mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-01 00:11:00 +00:00
61a76b2d4a
Patch by: Igor Laevsky <igor@azulsystems.com> "Currently SplitBlockPredecessors generates incorrect code in case if basic block we are going to split has a landingpad. Also seems like it is fairly common case among it's users to conditionally call either SplitBlockPredecessors or SplitLandingPadPredecessors. Because of this I think it is reasonable to add this condition directly into SplitBlockPredecessors." Differential Revision: http://reviews.llvm.org/D7157 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227390 91177308-0d34-0410-b5e6-96231b3b80d8
872 lines
34 KiB
C++
872 lines
34 KiB
C++
//===-- BasicBlockUtils.cpp - BasicBlock Utilities -------------------------==//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This family of functions perform manipulations on basic blocks, and
|
|
// instructions contained within basic blocks.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/CFG.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/ValueHandle.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include <algorithm>
|
|
using namespace llvm;
|
|
|
|
/// DeleteDeadBlock - Delete the specified block, which must have no
|
|
/// predecessors.
|
|
void llvm::DeleteDeadBlock(BasicBlock *BB) {
|
|
assert((pred_begin(BB) == pred_end(BB) ||
|
|
// Can delete self loop.
|
|
BB->getSinglePredecessor() == BB) && "Block is not dead!");
|
|
TerminatorInst *BBTerm = BB->getTerminator();
|
|
|
|
// Loop through all of our successors and make sure they know that one
|
|
// of their predecessors is going away.
|
|
for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i)
|
|
BBTerm->getSuccessor(i)->removePredecessor(BB);
|
|
|
|
// Zap all the instructions in the block.
|
|
while (!BB->empty()) {
|
|
Instruction &I = BB->back();
|
|
// If this instruction is used, replace uses with an arbitrary value.
|
|
// Because control flow can't get here, we don't care what we replace the
|
|
// value with. Note that since this block is unreachable, and all values
|
|
// contained within it must dominate their uses, that all uses will
|
|
// eventually be removed (they are themselves dead).
|
|
if (!I.use_empty())
|
|
I.replaceAllUsesWith(UndefValue::get(I.getType()));
|
|
BB->getInstList().pop_back();
|
|
}
|
|
|
|
// Zap the block!
|
|
BB->eraseFromParent();
|
|
}
|
|
|
|
/// FoldSingleEntryPHINodes - We know that BB has one predecessor. If there are
|
|
/// any single-entry PHI nodes in it, fold them away. This handles the case
|
|
/// when all entries to the PHI nodes in a block are guaranteed equal, such as
|
|
/// when the block has exactly one predecessor.
|
|
void llvm::FoldSingleEntryPHINodes(BasicBlock *BB, AliasAnalysis *AA,
|
|
MemoryDependenceAnalysis *MemDep) {
|
|
if (!isa<PHINode>(BB->begin())) return;
|
|
|
|
while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
|
|
if (PN->getIncomingValue(0) != PN)
|
|
PN->replaceAllUsesWith(PN->getIncomingValue(0));
|
|
else
|
|
PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
|
|
|
|
if (MemDep)
|
|
MemDep->removeInstruction(PN); // Memdep updates AA itself.
|
|
else if (AA && isa<PointerType>(PN->getType()))
|
|
AA->deleteValue(PN);
|
|
|
|
PN->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
|
|
/// DeleteDeadPHIs - Examine each PHI in the given block and delete it if it
|
|
/// is dead. Also recursively delete any operands that become dead as
|
|
/// a result. This includes tracing the def-use list from the PHI to see if
|
|
/// it is ultimately unused or if it reaches an unused cycle.
|
|
bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI) {
|
|
// Recursively deleting a PHI may cause multiple PHIs to be deleted
|
|
// or RAUW'd undef, so use an array of WeakVH for the PHIs to delete.
|
|
SmallVector<WeakVH, 8> PHIs;
|
|
for (BasicBlock::iterator I = BB->begin();
|
|
PHINode *PN = dyn_cast<PHINode>(I); ++I)
|
|
PHIs.push_back(PN);
|
|
|
|
bool Changed = false;
|
|
for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
|
|
if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
|
|
Changed |= RecursivelyDeleteDeadPHINode(PN, TLI);
|
|
|
|
return Changed;
|
|
}
|
|
|
|
/// MergeBlockIntoPredecessor - Attempts to merge a block into its predecessor,
|
|
/// if possible. The return value indicates success or failure.
|
|
bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DominatorTree *DT,
|
|
LoopInfo *LI, AliasAnalysis *AA,
|
|
MemoryDependenceAnalysis *MemDep) {
|
|
// Don't merge away blocks who have their address taken.
|
|
if (BB->hasAddressTaken()) return false;
|
|
|
|
// Can't merge if there are multiple predecessors, or no predecessors.
|
|
BasicBlock *PredBB = BB->getUniquePredecessor();
|
|
if (!PredBB) return false;
|
|
|
|
// Don't break self-loops.
|
|
if (PredBB == BB) return false;
|
|
// Don't break invokes.
|
|
if (isa<InvokeInst>(PredBB->getTerminator())) return false;
|
|
|
|
succ_iterator SI(succ_begin(PredBB)), SE(succ_end(PredBB));
|
|
BasicBlock *OnlySucc = BB;
|
|
for (; SI != SE; ++SI)
|
|
if (*SI != OnlySucc) {
|
|
OnlySucc = nullptr; // There are multiple distinct successors!
|
|
break;
|
|
}
|
|
|
|
// Can't merge if there are multiple successors.
|
|
if (!OnlySucc) return false;
|
|
|
|
// Can't merge if there is PHI loop.
|
|
for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE; ++BI) {
|
|
if (PHINode *PN = dyn_cast<PHINode>(BI)) {
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
|
|
if (PN->getIncomingValue(i) == PN)
|
|
return false;
|
|
} else
|
|
break;
|
|
}
|
|
|
|
// Begin by getting rid of unneeded PHIs.
|
|
if (isa<PHINode>(BB->front()))
|
|
FoldSingleEntryPHINodes(BB, AA, MemDep);
|
|
|
|
// Delete the unconditional branch from the predecessor...
|
|
PredBB->getInstList().pop_back();
|
|
|
|
// Make all PHI nodes that referred to BB now refer to Pred as their
|
|
// source...
|
|
BB->replaceAllUsesWith(PredBB);
|
|
|
|
// Move all definitions in the successor to the predecessor...
|
|
PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
|
|
|
|
// Inherit predecessors name if it exists.
|
|
if (!PredBB->hasName())
|
|
PredBB->takeName(BB);
|
|
|
|
// Finally, erase the old block and update dominator info.
|
|
if (DT)
|
|
if (DomTreeNode *DTN = DT->getNode(BB)) {
|
|
DomTreeNode *PredDTN = DT->getNode(PredBB);
|
|
SmallVector<DomTreeNode *, 8> Children(DTN->begin(), DTN->end());
|
|
for (SmallVectorImpl<DomTreeNode *>::iterator DI = Children.begin(),
|
|
DE = Children.end();
|
|
DI != DE; ++DI)
|
|
DT->changeImmediateDominator(*DI, PredDTN);
|
|
|
|
DT->eraseNode(BB);
|
|
}
|
|
|
|
if (LI)
|
|
LI->removeBlock(BB);
|
|
|
|
if (MemDep)
|
|
MemDep->invalidateCachedPredecessors();
|
|
|
|
BB->eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
/// ReplaceInstWithValue - Replace all uses of an instruction (specified by BI)
|
|
/// with a value, then remove and delete the original instruction.
|
|
///
|
|
void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
|
|
BasicBlock::iterator &BI, Value *V) {
|
|
Instruction &I = *BI;
|
|
// Replaces all of the uses of the instruction with uses of the value
|
|
I.replaceAllUsesWith(V);
|
|
|
|
// Make sure to propagate a name if there is one already.
|
|
if (I.hasName() && !V->hasName())
|
|
V->takeName(&I);
|
|
|
|
// Delete the unnecessary instruction now...
|
|
BI = BIL.erase(BI);
|
|
}
|
|
|
|
|
|
/// ReplaceInstWithInst - Replace the instruction specified by BI with the
|
|
/// instruction specified by I. The original instruction is deleted and BI is
|
|
/// updated to point to the new instruction.
|
|
///
|
|
void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
|
|
BasicBlock::iterator &BI, Instruction *I) {
|
|
assert(I->getParent() == nullptr &&
|
|
"ReplaceInstWithInst: Instruction already inserted into basic block!");
|
|
|
|
// Insert the new instruction into the basic block...
|
|
BasicBlock::iterator New = BIL.insert(BI, I);
|
|
|
|
// Replace all uses of the old instruction, and delete it.
|
|
ReplaceInstWithValue(BIL, BI, I);
|
|
|
|
// Move BI back to point to the newly inserted instruction
|
|
BI = New;
|
|
}
|
|
|
|
/// ReplaceInstWithInst - Replace the instruction specified by From with the
|
|
/// instruction specified by To.
|
|
///
|
|
void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
|
|
BasicBlock::iterator BI(From);
|
|
ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
|
|
}
|
|
|
|
/// SplitEdge - Split the edge connecting specified block. Pass P must
|
|
/// not be NULL.
|
|
BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT,
|
|
LoopInfo *LI) {
|
|
unsigned SuccNum = GetSuccessorNumber(BB, Succ);
|
|
|
|
// If this is a critical edge, let SplitCriticalEdge do it.
|
|
TerminatorInst *LatchTerm = BB->getTerminator();
|
|
if (SplitCriticalEdge(LatchTerm, SuccNum, CriticalEdgeSplittingOptions(DT, LI)
|
|
.setPreserveLCSSA()))
|
|
return LatchTerm->getSuccessor(SuccNum);
|
|
|
|
// If the edge isn't critical, then BB has a single successor or Succ has a
|
|
// single pred. Split the block.
|
|
if (BasicBlock *SP = Succ->getSinglePredecessor()) {
|
|
// If the successor only has a single pred, split the top of the successor
|
|
// block.
|
|
assert(SP == BB && "CFG broken");
|
|
SP = nullptr;
|
|
return SplitBlock(Succ, Succ->begin(), DT, LI);
|
|
}
|
|
|
|
// Otherwise, if BB has a single successor, split it at the bottom of the
|
|
// block.
|
|
assert(BB->getTerminator()->getNumSuccessors() == 1 &&
|
|
"Should have a single succ!");
|
|
return SplitBlock(BB, BB->getTerminator(), DT, LI);
|
|
}
|
|
|
|
unsigned
|
|
llvm::SplitAllCriticalEdges(Function &F,
|
|
const CriticalEdgeSplittingOptions &Options) {
|
|
unsigned NumBroken = 0;
|
|
for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
|
|
TerminatorInst *TI = I->getTerminator();
|
|
if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI))
|
|
for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
|
|
if (SplitCriticalEdge(TI, i, Options))
|
|
++NumBroken;
|
|
}
|
|
return NumBroken;
|
|
}
|
|
|
|
/// SplitBlock - Split the specified block at the specified instruction - every
|
|
/// thing before SplitPt stays in Old and everything starting with SplitPt moves
|
|
/// to a new block. The two blocks are joined by an unconditional branch and
|
|
/// the loop info is updated.
|
|
///
|
|
BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
|
|
DominatorTree *DT, LoopInfo *LI) {
|
|
BasicBlock::iterator SplitIt = SplitPt;
|
|
while (isa<PHINode>(SplitIt) || isa<LandingPadInst>(SplitIt))
|
|
++SplitIt;
|
|
BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split");
|
|
|
|
// The new block lives in whichever loop the old one did. This preserves
|
|
// LCSSA as well, because we force the split point to be after any PHI nodes.
|
|
if (LI)
|
|
if (Loop *L = LI->getLoopFor(Old))
|
|
L->addBasicBlockToLoop(New, *LI);
|
|
|
|
if (DT)
|
|
// Old dominates New. New node dominates all other nodes dominated by Old.
|
|
if (DomTreeNode *OldNode = DT->getNode(Old)) {
|
|
std::vector<DomTreeNode *> Children;
|
|
for (DomTreeNode::iterator I = OldNode->begin(), E = OldNode->end();
|
|
I != E; ++I)
|
|
Children.push_back(*I);
|
|
|
|
DomTreeNode *NewNode = DT->addNewBlock(New, Old);
|
|
for (std::vector<DomTreeNode *>::iterator I = Children.begin(),
|
|
E = Children.end(); I != E; ++I)
|
|
DT->changeImmediateDominator(*I, NewNode);
|
|
}
|
|
|
|
return New;
|
|
}
|
|
|
|
/// UpdateAnalysisInformation - Update DominatorTree, LoopInfo, and LCCSA
|
|
/// analysis information.
|
|
static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
|
|
ArrayRef<BasicBlock *> Preds,
|
|
DominatorTree *DT, LoopInfo *LI,
|
|
bool PreserveLCSSA, bool &HasLoopExit) {
|
|
// Update dominator tree if available.
|
|
if (DT)
|
|
DT->splitBlock(NewBB);
|
|
|
|
// The rest of the logic is only relevant for updating the loop structures.
|
|
if (!LI)
|
|
return;
|
|
|
|
Loop *L = LI->getLoopFor(OldBB);
|
|
|
|
// If we need to preserve loop analyses, collect some information about how
|
|
// this split will affect loops.
|
|
bool IsLoopEntry = !!L;
|
|
bool SplitMakesNewLoopHeader = false;
|
|
for (ArrayRef<BasicBlock *>::iterator i = Preds.begin(), e = Preds.end();
|
|
i != e; ++i) {
|
|
BasicBlock *Pred = *i;
|
|
|
|
// If we need to preserve LCSSA, determine if any of the preds is a loop
|
|
// exit.
|
|
if (PreserveLCSSA)
|
|
if (Loop *PL = LI->getLoopFor(Pred))
|
|
if (!PL->contains(OldBB))
|
|
HasLoopExit = true;
|
|
|
|
// If we need to preserve LoopInfo, note whether any of the preds crosses
|
|
// an interesting loop boundary.
|
|
if (!L)
|
|
continue;
|
|
if (L->contains(Pred))
|
|
IsLoopEntry = false;
|
|
else
|
|
SplitMakesNewLoopHeader = true;
|
|
}
|
|
|
|
// Unless we have a loop for OldBB, nothing else to do here.
|
|
if (!L)
|
|
return;
|
|
|
|
if (IsLoopEntry) {
|
|
// Add the new block to the nearest enclosing loop (and not an adjacent
|
|
// loop). To find this, examine each of the predecessors and determine which
|
|
// loops enclose them, and select the most-nested loop which contains the
|
|
// loop containing the block being split.
|
|
Loop *InnermostPredLoop = nullptr;
|
|
for (ArrayRef<BasicBlock*>::iterator
|
|
i = Preds.begin(), e = Preds.end(); i != e; ++i) {
|
|
BasicBlock *Pred = *i;
|
|
if (Loop *PredLoop = LI->getLoopFor(Pred)) {
|
|
// Seek a loop which actually contains the block being split (to avoid
|
|
// adjacent loops).
|
|
while (PredLoop && !PredLoop->contains(OldBB))
|
|
PredLoop = PredLoop->getParentLoop();
|
|
|
|
// Select the most-nested of these loops which contains the block.
|
|
if (PredLoop && PredLoop->contains(OldBB) &&
|
|
(!InnermostPredLoop ||
|
|
InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
|
|
InnermostPredLoop = PredLoop;
|
|
}
|
|
}
|
|
|
|
if (InnermostPredLoop)
|
|
InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI);
|
|
} else {
|
|
L->addBasicBlockToLoop(NewBB, *LI);
|
|
if (SplitMakesNewLoopHeader)
|
|
L->moveToHeader(NewBB);
|
|
}
|
|
}
|
|
|
|
/// UpdatePHINodes - Update the PHI nodes in OrigBB to include the values coming
|
|
/// from NewBB. This also updates AliasAnalysis, if available.
|
|
static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
|
|
ArrayRef<BasicBlock *> Preds, BranchInst *BI,
|
|
AliasAnalysis *AA, bool HasLoopExit) {
|
|
// Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
|
|
SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end());
|
|
for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
|
|
PHINode *PN = cast<PHINode>(I++);
|
|
|
|
// Check to see if all of the values coming in are the same. If so, we
|
|
// don't need to create a new PHI node, unless it's needed for LCSSA.
|
|
Value *InVal = nullptr;
|
|
if (!HasLoopExit) {
|
|
InVal = PN->getIncomingValueForBlock(Preds[0]);
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
|
|
if (!PredSet.count(PN->getIncomingBlock(i)))
|
|
continue;
|
|
if (!InVal)
|
|
InVal = PN->getIncomingValue(i);
|
|
else if (InVal != PN->getIncomingValue(i)) {
|
|
InVal = nullptr;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (InVal) {
|
|
// If all incoming values for the new PHI would be the same, just don't
|
|
// make a new PHI. Instead, just remove the incoming values from the old
|
|
// PHI.
|
|
|
|
// NOTE! This loop walks backwards for a reason! First off, this minimizes
|
|
// the cost of removal if we end up removing a large number of values, and
|
|
// second off, this ensures that the indices for the incoming values
|
|
// aren't invalidated when we remove one.
|
|
for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i)
|
|
if (PredSet.count(PN->getIncomingBlock(i)))
|
|
PN->removeIncomingValue(i, false);
|
|
|
|
// Add an incoming value to the PHI node in the loop for the preheader
|
|
// edge.
|
|
PN->addIncoming(InVal, NewBB);
|
|
continue;
|
|
}
|
|
|
|
// If the values coming into the block are not the same, we need a new
|
|
// PHI.
|
|
// Create the new PHI node, insert it into NewBB at the end of the block
|
|
PHINode *NewPHI =
|
|
PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);
|
|
if (AA)
|
|
AA->copyValue(PN, NewPHI);
|
|
|
|
// NOTE! This loop walks backwards for a reason! First off, this minimizes
|
|
// the cost of removal if we end up removing a large number of values, and
|
|
// second off, this ensures that the indices for the incoming values aren't
|
|
// invalidated when we remove one.
|
|
for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
|
|
BasicBlock *IncomingBB = PN->getIncomingBlock(i);
|
|
if (PredSet.count(IncomingBB)) {
|
|
Value *V = PN->removeIncomingValue(i, false);
|
|
NewPHI->addIncoming(V, IncomingBB);
|
|
}
|
|
}
|
|
|
|
PN->addIncoming(NewPHI, NewBB);
|
|
}
|
|
}
|
|
|
|
/// SplitBlockPredecessors - This method introduces at least one new basic block
|
|
/// into the function and moves some of the predecessors of BB to be
|
|
/// predecessors of the new block. The new predecessors are indicated by the
|
|
/// Preds array. The new block is given a suffix of 'Suffix'. Returns new basic
|
|
/// block to which predecessors from Preds are now pointing.
|
|
///
|
|
/// If BB is a landingpad block then additional basicblock might be introduced.
|
|
/// It will have suffix of 'Suffix'+".split_lp".
|
|
/// See SplitLandingPadPredecessors for more details on this case.
|
|
///
|
|
/// This currently updates the LLVM IR, AliasAnalysis, DominatorTree,
|
|
/// LoopInfo, and LCCSA but no other analyses. In particular, it does not
|
|
/// preserve LoopSimplify (because it's complicated to handle the case where one
|
|
/// of the edges being split is an exit of a loop with other exits).
|
|
///
|
|
BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
|
|
ArrayRef<BasicBlock *> Preds,
|
|
const char *Suffix, AliasAnalysis *AA,
|
|
DominatorTree *DT, LoopInfo *LI,
|
|
bool PreserveLCSSA) {
|
|
// For the landingpads we need to act a bit differently.
|
|
// Delegate this work to the SplitLandingPadPredecessors.
|
|
if (BB->isLandingPad()) {
|
|
SmallVector<BasicBlock*, 2> NewBBs;
|
|
std::string NewName = std::string(Suffix) + ".split-lp";
|
|
|
|
SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(),
|
|
NewBBs, AA, DT, LI, PreserveLCSSA);
|
|
return NewBBs[0];
|
|
}
|
|
|
|
// Create new basic block, insert right before the original block.
|
|
BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), BB->getName()+Suffix,
|
|
BB->getParent(), BB);
|
|
|
|
// The new block unconditionally branches to the old block.
|
|
BranchInst *BI = BranchInst::Create(BB, NewBB);
|
|
|
|
// Move the edges from Preds to point to NewBB instead of BB.
|
|
for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
|
|
// This is slightly more strict than necessary; the minimum requirement
|
|
// is that there be no more than one indirectbr branching to BB. And
|
|
// all BlockAddress uses would need to be updated.
|
|
assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
|
|
"Cannot split an edge from an IndirectBrInst");
|
|
Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
|
|
}
|
|
|
|
// Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
|
|
// node becomes an incoming value for BB's phi node. However, if the Preds
|
|
// list is empty, we need to insert dummy entries into the PHI nodes in BB to
|
|
// account for the newly created predecessor.
|
|
if (Preds.size() == 0) {
|
|
// Insert dummy values as the incoming value.
|
|
for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
|
|
cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
|
|
return NewBB;
|
|
}
|
|
|
|
// Update DominatorTree, LoopInfo, and LCCSA analysis information.
|
|
bool HasLoopExit = false;
|
|
UpdateAnalysisInformation(BB, NewBB, Preds, DT, LI, PreserveLCSSA,
|
|
HasLoopExit);
|
|
|
|
// Update the PHI nodes in BB with the values coming from NewBB.
|
|
UpdatePHINodes(BB, NewBB, Preds, BI, AA, HasLoopExit);
|
|
return NewBB;
|
|
}
|
|
|
|
/// SplitLandingPadPredecessors - This method transforms the landing pad,
|
|
/// OrigBB, by introducing two new basic blocks into the function. One of those
|
|
/// new basic blocks gets the predecessors listed in Preds. The other basic
|
|
/// block gets the remaining predecessors of OrigBB. The landingpad instruction
|
|
/// OrigBB is clone into both of the new basic blocks. The new blocks are given
|
|
/// the suffixes 'Suffix1' and 'Suffix2', and are returned in the NewBBs vector.
|
|
///
|
|
/// This currently updates the LLVM IR, AliasAnalysis, DominatorTree,
|
|
/// DominanceFrontier, LoopInfo, and LCCSA but no other analyses. In particular,
|
|
/// it does not preserve LoopSimplify (because it's complicated to handle the
|
|
/// case where one of the edges being split is an exit of a loop with other
|
|
/// exits).
|
|
///
|
|
void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
|
|
ArrayRef<BasicBlock *> Preds,
|
|
const char *Suffix1, const char *Suffix2,
|
|
SmallVectorImpl<BasicBlock *> &NewBBs,
|
|
AliasAnalysis *AA, DominatorTree *DT,
|
|
LoopInfo *LI, bool PreserveLCSSA) {
|
|
assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
|
|
|
|
// Create a new basic block for OrigBB's predecessors listed in Preds. Insert
|
|
// it right before the original block.
|
|
BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
|
|
OrigBB->getName() + Suffix1,
|
|
OrigBB->getParent(), OrigBB);
|
|
NewBBs.push_back(NewBB1);
|
|
|
|
// The new block unconditionally branches to the old block.
|
|
BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
|
|
|
|
// Move the edges from Preds to point to NewBB1 instead of OrigBB.
|
|
for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
|
|
// This is slightly more strict than necessary; the minimum requirement
|
|
// is that there be no more than one indirectbr branching to BB. And
|
|
// all BlockAddress uses would need to be updated.
|
|
assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
|
|
"Cannot split an edge from an IndirectBrInst");
|
|
Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
|
|
}
|
|
|
|
bool HasLoopExit = false;
|
|
UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DT, LI, PreserveLCSSA,
|
|
HasLoopExit);
|
|
|
|
// Update the PHI nodes in OrigBB with the values coming from NewBB1.
|
|
UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, AA, HasLoopExit);
|
|
|
|
// Move the remaining edges from OrigBB to point to NewBB2.
|
|
SmallVector<BasicBlock*, 8> NewBB2Preds;
|
|
for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
|
|
i != e; ) {
|
|
BasicBlock *Pred = *i++;
|
|
if (Pred == NewBB1) continue;
|
|
assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
|
|
"Cannot split an edge from an IndirectBrInst");
|
|
NewBB2Preds.push_back(Pred);
|
|
e = pred_end(OrigBB);
|
|
}
|
|
|
|
BasicBlock *NewBB2 = nullptr;
|
|
if (!NewBB2Preds.empty()) {
|
|
// Create another basic block for the rest of OrigBB's predecessors.
|
|
NewBB2 = BasicBlock::Create(OrigBB->getContext(),
|
|
OrigBB->getName() + Suffix2,
|
|
OrigBB->getParent(), OrigBB);
|
|
NewBBs.push_back(NewBB2);
|
|
|
|
// The new block unconditionally branches to the old block.
|
|
BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
|
|
|
|
// Move the remaining edges from OrigBB to point to NewBB2.
|
|
for (SmallVectorImpl<BasicBlock*>::iterator
|
|
i = NewBB2Preds.begin(), e = NewBB2Preds.end(); i != e; ++i)
|
|
(*i)->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
|
|
|
|
// Update DominatorTree, LoopInfo, and LCCSA analysis information.
|
|
HasLoopExit = false;
|
|
UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DT, LI,
|
|
PreserveLCSSA, HasLoopExit);
|
|
|
|
// Update the PHI nodes in OrigBB with the values coming from NewBB2.
|
|
UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, AA, HasLoopExit);
|
|
}
|
|
|
|
LandingPadInst *LPad = OrigBB->getLandingPadInst();
|
|
Instruction *Clone1 = LPad->clone();
|
|
Clone1->setName(Twine("lpad") + Suffix1);
|
|
NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1);
|
|
|
|
if (NewBB2) {
|
|
Instruction *Clone2 = LPad->clone();
|
|
Clone2->setName(Twine("lpad") + Suffix2);
|
|
NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2);
|
|
|
|
// Create a PHI node for the two cloned landingpad instructions.
|
|
PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad);
|
|
PN->addIncoming(Clone1, NewBB1);
|
|
PN->addIncoming(Clone2, NewBB2);
|
|
LPad->replaceAllUsesWith(PN);
|
|
LPad->eraseFromParent();
|
|
} else {
|
|
// There is no second clone. Just replace the landing pad with the first
|
|
// clone.
|
|
LPad->replaceAllUsesWith(Clone1);
|
|
LPad->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
/// FoldReturnIntoUncondBranch - This method duplicates the specified return
|
|
/// instruction into a predecessor which ends in an unconditional branch. If
|
|
/// the return instruction returns a value defined by a PHI, propagate the
|
|
/// right value into the return. It returns the new return instruction in the
|
|
/// predecessor.
|
|
ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
|
|
BasicBlock *Pred) {
|
|
Instruction *UncondBranch = Pred->getTerminator();
|
|
// Clone the return and add it to the end of the predecessor.
|
|
Instruction *NewRet = RI->clone();
|
|
Pred->getInstList().push_back(NewRet);
|
|
|
|
// If the return instruction returns a value, and if the value was a
|
|
// PHI node in "BB", propagate the right value into the return.
|
|
for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
|
|
i != e; ++i) {
|
|
Value *V = *i;
|
|
Instruction *NewBC = nullptr;
|
|
if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
|
|
// Return value might be bitcasted. Clone and insert it before the
|
|
// return instruction.
|
|
V = BCI->getOperand(0);
|
|
NewBC = BCI->clone();
|
|
Pred->getInstList().insert(NewRet, NewBC);
|
|
*i = NewBC;
|
|
}
|
|
if (PHINode *PN = dyn_cast<PHINode>(V)) {
|
|
if (PN->getParent() == BB) {
|
|
if (NewBC)
|
|
NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
|
|
else
|
|
*i = PN->getIncomingValueForBlock(Pred);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Update any PHI nodes in the returning block to realize that we no
|
|
// longer branch to them.
|
|
BB->removePredecessor(Pred);
|
|
UncondBranch->eraseFromParent();
|
|
return cast<ReturnInst>(NewRet);
|
|
}
|
|
|
|
/// SplitBlockAndInsertIfThen - Split the containing block at the
|
|
/// specified instruction - everything before and including SplitBefore stays
|
|
/// in the old basic block, and everything after SplitBefore is moved to a
|
|
/// new block. The two blocks are connected by a conditional branch
|
|
/// (with value of Cmp being the condition).
|
|
/// Before:
|
|
/// Head
|
|
/// SplitBefore
|
|
/// Tail
|
|
/// After:
|
|
/// Head
|
|
/// if (Cond)
|
|
/// ThenBlock
|
|
/// SplitBefore
|
|
/// Tail
|
|
///
|
|
/// If Unreachable is true, then ThenBlock ends with
|
|
/// UnreachableInst, otherwise it branches to Tail.
|
|
/// Returns the NewBasicBlock's terminator.
|
|
|
|
TerminatorInst *llvm::SplitBlockAndInsertIfThen(Value *Cond,
|
|
Instruction *SplitBefore,
|
|
bool Unreachable,
|
|
MDNode *BranchWeights,
|
|
DominatorTree *DT) {
|
|
BasicBlock *Head = SplitBefore->getParent();
|
|
BasicBlock *Tail = Head->splitBasicBlock(SplitBefore);
|
|
TerminatorInst *HeadOldTerm = Head->getTerminator();
|
|
LLVMContext &C = Head->getContext();
|
|
BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
|
|
TerminatorInst *CheckTerm;
|
|
if (Unreachable)
|
|
CheckTerm = new UnreachableInst(C, ThenBlock);
|
|
else
|
|
CheckTerm = BranchInst::Create(Tail, ThenBlock);
|
|
CheckTerm->setDebugLoc(SplitBefore->getDebugLoc());
|
|
BranchInst *HeadNewTerm =
|
|
BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cond);
|
|
HeadNewTerm->setDebugLoc(SplitBefore->getDebugLoc());
|
|
HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
|
|
ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
|
|
|
|
if (DT) {
|
|
if (DomTreeNode *OldNode = DT->getNode(Head)) {
|
|
std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
|
|
|
|
DomTreeNode *NewNode = DT->addNewBlock(Tail, Head);
|
|
for (auto Child : Children)
|
|
DT->changeImmediateDominator(Child, NewNode);
|
|
|
|
// Head dominates ThenBlock.
|
|
DT->addNewBlock(ThenBlock, Head);
|
|
}
|
|
}
|
|
|
|
return CheckTerm;
|
|
}
|
|
|
|
/// SplitBlockAndInsertIfThenElse is similar to SplitBlockAndInsertIfThen,
|
|
/// but also creates the ElseBlock.
|
|
/// Before:
|
|
/// Head
|
|
/// SplitBefore
|
|
/// Tail
|
|
/// After:
|
|
/// Head
|
|
/// if (Cond)
|
|
/// ThenBlock
|
|
/// else
|
|
/// ElseBlock
|
|
/// SplitBefore
|
|
/// Tail
|
|
void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore,
|
|
TerminatorInst **ThenTerm,
|
|
TerminatorInst **ElseTerm,
|
|
MDNode *BranchWeights) {
|
|
BasicBlock *Head = SplitBefore->getParent();
|
|
BasicBlock *Tail = Head->splitBasicBlock(SplitBefore);
|
|
TerminatorInst *HeadOldTerm = Head->getTerminator();
|
|
LLVMContext &C = Head->getContext();
|
|
BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
|
|
BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
|
|
*ThenTerm = BranchInst::Create(Tail, ThenBlock);
|
|
(*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc());
|
|
*ElseTerm = BranchInst::Create(Tail, ElseBlock);
|
|
(*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc());
|
|
BranchInst *HeadNewTerm =
|
|
BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond);
|
|
HeadNewTerm->setDebugLoc(SplitBefore->getDebugLoc());
|
|
HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
|
|
ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
|
|
}
|
|
|
|
|
|
/// GetIfCondition - Given a basic block (BB) with two predecessors,
|
|
/// check to see if the merge at this block is due
|
|
/// to an "if condition". If so, return the boolean condition that determines
|
|
/// which entry into BB will be taken. Also, return by references the block
|
|
/// that will be entered from if the condition is true, and the block that will
|
|
/// be entered if the condition is false.
|
|
///
|
|
/// This does no checking to see if the true/false blocks have large or unsavory
|
|
/// instructions in them.
|
|
Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
|
|
BasicBlock *&IfFalse) {
|
|
PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
|
|
BasicBlock *Pred1 = nullptr;
|
|
BasicBlock *Pred2 = nullptr;
|
|
|
|
if (SomePHI) {
|
|
if (SomePHI->getNumIncomingValues() != 2)
|
|
return nullptr;
|
|
Pred1 = SomePHI->getIncomingBlock(0);
|
|
Pred2 = SomePHI->getIncomingBlock(1);
|
|
} else {
|
|
pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
|
|
if (PI == PE) // No predecessor
|
|
return nullptr;
|
|
Pred1 = *PI++;
|
|
if (PI == PE) // Only one predecessor
|
|
return nullptr;
|
|
Pred2 = *PI++;
|
|
if (PI != PE) // More than two predecessors
|
|
return nullptr;
|
|
}
|
|
|
|
// We can only handle branches. Other control flow will be lowered to
|
|
// branches if possible anyway.
|
|
BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
|
|
BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
|
|
if (!Pred1Br || !Pred2Br)
|
|
return nullptr;
|
|
|
|
// Eliminate code duplication by ensuring that Pred1Br is conditional if
|
|
// either are.
|
|
if (Pred2Br->isConditional()) {
|
|
// If both branches are conditional, we don't have an "if statement". In
|
|
// reality, we could transform this case, but since the condition will be
|
|
// required anyway, we stand no chance of eliminating it, so the xform is
|
|
// probably not profitable.
|
|
if (Pred1Br->isConditional())
|
|
return nullptr;
|
|
|
|
std::swap(Pred1, Pred2);
|
|
std::swap(Pred1Br, Pred2Br);
|
|
}
|
|
|
|
if (Pred1Br->isConditional()) {
|
|
// The only thing we have to watch out for here is to make sure that Pred2
|
|
// doesn't have incoming edges from other blocks. If it does, the condition
|
|
// doesn't dominate BB.
|
|
if (!Pred2->getSinglePredecessor())
|
|
return nullptr;
|
|
|
|
// If we found a conditional branch predecessor, make sure that it branches
|
|
// to BB and Pred2Br. If it doesn't, this isn't an "if statement".
|
|
if (Pred1Br->getSuccessor(0) == BB &&
|
|
Pred1Br->getSuccessor(1) == Pred2) {
|
|
IfTrue = Pred1;
|
|
IfFalse = Pred2;
|
|
} else if (Pred1Br->getSuccessor(0) == Pred2 &&
|
|
Pred1Br->getSuccessor(1) == BB) {
|
|
IfTrue = Pred2;
|
|
IfFalse = Pred1;
|
|
} else {
|
|
// We know that one arm of the conditional goes to BB, so the other must
|
|
// go somewhere unrelated, and this must not be an "if statement".
|
|
return nullptr;
|
|
}
|
|
|
|
return Pred1Br->getCondition();
|
|
}
|
|
|
|
// Ok, if we got here, both predecessors end with an unconditional branch to
|
|
// BB. Don't panic! If both blocks only have a single (identical)
|
|
// predecessor, and THAT is a conditional branch, then we're all ok!
|
|
BasicBlock *CommonPred = Pred1->getSinglePredecessor();
|
|
if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor())
|
|
return nullptr;
|
|
|
|
// Otherwise, if this is a conditional branch, then we can use it!
|
|
BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
|
|
if (!BI) return nullptr;
|
|
|
|
assert(BI->isConditional() && "Two successors but not conditional?");
|
|
if (BI->getSuccessor(0) == Pred1) {
|
|
IfTrue = Pred1;
|
|
IfFalse = Pred2;
|
|
} else {
|
|
IfTrue = Pred2;
|
|
IfFalse = Pred1;
|
|
}
|
|
return BI->getCondition();
|
|
}
|