llvm-6502/lib/Transforms/InstCombine/InstCombine.h
Chandler Carruth 9d4f87e9be [PM] Refactor the InstCombiner interface to use an external worklist.
Because in its primary function pass the combiner is run repeatedly over
the same function until doing so produces no changes, it is essentially
to not re-allocate the worklist. However, as a utility, the more common
pattern would be to put a limited set of instructions in the worklist
rather than the entire function body. That is also the more likely
pattern when used by the new pass manager.

The result is a very light weight combiner that does the visiting with
a separable worklist. This can then be wrapped up in a helper function
for users that want a combiner utility, or as I have here it can be
wrapped up in a pass which manages the iterations used when combining an
entire function's instructions.

Hopefully this removes some of the worst of the interface warts that
became apparant with the last patch here. However, there is clearly more
work. I've again left some FIXMEs for the most egregious. The ones that
stick out to me are the exposure of the worklist and IR builder as
public members, and the use of pointers rather than references. However,
fixing these is likely to be much more mechanical and less interesting
so I didn't want to touch them in this patch.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226655 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-21 11:38:17 +00:00

494 lines
21 KiB
C++

//===- InstCombine.h - Main InstCombine pass definition ---------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINE_H
#define LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINE_H
#include "InstCombineWorklist.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/TargetFolder.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Pass.h"
#define DEBUG_TYPE "instcombine"
namespace llvm {
class CallSite;
class DataLayout;
class DominatorTree;
class TargetLibraryInfo;
class DbgDeclareInst;
class MemIntrinsic;
class MemSetInst;
/// \brief Specific patterns of select instructions we can match.
enum SelectPatternFlavor {
SPF_UNKNOWN = 0,
SPF_SMIN,
SPF_UMIN,
SPF_SMAX,
SPF_UMAX,
SPF_ABS,
SPF_NABS
};
/// \brief Assign a complexity or rank value to LLVM Values.
///
/// This routine maps IR values to various complexity ranks:
/// 0 -> undef
/// 1 -> Constants
/// 2 -> Other non-instructions
/// 3 -> Arguments
/// 3 -> Unary operations
/// 4 -> Other instructions
static inline unsigned getComplexity(Value *V) {
if (isa<Instruction>(V)) {
if (BinaryOperator::isNeg(V) || BinaryOperator::isFNeg(V) ||
BinaryOperator::isNot(V))
return 3;
return 4;
}
if (isa<Argument>(V))
return 3;
return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
}
/// \brief Add one to a Constant
static inline Constant *AddOne(Constant *C) {
return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
}
/// \brief Subtract one from a Constant
static inline Constant *SubOne(Constant *C) {
return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1));
}
/// \brief An IRBuilder inserter that adds new instructions to the instcombine
/// worklist.
class LLVM_LIBRARY_VISIBILITY InstCombineIRInserter
: public IRBuilderDefaultInserter<true> {
InstCombineWorklist &Worklist;
AssumptionCache *AC;
public:
InstCombineIRInserter(InstCombineWorklist &WL, AssumptionCache *AC)
: Worklist(WL), AC(AC) {}
void InsertHelper(Instruction *I, const Twine &Name, BasicBlock *BB,
BasicBlock::iterator InsertPt) const {
IRBuilderDefaultInserter<true>::InsertHelper(I, Name, BB, InsertPt);
Worklist.Add(I);
using namespace llvm::PatternMatch;
if (match(I, m_Intrinsic<Intrinsic::assume>()))
AC->registerAssumption(cast<CallInst>(I));
}
};
/// \brief The core instruction combiner logic.
///
/// This class provides both the logic to recursively visit instructions and
/// combine them, as well as the pass infrastructure for running this as part
/// of the LLVM pass pipeline.
class LLVM_LIBRARY_VISIBILITY InstCombiner
: public InstVisitor<InstCombiner, Instruction *> {
// FIXME: These members shouldn't be public.
public:
/// \brief A worklist of the instructions that need to be simplified.
InstCombineWorklist &Worklist;
/// \brief An IRBuilder that automatically inserts new instructions into the
/// worklist.
typedef IRBuilder<true, TargetFolder, InstCombineIRInserter> BuilderTy;
BuilderTy *Builder;
private:
// Mode in which we are running the combiner.
const bool MinimizeSize;
// Required analyses.
// FIXME: These can never be null and should be references.
AssumptionCache *AC;
TargetLibraryInfo *TLI;
DominatorTree *DT;
// Optional analyses. When non-null, these can both be used to do better
// combining and will be updated to reflect any changes.
const DataLayout *DL;
LoopInfo *LI;
bool MadeIRChange;
public:
InstCombiner(InstCombineWorklist &Worklist, BuilderTy *Builder,
bool MinimizeSize, AssumptionCache *AC, TargetLibraryInfo *TLI,
DominatorTree *DT, const DataLayout *DL, LoopInfo *LI)
: Worklist(Worklist), Builder(Builder), MinimizeSize(MinimizeSize),
AC(AC), TLI(TLI), DT(DT), DL(DL), LI(LI), MadeIRChange(false) {}
/// \brief Run the combiner over the entire worklist until it is empty.
///
/// \returns true if the IR is changed.
bool run();
AssumptionCache *getAssumptionCache() const { return AC; }
const DataLayout *getDataLayout() const { return DL; }
DominatorTree *getDominatorTree() const { return DT; }
LoopInfo *getLoopInfo() const { return LI; }
TargetLibraryInfo *getTargetLibraryInfo() const { return TLI; }
// Visitation implementation - Implement instruction combining for different
// instruction types. The semantics are as follows:
// Return Value:
// null - No change was made
// I - Change was made, I is still valid, I may be dead though
// otherwise - Change was made, replace I with returned instruction
//
Instruction *visitAdd(BinaryOperator &I);
Instruction *visitFAdd(BinaryOperator &I);
Value *OptimizePointerDifference(Value *LHS, Value *RHS, Type *Ty);
Instruction *visitSub(BinaryOperator &I);
Instruction *visitFSub(BinaryOperator &I);
Instruction *visitMul(BinaryOperator &I);
Value *foldFMulConst(Instruction *FMulOrDiv, Constant *C,
Instruction *InsertBefore);
Instruction *visitFMul(BinaryOperator &I);
Instruction *visitURem(BinaryOperator &I);
Instruction *visitSRem(BinaryOperator &I);
Instruction *visitFRem(BinaryOperator &I);
bool SimplifyDivRemOfSelect(BinaryOperator &I);
Instruction *commonRemTransforms(BinaryOperator &I);
Instruction *commonIRemTransforms(BinaryOperator &I);
Instruction *commonDivTransforms(BinaryOperator &I);
Instruction *commonIDivTransforms(BinaryOperator &I);
Instruction *visitUDiv(BinaryOperator &I);
Instruction *visitSDiv(BinaryOperator &I);
Instruction *visitFDiv(BinaryOperator &I);
Value *simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1, bool Inverted);
Value *FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS);
Value *FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS);
Instruction *visitAnd(BinaryOperator &I);
Value *FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS, Instruction *CxtI);
Value *FoldOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS);
Instruction *FoldOrWithConstants(BinaryOperator &I, Value *Op, Value *A,
Value *B, Value *C);
Instruction *FoldXorWithConstants(BinaryOperator &I, Value *Op, Value *A,
Value *B, Value *C);
Instruction *visitOr(BinaryOperator &I);
Instruction *visitXor(BinaryOperator &I);
Instruction *visitShl(BinaryOperator &I);
Instruction *visitAShr(BinaryOperator &I);
Instruction *visitLShr(BinaryOperator &I);
Instruction *commonShiftTransforms(BinaryOperator &I);
Instruction *FoldFCmp_IntToFP_Cst(FCmpInst &I, Instruction *LHSI,
Constant *RHSC);
Instruction *FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
GlobalVariable *GV, CmpInst &ICI,
ConstantInt *AndCst = nullptr);
Instruction *visitFCmpInst(FCmpInst &I);
Instruction *visitICmpInst(ICmpInst &I);
Instruction *visitICmpInstWithCastAndCast(ICmpInst &ICI);
Instruction *visitICmpInstWithInstAndIntCst(ICmpInst &ICI, Instruction *LHS,
ConstantInt *RHS);
Instruction *FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
ConstantInt *DivRHS);
Instruction *FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *DivI,
ConstantInt *DivRHS);
Instruction *FoldICmpCstShrCst(ICmpInst &I, Value *Op, Value *A,
ConstantInt *CI1, ConstantInt *CI2);
Instruction *FoldICmpCstShlCst(ICmpInst &I, Value *Op, Value *A,
ConstantInt *CI1, ConstantInt *CI2);
Instruction *FoldICmpAddOpCst(Instruction &ICI, Value *X, ConstantInt *CI,
ICmpInst::Predicate Pred);
Instruction *FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
ICmpInst::Predicate Cond, Instruction &I);
Instruction *FoldShiftByConstant(Value *Op0, Constant *Op1,
BinaryOperator &I);
Instruction *commonCastTransforms(CastInst &CI);
Instruction *commonPointerCastTransforms(CastInst &CI);
Instruction *visitTrunc(TruncInst &CI);
Instruction *visitZExt(ZExtInst &CI);
Instruction *visitSExt(SExtInst &CI);
Instruction *visitFPTrunc(FPTruncInst &CI);
Instruction *visitFPExt(CastInst &CI);
Instruction *visitFPToUI(FPToUIInst &FI);
Instruction *visitFPToSI(FPToSIInst &FI);
Instruction *visitUIToFP(CastInst &CI);
Instruction *visitSIToFP(CastInst &CI);
Instruction *visitPtrToInt(PtrToIntInst &CI);
Instruction *visitIntToPtr(IntToPtrInst &CI);
Instruction *visitBitCast(BitCastInst &CI);
Instruction *visitAddrSpaceCast(AddrSpaceCastInst &CI);
Instruction *FoldSelectOpOp(SelectInst &SI, Instruction *TI, Instruction *FI);
Instruction *FoldSelectIntoOp(SelectInst &SI, Value *, Value *);
Instruction *FoldSPFofSPF(Instruction *Inner, SelectPatternFlavor SPF1,
Value *A, Value *B, Instruction &Outer,
SelectPatternFlavor SPF2, Value *C);
Instruction *visitSelectInst(SelectInst &SI);
Instruction *visitSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI);
Instruction *visitCallInst(CallInst &CI);
Instruction *visitInvokeInst(InvokeInst &II);
Instruction *SliceUpIllegalIntegerPHI(PHINode &PN);
Instruction *visitPHINode(PHINode &PN);
Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
Instruction *visitAllocaInst(AllocaInst &AI);
Instruction *visitAllocSite(Instruction &FI);
Instruction *visitFree(CallInst &FI);
Instruction *visitLoadInst(LoadInst &LI);
Instruction *visitStoreInst(StoreInst &SI);
Instruction *visitBranchInst(BranchInst &BI);
Instruction *visitSwitchInst(SwitchInst &SI);
Instruction *visitReturnInst(ReturnInst &RI);
Instruction *visitInsertValueInst(InsertValueInst &IV);
Instruction *visitInsertElementInst(InsertElementInst &IE);
Instruction *visitExtractElementInst(ExtractElementInst &EI);
Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
Instruction *visitExtractValueInst(ExtractValueInst &EV);
Instruction *visitLandingPadInst(LandingPadInst &LI);
// visitInstruction - Specify what to return for unhandled instructions...
Instruction *visitInstruction(Instruction &I) { return nullptr; }
// True when DB dominates all uses of DI execpt UI.
// UI must be in the same block as DI.
// The routine checks that the DI parent and DB are different.
bool dominatesAllUses(const Instruction *DI, const Instruction *UI,
const BasicBlock *DB) const;
// Replace select with select operand SIOpd in SI-ICmp sequence when possible
bool replacedSelectWithOperand(SelectInst *SI, const ICmpInst *Icmp,
const unsigned SIOpd);
private:
bool ShouldChangeType(Type *From, Type *To) const;
Value *dyn_castNegVal(Value *V) const;
Value *dyn_castFNegVal(Value *V, bool NoSignedZero = false) const;
Type *FindElementAtOffset(Type *PtrTy, int64_t Offset,
SmallVectorImpl<Value *> &NewIndices);
Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI);
/// \brief Classify whether a cast is worth optimizing.
///
/// Returns true if the cast from "V to Ty" actually results in any code
/// being generated and is interesting to optimize out. If the cast can be
/// eliminated by some other simple transformation, we prefer to do the
/// simplification first.
bool ShouldOptimizeCast(Instruction::CastOps opcode, const Value *V,
Type *Ty);
Instruction *visitCallSite(CallSite CS);
Instruction *tryOptimizeCall(CallInst *CI, const DataLayout *DL);
bool transformConstExprCastCall(CallSite CS);
Instruction *transformCallThroughTrampoline(CallSite CS,
IntrinsicInst *Tramp);
Instruction *transformZExtICmp(ICmpInst *ICI, Instruction &CI,
bool DoXform = true);
Instruction *transformSExtICmp(ICmpInst *ICI, Instruction &CI);
bool WillNotOverflowSignedAdd(Value *LHS, Value *RHS, Instruction *CxtI);
bool WillNotOverflowSignedSub(Value *LHS, Value *RHS, Instruction *CxtI);
bool WillNotOverflowUnsignedSub(Value *LHS, Value *RHS, Instruction *CxtI);
bool WillNotOverflowSignedMul(Value *LHS, Value *RHS, Instruction *CxtI);
Value *EmitGEPOffset(User *GEP);
Instruction *scalarizePHI(ExtractElementInst &EI, PHINode *PN);
Value *EvaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask);
public:
/// \brief Inserts an instruction \p New before instruction \p Old
///
/// Also adds the new instruction to the worklist and returns \p New so that
/// it is suitable for use as the return from the visitation patterns.
Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
assert(New && !New->getParent() &&
"New instruction already inserted into a basic block!");
BasicBlock *BB = Old.getParent();
BB->getInstList().insert(&Old, New); // Insert inst
Worklist.Add(New);
return New;
}
/// \brief Same as InsertNewInstBefore, but also sets the debug loc.
Instruction *InsertNewInstWith(Instruction *New, Instruction &Old) {
New->setDebugLoc(Old.getDebugLoc());
return InsertNewInstBefore(New, Old);
}
/// \brief A combiner-aware RAUW-like routine.
///
/// This method is to be used when an instruction is found to be dead,
/// replacable with another preexisting expression. Here we add all uses of
/// I to the worklist, replace all uses of I with the new value, then return
/// I, so that the inst combiner will know that I was modified.
Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) {
Worklist.AddUsersToWorkList(I); // Add all modified instrs to worklist.
// If we are replacing the instruction with itself, this must be in a
// segment of unreachable code, so just clobber the instruction.
if (&I == V)
V = UndefValue::get(I.getType());
DEBUG(dbgs() << "IC: Replacing " << I << "\n"
<< " with " << *V << '\n');
I.replaceAllUsesWith(V);
return &I;
}
/// Creates a result tuple for an overflow intrinsic \p II with a given
/// \p Result and a constant \p Overflow value. If \p ReUseName is true the
/// \p Result's name is taken from \p II.
Instruction *CreateOverflowTuple(IntrinsicInst *II, Value *Result,
bool Overflow, bool ReUseName = true) {
if (ReUseName)
Result->takeName(II);
Constant *V[] = {UndefValue::get(Result->getType()),
Overflow ? Builder->getTrue() : Builder->getFalse()};
StructType *ST = cast<StructType>(II->getType());
Constant *Struct = ConstantStruct::get(ST, V);
return InsertValueInst::Create(Struct, Result, 0);
}
/// \brief Combiner aware instruction erasure.
///
/// When dealing with an instruction that has side effects or produces a void
/// value, we can't rely on DCE to delete the instruction. Instead, visit
/// methods should return the value returned by this function.
Instruction *EraseInstFromFunction(Instruction &I) {
DEBUG(dbgs() << "IC: ERASE " << I << '\n');
assert(I.use_empty() && "Cannot erase instruction that is used!");
// Make sure that we reprocess all operands now that we reduced their
// use counts.
if (I.getNumOperands() < 8) {
for (User::op_iterator i = I.op_begin(), e = I.op_end(); i != e; ++i)
if (Instruction *Op = dyn_cast<Instruction>(*i))
Worklist.Add(Op);
}
Worklist.Remove(&I);
I.eraseFromParent();
MadeIRChange = true;
return nullptr; // Don't do anything with FI
}
void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
unsigned Depth = 0, Instruction *CxtI = nullptr) const {
return llvm::computeKnownBits(V, KnownZero, KnownOne, DL, Depth, AC, CxtI,
DT);
}
bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth = 0,
Instruction *CxtI = nullptr) const {
return llvm::MaskedValueIsZero(V, Mask, DL, Depth, AC, CxtI, DT);
}
unsigned ComputeNumSignBits(Value *Op, unsigned Depth = 0,
Instruction *CxtI = nullptr) const {
return llvm::ComputeNumSignBits(Op, DL, Depth, AC, CxtI, DT);
}
void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
unsigned Depth = 0, Instruction *CxtI = nullptr) const {
return llvm::ComputeSignBit(V, KnownZero, KnownOne, DL, Depth, AC, CxtI,
DT);
}
OverflowResult computeOverflowForUnsignedMul(Value *LHS, Value *RHS,
const Instruction *CxtI) {
return llvm::computeOverflowForUnsignedMul(LHS, RHS, DL, AC, CxtI, DT);
}
OverflowResult computeOverflowForUnsignedAdd(Value *LHS, Value *RHS,
const Instruction *CxtI) {
return llvm::computeOverflowForUnsignedAdd(LHS, RHS, DL, AC, CxtI, DT);
}
private:
/// \brief Performs a few simplifications for operators which are associative
/// or commutative.
bool SimplifyAssociativeOrCommutative(BinaryOperator &I);
/// \brief Tries to simplify binary operations which some other binary
/// operation distributes over.
///
/// It does this by either by factorizing out common terms (eg "(A*B)+(A*C)"
/// -> "A*(B+C)") or expanding out if this results in simplifications (eg: "A
/// & (B | C) -> (A&B) | (A&C)" if this is a win). Returns the simplified
/// value, or null if it didn't simplify.
Value *SimplifyUsingDistributiveLaws(BinaryOperator &I);
/// \brief Attempts to replace V with a simpler value based on the demanded
/// bits.
Value *SimplifyDemandedUseBits(Value *V, APInt DemandedMask, APInt &KnownZero,
APInt &KnownOne, unsigned Depth,
Instruction *CxtI = nullptr);
bool SimplifyDemandedBits(Use &U, APInt DemandedMask, APInt &KnownZero,
APInt &KnownOne, unsigned Depth = 0);
/// Helper routine of SimplifyDemandedUseBits. It tries to simplify demanded
/// bit for "r1 = shr x, c1; r2 = shl r1, c2" instruction sequence.
Value *SimplifyShrShlDemandedBits(Instruction *Lsr, Instruction *Sftl,
APInt DemandedMask, APInt &KnownZero,
APInt &KnownOne);
/// \brief Tries to simplify operands to an integer instruction based on its
/// demanded bits.
bool SimplifyDemandedInstructionBits(Instruction &Inst);
Value *SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
APInt &UndefElts, unsigned Depth = 0);
Value *SimplifyVectorOp(BinaryOperator &Inst);
Value *SimplifyBSwap(BinaryOperator &Inst);
// FoldOpIntoPhi - Given a binary operator, cast instruction, or select
// which has a PHI node as operand #0, see if we can fold the instruction
// into the PHI (which is only possible if all operands to the PHI are
// constants).
//
Instruction *FoldOpIntoPhi(Instruction &I);
/// \brief Try to rotate an operation below a PHI node, using PHI nodes for
/// its operands.
Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN);
Instruction *FoldPHIArgGEPIntoPHI(PHINode &PN);
Instruction *FoldPHIArgLoadIntoPHI(PHINode &PN);
Instruction *OptAndOp(Instruction *Op, ConstantInt *OpRHS,
ConstantInt *AndRHS, BinaryOperator &TheAnd);
Value *FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantInt *Mask,
bool isSub, Instruction &I);
Value *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi, bool isSigned,
bool Inside);
Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocaInst &AI);
Instruction *MatchBSwap(BinaryOperator &I);
bool SimplifyStoreAtEndOfBlock(StoreInst &SI);
Instruction *SimplifyMemTransfer(MemIntrinsic *MI);
Instruction *SimplifyMemSet(MemSetInst *MI);
Value *EvaluateInDifferentType(Value *V, Type *Ty, bool isSigned);
/// \brief Returns a value X such that Val = X * Scale, or null if none.
///
/// If the multiplication is known not to overflow then NoSignedWrap is set.
Value *Descale(Value *Val, APInt Scale, bool &NoSignedWrap);
};
} // end namespace llvm.
#undef DEBUG_TYPE
#endif