mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-23 02:32:11 +00:00
529919ff31
Summary: Now that the DataLayout is a mandatory part of the module, let's start cleaning the codebase. This patch is a first attempt at doing that. This patch is not exactly NFC as for instance some places were passing a nullptr instead of the DataLayout, possibly just because there was a default value on the DataLayout argument to many functions in the API. Even though it is not purely NFC, there is no change in the validation. I turned as many pointer to DataLayout to references, this helped figuring out all the places where a nullptr could come up. I had initially a local version of this patch broken into over 30 independant, commits but some later commit were cleaning the API and touching part of the code modified in the previous commits, so it seemed cleaner without the intermediate state. Test Plan: Reviewers: echristo Subscribers: llvm-commits From: Mehdi Amini <mehdi.amini@apple.com> git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231740 91177308-0d34-0410-b5e6-96231b3b80d8
523 lines
19 KiB
C++
523 lines
19 KiB
C++
//===- llvm/unittest/IR/InstructionsTest.cpp - Instructions unit tests ----===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/MDBuilder.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "gtest/gtest.h"
|
|
#include <memory>
|
|
|
|
namespace llvm {
|
|
namespace {
|
|
|
|
TEST(InstructionsTest, ReturnInst) {
|
|
LLVMContext &C(getGlobalContext());
|
|
|
|
// test for PR6589
|
|
const ReturnInst* r0 = ReturnInst::Create(C);
|
|
EXPECT_EQ(r0->getNumOperands(), 0U);
|
|
EXPECT_EQ(r0->op_begin(), r0->op_end());
|
|
|
|
IntegerType* Int1 = IntegerType::get(C, 1);
|
|
Constant* One = ConstantInt::get(Int1, 1, true);
|
|
const ReturnInst* r1 = ReturnInst::Create(C, One);
|
|
EXPECT_EQ(1U, r1->getNumOperands());
|
|
User::const_op_iterator b(r1->op_begin());
|
|
EXPECT_NE(r1->op_end(), b);
|
|
EXPECT_EQ(One, *b);
|
|
EXPECT_EQ(One, r1->getOperand(0));
|
|
++b;
|
|
EXPECT_EQ(r1->op_end(), b);
|
|
|
|
// clean up
|
|
delete r0;
|
|
delete r1;
|
|
}
|
|
|
|
// Test fixture that provides a module and a single function within it. Useful
|
|
// for tests that need to refer to the function in some way.
|
|
class ModuleWithFunctionTest : public testing::Test {
|
|
protected:
|
|
ModuleWithFunctionTest() : M(new Module("MyModule", Ctx)) {
|
|
FArgTypes.push_back(Type::getInt8Ty(Ctx));
|
|
FArgTypes.push_back(Type::getInt32Ty(Ctx));
|
|
FArgTypes.push_back(Type::getInt64Ty(Ctx));
|
|
FunctionType *FTy =
|
|
FunctionType::get(Type::getVoidTy(Ctx), FArgTypes, false);
|
|
F = Function::Create(FTy, Function::ExternalLinkage, "", M.get());
|
|
}
|
|
|
|
LLVMContext Ctx;
|
|
std::unique_ptr<Module> M;
|
|
SmallVector<Type *, 3> FArgTypes;
|
|
Function *F;
|
|
};
|
|
|
|
TEST_F(ModuleWithFunctionTest, CallInst) {
|
|
Value *Args[] = {ConstantInt::get(Type::getInt8Ty(Ctx), 20),
|
|
ConstantInt::get(Type::getInt32Ty(Ctx), 9999),
|
|
ConstantInt::get(Type::getInt64Ty(Ctx), 42)};
|
|
std::unique_ptr<CallInst> Call(CallInst::Create(F, Args));
|
|
|
|
// Make sure iteration over a call's arguments works as expected.
|
|
unsigned Idx = 0;
|
|
for (Value *Arg : Call->arg_operands()) {
|
|
EXPECT_EQ(FArgTypes[Idx], Arg->getType());
|
|
EXPECT_EQ(Call->getArgOperand(Idx)->getType(), Arg->getType());
|
|
Idx++;
|
|
}
|
|
}
|
|
|
|
TEST_F(ModuleWithFunctionTest, InvokeInst) {
|
|
BasicBlock *BB1 = BasicBlock::Create(Ctx, "", F);
|
|
BasicBlock *BB2 = BasicBlock::Create(Ctx, "", F);
|
|
|
|
Value *Args[] = {ConstantInt::get(Type::getInt8Ty(Ctx), 20),
|
|
ConstantInt::get(Type::getInt32Ty(Ctx), 9999),
|
|
ConstantInt::get(Type::getInt64Ty(Ctx), 42)};
|
|
std::unique_ptr<InvokeInst> Invoke(InvokeInst::Create(F, BB1, BB2, Args));
|
|
|
|
// Make sure iteration over invoke's arguments works as expected.
|
|
unsigned Idx = 0;
|
|
for (Value *Arg : Invoke->arg_operands()) {
|
|
EXPECT_EQ(FArgTypes[Idx], Arg->getType());
|
|
EXPECT_EQ(Invoke->getArgOperand(Idx)->getType(), Arg->getType());
|
|
Idx++;
|
|
}
|
|
}
|
|
|
|
TEST(InstructionsTest, BranchInst) {
|
|
LLVMContext &C(getGlobalContext());
|
|
|
|
// Make a BasicBlocks
|
|
BasicBlock* bb0 = BasicBlock::Create(C);
|
|
BasicBlock* bb1 = BasicBlock::Create(C);
|
|
|
|
// Mandatory BranchInst
|
|
const BranchInst* b0 = BranchInst::Create(bb0);
|
|
|
|
EXPECT_TRUE(b0->isUnconditional());
|
|
EXPECT_FALSE(b0->isConditional());
|
|
EXPECT_EQ(1U, b0->getNumSuccessors());
|
|
|
|
// check num operands
|
|
EXPECT_EQ(1U, b0->getNumOperands());
|
|
|
|
EXPECT_NE(b0->op_begin(), b0->op_end());
|
|
EXPECT_EQ(b0->op_end(), std::next(b0->op_begin()));
|
|
|
|
EXPECT_EQ(b0->op_end(), std::next(b0->op_begin()));
|
|
|
|
IntegerType* Int1 = IntegerType::get(C, 1);
|
|
Constant* One = ConstantInt::get(Int1, 1, true);
|
|
|
|
// Conditional BranchInst
|
|
BranchInst* b1 = BranchInst::Create(bb0, bb1, One);
|
|
|
|
EXPECT_FALSE(b1->isUnconditional());
|
|
EXPECT_TRUE(b1->isConditional());
|
|
EXPECT_EQ(2U, b1->getNumSuccessors());
|
|
|
|
// check num operands
|
|
EXPECT_EQ(3U, b1->getNumOperands());
|
|
|
|
User::const_op_iterator b(b1->op_begin());
|
|
|
|
// check COND
|
|
EXPECT_NE(b, b1->op_end());
|
|
EXPECT_EQ(One, *b);
|
|
EXPECT_EQ(One, b1->getOperand(0));
|
|
EXPECT_EQ(One, b1->getCondition());
|
|
++b;
|
|
|
|
// check ELSE
|
|
EXPECT_EQ(bb1, *b);
|
|
EXPECT_EQ(bb1, b1->getOperand(1));
|
|
EXPECT_EQ(bb1, b1->getSuccessor(1));
|
|
++b;
|
|
|
|
// check THEN
|
|
EXPECT_EQ(bb0, *b);
|
|
EXPECT_EQ(bb0, b1->getOperand(2));
|
|
EXPECT_EQ(bb0, b1->getSuccessor(0));
|
|
++b;
|
|
|
|
EXPECT_EQ(b1->op_end(), b);
|
|
|
|
// clean up
|
|
delete b0;
|
|
delete b1;
|
|
|
|
delete bb0;
|
|
delete bb1;
|
|
}
|
|
|
|
TEST(InstructionsTest, CastInst) {
|
|
LLVMContext &C(getGlobalContext());
|
|
|
|
Type *Int8Ty = Type::getInt8Ty(C);
|
|
Type *Int16Ty = Type::getInt16Ty(C);
|
|
Type *Int32Ty = Type::getInt32Ty(C);
|
|
Type *Int64Ty = Type::getInt64Ty(C);
|
|
Type *V8x8Ty = VectorType::get(Int8Ty, 8);
|
|
Type *V8x64Ty = VectorType::get(Int64Ty, 8);
|
|
Type *X86MMXTy = Type::getX86_MMXTy(C);
|
|
|
|
Type *HalfTy = Type::getHalfTy(C);
|
|
Type *FloatTy = Type::getFloatTy(C);
|
|
Type *DoubleTy = Type::getDoubleTy(C);
|
|
|
|
Type *V2Int32Ty = VectorType::get(Int32Ty, 2);
|
|
Type *V2Int64Ty = VectorType::get(Int64Ty, 2);
|
|
Type *V4Int16Ty = VectorType::get(Int16Ty, 4);
|
|
|
|
Type *Int32PtrTy = PointerType::get(Int32Ty, 0);
|
|
Type *Int64PtrTy = PointerType::get(Int64Ty, 0);
|
|
|
|
Type *Int32PtrAS1Ty = PointerType::get(Int32Ty, 1);
|
|
Type *Int64PtrAS1Ty = PointerType::get(Int64Ty, 1);
|
|
|
|
Type *V2Int32PtrAS1Ty = VectorType::get(Int32PtrAS1Ty, 2);
|
|
Type *V2Int64PtrAS1Ty = VectorType::get(Int64PtrAS1Ty, 2);
|
|
Type *V4Int32PtrAS1Ty = VectorType::get(Int32PtrAS1Ty, 4);
|
|
Type *V4Int64PtrAS1Ty = VectorType::get(Int64PtrAS1Ty, 4);
|
|
|
|
Type *V2Int64PtrTy = VectorType::get(Int64PtrTy, 2);
|
|
Type *V2Int32PtrTy = VectorType::get(Int32PtrTy, 2);
|
|
Type *V4Int32PtrTy = VectorType::get(Int32PtrTy, 4);
|
|
|
|
const Constant* c8 = Constant::getNullValue(V8x8Ty);
|
|
const Constant* c64 = Constant::getNullValue(V8x64Ty);
|
|
|
|
const Constant *v2ptr32 = Constant::getNullValue(V2Int32PtrTy);
|
|
|
|
EXPECT_TRUE(CastInst::isCastable(V8x8Ty, X86MMXTy));
|
|
EXPECT_TRUE(CastInst::isCastable(X86MMXTy, V8x8Ty));
|
|
EXPECT_FALSE(CastInst::isCastable(Int64Ty, X86MMXTy));
|
|
EXPECT_TRUE(CastInst::isCastable(V8x64Ty, V8x8Ty));
|
|
EXPECT_TRUE(CastInst::isCastable(V8x8Ty, V8x64Ty));
|
|
EXPECT_EQ(CastInst::Trunc, CastInst::getCastOpcode(c64, true, V8x8Ty, true));
|
|
EXPECT_EQ(CastInst::SExt, CastInst::getCastOpcode(c8, true, V8x64Ty, true));
|
|
|
|
EXPECT_FALSE(CastInst::isBitCastable(V8x8Ty, X86MMXTy));
|
|
EXPECT_FALSE(CastInst::isBitCastable(X86MMXTy, V8x8Ty));
|
|
EXPECT_FALSE(CastInst::isBitCastable(Int64Ty, X86MMXTy));
|
|
EXPECT_FALSE(CastInst::isBitCastable(V8x64Ty, V8x8Ty));
|
|
EXPECT_FALSE(CastInst::isBitCastable(V8x8Ty, V8x64Ty));
|
|
|
|
// Check address space casts are rejected since we don't know the sizes here
|
|
EXPECT_FALSE(CastInst::isBitCastable(Int32PtrTy, Int32PtrAS1Ty));
|
|
EXPECT_FALSE(CastInst::isBitCastable(Int32PtrAS1Ty, Int32PtrTy));
|
|
EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrTy, V2Int32PtrAS1Ty));
|
|
EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V2Int32PtrTy));
|
|
EXPECT_TRUE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V2Int64PtrAS1Ty));
|
|
EXPECT_TRUE(CastInst::isCastable(V2Int32PtrAS1Ty, V2Int32PtrTy));
|
|
EXPECT_EQ(CastInst::AddrSpaceCast, CastInst::getCastOpcode(v2ptr32, true,
|
|
V2Int32PtrAS1Ty,
|
|
true));
|
|
|
|
// Test mismatched number of elements for pointers
|
|
EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V4Int64PtrAS1Ty));
|
|
EXPECT_FALSE(CastInst::isBitCastable(V4Int64PtrAS1Ty, V2Int32PtrAS1Ty));
|
|
EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V4Int32PtrAS1Ty));
|
|
EXPECT_FALSE(CastInst::isBitCastable(Int32PtrTy, V2Int32PtrTy));
|
|
EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrTy, Int32PtrTy));
|
|
|
|
EXPECT_TRUE(CastInst::isBitCastable(Int32PtrTy, Int64PtrTy));
|
|
EXPECT_FALSE(CastInst::isBitCastable(DoubleTy, FloatTy));
|
|
EXPECT_FALSE(CastInst::isBitCastable(FloatTy, DoubleTy));
|
|
EXPECT_TRUE(CastInst::isBitCastable(FloatTy, FloatTy));
|
|
EXPECT_TRUE(CastInst::isBitCastable(FloatTy, FloatTy));
|
|
EXPECT_TRUE(CastInst::isBitCastable(FloatTy, Int32Ty));
|
|
EXPECT_TRUE(CastInst::isBitCastable(Int16Ty, HalfTy));
|
|
EXPECT_TRUE(CastInst::isBitCastable(Int32Ty, FloatTy));
|
|
EXPECT_TRUE(CastInst::isBitCastable(V2Int32Ty, Int64Ty));
|
|
|
|
EXPECT_TRUE(CastInst::isBitCastable(V2Int32Ty, V4Int16Ty));
|
|
EXPECT_FALSE(CastInst::isBitCastable(Int32Ty, Int64Ty));
|
|
EXPECT_FALSE(CastInst::isBitCastable(Int64Ty, Int32Ty));
|
|
|
|
EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrTy, Int64Ty));
|
|
EXPECT_FALSE(CastInst::isBitCastable(Int64Ty, V2Int32PtrTy));
|
|
EXPECT_TRUE(CastInst::isBitCastable(V2Int64PtrTy, V2Int32PtrTy));
|
|
EXPECT_TRUE(CastInst::isBitCastable(V2Int32PtrTy, V2Int64PtrTy));
|
|
EXPECT_FALSE(CastInst::isBitCastable(V2Int32Ty, V2Int64Ty));
|
|
EXPECT_FALSE(CastInst::isBitCastable(V2Int64Ty, V2Int32Ty));
|
|
|
|
|
|
EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast,
|
|
Constant::getNullValue(V4Int32PtrTy),
|
|
V2Int32PtrTy));
|
|
EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast,
|
|
Constant::getNullValue(V2Int32PtrTy),
|
|
V4Int32PtrTy));
|
|
|
|
EXPECT_FALSE(CastInst::castIsValid(Instruction::AddrSpaceCast,
|
|
Constant::getNullValue(V4Int32PtrAS1Ty),
|
|
V2Int32PtrTy));
|
|
EXPECT_FALSE(CastInst::castIsValid(Instruction::AddrSpaceCast,
|
|
Constant::getNullValue(V2Int32PtrTy),
|
|
V4Int32PtrAS1Ty));
|
|
|
|
|
|
// Check that assertion is not hit when creating a cast with a vector of
|
|
// pointers
|
|
// First form
|
|
BasicBlock *BB = BasicBlock::Create(C);
|
|
Constant *NullV2I32Ptr = Constant::getNullValue(V2Int32PtrTy);
|
|
CastInst::CreatePointerCast(NullV2I32Ptr, V2Int32Ty, "foo", BB);
|
|
|
|
// Second form
|
|
CastInst::CreatePointerCast(NullV2I32Ptr, V2Int32Ty);
|
|
}
|
|
|
|
TEST(InstructionsTest, VectorGep) {
|
|
LLVMContext &C(getGlobalContext());
|
|
|
|
// Type Definitions
|
|
PointerType *Ptri8Ty = PointerType::get(IntegerType::get(C, 8), 0);
|
|
PointerType *Ptri32Ty = PointerType::get(IntegerType::get(C, 32), 0);
|
|
|
|
VectorType *V2xi8PTy = VectorType::get(Ptri8Ty, 2);
|
|
VectorType *V2xi32PTy = VectorType::get(Ptri32Ty, 2);
|
|
|
|
// Test different aspects of the vector-of-pointers type
|
|
// and GEPs which use this type.
|
|
ConstantInt *Ci32a = ConstantInt::get(C, APInt(32, 1492));
|
|
ConstantInt *Ci32b = ConstantInt::get(C, APInt(32, 1948));
|
|
std::vector<Constant*> ConstVa(2, Ci32a);
|
|
std::vector<Constant*> ConstVb(2, Ci32b);
|
|
Constant *C2xi32a = ConstantVector::get(ConstVa);
|
|
Constant *C2xi32b = ConstantVector::get(ConstVb);
|
|
|
|
CastInst *PtrVecA = new IntToPtrInst(C2xi32a, V2xi32PTy);
|
|
CastInst *PtrVecB = new IntToPtrInst(C2xi32b, V2xi32PTy);
|
|
|
|
ICmpInst *ICmp0 = new ICmpInst(ICmpInst::ICMP_SGT, PtrVecA, PtrVecB);
|
|
ICmpInst *ICmp1 = new ICmpInst(ICmpInst::ICMP_ULT, PtrVecA, PtrVecB);
|
|
EXPECT_NE(ICmp0, ICmp1); // suppress warning.
|
|
|
|
BasicBlock* BB0 = BasicBlock::Create(C);
|
|
// Test InsertAtEnd ICmpInst constructor.
|
|
ICmpInst *ICmp2 = new ICmpInst(*BB0, ICmpInst::ICMP_SGE, PtrVecA, PtrVecB);
|
|
EXPECT_NE(ICmp0, ICmp2); // suppress warning.
|
|
|
|
GetElementPtrInst *Gep0 = GetElementPtrInst::Create(PtrVecA, C2xi32a);
|
|
GetElementPtrInst *Gep1 = GetElementPtrInst::Create(PtrVecA, C2xi32b);
|
|
GetElementPtrInst *Gep2 = GetElementPtrInst::Create(PtrVecB, C2xi32a);
|
|
GetElementPtrInst *Gep3 = GetElementPtrInst::Create(PtrVecB, C2xi32b);
|
|
|
|
CastInst *BTC0 = new BitCastInst(Gep0, V2xi8PTy);
|
|
CastInst *BTC1 = new BitCastInst(Gep1, V2xi8PTy);
|
|
CastInst *BTC2 = new BitCastInst(Gep2, V2xi8PTy);
|
|
CastInst *BTC3 = new BitCastInst(Gep3, V2xi8PTy);
|
|
|
|
Value *S0 = BTC0->stripPointerCasts();
|
|
Value *S1 = BTC1->stripPointerCasts();
|
|
Value *S2 = BTC2->stripPointerCasts();
|
|
Value *S3 = BTC3->stripPointerCasts();
|
|
|
|
EXPECT_NE(S0, Gep0);
|
|
EXPECT_NE(S1, Gep1);
|
|
EXPECT_NE(S2, Gep2);
|
|
EXPECT_NE(S3, Gep3);
|
|
|
|
int64_t Offset;
|
|
DataLayout TD("e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f3"
|
|
"2:32:32-f64:64:64-v64:64:64-v128:128:128-a:0:64-s:64:64-f80"
|
|
":128:128-n8:16:32:64-S128");
|
|
// Make sure we don't crash
|
|
GetPointerBaseWithConstantOffset(Gep0, Offset, TD);
|
|
GetPointerBaseWithConstantOffset(Gep1, Offset, TD);
|
|
GetPointerBaseWithConstantOffset(Gep2, Offset, TD);
|
|
GetPointerBaseWithConstantOffset(Gep3, Offset, TD);
|
|
|
|
// Gep of Geps
|
|
GetElementPtrInst *GepII0 = GetElementPtrInst::Create(Gep0, C2xi32b);
|
|
GetElementPtrInst *GepII1 = GetElementPtrInst::Create(Gep1, C2xi32a);
|
|
GetElementPtrInst *GepII2 = GetElementPtrInst::Create(Gep2, C2xi32b);
|
|
GetElementPtrInst *GepII3 = GetElementPtrInst::Create(Gep3, C2xi32a);
|
|
|
|
EXPECT_EQ(GepII0->getNumIndices(), 1u);
|
|
EXPECT_EQ(GepII1->getNumIndices(), 1u);
|
|
EXPECT_EQ(GepII2->getNumIndices(), 1u);
|
|
EXPECT_EQ(GepII3->getNumIndices(), 1u);
|
|
|
|
EXPECT_FALSE(GepII0->hasAllZeroIndices());
|
|
EXPECT_FALSE(GepII1->hasAllZeroIndices());
|
|
EXPECT_FALSE(GepII2->hasAllZeroIndices());
|
|
EXPECT_FALSE(GepII3->hasAllZeroIndices());
|
|
|
|
delete GepII0;
|
|
delete GepII1;
|
|
delete GepII2;
|
|
delete GepII3;
|
|
|
|
delete BTC0;
|
|
delete BTC1;
|
|
delete BTC2;
|
|
delete BTC3;
|
|
|
|
delete Gep0;
|
|
delete Gep1;
|
|
delete Gep2;
|
|
delete Gep3;
|
|
|
|
ICmp2->eraseFromParent();
|
|
delete BB0;
|
|
|
|
delete ICmp0;
|
|
delete ICmp1;
|
|
delete PtrVecA;
|
|
delete PtrVecB;
|
|
}
|
|
|
|
TEST(InstructionsTest, FPMathOperator) {
|
|
LLVMContext &Context = getGlobalContext();
|
|
IRBuilder<> Builder(Context);
|
|
MDBuilder MDHelper(Context);
|
|
Instruction *I = Builder.CreatePHI(Builder.getDoubleTy(), 0);
|
|
MDNode *MD1 = MDHelper.createFPMath(1.0);
|
|
Value *V1 = Builder.CreateFAdd(I, I, "", MD1);
|
|
EXPECT_TRUE(isa<FPMathOperator>(V1));
|
|
FPMathOperator *O1 = cast<FPMathOperator>(V1);
|
|
EXPECT_EQ(O1->getFPAccuracy(), 1.0);
|
|
delete V1;
|
|
delete I;
|
|
}
|
|
|
|
|
|
TEST(InstructionsTest, isEliminableCastPair) {
|
|
LLVMContext &C(getGlobalContext());
|
|
|
|
Type* Int16Ty = Type::getInt16Ty(C);
|
|
Type* Int32Ty = Type::getInt32Ty(C);
|
|
Type* Int64Ty = Type::getInt64Ty(C);
|
|
Type* Int64PtrTy = Type::getInt64PtrTy(C);
|
|
|
|
// Source and destination pointers have same size -> bitcast.
|
|
EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::PtrToInt,
|
|
CastInst::IntToPtr,
|
|
Int64PtrTy, Int64Ty, Int64PtrTy,
|
|
Int32Ty, nullptr, Int32Ty),
|
|
CastInst::BitCast);
|
|
|
|
// Source and destination have unknown sizes, but the same address space and
|
|
// the intermediate int is the maximum pointer size -> bitcast
|
|
EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::PtrToInt,
|
|
CastInst::IntToPtr,
|
|
Int64PtrTy, Int64Ty, Int64PtrTy,
|
|
nullptr, nullptr, nullptr),
|
|
CastInst::BitCast);
|
|
|
|
// Source and destination have unknown sizes, but the same address space and
|
|
// the intermediate int is not the maximum pointer size -> nothing
|
|
EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::PtrToInt,
|
|
CastInst::IntToPtr,
|
|
Int64PtrTy, Int32Ty, Int64PtrTy,
|
|
nullptr, nullptr, nullptr),
|
|
0U);
|
|
|
|
// Middle pointer big enough -> bitcast.
|
|
EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr,
|
|
CastInst::PtrToInt,
|
|
Int64Ty, Int64PtrTy, Int64Ty,
|
|
nullptr, Int64Ty, nullptr),
|
|
CastInst::BitCast);
|
|
|
|
// Middle pointer too small -> fail.
|
|
EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr,
|
|
CastInst::PtrToInt,
|
|
Int64Ty, Int64PtrTy, Int64Ty,
|
|
nullptr, Int32Ty, nullptr),
|
|
0U);
|
|
|
|
// Test that we don't eliminate bitcasts between different address spaces,
|
|
// or if we don't have available pointer size information.
|
|
DataLayout DL("e-p:32:32:32-p1:16:16:16-p2:64:64:64-i1:8:8-i8:8:8-i16:16:16"
|
|
"-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64"
|
|
"-v128:128:128-a:0:64-s:64:64-f80:128:128-n8:16:32:64-S128");
|
|
|
|
Type* Int64PtrTyAS1 = Type::getInt64PtrTy(C, 1);
|
|
Type* Int64PtrTyAS2 = Type::getInt64PtrTy(C, 2);
|
|
|
|
IntegerType *Int16SizePtr = DL.getIntPtrType(C, 1);
|
|
IntegerType *Int64SizePtr = DL.getIntPtrType(C, 2);
|
|
|
|
// Cannot simplify inttoptr, addrspacecast
|
|
EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr,
|
|
CastInst::AddrSpaceCast,
|
|
Int16Ty, Int64PtrTyAS1, Int64PtrTyAS2,
|
|
nullptr, Int16SizePtr, Int64SizePtr),
|
|
0U);
|
|
|
|
// Cannot simplify addrspacecast, ptrtoint
|
|
EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::AddrSpaceCast,
|
|
CastInst::PtrToInt,
|
|
Int64PtrTyAS1, Int64PtrTyAS2, Int16Ty,
|
|
Int64SizePtr, Int16SizePtr, nullptr),
|
|
0U);
|
|
|
|
// Pass since the bitcast address spaces are the same
|
|
EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr,
|
|
CastInst::BitCast,
|
|
Int16Ty, Int64PtrTyAS1, Int64PtrTyAS1,
|
|
nullptr, nullptr, nullptr),
|
|
CastInst::IntToPtr);
|
|
|
|
}
|
|
|
|
TEST(InstructionsTest, CloneCall) {
|
|
LLVMContext &C(getGlobalContext());
|
|
Type *Int32Ty = Type::getInt32Ty(C);
|
|
Type *ArgTys[] = {Int32Ty, Int32Ty, Int32Ty};
|
|
Type *FnTy = FunctionType::get(Int32Ty, ArgTys, /*isVarArg=*/false);
|
|
Value *Callee = Constant::getNullValue(FnTy->getPointerTo());
|
|
Value *Args[] = {
|
|
ConstantInt::get(Int32Ty, 1),
|
|
ConstantInt::get(Int32Ty, 2),
|
|
ConstantInt::get(Int32Ty, 3)
|
|
};
|
|
std::unique_ptr<CallInst> Call(CallInst::Create(Callee, Args, "result"));
|
|
|
|
// Test cloning the tail call kind.
|
|
CallInst::TailCallKind Kinds[] = {CallInst::TCK_None, CallInst::TCK_Tail,
|
|
CallInst::TCK_MustTail};
|
|
for (CallInst::TailCallKind TCK : Kinds) {
|
|
Call->setTailCallKind(TCK);
|
|
std::unique_ptr<CallInst> Clone(cast<CallInst>(Call->clone()));
|
|
EXPECT_EQ(Call->getTailCallKind(), Clone->getTailCallKind());
|
|
}
|
|
Call->setTailCallKind(CallInst::TCK_None);
|
|
|
|
// Test cloning an attribute.
|
|
{
|
|
AttrBuilder AB;
|
|
AB.addAttribute(Attribute::ReadOnly);
|
|
Call->setAttributes(AttributeSet::get(C, AttributeSet::FunctionIndex, AB));
|
|
std::unique_ptr<CallInst> Clone(cast<CallInst>(Call->clone()));
|
|
EXPECT_TRUE(Clone->onlyReadsMemory());
|
|
}
|
|
}
|
|
|
|
} // end anonymous namespace
|
|
} // end namespace llvm
|
|
|
|
|