mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-01 00:11:00 +00:00
08962f208b
APIs and replace it and numerous booleans with an option struct. The critical edge splitting API has a really large surface of flags and so it seems worth burning a small option struct / builder. This struct can be constructed with the various preserved analyses and then flags can be flipped in a builder style. The various users are now responsible for directly passing along their analysis information. This should be enough for the critical edge splitting to work cleanly with the new pass manager as well. This API is still pretty crufty and could be cleaned up a lot, but I've focused on this change just threading an option struct rather than a pass through the API. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226456 91177308-0d34-0410-b5e6-96231b3b80d8
335 lines
14 KiB
C++
335 lines
14 KiB
C++
//===- BreakCriticalEdges.cpp - Critical Edge Elimination Pass ------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// BreakCriticalEdges pass - Break all of the critical edges in the CFG by
|
|
// inserting a dummy basic block. This pass may be "required" by passes that
|
|
// cannot deal with critical edges. For this usage, the structure type is
|
|
// forward declared. This pass obviously invalidates the CFG, but can update
|
|
// dominator trees.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/CFG.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/IR/CFG.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "break-crit-edges"
|
|
|
|
STATISTIC(NumBroken, "Number of blocks inserted");
|
|
|
|
namespace {
|
|
struct BreakCriticalEdges : public FunctionPass {
|
|
static char ID; // Pass identification, replacement for typeid
|
|
BreakCriticalEdges() : FunctionPass(ID) {
|
|
initializeBreakCriticalEdgesPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnFunction(Function &F) override {
|
|
auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
|
|
auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
|
|
auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
|
|
auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
|
|
unsigned N =
|
|
SplitAllCriticalEdges(F, CriticalEdgeSplittingOptions(DT, LI));
|
|
NumBroken += N;
|
|
return N > 0;
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addPreserved<DominatorTreeWrapperPass>();
|
|
AU.addPreserved<LoopInfoWrapperPass>();
|
|
|
|
// No loop canonicalization guarantees are broken by this pass.
|
|
AU.addPreservedID(LoopSimplifyID);
|
|
}
|
|
};
|
|
}
|
|
|
|
char BreakCriticalEdges::ID = 0;
|
|
INITIALIZE_PASS(BreakCriticalEdges, "break-crit-edges",
|
|
"Break critical edges in CFG", false, false)
|
|
|
|
// Publicly exposed interface to pass...
|
|
char &llvm::BreakCriticalEdgesID = BreakCriticalEdges::ID;
|
|
FunctionPass *llvm::createBreakCriticalEdgesPass() {
|
|
return new BreakCriticalEdges();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Implementation of the external critical edge manipulation functions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// createPHIsForSplitLoopExit - When a loop exit edge is split, LCSSA form
|
|
/// may require new PHIs in the new exit block. This function inserts the
|
|
/// new PHIs, as needed. Preds is a list of preds inside the loop, SplitBB
|
|
/// is the new loop exit block, and DestBB is the old loop exit, now the
|
|
/// successor of SplitBB.
|
|
static void createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds,
|
|
BasicBlock *SplitBB,
|
|
BasicBlock *DestBB) {
|
|
// SplitBB shouldn't have anything non-trivial in it yet.
|
|
assert((SplitBB->getFirstNonPHI() == SplitBB->getTerminator() ||
|
|
SplitBB->isLandingPad()) && "SplitBB has non-PHI nodes!");
|
|
|
|
// For each PHI in the destination block.
|
|
for (BasicBlock::iterator I = DestBB->begin();
|
|
PHINode *PN = dyn_cast<PHINode>(I); ++I) {
|
|
unsigned Idx = PN->getBasicBlockIndex(SplitBB);
|
|
Value *V = PN->getIncomingValue(Idx);
|
|
|
|
// If the input is a PHI which already satisfies LCSSA, don't create
|
|
// a new one.
|
|
if (const PHINode *VP = dyn_cast<PHINode>(V))
|
|
if (VP->getParent() == SplitBB)
|
|
continue;
|
|
|
|
// Otherwise a new PHI is needed. Create one and populate it.
|
|
PHINode *NewPN =
|
|
PHINode::Create(PN->getType(), Preds.size(), "split",
|
|
SplitBB->isLandingPad() ?
|
|
SplitBB->begin() : SplitBB->getTerminator());
|
|
for (unsigned i = 0, e = Preds.size(); i != e; ++i)
|
|
NewPN->addIncoming(V, Preds[i]);
|
|
|
|
// Update the original PHI.
|
|
PN->setIncomingValue(Idx, NewPN);
|
|
}
|
|
}
|
|
|
|
/// SplitCriticalEdge - If this edge is a critical edge, insert a new node to
|
|
/// split the critical edge. This will update DominatorTree information if it
|
|
/// is available, thus calling this pass will not invalidate either of them.
|
|
/// This returns the new block if the edge was split, null otherwise.
|
|
///
|
|
/// If MergeIdenticalEdges is true (not the default), *all* edges from TI to the
|
|
/// specified successor will be merged into the same critical edge block.
|
|
/// This is most commonly interesting with switch instructions, which may
|
|
/// have many edges to any one destination. This ensures that all edges to that
|
|
/// dest go to one block instead of each going to a different block, but isn't
|
|
/// the standard definition of a "critical edge".
|
|
///
|
|
/// It is invalid to call this function on a critical edge that starts at an
|
|
/// IndirectBrInst. Splitting these edges will almost always create an invalid
|
|
/// program because the address of the new block won't be the one that is jumped
|
|
/// to.
|
|
///
|
|
BasicBlock *llvm::SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum,
|
|
const CriticalEdgeSplittingOptions &Options) {
|
|
if (!isCriticalEdge(TI, SuccNum, Options.MergeIdenticalEdges))
|
|
return nullptr;
|
|
|
|
assert(!isa<IndirectBrInst>(TI) &&
|
|
"Cannot split critical edge from IndirectBrInst");
|
|
|
|
BasicBlock *TIBB = TI->getParent();
|
|
BasicBlock *DestBB = TI->getSuccessor(SuccNum);
|
|
|
|
// Splitting the critical edge to a landing pad block is non-trivial. Don't do
|
|
// it in this generic function.
|
|
if (DestBB->isLandingPad()) return nullptr;
|
|
|
|
// Create a new basic block, linking it into the CFG.
|
|
BasicBlock *NewBB = BasicBlock::Create(TI->getContext(),
|
|
TIBB->getName() + "." + DestBB->getName() + "_crit_edge");
|
|
// Create our unconditional branch.
|
|
BranchInst *NewBI = BranchInst::Create(DestBB, NewBB);
|
|
NewBI->setDebugLoc(TI->getDebugLoc());
|
|
|
|
// Branch to the new block, breaking the edge.
|
|
TI->setSuccessor(SuccNum, NewBB);
|
|
|
|
// Insert the block into the function... right after the block TI lives in.
|
|
Function &F = *TIBB->getParent();
|
|
Function::iterator FBBI = TIBB;
|
|
F.getBasicBlockList().insert(++FBBI, NewBB);
|
|
|
|
// If there are any PHI nodes in DestBB, we need to update them so that they
|
|
// merge incoming values from NewBB instead of from TIBB.
|
|
{
|
|
unsigned BBIdx = 0;
|
|
for (BasicBlock::iterator I = DestBB->begin(); isa<PHINode>(I); ++I) {
|
|
// We no longer enter through TIBB, now we come in through NewBB.
|
|
// Revector exactly one entry in the PHI node that used to come from
|
|
// TIBB to come from NewBB.
|
|
PHINode *PN = cast<PHINode>(I);
|
|
|
|
// Reuse the previous value of BBIdx if it lines up. In cases where we
|
|
// have multiple phi nodes with *lots* of predecessors, this is a speed
|
|
// win because we don't have to scan the PHI looking for TIBB. This
|
|
// happens because the BB list of PHI nodes are usually in the same
|
|
// order.
|
|
if (PN->getIncomingBlock(BBIdx) != TIBB)
|
|
BBIdx = PN->getBasicBlockIndex(TIBB);
|
|
PN->setIncomingBlock(BBIdx, NewBB);
|
|
}
|
|
}
|
|
|
|
// If there are any other edges from TIBB to DestBB, update those to go
|
|
// through the split block, making those edges non-critical as well (and
|
|
// reducing the number of phi entries in the DestBB if relevant).
|
|
if (Options.MergeIdenticalEdges) {
|
|
for (unsigned i = SuccNum+1, e = TI->getNumSuccessors(); i != e; ++i) {
|
|
if (TI->getSuccessor(i) != DestBB) continue;
|
|
|
|
// Remove an entry for TIBB from DestBB phi nodes.
|
|
DestBB->removePredecessor(TIBB, Options.DontDeleteUselessPHIs);
|
|
|
|
// We found another edge to DestBB, go to NewBB instead.
|
|
TI->setSuccessor(i, NewBB);
|
|
}
|
|
}
|
|
|
|
// If we have nothing to update, just return.
|
|
auto *AA = Options.AA;
|
|
auto *DT = Options.DT;
|
|
auto *LI = Options.LI;
|
|
if (!DT && !LI)
|
|
return NewBB;
|
|
|
|
// Now update analysis information. Since the only predecessor of NewBB is
|
|
// the TIBB, TIBB clearly dominates NewBB. TIBB usually doesn't dominate
|
|
// anything, as there are other successors of DestBB. However, if all other
|
|
// predecessors of DestBB are already dominated by DestBB (e.g. DestBB is a
|
|
// loop header) then NewBB dominates DestBB.
|
|
SmallVector<BasicBlock*, 8> OtherPreds;
|
|
|
|
// If there is a PHI in the block, loop over predecessors with it, which is
|
|
// faster than iterating pred_begin/end.
|
|
if (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
|
|
if (PN->getIncomingBlock(i) != NewBB)
|
|
OtherPreds.push_back(PN->getIncomingBlock(i));
|
|
} else {
|
|
for (pred_iterator I = pred_begin(DestBB), E = pred_end(DestBB);
|
|
I != E; ++I) {
|
|
BasicBlock *P = *I;
|
|
if (P != NewBB)
|
|
OtherPreds.push_back(P);
|
|
}
|
|
}
|
|
|
|
bool NewBBDominatesDestBB = true;
|
|
|
|
// Should we update DominatorTree information?
|
|
if (DT) {
|
|
DomTreeNode *TINode = DT->getNode(TIBB);
|
|
|
|
// The new block is not the immediate dominator for any other nodes, but
|
|
// TINode is the immediate dominator for the new node.
|
|
//
|
|
if (TINode) { // Don't break unreachable code!
|
|
DomTreeNode *NewBBNode = DT->addNewBlock(NewBB, TIBB);
|
|
DomTreeNode *DestBBNode = nullptr;
|
|
|
|
// If NewBBDominatesDestBB hasn't been computed yet, do so with DT.
|
|
if (!OtherPreds.empty()) {
|
|
DestBBNode = DT->getNode(DestBB);
|
|
while (!OtherPreds.empty() && NewBBDominatesDestBB) {
|
|
if (DomTreeNode *OPNode = DT->getNode(OtherPreds.back()))
|
|
NewBBDominatesDestBB = DT->dominates(DestBBNode, OPNode);
|
|
OtherPreds.pop_back();
|
|
}
|
|
OtherPreds.clear();
|
|
}
|
|
|
|
// If NewBBDominatesDestBB, then NewBB dominates DestBB, otherwise it
|
|
// doesn't dominate anything.
|
|
if (NewBBDominatesDestBB) {
|
|
if (!DestBBNode) DestBBNode = DT->getNode(DestBB);
|
|
DT->changeImmediateDominator(DestBBNode, NewBBNode);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Update LoopInfo if it is around.
|
|
if (LI) {
|
|
if (Loop *TIL = LI->getLoopFor(TIBB)) {
|
|
// If one or the other blocks were not in a loop, the new block is not
|
|
// either, and thus LI doesn't need to be updated.
|
|
if (Loop *DestLoop = LI->getLoopFor(DestBB)) {
|
|
if (TIL == DestLoop) {
|
|
// Both in the same loop, the NewBB joins loop.
|
|
DestLoop->addBasicBlockToLoop(NewBB, *LI);
|
|
} else if (TIL->contains(DestLoop)) {
|
|
// Edge from an outer loop to an inner loop. Add to the outer loop.
|
|
TIL->addBasicBlockToLoop(NewBB, *LI);
|
|
} else if (DestLoop->contains(TIL)) {
|
|
// Edge from an inner loop to an outer loop. Add to the outer loop.
|
|
DestLoop->addBasicBlockToLoop(NewBB, *LI);
|
|
} else {
|
|
// Edge from two loops with no containment relation. Because these
|
|
// are natural loops, we know that the destination block must be the
|
|
// header of its loop (adding a branch into a loop elsewhere would
|
|
// create an irreducible loop).
|
|
assert(DestLoop->getHeader() == DestBB &&
|
|
"Should not create irreducible loops!");
|
|
if (Loop *P = DestLoop->getParentLoop())
|
|
P->addBasicBlockToLoop(NewBB, *LI);
|
|
}
|
|
}
|
|
|
|
// If TIBB is in a loop and DestBB is outside of that loop, we may need
|
|
// to update LoopSimplify form and LCSSA form.
|
|
if (!TIL->contains(DestBB)) {
|
|
assert(!TIL->contains(NewBB) &&
|
|
"Split point for loop exit is contained in loop!");
|
|
|
|
// Update LCSSA form in the newly created exit block.
|
|
if (Options.PreserveLCSSA) {
|
|
createPHIsForSplitLoopExit(TIBB, NewBB, DestBB);
|
|
}
|
|
|
|
// The only that we can break LoopSimplify form by splitting a critical
|
|
// edge is if after the split there exists some edge from TIL to DestBB
|
|
// *and* the only edge into DestBB from outside of TIL is that of
|
|
// NewBB. If the first isn't true, then LoopSimplify still holds, NewBB
|
|
// is the new exit block and it has no non-loop predecessors. If the
|
|
// second isn't true, then DestBB was not in LoopSimplify form prior to
|
|
// the split as it had a non-loop predecessor. In both of these cases,
|
|
// the predecessor must be directly in TIL, not in a subloop, or again
|
|
// LoopSimplify doesn't hold.
|
|
SmallVector<BasicBlock *, 4> LoopPreds;
|
|
for (pred_iterator I = pred_begin(DestBB), E = pred_end(DestBB); I != E;
|
|
++I) {
|
|
BasicBlock *P = *I;
|
|
if (P == NewBB)
|
|
continue; // The new block is known.
|
|
if (LI->getLoopFor(P) != TIL) {
|
|
// No need to re-simplify, it wasn't to start with.
|
|
LoopPreds.clear();
|
|
break;
|
|
}
|
|
LoopPreds.push_back(P);
|
|
}
|
|
if (!LoopPreds.empty()) {
|
|
assert(!DestBB->isLandingPad() &&
|
|
"We don't split edges to landing pads!");
|
|
BasicBlock *NewExitBB = SplitBlockPredecessors(
|
|
DestBB, LoopPreds, "split", AA, DT, LI, Options.PreserveLCSSA);
|
|
if (Options.PreserveLCSSA)
|
|
createPHIsForSplitLoopExit(LoopPreds, NewExitBB, DestBB);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return NewBB;
|
|
}
|