llvm-6502/lib/Transforms/Instrumentation/PathProfiling.cpp
Chandler Carruth d04a8d4b33 Use the new script to sort the includes of every file under lib.
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.

Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169131 91177308-0d34-0410-b5e6-96231b3b80d8
2012-12-03 16:50:05 +00:00

1426 lines
51 KiB
C++

//===- PathProfiling.cpp - Inserts counters for path profiling ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass instruments functions for Ball-Larus path profiling. Ball-Larus
// profiling converts the CFG into a DAG by replacing backedges with edges
// from entry to the start block and from the end block to exit. The paths
// along the new DAG are enumrated, i.e. each path is given a path number.
// Edges are instrumented to increment the path number register, such that the
// path number register will equal the path number of the path taken at the
// exit.
//
// This file defines classes for building a CFG for use with different stages
// in the Ball-Larus path profiling instrumentation [Ball96]. The
// requirements are formatting the llvm CFG into the Ball-Larus DAG, path
// numbering, finding a spanning tree, moving increments from the spanning
// tree to chords.
//
// Terms:
// DAG - Directed Acyclic Graph.
// Ball-Larus DAG - A CFG with an entry node, an exit node, and backedges
// removed in the following manner. For every backedge
// v->w, insert edge ENTRY->w and edge v->EXIT.
// Path Number - The number corresponding to a specific path through a
// Ball-Larus DAG.
// Spanning Tree - A subgraph, S, is a spanning tree if S covers all
// vertices and is a tree.
// Chord - An edge not in the spanning tree.
//
// [Ball96]
// T. Ball and J. R. Larus. "Efficient Path Profiling."
// International Symposium on Microarchitecture, pages 46-57, 1996.
// http://portal.acm.org/citation.cfm?id=243857
//
// [Ball94]
// Thomas Ball. "Efficiently Counting Program Events with Support for
// On-line queries."
// ACM Transactions on Programmmg Languages and Systems, Vol 16, No 5,
// September 1994, Pages 1399-1410.
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "insert-path-profiling"
#include "llvm/Transforms/Instrumentation.h"
#include "ProfilingUtils.h"
#include "llvm/Analysis/PathNumbering.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/DerivedTypes.h"
#include "llvm/InstrTypes.h"
#include "llvm/Instructions.h"
#include "llvm/LLVMContext.h"
#include "llvm/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/TypeBuilder.h"
#include <vector>
#define HASH_THRESHHOLD 100000
using namespace llvm;
namespace {
class BLInstrumentationNode;
class BLInstrumentationEdge;
class BLInstrumentationDag;
// ---------------------------------------------------------------------------
// BLInstrumentationNode extends BallLarusNode with member used by the
// instrumentation algortihms.
// ---------------------------------------------------------------------------
class BLInstrumentationNode : public BallLarusNode {
public:
// Creates a new BLInstrumentationNode from a BasicBlock.
BLInstrumentationNode(BasicBlock* BB);
// Get/sets the Value corresponding to the pathNumber register,
// constant or phinode. Used by the instrumentation code to remember
// path number Values.
Value* getStartingPathNumber();
void setStartingPathNumber(Value* pathNumber);
Value* getEndingPathNumber();
void setEndingPathNumber(Value* pathNumber);
// Get/set the PHINode Instruction for this node.
PHINode* getPathPHI();
void setPathPHI(PHINode* pathPHI);
private:
Value* _startingPathNumber; // The Value for the current pathNumber.
Value* _endingPathNumber; // The Value for the current pathNumber.
PHINode* _pathPHI; // The PHINode for current pathNumber.
};
// --------------------------------------------------------------------------
// BLInstrumentationEdge extends BallLarusEdge with data about the
// instrumentation that will end up on each edge.
// --------------------------------------------------------------------------
class BLInstrumentationEdge : public BallLarusEdge {
public:
BLInstrumentationEdge(BLInstrumentationNode* source,
BLInstrumentationNode* target);
// Sets the target node of this edge. Required to split edges.
void setTarget(BallLarusNode* node);
// Get/set whether edge is in the spanning tree.
bool isInSpanningTree() const;
void setIsInSpanningTree(bool isInSpanningTree);
// Get/ set whether this edge will be instrumented with a path number
// initialization.
bool isInitialization() const;
void setIsInitialization(bool isInitialization);
// Get/set whether this edge will be instrumented with a path counter
// increment. Notice this is incrementing the path counter
// corresponding to the path number register. The path number
// increment is determined by getIncrement().
bool isCounterIncrement() const;
void setIsCounterIncrement(bool isCounterIncrement);
// Get/set the path number increment that this edge will be instrumented
// with. This is distinct from the path counter increment and the
// weight. The counter increment counts the number of executions of
// some path, whereas the path number keeps track of which path number
// the program is on.
long getIncrement() const;
void setIncrement(long increment);
// Get/set whether the edge has been instrumented.
bool hasInstrumentation();
void setHasInstrumentation(bool hasInstrumentation);
// Returns the successor number of this edge in the source.
unsigned getSuccessorNumber();
private:
// The increment that the code will be instrumented with.
long long _increment;
// Whether this edge is in the spanning tree.
bool _isInSpanningTree;
// Whether this edge is an initialiation of the path number.
bool _isInitialization;
// Whether this edge is a path counter increment.
bool _isCounterIncrement;
// Whether this edge has been instrumented.
bool _hasInstrumentation;
};
// ---------------------------------------------------------------------------
// BLInstrumentationDag extends BallLarusDag with algorithms that
// determine where instrumentation should be placed.
// ---------------------------------------------------------------------------
class BLInstrumentationDag : public BallLarusDag {
public:
BLInstrumentationDag(Function &F);
// Returns the Exit->Root edge. This edge is required for creating
// directed cycles in the algorithm for moving instrumentation off of
// the spanning tree
BallLarusEdge* getExitRootEdge();
// Returns an array of phony edges which mark those nodes
// with function calls
BLEdgeVector getCallPhonyEdges();
// Gets/sets the path counter array
GlobalVariable* getCounterArray();
void setCounterArray(GlobalVariable* c);
// Calculates the increments for the chords, thereby removing
// instrumentation from the spanning tree edges. Implementation is based
// on the algorithm in Figure 4 of [Ball94]
void calculateChordIncrements();
// Updates the state when an edge has been split
void splitUpdate(BLInstrumentationEdge* formerEdge, BasicBlock* newBlock);
// Calculates a spanning tree of the DAG ignoring cycles. Whichever
// edges are in the spanning tree will not be instrumented, but this
// implementation does not try to minimize the instrumentation overhead
// by trying to find hot edges.
void calculateSpanningTree();
// Pushes initialization further down in order to group the first
// increment and initialization.
void pushInitialization();
// Pushes the path counter increments up in order to group the last path
// number increment.
void pushCounters();
// Removes phony edges from the successor list of the source, and the
// predecessor list of the target.
void unlinkPhony();
// Generate dot graph for the function
void generateDotGraph();
protected:
// BLInstrumentationDag creates BLInstrumentationNode objects in this
// method overriding the creation of BallLarusNode objects.
//
// Allows subclasses to determine which type of Node is created.
// Override this method to produce subclasses of BallLarusNode if
// necessary.
virtual BallLarusNode* createNode(BasicBlock* BB);
// BLInstrumentationDag create BLInstrumentationEdges.
//
// Allows subclasses to determine which type of Edge is created.
// Override this method to produce subclasses of BallLarusEdge if
// necessary. Parameters source and target will have been created by
// createNode and can be cast to the subclass of BallLarusNode*
// returned by createNode.
virtual BallLarusEdge* createEdge(
BallLarusNode* source, BallLarusNode* target, unsigned edgeNumber);
private:
BLEdgeVector _treeEdges; // All edges in the spanning tree.
BLEdgeVector _chordEdges; // All edges not in the spanning tree.
GlobalVariable* _counterArray; // Array to store path counters
// Removes the edge from the appropriate predecessor and successor lists.
void unlinkEdge(BallLarusEdge* edge);
// Makes an edge part of the spanning tree.
void makeEdgeSpanning(BLInstrumentationEdge* edge);
// Pushes initialization and calls itself recursively.
void pushInitializationFromEdge(BLInstrumentationEdge* edge);
// Pushes path counter increments up recursively.
void pushCountersFromEdge(BLInstrumentationEdge* edge);
// Depth first algorithm for determining the chord increments.f
void calculateChordIncrementsDfs(
long weight, BallLarusNode* v, BallLarusEdge* e);
// Determines the relative direction of two edges.
int calculateChordIncrementsDir(BallLarusEdge* e, BallLarusEdge* f);
};
// ---------------------------------------------------------------------------
// PathProfiler is a module pass which instruments path profiling instructions
// ---------------------------------------------------------------------------
class PathProfiler : public ModulePass {
private:
// Current context for multi threading support.
LLVMContext* Context;
// Which function are we currently instrumenting
unsigned currentFunctionNumber;
// The function prototype in the profiling runtime for incrementing a
// single path counter in a hash table.
Constant* llvmIncrementHashFunction;
Constant* llvmDecrementHashFunction;
// Instruments each function with path profiling. 'main' is instrumented
// with code to save the profile to disk.
bool runOnModule(Module &M);
// Analyzes the function for Ball-Larus path profiling, and inserts code.
void runOnFunction(std::vector<Constant*> &ftInit, Function &F, Module &M);
// Creates an increment constant representing incr.
ConstantInt* createIncrementConstant(long incr, int bitsize);
// Creates an increment constant representing the value in
// edge->getIncrement().
ConstantInt* createIncrementConstant(BLInstrumentationEdge* edge);
// Finds the insertion point after pathNumber in block. PathNumber may
// be NULL.
BasicBlock::iterator getInsertionPoint(
BasicBlock* block, Value* pathNumber);
// Inserts source's pathNumber Value* into target. Target may or may not
// have multiple predecessors, and may or may not have its phiNode
// initalized.
void pushValueIntoNode(
BLInstrumentationNode* source, BLInstrumentationNode* target);
// Inserts source's pathNumber Value* into the appropriate slot of
// target's phiNode.
void pushValueIntoPHI(
BLInstrumentationNode* target, BLInstrumentationNode* source);
// The Value* in node, oldVal, is updated with a Value* correspodning to
// oldVal + addition.
void insertNumberIncrement(BLInstrumentationNode* node, Value* addition,
bool atBeginning);
// Creates a counter increment in the given node. The Value* in node is
// taken as the index into a hash table.
void insertCounterIncrement(
Value* incValue,
BasicBlock::iterator insertPoint,
BLInstrumentationDag* dag,
bool increment = true);
// A PHINode is created in the node, and its values initialized to -1U.
void preparePHI(BLInstrumentationNode* node);
// Inserts instrumentation for the given edge
//
// Pre: The edge's source node has pathNumber set if edge is non zero
// path number increment.
//
// Post: Edge's target node has a pathNumber set to the path number Value
// corresponding to the value of the path register after edge's
// execution.
void insertInstrumentationStartingAt(
BLInstrumentationEdge* edge,
BLInstrumentationDag* dag);
// If this edge is a critical edge, then inserts a node at this edge.
// This edge becomes the first edge, and a new BallLarusEdge is created.
bool splitCritical(BLInstrumentationEdge* edge, BLInstrumentationDag* dag);
// Inserts instrumentation according to the marked edges in dag. Phony
// edges must be unlinked from the DAG, but accessible from the
// backedges. Dag must have initializations, path number increments, and
// counter increments present.
//
// Counter storage is created here.
void insertInstrumentation( BLInstrumentationDag& dag, Module &M);
public:
static char ID; // Pass identification, replacement for typeid
PathProfiler() : ModulePass(ID) {
initializePathProfilerPass(*PassRegistry::getPassRegistry());
}
virtual const char *getPassName() const {
return "Path Profiler";
}
};
} // end anonymous namespace
// Should we print the dot-graphs
static cl::opt<bool> DotPathDag("path-profile-pathdag", cl::Hidden,
cl::desc("Output the path profiling DAG for each function."));
// Register the path profiler as a pass
char PathProfiler::ID = 0;
INITIALIZE_PASS(PathProfiler, "insert-path-profiling",
"Insert instrumentation for Ball-Larus path profiling",
false, false)
ModulePass *llvm::createPathProfilerPass() { return new PathProfiler(); }
namespace llvm {
class PathProfilingFunctionTable {};
// Type for global array storing references to hashes or arrays
template<bool xcompile> class TypeBuilder<PathProfilingFunctionTable,
xcompile> {
public:
static StructType *get(LLVMContext& C) {
return( StructType::get(
TypeBuilder<types::i<32>, xcompile>::get(C), // type
TypeBuilder<types::i<32>, xcompile>::get(C), // array size
TypeBuilder<types::i<8>*, xcompile>::get(C), // array/hash ptr
NULL));
}
};
typedef TypeBuilder<PathProfilingFunctionTable, true>
ftEntryTypeBuilder;
// BallLarusEdge << operator overloading
raw_ostream& operator<<(raw_ostream& os,
const BLInstrumentationEdge& edge)
LLVM_ATTRIBUTE_USED;
raw_ostream& operator<<(raw_ostream& os,
const BLInstrumentationEdge& edge) {
os << "[" << edge.getSource()->getName() << " -> "
<< edge.getTarget()->getName() << "] init: "
<< (edge.isInitialization() ? "yes" : "no")
<< " incr:" << edge.getIncrement() << " cinc: "
<< (edge.isCounterIncrement() ? "yes" : "no");
return(os);
}
}
// Creates a new BLInstrumentationNode from a BasicBlock.
BLInstrumentationNode::BLInstrumentationNode(BasicBlock* BB) :
BallLarusNode(BB),
_startingPathNumber(NULL), _endingPathNumber(NULL), _pathPHI(NULL) {}
// Constructor for BLInstrumentationEdge.
BLInstrumentationEdge::BLInstrumentationEdge(BLInstrumentationNode* source,
BLInstrumentationNode* target)
: BallLarusEdge(source, target, 0),
_increment(0), _isInSpanningTree(false), _isInitialization(false),
_isCounterIncrement(false), _hasInstrumentation(false) {}
// Sets the target node of this edge. Required to split edges.
void BLInstrumentationEdge::setTarget(BallLarusNode* node) {
_target = node;
}
// Returns whether this edge is in the spanning tree.
bool BLInstrumentationEdge::isInSpanningTree() const {
return(_isInSpanningTree);
}
// Sets whether this edge is in the spanning tree.
void BLInstrumentationEdge::setIsInSpanningTree(bool isInSpanningTree) {
_isInSpanningTree = isInSpanningTree;
}
// Returns whether this edge will be instrumented with a path number
// initialization.
bool BLInstrumentationEdge::isInitialization() const {
return(_isInitialization);
}
// Sets whether this edge will be instrumented with a path number
// initialization.
void BLInstrumentationEdge::setIsInitialization(bool isInitialization) {
_isInitialization = isInitialization;
}
// Returns whether this edge will be instrumented with a path counter
// increment. Notice this is incrementing the path counter
// corresponding to the path number register. The path number
// increment is determined by getIncrement().
bool BLInstrumentationEdge::isCounterIncrement() const {
return(_isCounterIncrement);
}
// Sets whether this edge will be instrumented with a path counter
// increment.
void BLInstrumentationEdge::setIsCounterIncrement(bool isCounterIncrement) {
_isCounterIncrement = isCounterIncrement;
}
// Gets the path number increment that this edge will be instrumented
// with. This is distinct from the path counter increment and the
// weight. The counter increment is counts the number of executions of
// some path, whereas the path number keeps track of which path number
// the program is on.
long BLInstrumentationEdge::getIncrement() const {
return(_increment);
}
// Set whether this edge will be instrumented with a path number
// increment.
void BLInstrumentationEdge::setIncrement(long increment) {
_increment = increment;
}
// True iff the edge has already been instrumented.
bool BLInstrumentationEdge::hasInstrumentation() {
return(_hasInstrumentation);
}
// Set whether this edge has been instrumented.
void BLInstrumentationEdge::setHasInstrumentation(bool hasInstrumentation) {
_hasInstrumentation = hasInstrumentation;
}
// Returns the successor number of this edge in the source.
unsigned BLInstrumentationEdge::getSuccessorNumber() {
BallLarusNode* sourceNode = getSource();
BallLarusNode* targetNode = getTarget();
BasicBlock* source = sourceNode->getBlock();
BasicBlock* target = targetNode->getBlock();
if(source == NULL || target == NULL)
return(0);
TerminatorInst* terminator = source->getTerminator();
unsigned i;
for(i=0; i < terminator->getNumSuccessors(); i++) {
if(terminator->getSuccessor(i) == target)
break;
}
return(i);
}
// BLInstrumentationDag constructor initializes a DAG for the given Function.
BLInstrumentationDag::BLInstrumentationDag(Function &F) : BallLarusDag(F),
_counterArray(0) {
}
// Returns the Exit->Root edge. This edge is required for creating
// directed cycles in the algorithm for moving instrumentation off of
// the spanning tree
BallLarusEdge* BLInstrumentationDag::getExitRootEdge() {
BLEdgeIterator erEdge = getExit()->succBegin();
return(*erEdge);
}
BLEdgeVector BLInstrumentationDag::getCallPhonyEdges () {
BLEdgeVector callEdges;
for( BLEdgeIterator edge = _edges.begin(), end = _edges.end();
edge != end; edge++ ) {
if( (*edge)->getType() == BallLarusEdge::CALLEDGE_PHONY )
callEdges.push_back(*edge);
}
return callEdges;
}
// Gets the path counter array
GlobalVariable* BLInstrumentationDag::getCounterArray() {
return _counterArray;
}
void BLInstrumentationDag::setCounterArray(GlobalVariable* c) {
_counterArray = c;
}
// Calculates the increment for the chords, thereby removing
// instrumentation from the spanning tree edges. Implementation is based on
// the algorithm in Figure 4 of [Ball94]
void BLInstrumentationDag::calculateChordIncrements() {
calculateChordIncrementsDfs(0, getRoot(), NULL);
BLInstrumentationEdge* chord;
for(BLEdgeIterator chordEdge = _chordEdges.begin(),
end = _chordEdges.end(); chordEdge != end; chordEdge++) {
chord = (BLInstrumentationEdge*) *chordEdge;
chord->setIncrement(chord->getIncrement() + chord->getWeight());
}
}
// Updates the state when an edge has been split
void BLInstrumentationDag::splitUpdate(BLInstrumentationEdge* formerEdge,
BasicBlock* newBlock) {
BallLarusNode* oldTarget = formerEdge->getTarget();
BallLarusNode* newNode = addNode(newBlock);
formerEdge->setTarget(newNode);
newNode->addPredEdge(formerEdge);
DEBUG(dbgs() << " Edge split: " << *formerEdge << "\n");
oldTarget->removePredEdge(formerEdge);
BallLarusEdge* newEdge = addEdge(newNode, oldTarget,0);
if( formerEdge->getType() == BallLarusEdge::BACKEDGE ||
formerEdge->getType() == BallLarusEdge::SPLITEDGE) {
newEdge->setType(formerEdge->getType());
newEdge->setPhonyRoot(formerEdge->getPhonyRoot());
newEdge->setPhonyExit(formerEdge->getPhonyExit());
formerEdge->setType(BallLarusEdge::NORMAL);
formerEdge->setPhonyRoot(NULL);
formerEdge->setPhonyExit(NULL);
}
}
// Calculates a spanning tree of the DAG ignoring cycles. Whichever
// edges are in the spanning tree will not be instrumented, but this
// implementation does not try to minimize the instrumentation overhead
// by trying to find hot edges.
void BLInstrumentationDag::calculateSpanningTree() {
std::stack<BallLarusNode*> dfsStack;
for(BLNodeIterator nodeIt = _nodes.begin(), end = _nodes.end();
nodeIt != end; nodeIt++) {
(*nodeIt)->setColor(BallLarusNode::WHITE);
}
dfsStack.push(getRoot());
while(dfsStack.size() > 0) {
BallLarusNode* node = dfsStack.top();
dfsStack.pop();
if(node->getColor() == BallLarusNode::WHITE)
continue;
BallLarusNode* nextNode;
bool forward = true;
BLEdgeIterator succEnd = node->succEnd();
node->setColor(BallLarusNode::WHITE);
// first iterate over successors then predecessors
for(BLEdgeIterator edge = node->succBegin(), predEnd = node->predEnd();
edge != predEnd; edge++) {
if(edge == succEnd) {
edge = node->predBegin();
forward = false;
}
// Ignore split edges
if ((*edge)->getType() == BallLarusEdge::SPLITEDGE)
continue;
nextNode = forward? (*edge)->getTarget(): (*edge)->getSource();
if(nextNode->getColor() != BallLarusNode::WHITE) {
nextNode->setColor(BallLarusNode::WHITE);
makeEdgeSpanning((BLInstrumentationEdge*)(*edge));
}
}
}
for(BLEdgeIterator edge = _edges.begin(), end = _edges.end();
edge != end; edge++) {
BLInstrumentationEdge* instEdge = (BLInstrumentationEdge*) (*edge);
// safe since createEdge is overriden
if(!instEdge->isInSpanningTree() && (*edge)->getType()
!= BallLarusEdge::SPLITEDGE)
_chordEdges.push_back(instEdge);
}
}
// Pushes initialization further down in order to group the first
// increment and initialization.
void BLInstrumentationDag::pushInitialization() {
BLInstrumentationEdge* exitRootEdge =
(BLInstrumentationEdge*) getExitRootEdge();
exitRootEdge->setIsInitialization(true);
pushInitializationFromEdge(exitRootEdge);
}
// Pushes the path counter increments up in order to group the last path
// number increment.
void BLInstrumentationDag::pushCounters() {
BLInstrumentationEdge* exitRootEdge =
(BLInstrumentationEdge*) getExitRootEdge();
exitRootEdge->setIsCounterIncrement(true);
pushCountersFromEdge(exitRootEdge);
}
// Removes phony edges from the successor list of the source, and the
// predecessor list of the target.
void BLInstrumentationDag::unlinkPhony() {
BallLarusEdge* edge;
for(BLEdgeIterator next = _edges.begin(),
end = _edges.end(); next != end; next++) {
edge = (*next);
if( edge->getType() == BallLarusEdge::BACKEDGE_PHONY ||
edge->getType() == BallLarusEdge::SPLITEDGE_PHONY ||
edge->getType() == BallLarusEdge::CALLEDGE_PHONY ) {
unlinkEdge(edge);
}
}
}
// Generate a .dot graph to represent the DAG and pathNumbers
void BLInstrumentationDag::generateDotGraph() {
std::string errorInfo;
std::string functionName = getFunction().getName().str();
std::string filename = "pathdag." + functionName + ".dot";
DEBUG (dbgs() << "Writing '" << filename << "'...\n");
raw_fd_ostream dotFile(filename.c_str(), errorInfo);
if (!errorInfo.empty()) {
errs() << "Error opening '" << filename.c_str() <<"' for writing!";
errs() << "\n";
return;
}
dotFile << "digraph " << functionName << " {\n";
for( BLEdgeIterator edge = _edges.begin(), end = _edges.end();
edge != end; edge++) {
std::string sourceName = (*edge)->getSource()->getName();
std::string targetName = (*edge)->getTarget()->getName();
dotFile << "\t\"" << sourceName.c_str() << "\" -> \""
<< targetName.c_str() << "\" ";
long inc = ((BLInstrumentationEdge*)(*edge))->getIncrement();
switch( (*edge)->getType() ) {
case BallLarusEdge::NORMAL:
dotFile << "[label=" << inc << "] [color=black];\n";
break;
case BallLarusEdge::BACKEDGE:
dotFile << "[color=cyan];\n";
break;
case BallLarusEdge::BACKEDGE_PHONY:
dotFile << "[label=" << inc
<< "] [color=blue];\n";
break;
case BallLarusEdge::SPLITEDGE:
dotFile << "[color=violet];\n";
break;
case BallLarusEdge::SPLITEDGE_PHONY:
dotFile << "[label=" << inc << "] [color=red];\n";
break;
case BallLarusEdge::CALLEDGE_PHONY:
dotFile << "[label=" << inc << "] [color=green];\n";
break;
}
}
dotFile << "}\n";
}
// Allows subclasses to determine which type of Node is created.
// Override this method to produce subclasses of BallLarusNode if
// necessary. The destructor of BallLarusDag will call free on each pointer
// created.
BallLarusNode* BLInstrumentationDag::createNode(BasicBlock* BB) {
return( new BLInstrumentationNode(BB) );
}
// Allows subclasses to determine which type of Edge is created.
// Override this method to produce subclasses of BallLarusEdge if
// necessary. The destructor of BallLarusDag will call free on each pointer
// created.
BallLarusEdge* BLInstrumentationDag::createEdge(BallLarusNode* source,
BallLarusNode* target, unsigned edgeNumber) {
// One can cast from BallLarusNode to BLInstrumentationNode since createNode
// is overriden to produce BLInstrumentationNode.
return( new BLInstrumentationEdge((BLInstrumentationNode*)source,
(BLInstrumentationNode*)target) );
}
// Sets the Value corresponding to the pathNumber register, constant,
// or phinode. Used by the instrumentation code to remember path
// number Values.
Value* BLInstrumentationNode::getStartingPathNumber(){
return(_startingPathNumber);
}
// Sets the Value of the pathNumber. Used by the instrumentation code.
void BLInstrumentationNode::setStartingPathNumber(Value* pathNumber) {
DEBUG(dbgs() << " SPN-" << getName() << " <-- " << (pathNumber ?
pathNumber->getName() :
"unused") << "\n");
_startingPathNumber = pathNumber;
}
Value* BLInstrumentationNode::getEndingPathNumber(){
return(_endingPathNumber);
}
void BLInstrumentationNode::setEndingPathNumber(Value* pathNumber) {
DEBUG(dbgs() << " EPN-" << getName() << " <-- "
<< (pathNumber ? pathNumber->getName() : "unused") << "\n");
_endingPathNumber = pathNumber;
}
// Get the PHINode Instruction for this node. Used by instrumentation
// code.
PHINode* BLInstrumentationNode::getPathPHI() {
return(_pathPHI);
}
// Set the PHINode Instruction for this node. Used by instrumentation
// code.
void BLInstrumentationNode::setPathPHI(PHINode* pathPHI) {
_pathPHI = pathPHI;
}
// Removes the edge from the appropriate predecessor and successor
// lists.
void BLInstrumentationDag::unlinkEdge(BallLarusEdge* edge) {
if(edge == getExitRootEdge())
DEBUG(dbgs() << " Removing exit->root edge\n");
edge->getSource()->removeSuccEdge(edge);
edge->getTarget()->removePredEdge(edge);
}
// Makes an edge part of the spanning tree.
void BLInstrumentationDag::makeEdgeSpanning(BLInstrumentationEdge* edge) {
edge->setIsInSpanningTree(true);
_treeEdges.push_back(edge);
}
// Pushes initialization and calls itself recursively.
void BLInstrumentationDag::pushInitializationFromEdge(
BLInstrumentationEdge* edge) {
BallLarusNode* target;
target = edge->getTarget();
if( target->getNumberPredEdges() > 1 || target == getExit() ) {
return;
} else {
for(BLEdgeIterator next = target->succBegin(),
end = target->succEnd(); next != end; next++) {
BLInstrumentationEdge* intoEdge = (BLInstrumentationEdge*) *next;
// Skip split edges
if (intoEdge->getType() == BallLarusEdge::SPLITEDGE)
continue;
intoEdge->setIncrement(intoEdge->getIncrement() +
edge->getIncrement());
intoEdge->setIsInitialization(true);
pushInitializationFromEdge(intoEdge);
}
edge->setIncrement(0);
edge->setIsInitialization(false);
}
}
// Pushes path counter increments up recursively.
void BLInstrumentationDag::pushCountersFromEdge(BLInstrumentationEdge* edge) {
BallLarusNode* source;
source = edge->getSource();
if(source->getNumberSuccEdges() > 1 || source == getRoot()
|| edge->isInitialization()) {
return;
} else {
for(BLEdgeIterator previous = source->predBegin(),
end = source->predEnd(); previous != end; previous++) {
BLInstrumentationEdge* fromEdge = (BLInstrumentationEdge*) *previous;
// Skip split edges
if (fromEdge->getType() == BallLarusEdge::SPLITEDGE)
continue;
fromEdge->setIncrement(fromEdge->getIncrement() +
edge->getIncrement());
fromEdge->setIsCounterIncrement(true);
pushCountersFromEdge(fromEdge);
}
edge->setIncrement(0);
edge->setIsCounterIncrement(false);
}
}
// Depth first algorithm for determining the chord increments.
void BLInstrumentationDag::calculateChordIncrementsDfs(long weight,
BallLarusNode* v, BallLarusEdge* e) {
BLInstrumentationEdge* f;
for(BLEdgeIterator treeEdge = _treeEdges.begin(),
end = _treeEdges.end(); treeEdge != end; treeEdge++) {
f = (BLInstrumentationEdge*) *treeEdge;
if(e != f && v == f->getTarget()) {
calculateChordIncrementsDfs(
calculateChordIncrementsDir(e,f)*(weight) +
f->getWeight(), f->getSource(), f);
}
if(e != f && v == f->getSource()) {
calculateChordIncrementsDfs(
calculateChordIncrementsDir(e,f)*(weight) +
f->getWeight(), f->getTarget(), f);
}
}
for(BLEdgeIterator chordEdge = _chordEdges.begin(),
end = _chordEdges.end(); chordEdge != end; chordEdge++) {
f = (BLInstrumentationEdge*) *chordEdge;
if(v == f->getSource() || v == f->getTarget()) {
f->setIncrement(f->getIncrement() +
calculateChordIncrementsDir(e,f)*weight);
}
}
}
// Determines the relative direction of two edges.
int BLInstrumentationDag::calculateChordIncrementsDir(BallLarusEdge* e,
BallLarusEdge* f) {
if( e == NULL)
return(1);
else if(e->getSource() == f->getTarget()
|| e->getTarget() == f->getSource())
return(1);
return(-1);
}
// Creates an increment constant representing incr.
ConstantInt* PathProfiler::createIncrementConstant(long incr,
int bitsize) {
return(ConstantInt::get(IntegerType::get(*Context, 32), incr));
}
// Creates an increment constant representing the value in
// edge->getIncrement().
ConstantInt* PathProfiler::createIncrementConstant(
BLInstrumentationEdge* edge) {
return(createIncrementConstant(edge->getIncrement(), 32));
}
// Finds the insertion point after pathNumber in block. PathNumber may
// be NULL.
BasicBlock::iterator PathProfiler::getInsertionPoint(BasicBlock* block, Value*
pathNumber) {
if(pathNumber == NULL || isa<ConstantInt>(pathNumber)
|| (((Instruction*)(pathNumber))->getParent()) != block) {
return(block->getFirstInsertionPt());
} else {
Instruction* pathNumberInst = (Instruction*) (pathNumber);
BasicBlock::iterator insertPoint;
BasicBlock::iterator end = block->end();
for(insertPoint = block->begin();
insertPoint != end; insertPoint++) {
Instruction* insertInst = &(*insertPoint);
if(insertInst == pathNumberInst)
return(++insertPoint);
}
return(insertPoint);
}
}
// A PHINode is created in the node, and its values initialized to -1U.
void PathProfiler::preparePHI(BLInstrumentationNode* node) {
BasicBlock* block = node->getBlock();
BasicBlock::iterator insertPoint = block->getFirstInsertionPt();
pred_iterator PB = pred_begin(node->getBlock()),
PE = pred_end(node->getBlock());
PHINode* phi = PHINode::Create(Type::getInt32Ty(*Context),
std::distance(PB, PE), "pathNumber",
insertPoint );
node->setPathPHI(phi);
node->setStartingPathNumber(phi);
node->setEndingPathNumber(phi);
for(pred_iterator predIt = PB; predIt != PE; predIt++) {
BasicBlock* pred = (*predIt);
if(pred != NULL)
phi->addIncoming(createIncrementConstant((long)-1, 32), pred);
}
}
// Inserts source's pathNumber Value* into target. Target may or may not
// have multiple predecessors, and may or may not have its phiNode
// initalized.
void PathProfiler::pushValueIntoNode(BLInstrumentationNode* source,
BLInstrumentationNode* target) {
if(target->getBlock() == NULL)
return;
if(target->getNumberPredEdges() <= 1) {
assert(target->getStartingPathNumber() == NULL &&
"Target already has path number");
target->setStartingPathNumber(source->getEndingPathNumber());
target->setEndingPathNumber(source->getEndingPathNumber());
DEBUG(dbgs() << " Passing path number"
<< (source->getEndingPathNumber() ? "" : " (null)")
<< " value through.\n");
} else {
if(target->getPathPHI() == NULL) {
DEBUG(dbgs() << " Initializing PHI node for block '"
<< target->getName() << "'\n");
preparePHI(target);
}
pushValueIntoPHI(target, source);
DEBUG(dbgs() << " Passing number value into PHI for block '"
<< target->getName() << "'\n");
}
}
// Inserts source's pathNumber Value* into the appropriate slot of
// target's phiNode.
void PathProfiler::pushValueIntoPHI(BLInstrumentationNode* target,
BLInstrumentationNode* source) {
PHINode* phi = target->getPathPHI();
assert(phi != NULL && " Tried to push value into node with PHI, but node"
" actually had no PHI.");
phi->removeIncomingValue(source->getBlock(), false);
phi->addIncoming(source->getEndingPathNumber(), source->getBlock());
}
// The Value* in node, oldVal, is updated with a Value* correspodning to
// oldVal + addition.
void PathProfiler::insertNumberIncrement(BLInstrumentationNode* node,
Value* addition, bool atBeginning) {
BasicBlock* block = node->getBlock();
assert(node->getStartingPathNumber() != NULL);
assert(node->getEndingPathNumber() != NULL);
BasicBlock::iterator insertPoint;
if( atBeginning )
insertPoint = block->getFirstInsertionPt();
else
insertPoint = block->getTerminator();
DEBUG(errs() << " Creating addition instruction.\n");
Value* newpn = BinaryOperator::Create(Instruction::Add,
node->getStartingPathNumber(),
addition, "pathNumber", insertPoint);
node->setEndingPathNumber(newpn);
if( atBeginning )
node->setStartingPathNumber(newpn);
}
// Creates a counter increment in the given node. The Value* in node is
// taken as the index into an array or hash table. The hash table access
// is a call to the runtime.
void PathProfiler::insertCounterIncrement(Value* incValue,
BasicBlock::iterator insertPoint,
BLInstrumentationDag* dag,
bool increment) {
// Counter increment for array
if( dag->getNumberOfPaths() <= HASH_THRESHHOLD ) {
// Get pointer to the array location
std::vector<Value*> gepIndices(2);
gepIndices[0] = Constant::getNullValue(Type::getInt32Ty(*Context));
gepIndices[1] = incValue;
GetElementPtrInst* pcPointer =
GetElementPtrInst::Create(dag->getCounterArray(), gepIndices,
"counterInc", insertPoint);
// Load from the array - call it oldPC
LoadInst* oldPc = new LoadInst(pcPointer, "oldPC", insertPoint);
// Test to see whether adding 1 will overflow the counter
ICmpInst* isMax = new ICmpInst(insertPoint, CmpInst::ICMP_ULT, oldPc,
createIncrementConstant(0xffffffff, 32),
"isMax");
// Select increment for the path counter based on overflow
SelectInst* inc =
SelectInst::Create( isMax, createIncrementConstant(increment?1:-1,32),
createIncrementConstant(0,32),
"pathInc", insertPoint);
// newPc = oldPc + inc
BinaryOperator* newPc = BinaryOperator::Create(Instruction::Add,
oldPc, inc, "newPC",
insertPoint);
// Store back in to the array
new StoreInst(newPc, pcPointer, insertPoint);
} else { // Counter increment for hash
std::vector<Value*> args(2);
args[0] = ConstantInt::get(Type::getInt32Ty(*Context),
currentFunctionNumber);
args[1] = incValue;
CallInst::Create(
increment ? llvmIncrementHashFunction : llvmDecrementHashFunction,
args, "", insertPoint);
}
}
// Inserts instrumentation for the given edge
//
// Pre: The edge's source node has pathNumber set if edge is non zero
// path number increment.
//
// Post: Edge's target node has a pathNumber set to the path number Value
// corresponding to the value of the path register after edge's
// execution.
//
// FIXME: This should be reworked so it's not recursive.
void PathProfiler::insertInstrumentationStartingAt(BLInstrumentationEdge* edge,
BLInstrumentationDag* dag) {
// Mark the edge as instrumented
edge->setHasInstrumentation(true);
DEBUG(dbgs() << "\nInstrumenting edge: " << (*edge) << "\n");
// create a new node for this edge's instrumentation
splitCritical(edge, dag);
BLInstrumentationNode* sourceNode = (BLInstrumentationNode*)edge->getSource();
BLInstrumentationNode* targetNode = (BLInstrumentationNode*)edge->getTarget();
BLInstrumentationNode* instrumentNode;
BLInstrumentationNode* nextSourceNode;
bool atBeginning = false;
// Source node has only 1 successor so any information can be simply
// inserted in to it without splitting
if( sourceNode->getBlock() && sourceNode->getNumberSuccEdges() <= 1) {
DEBUG(dbgs() << " Potential instructions to be placed in: "
<< sourceNode->getName() << " (at end)\n");
instrumentNode = sourceNode;
nextSourceNode = targetNode; // ... since we never made any new nodes
}
// The target node only has one predecessor, so we can safely insert edge
// instrumentation into it. If there was splitting, it must have been
// successful.
else if( targetNode->getNumberPredEdges() == 1 ) {
DEBUG(dbgs() << " Potential instructions to be placed in: "
<< targetNode->getName() << " (at beginning)\n");
pushValueIntoNode(sourceNode, targetNode);
instrumentNode = targetNode;
nextSourceNode = NULL; // ... otherwise we'll just keep splitting
atBeginning = true;
}
// Somehow, splitting must have failed.
else {
errs() << "Instrumenting could not split a critical edge.\n";
DEBUG(dbgs() << " Couldn't split edge " << (*edge) << ".\n");
return;
}
// Insert instrumentation if this is a back or split edge
if( edge->getType() == BallLarusEdge::BACKEDGE ||
edge->getType() == BallLarusEdge::SPLITEDGE ) {
BLInstrumentationEdge* top =
(BLInstrumentationEdge*) edge->getPhonyRoot();
BLInstrumentationEdge* bottom =
(BLInstrumentationEdge*) edge->getPhonyExit();
assert( top->isInitialization() && " Top phony edge did not"
" contain a path number initialization.");
assert( bottom->isCounterIncrement() && " Bottom phony edge"
" did not contain a path counter increment.");
// split edge has yet to be initialized
if( !instrumentNode->getEndingPathNumber() ) {
instrumentNode->setStartingPathNumber(createIncrementConstant(0,32));
instrumentNode->setEndingPathNumber(createIncrementConstant(0,32));
}
BasicBlock::iterator insertPoint = atBeginning ?
instrumentNode->getBlock()->getFirstInsertionPt() :
instrumentNode->getBlock()->getTerminator();
// add information from the bottom edge, if it exists
if( bottom->getIncrement() ) {
Value* newpn =
BinaryOperator::Create(Instruction::Add,
instrumentNode->getStartingPathNumber(),
createIncrementConstant(bottom),
"pathNumber", insertPoint);
instrumentNode->setEndingPathNumber(newpn);
}
insertCounterIncrement(instrumentNode->getEndingPathNumber(),
insertPoint, dag);
if( atBeginning )
instrumentNode->setStartingPathNumber(createIncrementConstant(top));
instrumentNode->setEndingPathNumber(createIncrementConstant(top));
// Check for path counter increments
if( top->isCounterIncrement() ) {
insertCounterIncrement(instrumentNode->getEndingPathNumber(),
instrumentNode->getBlock()->getTerminator(),dag);
instrumentNode->setEndingPathNumber(0);
}
}
// Insert instrumentation if this is a normal edge
else {
BasicBlock::iterator insertPoint = atBeginning ?
instrumentNode->getBlock()->getFirstInsertionPt() :
instrumentNode->getBlock()->getTerminator();
if( edge->isInitialization() ) { // initialize path number
instrumentNode->setEndingPathNumber(createIncrementConstant(edge));
} else if( edge->getIncrement() ) {// increment path number
Value* newpn =
BinaryOperator::Create(Instruction::Add,
instrumentNode->getStartingPathNumber(),
createIncrementConstant(edge),
"pathNumber", insertPoint);
instrumentNode->setEndingPathNumber(newpn);
if( atBeginning )
instrumentNode->setStartingPathNumber(newpn);
}
// Check for path counter increments
if( edge->isCounterIncrement() ) {
insertCounterIncrement(instrumentNode->getEndingPathNumber(),
insertPoint, dag);
instrumentNode->setEndingPathNumber(0);
}
}
// Push it along
if (nextSourceNode && instrumentNode->getEndingPathNumber())
pushValueIntoNode(instrumentNode, nextSourceNode);
// Add all the successors
for( BLEdgeIterator next = targetNode->succBegin(),
end = targetNode->succEnd(); next != end; next++ ) {
// So long as it is un-instrumented, add it to the list
if( !((BLInstrumentationEdge*)(*next))->hasInstrumentation() )
insertInstrumentationStartingAt((BLInstrumentationEdge*)*next,dag);
else
DEBUG(dbgs() << " Edge " << *(BLInstrumentationEdge*)(*next)
<< " already instrumented.\n");
}
}
// Inserts instrumentation according to the marked edges in dag. Phony edges
// must be unlinked from the DAG, but accessible from the backedges. Dag
// must have initializations, path number increments, and counter increments
// present.
//
// Counter storage is created here.
void PathProfiler::insertInstrumentation(
BLInstrumentationDag& dag, Module &M) {
BLInstrumentationEdge* exitRootEdge =
(BLInstrumentationEdge*) dag.getExitRootEdge();
insertInstrumentationStartingAt(exitRootEdge, &dag);
// Iterate through each call edge and apply the appropriate hash increment
// and decrement functions
BLEdgeVector callEdges = dag.getCallPhonyEdges();
for( BLEdgeIterator edge = callEdges.begin(),
end = callEdges.end(); edge != end; edge++ ) {
BLInstrumentationNode* node =
(BLInstrumentationNode*)(*edge)->getSource();
BasicBlock::iterator insertPoint = node->getBlock()->getFirstInsertionPt();
// Find the first function call
while( ((Instruction&)(*insertPoint)).getOpcode() != Instruction::Call )
insertPoint++;
DEBUG(dbgs() << "\nInstrumenting method call block '"
<< node->getBlock()->getName() << "'\n");
DEBUG(dbgs() << " Path number initialized: "
<< ((node->getStartingPathNumber()) ? "yes" : "no") << "\n");
Value* newpn;
if( node->getStartingPathNumber() ) {
long inc = ((BLInstrumentationEdge*)(*edge))->getIncrement();
if ( inc )
newpn = BinaryOperator::Create(Instruction::Add,
node->getStartingPathNumber(),
createIncrementConstant(inc,32),
"pathNumber", insertPoint);
else
newpn = node->getStartingPathNumber();
} else {
newpn = (Value*)createIncrementConstant(
((BLInstrumentationEdge*)(*edge))->getIncrement(), 32);
}
insertCounterIncrement(newpn, insertPoint, &dag);
insertCounterIncrement(newpn, node->getBlock()->getTerminator(),
&dag, false);
}
}
// Entry point of the module
void PathProfiler::runOnFunction(std::vector<Constant*> &ftInit,
Function &F, Module &M) {
// Build DAG from CFG
BLInstrumentationDag dag = BLInstrumentationDag(F);
dag.init();
// give each path a unique integer value
dag.calculatePathNumbers();
// modify path increments to increase the efficiency
// of instrumentation
dag.calculateSpanningTree();
dag.calculateChordIncrements();
dag.pushInitialization();
dag.pushCounters();
dag.unlinkPhony();
// potentially generate .dot graph for the dag
if (DotPathDag)
dag.generateDotGraph ();
// Should we store the information in an array or hash
if( dag.getNumberOfPaths() <= HASH_THRESHHOLD ) {
Type* t = ArrayType::get(Type::getInt32Ty(*Context),
dag.getNumberOfPaths());
dag.setCounterArray(new GlobalVariable(M, t, false,
GlobalValue::InternalLinkage,
Constant::getNullValue(t), ""));
}
insertInstrumentation(dag, M);
// Add to global function reference table
unsigned type;
Type* voidPtr = TypeBuilder<types::i<8>*, true>::get(*Context);
if( dag.getNumberOfPaths() <= HASH_THRESHHOLD )
type = ProfilingArray;
else
type = ProfilingHash;
std::vector<Constant*> entryArray(3);
entryArray[0] = createIncrementConstant(type,32);
entryArray[1] = createIncrementConstant(dag.getNumberOfPaths(),32);
entryArray[2] = dag.getCounterArray() ?
ConstantExpr::getBitCast(dag.getCounterArray(), voidPtr) :
Constant::getNullValue(voidPtr);
StructType* at = ftEntryTypeBuilder::get(*Context);
ConstantStruct* functionEntry =
(ConstantStruct*)ConstantStruct::get(at, entryArray);
ftInit.push_back(functionEntry);
}
// Output the bitcode if we want to observe instrumentation changess
#define PRINT_MODULE dbgs() << \
"\n\n============= MODULE BEGIN ===============\n" << M << \
"\n============== MODULE END ================\n"
bool PathProfiler::runOnModule(Module &M) {
Context = &M.getContext();
DEBUG(dbgs()
<< "****************************************\n"
<< "****************************************\n"
<< "** **\n"
<< "** PATH PROFILING INSTRUMENTATION **\n"
<< "** **\n"
<< "****************************************\n"
<< "****************************************\n");
// No main, no instrumentation!
Function *Main = M.getFunction("main");
// Using fortran? ... this kind of works
if (!Main)
Main = M.getFunction("MAIN__");
if (!Main) {
errs() << "WARNING: cannot insert path profiling into a module"
<< " with no main function!\n";
return false;
}
llvmIncrementHashFunction = M.getOrInsertFunction(
"llvm_increment_path_count",
Type::getVoidTy(*Context), // return type
Type::getInt32Ty(*Context), // function number
Type::getInt32Ty(*Context), // path number
NULL );
llvmDecrementHashFunction = M.getOrInsertFunction(
"llvm_decrement_path_count",
Type::getVoidTy(*Context), // return type
Type::getInt32Ty(*Context), // function number
Type::getInt32Ty(*Context), // path number
NULL );
std::vector<Constant*> ftInit;
unsigned functionNumber = 0;
for (Module::iterator F = M.begin(), E = M.end(); F != E; F++) {
if (F->isDeclaration())
continue;
DEBUG(dbgs() << "Function: " << F->getName() << "\n");
functionNumber++;
// set function number
currentFunctionNumber = functionNumber;
runOnFunction(ftInit, *F, M);
}
Type *t = ftEntryTypeBuilder::get(*Context);
ArrayType* ftArrayType = ArrayType::get(t, ftInit.size());
Constant* ftInitConstant = ConstantArray::get(ftArrayType, ftInit);
DEBUG(dbgs() << " ftArrayType:" << *ftArrayType << "\n");
GlobalVariable* functionTable =
new GlobalVariable(M, ftArrayType, false, GlobalValue::InternalLinkage,
ftInitConstant, "functionPathTable");
Type *eltType = ftArrayType->getTypeAtIndex((unsigned)0);
InsertProfilingInitCall(Main, "llvm_start_path_profiling", functionTable,
PointerType::getUnqual(eltType));
DEBUG(PRINT_MODULE);
return true;
}
// If this edge is a critical edge, then inserts a node at this edge.
// This edge becomes the first edge, and a new BallLarusEdge is created.
// Returns true if the edge was split
bool PathProfiler::splitCritical(BLInstrumentationEdge* edge,
BLInstrumentationDag* dag) {
unsigned succNum = edge->getSuccessorNumber();
BallLarusNode* sourceNode = edge->getSource();
BallLarusNode* targetNode = edge->getTarget();
BasicBlock* sourceBlock = sourceNode->getBlock();
BasicBlock* targetBlock = targetNode->getBlock();
if(sourceBlock == NULL || targetBlock == NULL
|| sourceNode->getNumberSuccEdges() <= 1
|| targetNode->getNumberPredEdges() == 1 ) {
return(false);
}
TerminatorInst* terminator = sourceBlock->getTerminator();
if( SplitCriticalEdge(terminator, succNum, this, false)) {
BasicBlock* newBlock = terminator->getSuccessor(succNum);
dag->splitUpdate(edge, newBlock);
return(true);
} else
return(false);
}