mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-14 11:32:34 +00:00
3c178d82ce
Patch from dexonsmith. The call to toInt() was calling compareTo() which in some cases would call back to toInt(), creating an infinite loop. Fixed by simplifying the logic in compareTo() to avoid the co-recursion. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236326 91177308-0d34-0410-b5e6-96231b3b80d8
900 lines
31 KiB
C++
900 lines
31 KiB
C++
//===- llvm/Support/ScaledNumber.h - Support for scaled numbers -*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains functions (and a class) useful for working with scaled
|
|
// numbers -- in particular, pairs of integers where one represents digits and
|
|
// another represents a scale. The functions are helpers and live in the
|
|
// namespace ScaledNumbers. The class ScaledNumber is useful for modelling
|
|
// certain cost metrics that need simple, integer-like semantics that are easy
|
|
// to reason about.
|
|
//
|
|
// These might remind you of soft-floats. If you want one of those, you're in
|
|
// the wrong place. Look at include/llvm/ADT/APFloat.h instead.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_SUPPORT_SCALEDNUMBER_H
|
|
#define LLVM_SUPPORT_SCALEDNUMBER_H
|
|
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include <algorithm>
|
|
#include <cstdint>
|
|
#include <limits>
|
|
#include <string>
|
|
#include <tuple>
|
|
#include <utility>
|
|
|
|
namespace llvm {
|
|
namespace ScaledNumbers {
|
|
|
|
/// \brief Maximum scale; same as APFloat for easy debug printing.
|
|
const int32_t MaxScale = 16383;
|
|
|
|
/// \brief Maximum scale; same as APFloat for easy debug printing.
|
|
const int32_t MinScale = -16382;
|
|
|
|
/// \brief Get the width of a number.
|
|
template <class DigitsT> inline int getWidth() { return sizeof(DigitsT) * 8; }
|
|
|
|
/// \brief Conditionally round up a scaled number.
|
|
///
|
|
/// Given \c Digits and \c Scale, round up iff \c ShouldRound is \c true.
|
|
/// Always returns \c Scale unless there's an overflow, in which case it
|
|
/// returns \c 1+Scale.
|
|
///
|
|
/// \pre adding 1 to \c Scale will not overflow INT16_MAX.
|
|
template <class DigitsT>
|
|
inline std::pair<DigitsT, int16_t> getRounded(DigitsT Digits, int16_t Scale,
|
|
bool ShouldRound) {
|
|
static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
|
|
|
|
if (ShouldRound)
|
|
if (!++Digits)
|
|
// Overflow.
|
|
return std::make_pair(DigitsT(1) << (getWidth<DigitsT>() - 1), Scale + 1);
|
|
return std::make_pair(Digits, Scale);
|
|
}
|
|
|
|
/// \brief Convenience helper for 32-bit rounding.
|
|
inline std::pair<uint32_t, int16_t> getRounded32(uint32_t Digits, int16_t Scale,
|
|
bool ShouldRound) {
|
|
return getRounded(Digits, Scale, ShouldRound);
|
|
}
|
|
|
|
/// \brief Convenience helper for 64-bit rounding.
|
|
inline std::pair<uint64_t, int16_t> getRounded64(uint64_t Digits, int16_t Scale,
|
|
bool ShouldRound) {
|
|
return getRounded(Digits, Scale, ShouldRound);
|
|
}
|
|
|
|
/// \brief Adjust a 64-bit scaled number down to the appropriate width.
|
|
///
|
|
/// \pre Adding 64 to \c Scale will not overflow INT16_MAX.
|
|
template <class DigitsT>
|
|
inline std::pair<DigitsT, int16_t> getAdjusted(uint64_t Digits,
|
|
int16_t Scale = 0) {
|
|
static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
|
|
|
|
const int Width = getWidth<DigitsT>();
|
|
if (Width == 64 || Digits <= std::numeric_limits<DigitsT>::max())
|
|
return std::make_pair(Digits, Scale);
|
|
|
|
// Shift right and round.
|
|
int Shift = 64 - Width - countLeadingZeros(Digits);
|
|
return getRounded<DigitsT>(Digits >> Shift, Scale + Shift,
|
|
Digits & (UINT64_C(1) << (Shift - 1)));
|
|
}
|
|
|
|
/// \brief Convenience helper for adjusting to 32 bits.
|
|
inline std::pair<uint32_t, int16_t> getAdjusted32(uint64_t Digits,
|
|
int16_t Scale = 0) {
|
|
return getAdjusted<uint32_t>(Digits, Scale);
|
|
}
|
|
|
|
/// \brief Convenience helper for adjusting to 64 bits.
|
|
inline std::pair<uint64_t, int16_t> getAdjusted64(uint64_t Digits,
|
|
int16_t Scale = 0) {
|
|
return getAdjusted<uint64_t>(Digits, Scale);
|
|
}
|
|
|
|
/// \brief Multiply two 64-bit integers to create a 64-bit scaled number.
|
|
///
|
|
/// Implemented with four 64-bit integer multiplies.
|
|
std::pair<uint64_t, int16_t> multiply64(uint64_t LHS, uint64_t RHS);
|
|
|
|
/// \brief Multiply two 32-bit integers to create a 32-bit scaled number.
|
|
///
|
|
/// Implemented with one 64-bit integer multiply.
|
|
template <class DigitsT>
|
|
inline std::pair<DigitsT, int16_t> getProduct(DigitsT LHS, DigitsT RHS) {
|
|
static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
|
|
|
|
if (getWidth<DigitsT>() <= 32 || (LHS <= UINT32_MAX && RHS <= UINT32_MAX))
|
|
return getAdjusted<DigitsT>(uint64_t(LHS) * RHS);
|
|
|
|
return multiply64(LHS, RHS);
|
|
}
|
|
|
|
/// \brief Convenience helper for 32-bit product.
|
|
inline std::pair<uint32_t, int16_t> getProduct32(uint32_t LHS, uint32_t RHS) {
|
|
return getProduct(LHS, RHS);
|
|
}
|
|
|
|
/// \brief Convenience helper for 64-bit product.
|
|
inline std::pair<uint64_t, int16_t> getProduct64(uint64_t LHS, uint64_t RHS) {
|
|
return getProduct(LHS, RHS);
|
|
}
|
|
|
|
/// \brief Divide two 64-bit integers to create a 64-bit scaled number.
|
|
///
|
|
/// Implemented with long division.
|
|
///
|
|
/// \pre \c Dividend and \c Divisor are non-zero.
|
|
std::pair<uint64_t, int16_t> divide64(uint64_t Dividend, uint64_t Divisor);
|
|
|
|
/// \brief Divide two 32-bit integers to create a 32-bit scaled number.
|
|
///
|
|
/// Implemented with one 64-bit integer divide/remainder pair.
|
|
///
|
|
/// \pre \c Dividend and \c Divisor are non-zero.
|
|
std::pair<uint32_t, int16_t> divide32(uint32_t Dividend, uint32_t Divisor);
|
|
|
|
/// \brief Divide two 32-bit numbers to create a 32-bit scaled number.
|
|
///
|
|
/// Implemented with one 64-bit integer divide/remainder pair.
|
|
///
|
|
/// Returns \c (DigitsT_MAX, MaxScale) for divide-by-zero (0 for 0/0).
|
|
template <class DigitsT>
|
|
std::pair<DigitsT, int16_t> getQuotient(DigitsT Dividend, DigitsT Divisor) {
|
|
static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
|
|
static_assert(sizeof(DigitsT) == 4 || sizeof(DigitsT) == 8,
|
|
"expected 32-bit or 64-bit digits");
|
|
|
|
// Check for zero.
|
|
if (!Dividend)
|
|
return std::make_pair(0, 0);
|
|
if (!Divisor)
|
|
return std::make_pair(std::numeric_limits<DigitsT>::max(), MaxScale);
|
|
|
|
if (getWidth<DigitsT>() == 64)
|
|
return divide64(Dividend, Divisor);
|
|
return divide32(Dividend, Divisor);
|
|
}
|
|
|
|
/// \brief Convenience helper for 32-bit quotient.
|
|
inline std::pair<uint32_t, int16_t> getQuotient32(uint32_t Dividend,
|
|
uint32_t Divisor) {
|
|
return getQuotient(Dividend, Divisor);
|
|
}
|
|
|
|
/// \brief Convenience helper for 64-bit quotient.
|
|
inline std::pair<uint64_t, int16_t> getQuotient64(uint64_t Dividend,
|
|
uint64_t Divisor) {
|
|
return getQuotient(Dividend, Divisor);
|
|
}
|
|
|
|
/// \brief Implementation of getLg() and friends.
|
|
///
|
|
/// Returns the rounded lg of \c Digits*2^Scale and an int specifying whether
|
|
/// this was rounded up (1), down (-1), or exact (0).
|
|
///
|
|
/// Returns \c INT32_MIN when \c Digits is zero.
|
|
template <class DigitsT>
|
|
inline std::pair<int32_t, int> getLgImpl(DigitsT Digits, int16_t Scale) {
|
|
static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
|
|
|
|
if (!Digits)
|
|
return std::make_pair(INT32_MIN, 0);
|
|
|
|
// Get the floor of the lg of Digits.
|
|
int32_t LocalFloor = sizeof(Digits) * 8 - countLeadingZeros(Digits) - 1;
|
|
|
|
// Get the actual floor.
|
|
int32_t Floor = Scale + LocalFloor;
|
|
if (Digits == UINT64_C(1) << LocalFloor)
|
|
return std::make_pair(Floor, 0);
|
|
|
|
// Round based on the next digit.
|
|
assert(LocalFloor >= 1);
|
|
bool Round = Digits & UINT64_C(1) << (LocalFloor - 1);
|
|
return std::make_pair(Floor + Round, Round ? 1 : -1);
|
|
}
|
|
|
|
/// \brief Get the lg (rounded) of a scaled number.
|
|
///
|
|
/// Get the lg of \c Digits*2^Scale.
|
|
///
|
|
/// Returns \c INT32_MIN when \c Digits is zero.
|
|
template <class DigitsT> int32_t getLg(DigitsT Digits, int16_t Scale) {
|
|
return getLgImpl(Digits, Scale).first;
|
|
}
|
|
|
|
/// \brief Get the lg floor of a scaled number.
|
|
///
|
|
/// Get the floor of the lg of \c Digits*2^Scale.
|
|
///
|
|
/// Returns \c INT32_MIN when \c Digits is zero.
|
|
template <class DigitsT> int32_t getLgFloor(DigitsT Digits, int16_t Scale) {
|
|
auto Lg = getLgImpl(Digits, Scale);
|
|
return Lg.first - (Lg.second > 0);
|
|
}
|
|
|
|
/// \brief Get the lg ceiling of a scaled number.
|
|
///
|
|
/// Get the ceiling of the lg of \c Digits*2^Scale.
|
|
///
|
|
/// Returns \c INT32_MIN when \c Digits is zero.
|
|
template <class DigitsT> int32_t getLgCeiling(DigitsT Digits, int16_t Scale) {
|
|
auto Lg = getLgImpl(Digits, Scale);
|
|
return Lg.first + (Lg.second < 0);
|
|
}
|
|
|
|
/// \brief Implementation for comparing scaled numbers.
|
|
///
|
|
/// Compare two 64-bit numbers with different scales. Given that the scale of
|
|
/// \c L is higher than that of \c R by \c ScaleDiff, compare them. Return -1,
|
|
/// 1, and 0 for less than, greater than, and equal, respectively.
|
|
///
|
|
/// \pre 0 <= ScaleDiff < 64.
|
|
int compareImpl(uint64_t L, uint64_t R, int ScaleDiff);
|
|
|
|
/// \brief Compare two scaled numbers.
|
|
///
|
|
/// Compare two scaled numbers. Returns 0 for equal, -1 for less than, and 1
|
|
/// for greater than.
|
|
template <class DigitsT>
|
|
int compare(DigitsT LDigits, int16_t LScale, DigitsT RDigits, int16_t RScale) {
|
|
static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
|
|
|
|
// Check for zero.
|
|
if (!LDigits)
|
|
return RDigits ? -1 : 0;
|
|
if (!RDigits)
|
|
return 1;
|
|
|
|
// Check for the scale. Use getLgFloor to be sure that the scale difference
|
|
// is always lower than 64.
|
|
int32_t lgL = getLgFloor(LDigits, LScale), lgR = getLgFloor(RDigits, RScale);
|
|
if (lgL != lgR)
|
|
return lgL < lgR ? -1 : 1;
|
|
|
|
// Compare digits.
|
|
if (LScale < RScale)
|
|
return compareImpl(LDigits, RDigits, RScale - LScale);
|
|
|
|
return -compareImpl(RDigits, LDigits, LScale - RScale);
|
|
}
|
|
|
|
/// \brief Match scales of two numbers.
|
|
///
|
|
/// Given two scaled numbers, match up their scales. Change the digits and
|
|
/// scales in place. Shift the digits as necessary to form equivalent numbers,
|
|
/// losing precision only when necessary.
|
|
///
|
|
/// If the output value of \c LDigits (\c RDigits) is \c 0, the output value of
|
|
/// \c LScale (\c RScale) is unspecified.
|
|
///
|
|
/// As a convenience, returns the matching scale. If the output value of one
|
|
/// number is zero, returns the scale of the other. If both are zero, which
|
|
/// scale is returned is unspecifed.
|
|
template <class DigitsT>
|
|
int16_t matchScales(DigitsT &LDigits, int16_t &LScale, DigitsT &RDigits,
|
|
int16_t &RScale) {
|
|
static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
|
|
|
|
if (LScale < RScale)
|
|
// Swap arguments.
|
|
return matchScales(RDigits, RScale, LDigits, LScale);
|
|
if (!LDigits)
|
|
return RScale;
|
|
if (!RDigits || LScale == RScale)
|
|
return LScale;
|
|
|
|
// Now LScale > RScale. Get the difference.
|
|
int32_t ScaleDiff = int32_t(LScale) - RScale;
|
|
if (ScaleDiff >= 2 * getWidth<DigitsT>()) {
|
|
// Don't bother shifting. RDigits will get zero-ed out anyway.
|
|
RDigits = 0;
|
|
return LScale;
|
|
}
|
|
|
|
// Shift LDigits left as much as possible, then shift RDigits right.
|
|
int32_t ShiftL = std::min<int32_t>(countLeadingZeros(LDigits), ScaleDiff);
|
|
assert(ShiftL < getWidth<DigitsT>() && "can't shift more than width");
|
|
|
|
int32_t ShiftR = ScaleDiff - ShiftL;
|
|
if (ShiftR >= getWidth<DigitsT>()) {
|
|
// Don't bother shifting. RDigits will get zero-ed out anyway.
|
|
RDigits = 0;
|
|
return LScale;
|
|
}
|
|
|
|
LDigits <<= ShiftL;
|
|
RDigits >>= ShiftR;
|
|
|
|
LScale -= ShiftL;
|
|
RScale += ShiftR;
|
|
assert(LScale == RScale && "scales should match");
|
|
return LScale;
|
|
}
|
|
|
|
/// \brief Get the sum of two scaled numbers.
|
|
///
|
|
/// Get the sum of two scaled numbers with as much precision as possible.
|
|
///
|
|
/// \pre Adding 1 to \c LScale (or \c RScale) will not overflow INT16_MAX.
|
|
template <class DigitsT>
|
|
std::pair<DigitsT, int16_t> getSum(DigitsT LDigits, int16_t LScale,
|
|
DigitsT RDigits, int16_t RScale) {
|
|
static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
|
|
|
|
// Check inputs up front. This is only relevent if addition overflows, but
|
|
// testing here should catch more bugs.
|
|
assert(LScale < INT16_MAX && "scale too large");
|
|
assert(RScale < INT16_MAX && "scale too large");
|
|
|
|
// Normalize digits to match scales.
|
|
int16_t Scale = matchScales(LDigits, LScale, RDigits, RScale);
|
|
|
|
// Compute sum.
|
|
DigitsT Sum = LDigits + RDigits;
|
|
if (Sum >= RDigits)
|
|
return std::make_pair(Sum, Scale);
|
|
|
|
// Adjust sum after arithmetic overflow.
|
|
DigitsT HighBit = DigitsT(1) << (getWidth<DigitsT>() - 1);
|
|
return std::make_pair(HighBit | Sum >> 1, Scale + 1);
|
|
}
|
|
|
|
/// \brief Convenience helper for 32-bit sum.
|
|
inline std::pair<uint32_t, int16_t> getSum32(uint32_t LDigits, int16_t LScale,
|
|
uint32_t RDigits, int16_t RScale) {
|
|
return getSum(LDigits, LScale, RDigits, RScale);
|
|
}
|
|
|
|
/// \brief Convenience helper for 64-bit sum.
|
|
inline std::pair<uint64_t, int16_t> getSum64(uint64_t LDigits, int16_t LScale,
|
|
uint64_t RDigits, int16_t RScale) {
|
|
return getSum(LDigits, LScale, RDigits, RScale);
|
|
}
|
|
|
|
/// \brief Get the difference of two scaled numbers.
|
|
///
|
|
/// Get LHS minus RHS with as much precision as possible.
|
|
///
|
|
/// Returns \c (0, 0) if the RHS is larger than the LHS.
|
|
template <class DigitsT>
|
|
std::pair<DigitsT, int16_t> getDifference(DigitsT LDigits, int16_t LScale,
|
|
DigitsT RDigits, int16_t RScale) {
|
|
static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
|
|
|
|
// Normalize digits to match scales.
|
|
const DigitsT SavedRDigits = RDigits;
|
|
const int16_t SavedRScale = RScale;
|
|
matchScales(LDigits, LScale, RDigits, RScale);
|
|
|
|
// Compute difference.
|
|
if (LDigits <= RDigits)
|
|
return std::make_pair(0, 0);
|
|
if (RDigits || !SavedRDigits)
|
|
return std::make_pair(LDigits - RDigits, LScale);
|
|
|
|
// Check if RDigits just barely lost its last bit. E.g., for 32-bit:
|
|
//
|
|
// 1*2^32 - 1*2^0 == 0xffffffff != 1*2^32
|
|
const auto RLgFloor = getLgFloor(SavedRDigits, SavedRScale);
|
|
if (!compare(LDigits, LScale, DigitsT(1), RLgFloor + getWidth<DigitsT>()))
|
|
return std::make_pair(std::numeric_limits<DigitsT>::max(), RLgFloor);
|
|
|
|
return std::make_pair(LDigits, LScale);
|
|
}
|
|
|
|
/// \brief Convenience helper for 32-bit difference.
|
|
inline std::pair<uint32_t, int16_t> getDifference32(uint32_t LDigits,
|
|
int16_t LScale,
|
|
uint32_t RDigits,
|
|
int16_t RScale) {
|
|
return getDifference(LDigits, LScale, RDigits, RScale);
|
|
}
|
|
|
|
/// \brief Convenience helper for 64-bit difference.
|
|
inline std::pair<uint64_t, int16_t> getDifference64(uint64_t LDigits,
|
|
int16_t LScale,
|
|
uint64_t RDigits,
|
|
int16_t RScale) {
|
|
return getDifference(LDigits, LScale, RDigits, RScale);
|
|
}
|
|
|
|
} // end namespace ScaledNumbers
|
|
} // end namespace llvm
|
|
|
|
namespace llvm {
|
|
|
|
class raw_ostream;
|
|
class ScaledNumberBase {
|
|
public:
|
|
static const int DefaultPrecision = 10;
|
|
|
|
static void dump(uint64_t D, int16_t E, int Width);
|
|
static raw_ostream &print(raw_ostream &OS, uint64_t D, int16_t E, int Width,
|
|
unsigned Precision);
|
|
static std::string toString(uint64_t D, int16_t E, int Width,
|
|
unsigned Precision);
|
|
static int countLeadingZeros32(uint32_t N) { return countLeadingZeros(N); }
|
|
static int countLeadingZeros64(uint64_t N) { return countLeadingZeros(N); }
|
|
static uint64_t getHalf(uint64_t N) { return (N >> 1) + (N & 1); }
|
|
|
|
static std::pair<uint64_t, bool> splitSigned(int64_t N) {
|
|
if (N >= 0)
|
|
return std::make_pair(N, false);
|
|
uint64_t Unsigned = N == INT64_MIN ? UINT64_C(1) << 63 : uint64_t(-N);
|
|
return std::make_pair(Unsigned, true);
|
|
}
|
|
static int64_t joinSigned(uint64_t U, bool IsNeg) {
|
|
if (U > uint64_t(INT64_MAX))
|
|
return IsNeg ? INT64_MIN : INT64_MAX;
|
|
return IsNeg ? -int64_t(U) : int64_t(U);
|
|
}
|
|
};
|
|
|
|
/// \brief Simple representation of a scaled number.
|
|
///
|
|
/// ScaledNumber is a number represented by digits and a scale. It uses simple
|
|
/// saturation arithmetic and every operation is well-defined for every value.
|
|
/// It's somewhat similar in behaviour to a soft-float, but is *not* a
|
|
/// replacement for one. If you're doing numerics, look at \a APFloat instead.
|
|
/// Nevertheless, we've found these semantics useful for modelling certain cost
|
|
/// metrics.
|
|
///
|
|
/// The number is split into a signed scale and unsigned digits. The number
|
|
/// represented is \c getDigits()*2^getScale(). In this way, the digits are
|
|
/// much like the mantissa in the x87 long double, but there is no canonical
|
|
/// form so the same number can be represented by many bit representations.
|
|
///
|
|
/// ScaledNumber is templated on the underlying integer type for digits, which
|
|
/// is expected to be unsigned.
|
|
///
|
|
/// Unlike APFloat, ScaledNumber does not model architecture floating point
|
|
/// behaviour -- while this might make it a little faster and easier to reason
|
|
/// about, it certainly makes it more dangerous for general numerics.
|
|
///
|
|
/// ScaledNumber is totally ordered. However, there is no canonical form, so
|
|
/// there are multiple representations of most scalars. E.g.:
|
|
///
|
|
/// ScaledNumber(8u, 0) == ScaledNumber(4u, 1)
|
|
/// ScaledNumber(4u, 1) == ScaledNumber(2u, 2)
|
|
/// ScaledNumber(2u, 2) == ScaledNumber(1u, 3)
|
|
///
|
|
/// ScaledNumber implements most arithmetic operations. Precision is kept
|
|
/// where possible. Uses simple saturation arithmetic, so that operations
|
|
/// saturate to 0.0 or getLargest() rather than under or overflowing. It has
|
|
/// some extra arithmetic for unit inversion. 0.0/0.0 is defined to be 0.0.
|
|
/// Any other division by 0.0 is defined to be getLargest().
|
|
///
|
|
/// As a convenience for modifying the exponent, left and right shifting are
|
|
/// both implemented, and both interpret negative shifts as positive shifts in
|
|
/// the opposite direction.
|
|
///
|
|
/// Scales are limited to the range accepted by x87 long double. This makes
|
|
/// it trivial to add functionality to convert to APFloat (this is already
|
|
/// relied on for the implementation of printing).
|
|
///
|
|
/// Possible (and conflicting) future directions:
|
|
///
|
|
/// 1. Turn this into a wrapper around \a APFloat.
|
|
/// 2. Share the algorithm implementations with \a APFloat.
|
|
/// 3. Allow \a ScaledNumber to represent a signed number.
|
|
template <class DigitsT> class ScaledNumber : ScaledNumberBase {
|
|
public:
|
|
static_assert(!std::numeric_limits<DigitsT>::is_signed,
|
|
"only unsigned floats supported");
|
|
|
|
typedef DigitsT DigitsType;
|
|
|
|
private:
|
|
typedef std::numeric_limits<DigitsType> DigitsLimits;
|
|
|
|
static const int Width = sizeof(DigitsType) * 8;
|
|
static_assert(Width <= 64, "invalid integer width for digits");
|
|
|
|
private:
|
|
DigitsType Digits;
|
|
int16_t Scale;
|
|
|
|
public:
|
|
ScaledNumber() : Digits(0), Scale(0) {}
|
|
|
|
ScaledNumber(DigitsType Digits, int16_t Scale)
|
|
: Digits(Digits), Scale(Scale) {}
|
|
|
|
private:
|
|
ScaledNumber(const std::pair<DigitsT, int16_t> &X)
|
|
: Digits(X.first), Scale(X.second) {}
|
|
|
|
public:
|
|
static ScaledNumber getZero() { return ScaledNumber(0, 0); }
|
|
static ScaledNumber getOne() { return ScaledNumber(1, 0); }
|
|
static ScaledNumber getLargest() {
|
|
return ScaledNumber(DigitsLimits::max(), ScaledNumbers::MaxScale);
|
|
}
|
|
static ScaledNumber get(uint64_t N) { return adjustToWidth(N, 0); }
|
|
static ScaledNumber getInverse(uint64_t N) {
|
|
return get(N).invert();
|
|
}
|
|
static ScaledNumber getFraction(DigitsType N, DigitsType D) {
|
|
return getQuotient(N, D);
|
|
}
|
|
|
|
int16_t getScale() const { return Scale; }
|
|
DigitsType getDigits() const { return Digits; }
|
|
|
|
/// \brief Convert to the given integer type.
|
|
///
|
|
/// Convert to \c IntT using simple saturating arithmetic, truncating if
|
|
/// necessary.
|
|
template <class IntT> IntT toInt() const;
|
|
|
|
bool isZero() const { return !Digits; }
|
|
bool isLargest() const { return *this == getLargest(); }
|
|
bool isOne() const {
|
|
if (Scale > 0 || Scale <= -Width)
|
|
return false;
|
|
return Digits == DigitsType(1) << -Scale;
|
|
}
|
|
|
|
/// \brief The log base 2, rounded.
|
|
///
|
|
/// Get the lg of the scalar. lg 0 is defined to be INT32_MIN.
|
|
int32_t lg() const { return ScaledNumbers::getLg(Digits, Scale); }
|
|
|
|
/// \brief The log base 2, rounded towards INT32_MIN.
|
|
///
|
|
/// Get the lg floor. lg 0 is defined to be INT32_MIN.
|
|
int32_t lgFloor() const { return ScaledNumbers::getLgFloor(Digits, Scale); }
|
|
|
|
/// \brief The log base 2, rounded towards INT32_MAX.
|
|
///
|
|
/// Get the lg ceiling. lg 0 is defined to be INT32_MIN.
|
|
int32_t lgCeiling() const {
|
|
return ScaledNumbers::getLgCeiling(Digits, Scale);
|
|
}
|
|
|
|
bool operator==(const ScaledNumber &X) const { return compare(X) == 0; }
|
|
bool operator<(const ScaledNumber &X) const { return compare(X) < 0; }
|
|
bool operator!=(const ScaledNumber &X) const { return compare(X) != 0; }
|
|
bool operator>(const ScaledNumber &X) const { return compare(X) > 0; }
|
|
bool operator<=(const ScaledNumber &X) const { return compare(X) <= 0; }
|
|
bool operator>=(const ScaledNumber &X) const { return compare(X) >= 0; }
|
|
|
|
bool operator!() const { return isZero(); }
|
|
|
|
/// \brief Convert to a decimal representation in a string.
|
|
///
|
|
/// Convert to a string. Uses scientific notation for very large/small
|
|
/// numbers. Scientific notation is used roughly for numbers outside of the
|
|
/// range 2^-64 through 2^64.
|
|
///
|
|
/// \c Precision indicates the number of decimal digits of precision to use;
|
|
/// 0 requests the maximum available.
|
|
///
|
|
/// As a special case to make debugging easier, if the number is small enough
|
|
/// to convert without scientific notation and has more than \c Precision
|
|
/// digits before the decimal place, it's printed accurately to the first
|
|
/// digit past zero. E.g., assuming 10 digits of precision:
|
|
///
|
|
/// 98765432198.7654... => 98765432198.8
|
|
/// 8765432198.7654... => 8765432198.8
|
|
/// 765432198.7654... => 765432198.8
|
|
/// 65432198.7654... => 65432198.77
|
|
/// 5432198.7654... => 5432198.765
|
|
std::string toString(unsigned Precision = DefaultPrecision) {
|
|
return ScaledNumberBase::toString(Digits, Scale, Width, Precision);
|
|
}
|
|
|
|
/// \brief Print a decimal representation.
|
|
///
|
|
/// Print a string. See toString for documentation.
|
|
raw_ostream &print(raw_ostream &OS,
|
|
unsigned Precision = DefaultPrecision) const {
|
|
return ScaledNumberBase::print(OS, Digits, Scale, Width, Precision);
|
|
}
|
|
void dump() const { return ScaledNumberBase::dump(Digits, Scale, Width); }
|
|
|
|
ScaledNumber &operator+=(const ScaledNumber &X) {
|
|
std::tie(Digits, Scale) =
|
|
ScaledNumbers::getSum(Digits, Scale, X.Digits, X.Scale);
|
|
// Check for exponent past MaxScale.
|
|
if (Scale > ScaledNumbers::MaxScale)
|
|
*this = getLargest();
|
|
return *this;
|
|
}
|
|
ScaledNumber &operator-=(const ScaledNumber &X) {
|
|
std::tie(Digits, Scale) =
|
|
ScaledNumbers::getDifference(Digits, Scale, X.Digits, X.Scale);
|
|
return *this;
|
|
}
|
|
ScaledNumber &operator*=(const ScaledNumber &X);
|
|
ScaledNumber &operator/=(const ScaledNumber &X);
|
|
ScaledNumber &operator<<=(int16_t Shift) {
|
|
shiftLeft(Shift);
|
|
return *this;
|
|
}
|
|
ScaledNumber &operator>>=(int16_t Shift) {
|
|
shiftRight(Shift);
|
|
return *this;
|
|
}
|
|
|
|
private:
|
|
void shiftLeft(int32_t Shift);
|
|
void shiftRight(int32_t Shift);
|
|
|
|
/// \brief Adjust two floats to have matching exponents.
|
|
///
|
|
/// Adjust \c this and \c X to have matching exponents. Returns the new \c X
|
|
/// by value. Does nothing if \a isZero() for either.
|
|
///
|
|
/// The value that compares smaller will lose precision, and possibly become
|
|
/// \a isZero().
|
|
ScaledNumber matchScales(ScaledNumber X) {
|
|
ScaledNumbers::matchScales(Digits, Scale, X.Digits, X.Scale);
|
|
return X;
|
|
}
|
|
|
|
public:
|
|
/// \brief Scale a large number accurately.
|
|
///
|
|
/// Scale N (multiply it by this). Uses full precision multiplication, even
|
|
/// if Width is smaller than 64, so information is not lost.
|
|
uint64_t scale(uint64_t N) const;
|
|
uint64_t scaleByInverse(uint64_t N) const {
|
|
// TODO: implement directly, rather than relying on inverse. Inverse is
|
|
// expensive.
|
|
return inverse().scale(N);
|
|
}
|
|
int64_t scale(int64_t N) const {
|
|
std::pair<uint64_t, bool> Unsigned = splitSigned(N);
|
|
return joinSigned(scale(Unsigned.first), Unsigned.second);
|
|
}
|
|
int64_t scaleByInverse(int64_t N) const {
|
|
std::pair<uint64_t, bool> Unsigned = splitSigned(N);
|
|
return joinSigned(scaleByInverse(Unsigned.first), Unsigned.second);
|
|
}
|
|
|
|
int compare(const ScaledNumber &X) const {
|
|
return ScaledNumbers::compare(Digits, Scale, X.Digits, X.Scale);
|
|
}
|
|
int compareTo(uint64_t N) const {
|
|
return ScaledNumbers::compare<uint64_t>(Digits, Scale, N, 0);
|
|
}
|
|
int compareTo(int64_t N) const { return N < 0 ? 1 : compareTo(uint64_t(N)); }
|
|
|
|
ScaledNumber &invert() { return *this = ScaledNumber::get(1) / *this; }
|
|
ScaledNumber inverse() const { return ScaledNumber(*this).invert(); }
|
|
|
|
private:
|
|
static ScaledNumber getProduct(DigitsType LHS, DigitsType RHS) {
|
|
return ScaledNumbers::getProduct(LHS, RHS);
|
|
}
|
|
static ScaledNumber getQuotient(DigitsType Dividend, DigitsType Divisor) {
|
|
return ScaledNumbers::getQuotient(Dividend, Divisor);
|
|
}
|
|
|
|
static int countLeadingZerosWidth(DigitsType Digits) {
|
|
if (Width == 64)
|
|
return countLeadingZeros64(Digits);
|
|
if (Width == 32)
|
|
return countLeadingZeros32(Digits);
|
|
return countLeadingZeros32(Digits) + Width - 32;
|
|
}
|
|
|
|
/// \brief Adjust a number to width, rounding up if necessary.
|
|
///
|
|
/// Should only be called for \c Shift close to zero.
|
|
///
|
|
/// \pre Shift >= MinScale && Shift + 64 <= MaxScale.
|
|
static ScaledNumber adjustToWidth(uint64_t N, int32_t Shift) {
|
|
assert(Shift >= ScaledNumbers::MinScale && "Shift should be close to 0");
|
|
assert(Shift <= ScaledNumbers::MaxScale - 64 &&
|
|
"Shift should be close to 0");
|
|
auto Adjusted = ScaledNumbers::getAdjusted<DigitsT>(N, Shift);
|
|
return Adjusted;
|
|
}
|
|
|
|
static ScaledNumber getRounded(ScaledNumber P, bool Round) {
|
|
// Saturate.
|
|
if (P.isLargest())
|
|
return P;
|
|
|
|
return ScaledNumbers::getRounded(P.Digits, P.Scale, Round);
|
|
}
|
|
};
|
|
|
|
#define SCALED_NUMBER_BOP(op, base) \
|
|
template <class DigitsT> \
|
|
ScaledNumber<DigitsT> operator op(const ScaledNumber<DigitsT> &L, \
|
|
const ScaledNumber<DigitsT> &R) { \
|
|
return ScaledNumber<DigitsT>(L) base R; \
|
|
}
|
|
SCALED_NUMBER_BOP(+, += )
|
|
SCALED_NUMBER_BOP(-, -= )
|
|
SCALED_NUMBER_BOP(*, *= )
|
|
SCALED_NUMBER_BOP(/, /= )
|
|
#undef SCALED_NUMBER_BOP
|
|
|
|
template <class DigitsT>
|
|
ScaledNumber<DigitsT> operator<<(const ScaledNumber<DigitsT> &L,
|
|
int16_t Shift) {
|
|
return ScaledNumber<DigitsT>(L) <<= Shift;
|
|
}
|
|
|
|
template <class DigitsT>
|
|
ScaledNumber<DigitsT> operator>>(const ScaledNumber<DigitsT> &L,
|
|
int16_t Shift) {
|
|
return ScaledNumber<DigitsT>(L) >>= Shift;
|
|
}
|
|
|
|
template <class DigitsT>
|
|
raw_ostream &operator<<(raw_ostream &OS, const ScaledNumber<DigitsT> &X) {
|
|
return X.print(OS, 10);
|
|
}
|
|
|
|
#define SCALED_NUMBER_COMPARE_TO_TYPE(op, T1, T2) \
|
|
template <class DigitsT> \
|
|
bool operator op(const ScaledNumber<DigitsT> &L, T1 R) { \
|
|
return L.compareTo(T2(R)) op 0; \
|
|
} \
|
|
template <class DigitsT> \
|
|
bool operator op(T1 L, const ScaledNumber<DigitsT> &R) { \
|
|
return 0 op R.compareTo(T2(L)); \
|
|
}
|
|
#define SCALED_NUMBER_COMPARE_TO(op) \
|
|
SCALED_NUMBER_COMPARE_TO_TYPE(op, uint64_t, uint64_t) \
|
|
SCALED_NUMBER_COMPARE_TO_TYPE(op, uint32_t, uint64_t) \
|
|
SCALED_NUMBER_COMPARE_TO_TYPE(op, int64_t, int64_t) \
|
|
SCALED_NUMBER_COMPARE_TO_TYPE(op, int32_t, int64_t)
|
|
SCALED_NUMBER_COMPARE_TO(< )
|
|
SCALED_NUMBER_COMPARE_TO(> )
|
|
SCALED_NUMBER_COMPARE_TO(== )
|
|
SCALED_NUMBER_COMPARE_TO(!= )
|
|
SCALED_NUMBER_COMPARE_TO(<= )
|
|
SCALED_NUMBER_COMPARE_TO(>= )
|
|
#undef SCALED_NUMBER_COMPARE_TO
|
|
#undef SCALED_NUMBER_COMPARE_TO_TYPE
|
|
|
|
template <class DigitsT>
|
|
uint64_t ScaledNumber<DigitsT>::scale(uint64_t N) const {
|
|
if (Width == 64 || N <= DigitsLimits::max())
|
|
return (get(N) * *this).template toInt<uint64_t>();
|
|
|
|
// Defer to the 64-bit version.
|
|
return ScaledNumber<uint64_t>(Digits, Scale).scale(N);
|
|
}
|
|
|
|
template <class DigitsT>
|
|
template <class IntT>
|
|
IntT ScaledNumber<DigitsT>::toInt() const {
|
|
typedef std::numeric_limits<IntT> Limits;
|
|
if (*this < 1)
|
|
return 0;
|
|
if (*this >= Limits::max())
|
|
return Limits::max();
|
|
|
|
IntT N = Digits;
|
|
if (Scale > 0) {
|
|
assert(size_t(Scale) < sizeof(IntT) * 8);
|
|
return N << Scale;
|
|
}
|
|
if (Scale < 0) {
|
|
assert(size_t(-Scale) < sizeof(IntT) * 8);
|
|
return N >> -Scale;
|
|
}
|
|
return N;
|
|
}
|
|
|
|
template <class DigitsT>
|
|
ScaledNumber<DigitsT> &ScaledNumber<DigitsT>::
|
|
operator*=(const ScaledNumber &X) {
|
|
if (isZero())
|
|
return *this;
|
|
if (X.isZero())
|
|
return *this = X;
|
|
|
|
// Save the exponents.
|
|
int32_t Scales = int32_t(Scale) + int32_t(X.Scale);
|
|
|
|
// Get the raw product.
|
|
*this = getProduct(Digits, X.Digits);
|
|
|
|
// Combine with exponents.
|
|
return *this <<= Scales;
|
|
}
|
|
template <class DigitsT>
|
|
ScaledNumber<DigitsT> &ScaledNumber<DigitsT>::
|
|
operator/=(const ScaledNumber &X) {
|
|
if (isZero())
|
|
return *this;
|
|
if (X.isZero())
|
|
return *this = getLargest();
|
|
|
|
// Save the exponents.
|
|
int32_t Scales = int32_t(Scale) - int32_t(X.Scale);
|
|
|
|
// Get the raw quotient.
|
|
*this = getQuotient(Digits, X.Digits);
|
|
|
|
// Combine with exponents.
|
|
return *this <<= Scales;
|
|
}
|
|
template <class DigitsT> void ScaledNumber<DigitsT>::shiftLeft(int32_t Shift) {
|
|
if (!Shift || isZero())
|
|
return;
|
|
assert(Shift != INT32_MIN);
|
|
if (Shift < 0) {
|
|
shiftRight(-Shift);
|
|
return;
|
|
}
|
|
|
|
// Shift as much as we can in the exponent.
|
|
int32_t ScaleShift = std::min(Shift, ScaledNumbers::MaxScale - Scale);
|
|
Scale += ScaleShift;
|
|
if (ScaleShift == Shift)
|
|
return;
|
|
|
|
// Check this late, since it's rare.
|
|
if (isLargest())
|
|
return;
|
|
|
|
// Shift the digits themselves.
|
|
Shift -= ScaleShift;
|
|
if (Shift > countLeadingZerosWidth(Digits)) {
|
|
// Saturate.
|
|
*this = getLargest();
|
|
return;
|
|
}
|
|
|
|
Digits <<= Shift;
|
|
return;
|
|
}
|
|
|
|
template <class DigitsT> void ScaledNumber<DigitsT>::shiftRight(int32_t Shift) {
|
|
if (!Shift || isZero())
|
|
return;
|
|
assert(Shift != INT32_MIN);
|
|
if (Shift < 0) {
|
|
shiftLeft(-Shift);
|
|
return;
|
|
}
|
|
|
|
// Shift as much as we can in the exponent.
|
|
int32_t ScaleShift = std::min(Shift, Scale - ScaledNumbers::MinScale);
|
|
Scale -= ScaleShift;
|
|
if (ScaleShift == Shift)
|
|
return;
|
|
|
|
// Shift the digits themselves.
|
|
Shift -= ScaleShift;
|
|
if (Shift >= Width) {
|
|
// Saturate.
|
|
*this = getZero();
|
|
return;
|
|
}
|
|
|
|
Digits >>= Shift;
|
|
return;
|
|
}
|
|
|
|
template <typename T> struct isPodLike;
|
|
template <typename T> struct isPodLike<ScaledNumber<T>> {
|
|
static const bool value = true;
|
|
};
|
|
|
|
} // end namespace llvm
|
|
|
|
#endif
|