llvm-6502/lib/CodeGen/PrologEpilogInserter.cpp

914 lines
34 KiB
C++

//===-- PrologEpilogInserter.cpp - Insert Prolog/Epilog code in function --===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass is responsible for finalizing the functions frame layout, saving
// callee saved registers, and for emitting prolog & epilog code for the
// function.
//
// This pass must be run after register allocation. After this pass is
// executed, it is illegal to construct MO_FrameIndex operands.
//
// This pass provides an optional shrink wrapping variant of prolog/epilog
// insertion, enabled via --shrink-wrap. See ShrinkWrapping.cpp.
//
//===----------------------------------------------------------------------===//
#include "PrologEpilogInserter.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetFrameInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/ADT/IndexedMap.h"
#include "llvm/ADT/STLExtras.h"
#include <climits>
using namespace llvm;
char PEI::ID = 0;
static RegisterPass<PEI>
X("prologepilog", "Prologue/Epilogue Insertion");
/// createPrologEpilogCodeInserter - This function returns a pass that inserts
/// prolog and epilog code, and eliminates abstract frame references.
///
FunctionPass *llvm::createPrologEpilogCodeInserter() { return new PEI(); }
/// runOnMachineFunction - Insert prolog/epilog code and replace abstract
/// frame indexes with appropriate references.
///
bool PEI::runOnMachineFunction(MachineFunction &Fn) {
const Function* F = Fn.getFunction();
const TargetRegisterInfo *TRI = Fn.getTarget().getRegisterInfo();
RS = TRI->requiresRegisterScavenging(Fn) ? new RegScavenger() : NULL;
FrameIndexVirtualScavenging = TRI->requiresFrameIndexScavenging(Fn);
FrameConstantRegMap.clear();
// Calculate the MaxCallFrameSize and HasCalls variables for the function's
// frame information. Also eliminates call frame pseudo instructions.
calculateCallsInformation(Fn);
// Allow the target machine to make some adjustments to the function
// e.g. UsedPhysRegs before calculateCalleeSavedRegisters.
TRI->processFunctionBeforeCalleeSavedScan(Fn, RS);
// Scan the function for modified callee saved registers and insert spill code
// for any callee saved registers that are modified.
calculateCalleeSavedRegisters(Fn);
// Determine placement of CSR spill/restore code:
// - with shrink wrapping, place spills and restores to tightly
// enclose regions in the Machine CFG of the function where
// they are used. Without shrink wrapping
// - default (no shrink wrapping), place all spills in the
// entry block, all restores in return blocks.
placeCSRSpillsAndRestores(Fn);
// Add the code to save and restore the callee saved registers
if (!F->hasFnAttr(Attribute::Naked))
insertCSRSpillsAndRestores(Fn);
// Allow the target machine to make final modifications to the function
// before the frame layout is finalized.
TRI->processFunctionBeforeFrameFinalized(Fn);
// Calculate actual frame offsets for all abstract stack objects...
calculateFrameObjectOffsets(Fn);
// Add prolog and epilog code to the function. This function is required
// to align the stack frame as necessary for any stack variables or
// called functions. Because of this, calculateCalleeSavedRegisters
// must be called before this function in order to set the HasCalls
// and MaxCallFrameSize variables.
if (!F->hasFnAttr(Attribute::Naked))
insertPrologEpilogCode(Fn);
// Replace all MO_FrameIndex operands with physical register references
// and actual offsets.
//
replaceFrameIndices(Fn);
// If register scavenging is needed, as we've enabled doing it as a
// post-pass, scavenge the virtual registers that frame index elimiation
// inserted.
if (TRI->requiresRegisterScavenging(Fn) && FrameIndexVirtualScavenging)
scavengeFrameVirtualRegs(Fn);
delete RS;
clearAllSets();
return true;
}
#if 0
void PEI::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
if (ShrinkWrapping || ShrinkWrapFunc != "") {
AU.addRequired<MachineLoopInfo>();
AU.addRequired<MachineDominatorTree>();
}
AU.addPreserved<MachineLoopInfo>();
AU.addPreserved<MachineDominatorTree>();
MachineFunctionPass::getAnalysisUsage(AU);
}
#endif
/// calculateCallsInformation - Calculate the MaxCallFrameSize and HasCalls
/// variables for the function's frame information and eliminate call frame
/// pseudo instructions.
void PEI::calculateCallsInformation(MachineFunction &Fn) {
const TargetRegisterInfo *RegInfo = Fn.getTarget().getRegisterInfo();
MachineFrameInfo *MFI = Fn.getFrameInfo();
unsigned MaxCallFrameSize = 0;
bool HasCalls = MFI->hasCalls();
// Get the function call frame set-up and tear-down instruction opcode
int FrameSetupOpcode = RegInfo->getCallFrameSetupOpcode();
int FrameDestroyOpcode = RegInfo->getCallFrameDestroyOpcode();
// Early exit for targets which have no call frame setup/destroy pseudo
// instructions.
if (FrameSetupOpcode == -1 && FrameDestroyOpcode == -1)
return;
std::vector<MachineBasicBlock::iterator> FrameSDOps;
for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB)
for (MachineBasicBlock::iterator I = BB->begin(); I != BB->end(); ++I)
if (I->getOpcode() == FrameSetupOpcode ||
I->getOpcode() == FrameDestroyOpcode) {
assert(I->getNumOperands() >= 1 && "Call Frame Setup/Destroy Pseudo"
" instructions should have a single immediate argument!");
unsigned Size = I->getOperand(0).getImm();
if (Size > MaxCallFrameSize) MaxCallFrameSize = Size;
HasCalls = true;
FrameSDOps.push_back(I);
} else if (I->isInlineAsm()) {
// An InlineAsm might be a call; assume it is to get the stack frame
// aligned correctly for calls.
HasCalls = true;
}
MFI->setHasCalls(HasCalls);
MFI->setMaxCallFrameSize(MaxCallFrameSize);
for (std::vector<MachineBasicBlock::iterator>::iterator
i = FrameSDOps.begin(), e = FrameSDOps.end(); i != e; ++i) {
MachineBasicBlock::iterator I = *i;
// If call frames are not being included as part of the stack frame, and
// the target doesn't indicate otherwise, remove the call frame pseudos
// here. The sub/add sp instruction pairs are still inserted, but we don't
// need to track the SP adjustment for frame index elimination.
if (RegInfo->canSimplifyCallFramePseudos(Fn))
RegInfo->eliminateCallFramePseudoInstr(Fn, *I->getParent(), I);
}
}
/// calculateCalleeSavedRegisters - Scan the function for modified callee saved
/// registers.
void PEI::calculateCalleeSavedRegisters(MachineFunction &Fn) {
const TargetRegisterInfo *RegInfo = Fn.getTarget().getRegisterInfo();
const TargetFrameInfo *TFI = Fn.getTarget().getFrameInfo();
MachineFrameInfo *MFI = Fn.getFrameInfo();
// Get the callee saved register list...
const unsigned *CSRegs = RegInfo->getCalleeSavedRegs(&Fn);
// These are used to keep track the callee-save area. Initialize them.
MinCSFrameIndex = INT_MAX;
MaxCSFrameIndex = 0;
// Early exit for targets which have no callee saved registers.
if (CSRegs == 0 || CSRegs[0] == 0)
return;
// In Naked functions we aren't going to save any registers.
if (Fn.getFunction()->hasFnAttr(Attribute::Naked))
return;
// Figure out which *callee saved* registers are modified by the current
// function, thus needing to be saved and restored in the prolog/epilog.
const TargetRegisterClass * const *CSRegClasses =
RegInfo->getCalleeSavedRegClasses(&Fn);
std::vector<CalleeSavedInfo> CSI;
for (unsigned i = 0; CSRegs[i]; ++i) {
unsigned Reg = CSRegs[i];
if (Fn.getRegInfo().isPhysRegUsed(Reg)) {
// If the reg is modified, save it!
CSI.push_back(CalleeSavedInfo(Reg, CSRegClasses[i]));
} else {
for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg);
*AliasSet; ++AliasSet) { // Check alias registers too.
if (Fn.getRegInfo().isPhysRegUsed(*AliasSet)) {
CSI.push_back(CalleeSavedInfo(Reg, CSRegClasses[i]));
break;
}
}
}
}
if (CSI.empty())
return; // Early exit if no callee saved registers are modified!
unsigned NumFixedSpillSlots;
const TargetFrameInfo::SpillSlot *FixedSpillSlots =
TFI->getCalleeSavedSpillSlots(NumFixedSpillSlots);
// Now that we know which registers need to be saved and restored, allocate
// stack slots for them.
for (std::vector<CalleeSavedInfo>::iterator
I = CSI.begin(), E = CSI.end(); I != E; ++I) {
unsigned Reg = I->getReg();
const TargetRegisterClass *RC = I->getRegClass();
int FrameIdx;
if (RegInfo->hasReservedSpillSlot(Fn, Reg, FrameIdx)) {
I->setFrameIdx(FrameIdx);
continue;
}
// Check to see if this physreg must be spilled to a particular stack slot
// on this target.
const TargetFrameInfo::SpillSlot *FixedSlot = FixedSpillSlots;
while (FixedSlot != FixedSpillSlots+NumFixedSpillSlots &&
FixedSlot->Reg != Reg)
++FixedSlot;
if (FixedSlot == FixedSpillSlots + NumFixedSpillSlots) {
// Nope, just spill it anywhere convenient.
unsigned Align = RC->getAlignment();
unsigned StackAlign = TFI->getStackAlignment();
// We may not be able to satisfy the desired alignment specification of
// the TargetRegisterClass if the stack alignment is smaller. Use the
// min.
Align = std::min(Align, StackAlign);
FrameIdx = MFI->CreateStackObject(RC->getSize(), Align, true);
if ((unsigned)FrameIdx < MinCSFrameIndex) MinCSFrameIndex = FrameIdx;
if ((unsigned)FrameIdx > MaxCSFrameIndex) MaxCSFrameIndex = FrameIdx;
} else {
// Spill it to the stack where we must.
FrameIdx = MFI->CreateFixedObject(RC->getSize(), FixedSlot->Offset,
true, false);
}
I->setFrameIdx(FrameIdx);
}
MFI->setCalleeSavedInfo(CSI);
}
/// insertCSRSpillsAndRestores - Insert spill and restore code for
/// callee saved registers used in the function, handling shrink wrapping.
///
void PEI::insertCSRSpillsAndRestores(MachineFunction &Fn) {
// Get callee saved register information.
MachineFrameInfo *MFI = Fn.getFrameInfo();
const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
MFI->setCalleeSavedInfoValid(true);
// Early exit if no callee saved registers are modified!
if (CSI.empty())
return;
const TargetInstrInfo &TII = *Fn.getTarget().getInstrInfo();
const TargetRegisterInfo *TRI = Fn.getTarget().getRegisterInfo();
MachineBasicBlock::iterator I;
if (! ShrinkWrapThisFunction) {
// Spill using target interface.
I = EntryBlock->begin();
if (!TII.spillCalleeSavedRegisters(*EntryBlock, I, CSI)) {
for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
// Add the callee-saved register as live-in.
// It's killed at the spill.
EntryBlock->addLiveIn(CSI[i].getReg());
// Insert the spill to the stack frame.
TII.storeRegToStackSlot(*EntryBlock, I, CSI[i].getReg(), true,
CSI[i].getFrameIdx(), CSI[i].getRegClass(),TRI);
}
}
// Restore using target interface.
for (unsigned ri = 0, re = ReturnBlocks.size(); ri != re; ++ri) {
MachineBasicBlock* MBB = ReturnBlocks[ri];
I = MBB->end(); --I;
// Skip over all terminator instructions, which are part of the return
// sequence.
MachineBasicBlock::iterator I2 = I;
while (I2 != MBB->begin() && (--I2)->getDesc().isTerminator())
I = I2;
bool AtStart = I == MBB->begin();
MachineBasicBlock::iterator BeforeI = I;
if (!AtStart)
--BeforeI;
// Restore all registers immediately before the return and any
// terminators that preceed it.
if (!TII.restoreCalleeSavedRegisters(*MBB, I, CSI)) {
for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
TII.loadRegFromStackSlot(*MBB, I, CSI[i].getReg(),
CSI[i].getFrameIdx(),
CSI[i].getRegClass(), TRI);
assert(I != MBB->begin() &&
"loadRegFromStackSlot didn't insert any code!");
// Insert in reverse order. loadRegFromStackSlot can insert
// multiple instructions.
if (AtStart)
I = MBB->begin();
else {
I = BeforeI;
++I;
}
}
}
}
return;
}
// Insert spills.
std::vector<CalleeSavedInfo> blockCSI;
for (CSRegBlockMap::iterator BI = CSRSave.begin(),
BE = CSRSave.end(); BI != BE; ++BI) {
MachineBasicBlock* MBB = BI->first;
CSRegSet save = BI->second;
if (save.empty())
continue;
blockCSI.clear();
for (CSRegSet::iterator RI = save.begin(),
RE = save.end(); RI != RE; ++RI) {
blockCSI.push_back(CSI[*RI]);
}
assert(blockCSI.size() > 0 &&
"Could not collect callee saved register info");
I = MBB->begin();
// When shrink wrapping, use stack slot stores/loads.
for (unsigned i = 0, e = blockCSI.size(); i != e; ++i) {
// Add the callee-saved register as live-in.
// It's killed at the spill.
MBB->addLiveIn(blockCSI[i].getReg());
// Insert the spill to the stack frame.
TII.storeRegToStackSlot(*MBB, I, blockCSI[i].getReg(),
true,
blockCSI[i].getFrameIdx(),
blockCSI[i].getRegClass(), TRI);
}
}
for (CSRegBlockMap::iterator BI = CSRRestore.begin(),
BE = CSRRestore.end(); BI != BE; ++BI) {
MachineBasicBlock* MBB = BI->first;
CSRegSet restore = BI->second;
if (restore.empty())
continue;
blockCSI.clear();
for (CSRegSet::iterator RI = restore.begin(),
RE = restore.end(); RI != RE; ++RI) {
blockCSI.push_back(CSI[*RI]);
}
assert(blockCSI.size() > 0 &&
"Could not find callee saved register info");
// If MBB is empty and needs restores, insert at the _beginning_.
if (MBB->empty()) {
I = MBB->begin();
} else {
I = MBB->end();
--I;
// Skip over all terminator instructions, which are part of the
// return sequence.
if (! I->getDesc().isTerminator()) {
++I;
} else {
MachineBasicBlock::iterator I2 = I;
while (I2 != MBB->begin() && (--I2)->getDesc().isTerminator())
I = I2;
}
}
bool AtStart = I == MBB->begin();
MachineBasicBlock::iterator BeforeI = I;
if (!AtStart)
--BeforeI;
// Restore all registers immediately before the return and any
// terminators that preceed it.
for (unsigned i = 0, e = blockCSI.size(); i != e; ++i) {
TII.loadRegFromStackSlot(*MBB, I, blockCSI[i].getReg(),
blockCSI[i].getFrameIdx(),
blockCSI[i].getRegClass(), TRI);
assert(I != MBB->begin() &&
"loadRegFromStackSlot didn't insert any code!");
// Insert in reverse order. loadRegFromStackSlot can insert
// multiple instructions.
if (AtStart)
I = MBB->begin();
else {
I = BeforeI;
++I;
}
}
}
}
/// AdjustStackOffset - Helper function used to adjust the stack frame offset.
static inline void
AdjustStackOffset(MachineFrameInfo *MFI, int FrameIdx,
bool StackGrowsDown, int64_t &Offset,
unsigned &MaxAlign) {
// If the stack grows down, add the object size to find the lowest address.
if (StackGrowsDown)
Offset += MFI->getObjectSize(FrameIdx);
unsigned Align = MFI->getObjectAlignment(FrameIdx);
// If the alignment of this object is greater than that of the stack, then
// increase the stack alignment to match.
MaxAlign = std::max(MaxAlign, Align);
// Adjust to alignment boundary.
Offset = (Offset + Align - 1) / Align * Align;
if (StackGrowsDown) {
MFI->setObjectOffset(FrameIdx, -Offset); // Set the computed offset
} else {
MFI->setObjectOffset(FrameIdx, Offset);
Offset += MFI->getObjectSize(FrameIdx);
}
}
/// calculateFrameObjectOffsets - Calculate actual frame offsets for all of the
/// abstract stack objects.
///
void PEI::calculateFrameObjectOffsets(MachineFunction &Fn) {
const TargetFrameInfo &TFI = *Fn.getTarget().getFrameInfo();
bool StackGrowsDown =
TFI.getStackGrowthDirection() == TargetFrameInfo::StackGrowsDown;
// Loop over all of the stack objects, assigning sequential addresses...
MachineFrameInfo *MFI = Fn.getFrameInfo();
// Start at the beginning of the local area.
// The Offset is the distance from the stack top in the direction
// of stack growth -- so it's always nonnegative.
int LocalAreaOffset = TFI.getOffsetOfLocalArea();
if (StackGrowsDown)
LocalAreaOffset = -LocalAreaOffset;
assert(LocalAreaOffset >= 0
&& "Local area offset should be in direction of stack growth");
int64_t Offset = LocalAreaOffset;
// If there are fixed sized objects that are preallocated in the local area,
// non-fixed objects can't be allocated right at the start of local area.
// We currently don't support filling in holes in between fixed sized
// objects, so we adjust 'Offset' to point to the end of last fixed sized
// preallocated object.
for (int i = MFI->getObjectIndexBegin(); i != 0; ++i) {
int64_t FixedOff;
if (StackGrowsDown) {
// The maximum distance from the stack pointer is at lower address of
// the object -- which is given by offset. For down growing stack
// the offset is negative, so we negate the offset to get the distance.
FixedOff = -MFI->getObjectOffset(i);
} else {
// The maximum distance from the start pointer is at the upper
// address of the object.
FixedOff = MFI->getObjectOffset(i) + MFI->getObjectSize(i);
}
if (FixedOff > Offset) Offset = FixedOff;
}
// First assign frame offsets to stack objects that are used to spill
// callee saved registers.
if (StackGrowsDown) {
for (unsigned i = MinCSFrameIndex; i <= MaxCSFrameIndex; ++i) {
// If the stack grows down, we need to add the size to find the lowest
// address of the object.
Offset += MFI->getObjectSize(i);
unsigned Align = MFI->getObjectAlignment(i);
// Adjust to alignment boundary
Offset = (Offset+Align-1)/Align*Align;
MFI->setObjectOffset(i, -Offset); // Set the computed offset
}
} else {
int MaxCSFI = MaxCSFrameIndex, MinCSFI = MinCSFrameIndex;
for (int i = MaxCSFI; i >= MinCSFI ; --i) {
unsigned Align = MFI->getObjectAlignment(i);
// Adjust to alignment boundary
Offset = (Offset+Align-1)/Align*Align;
MFI->setObjectOffset(i, Offset);
Offset += MFI->getObjectSize(i);
}
}
unsigned MaxAlign = MFI->getMaxAlignment();
// Make sure the special register scavenging spill slot is closest to the
// frame pointer if a frame pointer is required.
const TargetRegisterInfo *RegInfo = Fn.getTarget().getRegisterInfo();
if (RS && RegInfo->hasFP(Fn) && !RegInfo->needsStackRealignment(Fn)) {
int SFI = RS->getScavengingFrameIndex();
if (SFI >= 0)
AdjustStackOffset(MFI, SFI, StackGrowsDown, Offset, MaxAlign);
}
// Make sure that the stack protector comes before the local variables on the
// stack.
if (MFI->getStackProtectorIndex() >= 0)
AdjustStackOffset(MFI, MFI->getStackProtectorIndex(), StackGrowsDown,
Offset, MaxAlign);
// Then assign frame offsets to stack objects that are not used to spill
// callee saved registers.
for (unsigned i = 0, e = MFI->getObjectIndexEnd(); i != e; ++i) {
if (i >= MinCSFrameIndex && i <= MaxCSFrameIndex)
continue;
if (RS && (int)i == RS->getScavengingFrameIndex())
continue;
if (MFI->isDeadObjectIndex(i))
continue;
if (MFI->getStackProtectorIndex() == (int)i)
continue;
AdjustStackOffset(MFI, i, StackGrowsDown, Offset, MaxAlign);
}
// Make sure the special register scavenging spill slot is closest to the
// stack pointer.
if (RS && (!RegInfo->hasFP(Fn) || RegInfo->needsStackRealignment(Fn))) {
int SFI = RS->getScavengingFrameIndex();
if (SFI >= 0)
AdjustStackOffset(MFI, SFI, StackGrowsDown, Offset, MaxAlign);
}
if (!RegInfo->targetHandlesStackFrameRounding()) {
// If we have reserved argument space for call sites in the function
// immediately on entry to the current function, count it as part of the
// overall stack size.
if (MFI->hasCalls() && RegInfo->hasReservedCallFrame(Fn))
Offset += MFI->getMaxCallFrameSize();
// Round up the size to a multiple of the alignment. If the function has
// any calls or alloca's, align to the target's StackAlignment value to
// ensure that the callee's frame or the alloca data is suitably aligned;
// otherwise, for leaf functions, align to the TransientStackAlignment
// value.
unsigned StackAlign;
if (MFI->hasCalls() || MFI->hasVarSizedObjects() ||
(RegInfo->needsStackRealignment(Fn) && MFI->getObjectIndexEnd() != 0))
StackAlign = TFI.getStackAlignment();
else
StackAlign = TFI.getTransientStackAlignment();
// If the frame pointer is eliminated, all frame offsets will be relative
// to SP not FP; align to MaxAlign so this works.
StackAlign = std::max(StackAlign, MaxAlign);
unsigned AlignMask = StackAlign - 1;
Offset = (Offset + AlignMask) & ~uint64_t(AlignMask);
}
// Update frame info to pretend that this is part of the stack...
MFI->setStackSize(Offset - LocalAreaOffset);
}
/// insertPrologEpilogCode - Scan the function for modified callee saved
/// registers, insert spill code for these callee saved registers, then add
/// prolog and epilog code to the function.
///
void PEI::insertPrologEpilogCode(MachineFunction &Fn) {
const TargetRegisterInfo *TRI = Fn.getTarget().getRegisterInfo();
// Add prologue to the function...
TRI->emitPrologue(Fn);
// Add epilogue to restore the callee-save registers in each exiting block
for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
// If last instruction is a return instruction, add an epilogue
if (!I->empty() && I->back().getDesc().isReturn())
TRI->emitEpilogue(Fn, *I);
}
}
/// replaceFrameIndices - Replace all MO_FrameIndex operands with physical
/// register references and actual offsets.
///
void PEI::replaceFrameIndices(MachineFunction &Fn) {
if (!Fn.getFrameInfo()->hasStackObjects()) return; // Nothing to do?
const TargetMachine &TM = Fn.getTarget();
assert(TM.getRegisterInfo() && "TM::getRegisterInfo() must be implemented!");
const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
const TargetFrameInfo *TFI = TM.getFrameInfo();
bool StackGrowsDown =
TFI->getStackGrowthDirection() == TargetFrameInfo::StackGrowsDown;
int FrameSetupOpcode = TRI.getCallFrameSetupOpcode();
int FrameDestroyOpcode = TRI.getCallFrameDestroyOpcode();
for (MachineFunction::iterator BB = Fn.begin(),
E = Fn.end(); BB != E; ++BB) {
int SPAdj = 0; // SP offset due to call frame setup / destroy.
if (RS && !FrameIndexVirtualScavenging) RS->enterBasicBlock(BB);
for (MachineBasicBlock::iterator I = BB->begin(); I != BB->end(); ) {
if (I->getOpcode() == FrameSetupOpcode ||
I->getOpcode() == FrameDestroyOpcode) {
// Remember how much SP has been adjusted to create the call
// frame.
int Size = I->getOperand(0).getImm();
if ((!StackGrowsDown && I->getOpcode() == FrameSetupOpcode) ||
(StackGrowsDown && I->getOpcode() == FrameDestroyOpcode))
Size = -Size;
SPAdj += Size;
MachineBasicBlock::iterator PrevI = BB->end();
if (I != BB->begin()) PrevI = prior(I);
TRI.eliminateCallFramePseudoInstr(Fn, *BB, I);
// Visit the instructions created by eliminateCallFramePseudoInstr().
if (PrevI == BB->end())
I = BB->begin(); // The replaced instr was the first in the block.
else
I = llvm::next(PrevI);
continue;
}
MachineInstr *MI = I;
bool DoIncr = true;
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
if (MI->getOperand(i).isFI()) {
// Some instructions (e.g. inline asm instructions) can have
// multiple frame indices and/or cause eliminateFrameIndex
// to insert more than one instruction. We need the register
// scavenger to go through all of these instructions so that
// it can update its register information. We keep the
// iterator at the point before insertion so that we can
// revisit them in full.
bool AtBeginning = (I == BB->begin());
if (!AtBeginning) --I;
// If this instruction has a FrameIndex operand, we need to
// use that target machine register info object to eliminate
// it.
TargetRegisterInfo::FrameIndexValue Value;
unsigned VReg =
TRI.eliminateFrameIndex(MI, SPAdj, &Value,
FrameIndexVirtualScavenging ? NULL : RS);
if (VReg) {
assert (FrameIndexVirtualScavenging &&
"Not scavenging, but virtual returned from "
"eliminateFrameIndex()!");
FrameConstantRegMap[VReg] = FrameConstantEntry(Value, SPAdj);
}
// Reset the iterator if we were at the beginning of the BB.
if (AtBeginning) {
I = BB->begin();
DoIncr = false;
}
MI = 0;
break;
}
if (DoIncr && I != BB->end()) ++I;
// Update register states.
if (RS && !FrameIndexVirtualScavenging && MI) RS->forward(MI);
}
assert(SPAdj == 0 && "Unbalanced call frame setup / destroy pairs?");
}
}
/// findLastUseReg - find the killing use of the specified register within
/// the instruciton range. Return the operand number of the kill in Operand.
static MachineBasicBlock::iterator
findLastUseReg(MachineBasicBlock::iterator I, MachineBasicBlock::iterator ME,
unsigned Reg) {
// Scan forward to find the last use of this virtual register
for (++I; I != ME; ++I) {
MachineInstr *MI = I;
bool isDefInsn = false;
bool isKillInsn = false;
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
if (MI->getOperand(i).isReg()) {
unsigned OpReg = MI->getOperand(i).getReg();
if (OpReg == 0 || !TargetRegisterInfo::isVirtualRegister(OpReg))
continue;
assert (OpReg == Reg
&& "overlapping use of scavenged index register!");
// If this is the killing use, we have a candidate.
if (MI->getOperand(i).isKill())
isKillInsn = true;
else if (MI->getOperand(i).isDef())
isDefInsn = true;
}
if (isKillInsn && !isDefInsn)
return I;
}
// If we hit the end of the basic block, there was no kill of
// the virtual register, which is wrong.
assert (0 && "scavenged index register never killed!");
return ME;
}
/// scavengeFrameVirtualRegs - Replace all frame index virtual registers
/// with physical registers. Use the register scavenger to find an
/// appropriate register to use.
void PEI::scavengeFrameVirtualRegs(MachineFunction &Fn) {
// Run through the instructions and find any virtual registers.
for (MachineFunction::iterator BB = Fn.begin(),
E = Fn.end(); BB != E; ++BB) {
RS->enterBasicBlock(BB);
// FIXME: The logic flow in this function is still too convoluted.
// It needs a cleanup refactoring. Do that in preparation for tracking
// more than one scratch register value and using ranges to find
// available scratch registers.
unsigned CurrentVirtReg = 0;
unsigned CurrentScratchReg = 0;
bool havePrevValue = false;
TargetRegisterInfo::FrameIndexValue PrevValue(0,0);
TargetRegisterInfo::FrameIndexValue Value(0,0);
MachineInstr *PrevLastUseMI = NULL;
unsigned PrevLastUseOp = 0;
bool trackingCurrentValue = false;
int SPAdj = 0;
// The instruction stream may change in the loop, so check BB->end()
// directly.
for (MachineBasicBlock::iterator I = BB->begin(); I != BB->end(); ) {
MachineInstr *MI = I;
bool isDefInsn = false;
bool isKillInsn = false;
bool clobbersScratchReg = false;
bool DoIncr = true;
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
if (MI->getOperand(i).isReg()) {
MachineOperand &MO = MI->getOperand(i);
unsigned Reg = MO.getReg();
if (Reg == 0)
continue;
if (!TargetRegisterInfo::isVirtualRegister(Reg)) {
// If we have a previous scratch reg, check and see if anything
// here kills whatever value is in there.
if (Reg == CurrentScratchReg) {
if (MO.isUse()) {
// Two-address operands implicitly kill
if (MO.isKill() || MI->isRegTiedToDefOperand(i))
clobbersScratchReg = true;
} else {
assert (MO.isDef());
clobbersScratchReg = true;
}
}
continue;
}
// If this is a def, remember that this insn defines the value.
// This lets us properly consider insns which re-use the scratch
// register, such as r2 = sub r2, #imm, in the middle of the
// scratch range.
if (MO.isDef())
isDefInsn = true;
// Have we already allocated a scratch register for this virtual?
if (Reg != CurrentVirtReg) {
// When we first encounter a new virtual register, it
// must be a definition.
assert(MI->getOperand(i).isDef() &&
"frame index virtual missing def!");
// We can't have nested virtual register live ranges because
// there's only a guarantee of one scavenged register at a time.
assert (CurrentVirtReg == 0 &&
"overlapping frame index virtual registers!");
// If the target gave us information about what's in the register,
// we can use that to re-use scratch regs.
DenseMap<unsigned, FrameConstantEntry>::iterator Entry =
FrameConstantRegMap.find(Reg);
trackingCurrentValue = Entry != FrameConstantRegMap.end();
if (trackingCurrentValue) {
SPAdj = (*Entry).second.second;
Value = (*Entry).second.first;
} else {
SPAdj = 0;
Value.first = 0;
Value.second = 0;
}
// If the scratch register from the last allocation is still
// available, see if the value matches. If it does, just re-use it.
if (trackingCurrentValue && havePrevValue && PrevValue == Value) {
// FIXME: This assumes that the instructions in the live range
// for the virtual register are exclusively for the purpose
// of populating the value in the register. That's reasonable
// for these frame index registers, but it's still a very, very
// strong assumption. rdar://7322732. Better would be to
// explicitly check each instruction in the range for references
// to the virtual register. Only delete those insns that
// touch the virtual register.
// Find the last use of the new virtual register. Remove all
// instruction between here and there, and update the current
// instruction to reference the last use insn instead.
MachineBasicBlock::iterator LastUseMI =
findLastUseReg(I, BB->end(), Reg);
// Remove all instructions up 'til the last use, since they're
// just calculating the value we already have.
BB->erase(I, LastUseMI);
I = LastUseMI;
// Extend the live range of the scratch register
PrevLastUseMI->getOperand(PrevLastUseOp).setIsKill(false);
RS->setUsed(CurrentScratchReg);
CurrentVirtReg = Reg;
// We deleted the instruction we were scanning the operands of.
// Jump back to the instruction iterator loop. Don't increment
// past this instruction since we updated the iterator already.
DoIncr = false;
break;
}
// Scavenge a new scratch register
CurrentVirtReg = Reg;
const TargetRegisterClass *RC = Fn.getRegInfo().getRegClass(Reg);
CurrentScratchReg = RS->FindUnusedReg(RC);
if (CurrentScratchReg == 0)
// No register is "free". Scavenge a register.
CurrentScratchReg = RS->scavengeRegister(RC, I, SPAdj);
PrevValue = Value;
}
// replace this reference to the virtual register with the
// scratch register.
assert (CurrentScratchReg && "Missing scratch register!");
MI->getOperand(i).setReg(CurrentScratchReg);
if (MI->getOperand(i).isKill()) {
isKillInsn = true;
PrevLastUseOp = i;
PrevLastUseMI = MI;
}
}
}
// If this is the last use of the scratch, stop tracking it. The
// last use will be a kill operand in an instruction that does
// not also define the scratch register.
if (isKillInsn && !isDefInsn) {
CurrentVirtReg = 0;
havePrevValue = trackingCurrentValue;
}
// Similarly, notice if instruction clobbered the value in the
// register we're tracking for possible later reuse. This is noted
// above, but enforced here since the value is still live while we
// process the rest of the operands of the instruction.
if (clobbersScratchReg) {
havePrevValue = false;
CurrentScratchReg = 0;
}
if (DoIncr) {
RS->forward(I);
++I;
}
}
}
}