnalysisResults)) {}
|
|
FunctionAnalysisManager &operator=(FunctionAnalysisManager &&RHS) {
|
|
BaseT::operator=(std::move(static_cast<BaseT &>(RHS)));
|
|
FunctionAnalysisResults = std::move(RHS.FunctionAnalysisResults);
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Returns true if the analysis manager has an empty results cache.
|
|
bool empty() const;
|
|
|
|
/// \brief Clear the function analysis result cache.
|
|
///
|
|
/// This routine allows cleaning up when the set of functions itself has
|
|
/// potentially changed, and thus we can't even look up a a result and
|
|
/// invalidate it directly. Notably, this does *not* call invalidate
|
|
/// functions as there is nothing to be done for them.
|
|
void clear();
|
|
|
|
private:
|
|
FunctionAnalysisManager(const FunctionAnalysisManager &)
|
|
LLVM_DELETED_FUNCTION;
|
|
FunctionAnalysisManager &
|
|
operator=(const FunctionAnalysisManager &) LLVM_DELETED_FUNCTION;
|
|
|
|
/// \brief Get a function pass result, running the pass if necessary.
|
|
ResultConceptT &getResultImpl(void *PassID, Function *F);
|
|
|
|
/// \brief Get a cached function pass result or return null.
|
|
ResultConceptT *getCachedResultImpl(void *PassID, Function *F) const;
|
|
|
|
/// \brief Invalidate a function pass result.
|
|
void invalidateImpl(void *PassID, Function *F);
|
|
|
|
/// \brief Invalidate the results for a function..
|
|
void invalidateImpl(Function *F, const PreservedAnalyses &PA);
|
|
|
|
/// \brief List of function analysis pass IDs and associated concept pointers.
|
|
///
|
|
/// Requires iterators to be valid across appending new entries and arbitrary
|
|
/// erases. Provides both the pass ID and concept pointer such that it is
|
|
/// half of a bijection and provides storage for the actual result concept.
|
|
typedef std::list<std::pair<
|
|
void *, std::unique_ptr<detail::AnalysisResultConcept<Function *>>>>
|
|
FunctionAnalysisResultListT;
|
|
|
|
/// \brief Map type from function pointer to our custom list type.
|
|
typedef DenseMap<Function *, FunctionAnalysisResultListT>
|
|
FunctionAnalysisResultListMapT;
|
|
|
|
/// \brief Map from function to a list of function analysis results.
|
|
///
|
|
/// Provides linear time removal of all analysis results for a function and
|
|
/// the ultimate storage for a particular cached analysis result.
|
|
FunctionAnalysisResultListMapT FunctionAnalysisResultLists;
|
|
|
|
/// \brief Map type from a pair of analysis ID and function pointer to an
|
|
/// iterator into a particular result list.
|
|
typedef DenseMap<std::pair<void *, Function *>,
|
|
FunctionAnalysisResultListT::iterator>
|
|
FunctionAnalysisResultMapT;
|
|
|
|
/// \brief Map from an analysis ID and function to a particular cached
|
|
/// analysis result.
|
|
FunctionAnalysisResultMapT FunctionAnalysisResults;
|
|
};
|
|
|
|
/// \brief A module analysis which acts as a proxy for a function analysis
|
|
/// manager.
|
|
///
|
|
/// This primarily proxies invalidation information from the module analysis
|
|
/// manager and module pass manager to a function analysis manager. You should
|
|
/// never use a function analysis manager from within (transitively) a module
|
|
/// pass manager unless your parent module pass has received a proxy result
|
|
/// object for it.
|
|
class FunctionAnalysisManagerModuleProxy {
|
|
public:
|
|
class Result;
|
|
|
|
static void *ID() { return (void *)&PassID; }
|
|
|
|
explicit FunctionAnalysisManagerModuleProxy(FunctionAnalysisManager &FAM)
|
|
: FAM(&FAM) {}
|
|
// We have to explicitly define all the special member functions because MSVC
|
|
// refuses to generate them.
|
|
FunctionAnalysisManagerModuleProxy(
|
|
const FunctionAnalysisManagerModuleProxy &Arg)
|
|
: FAM(Arg.FAM) {}
|
|
FunctionAnalysisManagerModuleProxy(FunctionAnalysisManagerModuleProxy &&Arg)
|
|
: FAM(std::move(Arg.FAM)) {}
|
|
FunctionAnalysisManagerModuleProxy &
|
|
operator=(FunctionAnalysisManagerModuleProxy RHS) {
|
|
std::swap(FAM, RHS.FAM);
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Run the analysis pass and create our proxy result object.
|
|
///
|
|
/// This doesn't do any interesting work, it is primarily used to insert our
|
|
/// proxy result object into the module analysis cache so that we can proxy
|
|
/// invalidation to the function analysis manager.
|
|
///
|
|
/// In debug builds, it will also assert that the analysis manager is empty
|
|
/// as no queries should arrive at the function analysis manager prior to
|
|
/// this analysis being requested.
|
|
Result run(Module *M);
|
|
|
|
private:
|
|
static char PassID;
|
|
|
|
FunctionAnalysisManager *FAM;
|
|
};
|
|
|
|
/// \brief The result proxy object for the
|
|
/// \c FunctionAnalysisManagerModuleProxy.
|
|
///
|
|
/// See its documentation for more information.
|
|
class FunctionAnalysisManagerModuleProxy::Result {
|
|
public:
|
|
explicit Result(FunctionAnalysisManager &FAM) : FAM(&FAM) {}
|
|
// We have to explicitly define all the special member functions because MSVC
|
|
// refuses to generate them.
|
|
Result(const Result &Arg) : FAM(Arg.FAM) {}
|
|
Result(Result &&Arg) : FAM(std::move(Arg.FAM)) {}
|
|
Result &operator=(Result RHS) {
|
|
std::swap(FAM, RHS.FAM);
|
|
return *this;
|
|
}
|
|
~Result();
|
|
|
|
/// \brief Accessor for the \c FunctionAnalysisManager.
|
|
FunctionAnalysisManager &getManager() { return *FAM; }
|
|
|
|
/// \brief Handler for invalidation of the module.
|
|
///
|
|
/// If this analysis itself is preserved, then we assume that the set of \c
|
|
/// Function objects in the \c Module hasn't changed and thus we don't need
|
|
/// to invalidate *all* cached data associated with a \c Function* in the \c
|
|
/// FunctionAnalysisManager.
|
|
///
|
|
/// Regardless of whether this analysis is marked as preserved, all of the
|
|
/// analyses in the \c FunctionAnalysisManager are potentially invalidated
|
|
/// based on the set of preserved analyses.
|
|
bool invalidate(Module *M, const PreservedAnalyses &PA);
|
|
|
|
private:
|
|
FunctionAnalysisManager *FAM;
|
|
};
|
|
|
|
/// \brief A function analysis which acts as a proxy for a module analysis
|
|
/// manager.
|
|
///
|
|
/// This primarily provides an accessor to a parent module analysis manager to
|
|
/// function passes. Only the const interface of the module analysis manager is
|
|
/// provided to indicate that once inside of a function analysis pass you
|
|
/// cannot request a module analysis to actually run. Instead, the user must
|
|
/// rely on the \c getCachedResult API.
|
|
///
|
|
/// This proxy *doesn't* manage the invalidation in any way. That is handled by
|
|
/// the recursive return path of each layer of the pass manager and the
|
|
/// returned PreservedAnalysis set.
|
|
class ModuleAnalysisManagerFunctionProxy {
|
|
public:
|
|
/// \brief Result proxy object for \c ModuleAnalysisManagerFunctionProxy.
|
|
class Result {
|
|
public:
|
|
explicit Result(const ModuleAnalysisManager &MAM) : MAM(&MAM) {}
|
|
// We have to explicitly define all the special member functions because
|
|
// MSVC refuses to generate them.
|
|
Result(const Result &Arg) : MAM(Arg.MAM) {}
|
|
Result(Result &&Arg) : MAM(std::move(Arg.MAM)) {}
|
|
Result &operator=(Result RHS) {
|
|
std::swap(MAM, RHS.MAM);
|
|
return *this;
|
|
}
|
|
|
|
const ModuleAnalysisManager &getManager() const { return *MAM; }
|
|
|
|
/// \brief Handle invalidation by ignoring it, this pass is immutable.
|
|
bool invalidate(Function *) { return false; }
|
|
|
|
private:
|
|
const ModuleAnalysisManager *MAM;
|
|
};
|
|
|
|
static void *ID() { return (void *)&PassID; }
|
|
|
|
ModuleAnalysisManagerFunctionProxy(const ModuleAnalysisManager &MAM)
|
|
: MAM(&MAM) {}
|
|
// We have to explicitly define all the special member functions because MSVC
|
|
// refuses to generate them.
|
|
ModuleAnalysisManagerFunctionProxy(
|
|
const ModuleAnalysisManagerFunctionProxy &Arg)
|
|
: MAM(Arg.MAM) {}
|
|
ModuleAnalysisManagerFunctionProxy(ModuleAnalysisManagerFunctionProxy &&Arg)
|
|
: MAM(std::move(Arg.MAM)) {}
|
|
ModuleAnalysisManagerFunctionProxy &
|
|
operator=(ModuleAnalysisManagerFunctionProxy RHS) {
|
|
std::swap(MAM, RHS.MAM);
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Run the analysis pass and create our proxy result object.
|
|
/// Nothing to see here, it just forwards the \c MAM reference into the
|
|
/// result.
|
|
Result run(Function *) { return Result(*MAM); }
|
|
|
|
private:
|
|
static char PassID;
|
|
|
|
const ModuleAnalysisManager *MAM;
|
|
};
|
|
|
|
/// \brief Trivial adaptor that maps from a module to its functions.
|
|
///
|
|
/// Designed to allow composition of a FunctionPass(Manager) and
|
|
/// a ModulePassManager. Note that if this pass is constructed with a pointer
|
|
/// to a \c ModuleAnalysisManager it will run the
|
|
/// \c FunctionAnalysisManagerModuleProxy analysis prior to running the function
|
|
/// pass over the module to enable a \c FunctionAnalysisManager to be used
|
|
/// within this run safely.
|
|
template <typename FunctionPassT> class ModuleToFunctionPassAdaptor {
|
|
public:
|
|
explicit ModuleToFunctionPassAdaptor(FunctionPassT Pass)
|
|
: Pass(std::move(Pass)) {}
|
|
// We have to explicitly define all the special member functions because MSVC
|
|
// refuses to generate them.
|
|
ModuleToFunctionPassAdaptor(const ModuleToFunctionPassAdaptor &Arg)
|
|
: Pass(Arg.Pass) {}
|
|
ModuleToFunctionPassAdaptor(ModuleToFunctionPassAdaptor &&Arg)
|
|
: Pass(std::move(Arg.Pass)) {}
|
|
friend void swap(ModuleToFunctionPassAdaptor &LHS, ModuleToFunctionPassAdaptor &RHS) {
|
|
using std::swap;
|
|
swap(LHS.Pass, RHS.Pass);
|
|
}
|
|
ModuleToFunctionPassAdaptor &operator=(ModuleToFunctionPassAdaptor RHS) {
|
|
swap(*this, RHS);
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Runs the function pass across every function in the module.
|
|
PreservedAnalyses run(Module *M, ModuleAnalysisManager *AM) {
|
|
FunctionAnalysisManager *FAM = nullptr;
|
|
if (AM)
|
|
// Setup the function analysis manager from its proxy.
|
|
FAM = &AM->getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
|
|
|
|
PreservedAnalyses PA = PreservedAnalyses::all();
|
|
for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I) {
|
|
PreservedAnalyses PassPA = Pass.run(I, FAM);
|
|
|
|
// We know that the function pass couldn't have invalidated any other
|
|
// function's analyses (that's the contract of a function pass), so
|
|
// directly handle the function analysis manager's invalidation here.
|
|
if (FAM)
|
|
FAM->invalidate(I, PassPA);
|
|
|
|
// Then intersect the preserved set so that invalidation of module
|
|
// analyses will eventually occur when the module pass completes.
|
|
PA.intersect(std::move(PassPA));
|
|
}
|
|
|
|
// By definition we preserve the proxy. This precludes *any* invalidation
|
|
// of function analyses by the proxy, but that's OK because we've taken
|
|
// care to invalidate analyses in the function analysis manager
|
|
// incrementally above.
|
|
PA.preserve<FunctionAnalysisManagerModuleProxy>();
|
|
return PA;
|
|
}
|
|
|
|
static StringRef name() { return "ModuleToFunctionPassAdaptor"; }
|
|
|
|
private:
|
|
FunctionPassT Pass;
|
|
};
|
|
|
|
/// \brief A function to deduce a function pass type and wrap it in the
|
|
/// templated adaptor.
|
|
template <typename FunctionPassT>
|
|
ModuleToFunctionPassAdaptor<FunctionPassT>
|
|
createModuleToFunctionPassAdaptor(FunctionPassT Pass) {
|
|
return std::move(ModuleToFunctionPassAdaptor<FunctionPassT>(std::move(Pass)));
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|