mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-06 05:06:45 +00:00
9d760ae5c6
nonvolatile condition register fields across calls under the SVR4 ABIs. * With the 64-bit ABI, the save location is at a fixed offset of 8 from the stack pointer. The frame pointer cannot be used to access this portion of the stack frame since the distance from the frame pointer may change with alloca calls. * With the 32-bit ABI, the save location is just below the general register save area, and is accessed via the frame pointer like the rest of the save areas. This is an optional slot, so it must only be created if any of CR2, CR3, and CR4 were modified. * For both ABIs, save/restore logic is generated only if one of the nonvolatile CR fields were modified. I also took this opportunity to clean up an extra FIXME in PPCFrameLowering.h. Save area offsets for 32-bit GPRs are meaningless for the 64-bit ABI, so I removed them for correctness and efficiency. Fixes PR13708 and partially also PR13623. It lets us enable exception handling on PPC64. Patch by William J. Schmidt! git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163713 91177308-0d34-0410-b5e6-96231b3b80d8
1187 lines
42 KiB
C++
1187 lines
42 KiB
C++
//===-- PPCFrameLowering.cpp - PPC Frame Information ----------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains the PPC implementation of TargetFrameLowering class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "PPCFrameLowering.h"
|
|
#include "PPCInstrInfo.h"
|
|
#include "PPCInstrBuilder.h"
|
|
#include "PPCMachineFunctionInfo.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineModuleInfo.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/RegisterScavenging.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
|
|
using namespace llvm;
|
|
|
|
// FIXME This disables some code that aligns the stack to a boundary bigger than
|
|
// the default (16 bytes on Darwin) when there is a stack local of greater
|
|
// alignment. This does not currently work, because the delta between old and
|
|
// new stack pointers is added to offsets that reference incoming parameters
|
|
// after the prolog is generated, and the code that does that doesn't handle a
|
|
// variable delta. You don't want to do that anyway; a better approach is to
|
|
// reserve another register that retains to the incoming stack pointer, and
|
|
// reference parameters relative to that.
|
|
#define ALIGN_STACK 0
|
|
|
|
|
|
/// VRRegNo - Map from a numbered VR register to its enum value.
|
|
///
|
|
static const uint16_t VRRegNo[] = {
|
|
PPC::V0 , PPC::V1 , PPC::V2 , PPC::V3 , PPC::V4 , PPC::V5 , PPC::V6 , PPC::V7 ,
|
|
PPC::V8 , PPC::V9 , PPC::V10, PPC::V11, PPC::V12, PPC::V13, PPC::V14, PPC::V15,
|
|
PPC::V16, PPC::V17, PPC::V18, PPC::V19, PPC::V20, PPC::V21, PPC::V22, PPC::V23,
|
|
PPC::V24, PPC::V25, PPC::V26, PPC::V27, PPC::V28, PPC::V29, PPC::V30, PPC::V31
|
|
};
|
|
|
|
/// RemoveVRSaveCode - We have found that this function does not need any code
|
|
/// to manipulate the VRSAVE register, even though it uses vector registers.
|
|
/// This can happen when the only registers used are known to be live in or out
|
|
/// of the function. Remove all of the VRSAVE related code from the function.
|
|
static void RemoveVRSaveCode(MachineInstr *MI) {
|
|
MachineBasicBlock *Entry = MI->getParent();
|
|
MachineFunction *MF = Entry->getParent();
|
|
|
|
// We know that the MTVRSAVE instruction immediately follows MI. Remove it.
|
|
MachineBasicBlock::iterator MBBI = MI;
|
|
++MBBI;
|
|
assert(MBBI != Entry->end() && MBBI->getOpcode() == PPC::MTVRSAVE);
|
|
MBBI->eraseFromParent();
|
|
|
|
bool RemovedAllMTVRSAVEs = true;
|
|
// See if we can find and remove the MTVRSAVE instruction from all of the
|
|
// epilog blocks.
|
|
for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) {
|
|
// If last instruction is a return instruction, add an epilogue
|
|
if (!I->empty() && I->back().isReturn()) {
|
|
bool FoundIt = false;
|
|
for (MBBI = I->end(); MBBI != I->begin(); ) {
|
|
--MBBI;
|
|
if (MBBI->getOpcode() == PPC::MTVRSAVE) {
|
|
MBBI->eraseFromParent(); // remove it.
|
|
FoundIt = true;
|
|
break;
|
|
}
|
|
}
|
|
RemovedAllMTVRSAVEs &= FoundIt;
|
|
}
|
|
}
|
|
|
|
// If we found and removed all MTVRSAVE instructions, remove the read of
|
|
// VRSAVE as well.
|
|
if (RemovedAllMTVRSAVEs) {
|
|
MBBI = MI;
|
|
assert(MBBI != Entry->begin() && "UPDATE_VRSAVE is first instr in block?");
|
|
--MBBI;
|
|
assert(MBBI->getOpcode() == PPC::MFVRSAVE && "VRSAVE instrs wandered?");
|
|
MBBI->eraseFromParent();
|
|
}
|
|
|
|
// Finally, nuke the UPDATE_VRSAVE.
|
|
MI->eraseFromParent();
|
|
}
|
|
|
|
// HandleVRSaveUpdate - MI is the UPDATE_VRSAVE instruction introduced by the
|
|
// instruction selector. Based on the vector registers that have been used,
|
|
// transform this into the appropriate ORI instruction.
|
|
static void HandleVRSaveUpdate(MachineInstr *MI, const TargetInstrInfo &TII) {
|
|
MachineFunction *MF = MI->getParent()->getParent();
|
|
DebugLoc dl = MI->getDebugLoc();
|
|
|
|
unsigned UsedRegMask = 0;
|
|
for (unsigned i = 0; i != 32; ++i)
|
|
if (MF->getRegInfo().isPhysRegUsed(VRRegNo[i]))
|
|
UsedRegMask |= 1 << (31-i);
|
|
|
|
// Live in and live out values already must be in the mask, so don't bother
|
|
// marking them.
|
|
for (MachineRegisterInfo::livein_iterator
|
|
I = MF->getRegInfo().livein_begin(),
|
|
E = MF->getRegInfo().livein_end(); I != E; ++I) {
|
|
unsigned RegNo = getPPCRegisterNumbering(I->first);
|
|
if (VRRegNo[RegNo] == I->first) // If this really is a vector reg.
|
|
UsedRegMask &= ~(1 << (31-RegNo)); // Doesn't need to be marked.
|
|
}
|
|
for (MachineRegisterInfo::liveout_iterator
|
|
I = MF->getRegInfo().liveout_begin(),
|
|
E = MF->getRegInfo().liveout_end(); I != E; ++I) {
|
|
unsigned RegNo = getPPCRegisterNumbering(*I);
|
|
if (VRRegNo[RegNo] == *I) // If this really is a vector reg.
|
|
UsedRegMask &= ~(1 << (31-RegNo)); // Doesn't need to be marked.
|
|
}
|
|
|
|
// If no registers are used, turn this into a copy.
|
|
if (UsedRegMask == 0) {
|
|
// Remove all VRSAVE code.
|
|
RemoveVRSaveCode(MI);
|
|
return;
|
|
}
|
|
|
|
unsigned SrcReg = MI->getOperand(1).getReg();
|
|
unsigned DstReg = MI->getOperand(0).getReg();
|
|
|
|
if ((UsedRegMask & 0xFFFF) == UsedRegMask) {
|
|
if (DstReg != SrcReg)
|
|
BuildMI(*MI->getParent(), MI, dl, TII.get(PPC::ORI), DstReg)
|
|
.addReg(SrcReg)
|
|
.addImm(UsedRegMask);
|
|
else
|
|
BuildMI(*MI->getParent(), MI, dl, TII.get(PPC::ORI), DstReg)
|
|
.addReg(SrcReg, RegState::Kill)
|
|
.addImm(UsedRegMask);
|
|
} else if ((UsedRegMask & 0xFFFF0000) == UsedRegMask) {
|
|
if (DstReg != SrcReg)
|
|
BuildMI(*MI->getParent(), MI, dl, TII.get(PPC::ORIS), DstReg)
|
|
.addReg(SrcReg)
|
|
.addImm(UsedRegMask >> 16);
|
|
else
|
|
BuildMI(*MI->getParent(), MI, dl, TII.get(PPC::ORIS), DstReg)
|
|
.addReg(SrcReg, RegState::Kill)
|
|
.addImm(UsedRegMask >> 16);
|
|
} else {
|
|
if (DstReg != SrcReg)
|
|
BuildMI(*MI->getParent(), MI, dl, TII.get(PPC::ORIS), DstReg)
|
|
.addReg(SrcReg)
|
|
.addImm(UsedRegMask >> 16);
|
|
else
|
|
BuildMI(*MI->getParent(), MI, dl, TII.get(PPC::ORIS), DstReg)
|
|
.addReg(SrcReg, RegState::Kill)
|
|
.addImm(UsedRegMask >> 16);
|
|
|
|
BuildMI(*MI->getParent(), MI, dl, TII.get(PPC::ORI), DstReg)
|
|
.addReg(DstReg, RegState::Kill)
|
|
.addImm(UsedRegMask & 0xFFFF);
|
|
}
|
|
|
|
// Remove the old UPDATE_VRSAVE instruction.
|
|
MI->eraseFromParent();
|
|
}
|
|
|
|
static bool spillsCR(const MachineFunction &MF) {
|
|
const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
|
|
return FuncInfo->isCRSpilled();
|
|
}
|
|
|
|
/// determineFrameLayout - Determine the size of the frame and maximum call
|
|
/// frame size.
|
|
void PPCFrameLowering::determineFrameLayout(MachineFunction &MF) const {
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
|
|
// Get the number of bytes to allocate from the FrameInfo
|
|
unsigned FrameSize = MFI->getStackSize();
|
|
|
|
// Get the alignments provided by the target, and the maximum alignment
|
|
// (if any) of the fixed frame objects.
|
|
unsigned MaxAlign = MFI->getMaxAlignment();
|
|
unsigned TargetAlign = getStackAlignment();
|
|
unsigned AlignMask = TargetAlign - 1; //
|
|
|
|
// If we are a leaf function, and use up to 224 bytes of stack space,
|
|
// don't have a frame pointer, calls, or dynamic alloca then we do not need
|
|
// to adjust the stack pointer (we fit in the Red Zone). For 64-bit
|
|
// SVR4, we also require a stack frame if we need to spill the CR,
|
|
// since this spill area is addressed relative to the stack pointer.
|
|
bool DisableRedZone = MF.getFunction()->hasFnAttr(Attribute::NoRedZone);
|
|
// FIXME SVR4 The 32-bit SVR4 ABI has no red zone. However, it can
|
|
// still generate stackless code if all local vars are reg-allocated.
|
|
// Try: (FrameSize <= 224
|
|
// || (FrameSize == 0 && Subtarget.isPPC32 && Subtarget.isSVR4ABI()))
|
|
if (!DisableRedZone &&
|
|
FrameSize <= 224 && // Fits in red zone.
|
|
!MFI->hasVarSizedObjects() && // No dynamic alloca.
|
|
!MFI->adjustsStack() && // No calls.
|
|
!(Subtarget.isPPC64() && // No 64-bit SVR4 CRsave.
|
|
Subtarget.isSVR4ABI()
|
|
&& spillsCR(MF)) &&
|
|
(!ALIGN_STACK || MaxAlign <= TargetAlign)) { // No special alignment.
|
|
// No need for frame
|
|
MFI->setStackSize(0);
|
|
return;
|
|
}
|
|
|
|
// Get the maximum call frame size of all the calls.
|
|
unsigned maxCallFrameSize = MFI->getMaxCallFrameSize();
|
|
|
|
// Maximum call frame needs to be at least big enough for linkage and 8 args.
|
|
unsigned minCallFrameSize = getMinCallFrameSize(Subtarget.isPPC64(),
|
|
Subtarget.isDarwinABI());
|
|
maxCallFrameSize = std::max(maxCallFrameSize, minCallFrameSize);
|
|
|
|
// If we have dynamic alloca then maxCallFrameSize needs to be aligned so
|
|
// that allocations will be aligned.
|
|
if (MFI->hasVarSizedObjects())
|
|
maxCallFrameSize = (maxCallFrameSize + AlignMask) & ~AlignMask;
|
|
|
|
// Update maximum call frame size.
|
|
MFI->setMaxCallFrameSize(maxCallFrameSize);
|
|
|
|
// Include call frame size in total.
|
|
FrameSize += maxCallFrameSize;
|
|
|
|
// Make sure the frame is aligned.
|
|
FrameSize = (FrameSize + AlignMask) & ~AlignMask;
|
|
|
|
// Update frame info.
|
|
MFI->setStackSize(FrameSize);
|
|
}
|
|
|
|
// hasFP - Return true if the specified function actually has a dedicated frame
|
|
// pointer register.
|
|
bool PPCFrameLowering::hasFP(const MachineFunction &MF) const {
|
|
const MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
// FIXME: This is pretty much broken by design: hasFP() might be called really
|
|
// early, before the stack layout was calculated and thus hasFP() might return
|
|
// true or false here depending on the time of call.
|
|
return (MFI->getStackSize()) && needsFP(MF);
|
|
}
|
|
|
|
// needsFP - Return true if the specified function should have a dedicated frame
|
|
// pointer register. This is true if the function has variable sized allocas or
|
|
// if frame pointer elimination is disabled.
|
|
bool PPCFrameLowering::needsFP(const MachineFunction &MF) const {
|
|
const MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
|
|
// Naked functions have no stack frame pushed, so we don't have a frame
|
|
// pointer.
|
|
if (MF.getFunction()->hasFnAttr(Attribute::Naked))
|
|
return false;
|
|
|
|
return MF.getTarget().Options.DisableFramePointerElim(MF) ||
|
|
MFI->hasVarSizedObjects() ||
|
|
(MF.getTarget().Options.GuaranteedTailCallOpt &&
|
|
MF.getInfo<PPCFunctionInfo>()->hasFastCall());
|
|
}
|
|
|
|
|
|
void PPCFrameLowering::emitPrologue(MachineFunction &MF) const {
|
|
MachineBasicBlock &MBB = MF.front(); // Prolog goes in entry BB
|
|
MachineBasicBlock::iterator MBBI = MBB.begin();
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
const PPCInstrInfo &TII =
|
|
*static_cast<const PPCInstrInfo*>(MF.getTarget().getInstrInfo());
|
|
|
|
MachineModuleInfo &MMI = MF.getMMI();
|
|
DebugLoc dl;
|
|
bool needsFrameMoves = MMI.hasDebugInfo() ||
|
|
MF.getFunction()->needsUnwindTableEntry();
|
|
|
|
// Prepare for frame info.
|
|
MCSymbol *FrameLabel = 0;
|
|
|
|
// Scan the prolog, looking for an UPDATE_VRSAVE instruction. If we find it,
|
|
// process it.
|
|
for (unsigned i = 0; MBBI != MBB.end(); ++i, ++MBBI) {
|
|
if (MBBI->getOpcode() == PPC::UPDATE_VRSAVE) {
|
|
HandleVRSaveUpdate(MBBI, TII);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Move MBBI back to the beginning of the function.
|
|
MBBI = MBB.begin();
|
|
|
|
// Work out frame sizes.
|
|
// FIXME: determineFrameLayout() may change the frame size. This should be
|
|
// moved upper, to some hook.
|
|
determineFrameLayout(MF);
|
|
unsigned FrameSize = MFI->getStackSize();
|
|
|
|
int NegFrameSize = -FrameSize;
|
|
|
|
// Get processor type.
|
|
bool isPPC64 = Subtarget.isPPC64();
|
|
// Get operating system
|
|
bool isDarwinABI = Subtarget.isDarwinABI();
|
|
// Check if the link register (LR) must be saved.
|
|
PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
|
|
bool MustSaveLR = FI->mustSaveLR();
|
|
// Do we have a frame pointer for this function?
|
|
bool HasFP = hasFP(MF);
|
|
|
|
int LROffset = PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI);
|
|
|
|
int FPOffset = 0;
|
|
if (HasFP) {
|
|
if (Subtarget.isSVR4ABI()) {
|
|
MachineFrameInfo *FFI = MF.getFrameInfo();
|
|
int FPIndex = FI->getFramePointerSaveIndex();
|
|
assert(FPIndex && "No Frame Pointer Save Slot!");
|
|
FPOffset = FFI->getObjectOffset(FPIndex);
|
|
} else {
|
|
FPOffset = PPCFrameLowering::getFramePointerSaveOffset(isPPC64, isDarwinABI);
|
|
}
|
|
}
|
|
|
|
if (isPPC64) {
|
|
if (MustSaveLR)
|
|
BuildMI(MBB, MBBI, dl, TII.get(PPC::MFLR8), PPC::X0);
|
|
|
|
if (HasFP)
|
|
BuildMI(MBB, MBBI, dl, TII.get(PPC::STD))
|
|
.addReg(PPC::X31)
|
|
.addImm(FPOffset/4)
|
|
.addReg(PPC::X1);
|
|
|
|
if (MustSaveLR)
|
|
BuildMI(MBB, MBBI, dl, TII.get(PPC::STD))
|
|
.addReg(PPC::X0)
|
|
.addImm(LROffset / 4)
|
|
.addReg(PPC::X1);
|
|
} else {
|
|
if (MustSaveLR)
|
|
BuildMI(MBB, MBBI, dl, TII.get(PPC::MFLR), PPC::R0);
|
|
|
|
if (HasFP)
|
|
// FIXME: On PPC32 SVR4, FPOffset is negative and access to negative
|
|
// offsets of R1 is not allowed.
|
|
BuildMI(MBB, MBBI, dl, TII.get(PPC::STW))
|
|
.addReg(PPC::R31)
|
|
.addImm(FPOffset)
|
|
.addReg(PPC::R1);
|
|
|
|
if (MustSaveLR)
|
|
BuildMI(MBB, MBBI, dl, TII.get(PPC::STW))
|
|
.addReg(PPC::R0)
|
|
.addImm(LROffset)
|
|
.addReg(PPC::R1);
|
|
}
|
|
|
|
// Skip if a leaf routine.
|
|
if (!FrameSize) return;
|
|
|
|
// Get stack alignments.
|
|
unsigned TargetAlign = getStackAlignment();
|
|
unsigned MaxAlign = MFI->getMaxAlignment();
|
|
|
|
// Adjust stack pointer: r1 += NegFrameSize.
|
|
// If there is a preferred stack alignment, align R1 now
|
|
if (!isPPC64) {
|
|
// PPC32.
|
|
if (ALIGN_STACK && MaxAlign > TargetAlign) {
|
|
assert(isPowerOf2_32(MaxAlign) && isInt<16>(MaxAlign) &&
|
|
"Invalid alignment!");
|
|
assert(isInt<16>(NegFrameSize) && "Unhandled stack size and alignment!");
|
|
|
|
BuildMI(MBB, MBBI, dl, TII.get(PPC::RLWINM), PPC::R0)
|
|
.addReg(PPC::R1)
|
|
.addImm(0)
|
|
.addImm(32 - Log2_32(MaxAlign))
|
|
.addImm(31);
|
|
BuildMI(MBB, MBBI, dl, TII.get(PPC::SUBFIC) ,PPC::R0)
|
|
.addReg(PPC::R0, RegState::Kill)
|
|
.addImm(NegFrameSize);
|
|
BuildMI(MBB, MBBI, dl, TII.get(PPC::STWUX), PPC::R1)
|
|
.addReg(PPC::R1, RegState::Kill)
|
|
.addReg(PPC::R1)
|
|
.addReg(PPC::R0);
|
|
} else if (isInt<16>(NegFrameSize)) {
|
|
BuildMI(MBB, MBBI, dl, TII.get(PPC::STWU), PPC::R1)
|
|
.addReg(PPC::R1)
|
|
.addImm(NegFrameSize)
|
|
.addReg(PPC::R1);
|
|
} else {
|
|
BuildMI(MBB, MBBI, dl, TII.get(PPC::LIS), PPC::R0)
|
|
.addImm(NegFrameSize >> 16);
|
|
BuildMI(MBB, MBBI, dl, TII.get(PPC::ORI), PPC::R0)
|
|
.addReg(PPC::R0, RegState::Kill)
|
|
.addImm(NegFrameSize & 0xFFFF);
|
|
BuildMI(MBB, MBBI, dl, TII.get(PPC::STWUX), PPC::R1)
|
|
.addReg(PPC::R1, RegState::Kill)
|
|
.addReg(PPC::R1)
|
|
.addReg(PPC::R0);
|
|
}
|
|
} else { // PPC64.
|
|
if (ALIGN_STACK && MaxAlign > TargetAlign) {
|
|
assert(isPowerOf2_32(MaxAlign) && isInt<16>(MaxAlign) &&
|
|
"Invalid alignment!");
|
|
assert(isInt<16>(NegFrameSize) && "Unhandled stack size and alignment!");
|
|
|
|
BuildMI(MBB, MBBI, dl, TII.get(PPC::RLDICL), PPC::X0)
|
|
.addReg(PPC::X1)
|
|
.addImm(0)
|
|
.addImm(64 - Log2_32(MaxAlign));
|
|
BuildMI(MBB, MBBI, dl, TII.get(PPC::SUBFIC8), PPC::X0)
|
|
.addReg(PPC::X0)
|
|
.addImm(NegFrameSize);
|
|
BuildMI(MBB, MBBI, dl, TII.get(PPC::STDUX), PPC::X1)
|
|
.addReg(PPC::X1, RegState::Kill)
|
|
.addReg(PPC::X1)
|
|
.addReg(PPC::X0);
|
|
} else if (isInt<16>(NegFrameSize)) {
|
|
BuildMI(MBB, MBBI, dl, TII.get(PPC::STDU), PPC::X1)
|
|
.addReg(PPC::X1)
|
|
.addImm(NegFrameSize / 4)
|
|
.addReg(PPC::X1);
|
|
} else {
|
|
BuildMI(MBB, MBBI, dl, TII.get(PPC::LIS8), PPC::X0)
|
|
.addImm(NegFrameSize >> 16);
|
|
BuildMI(MBB, MBBI, dl, TII.get(PPC::ORI8), PPC::X0)
|
|
.addReg(PPC::X0, RegState::Kill)
|
|
.addImm(NegFrameSize & 0xFFFF);
|
|
BuildMI(MBB, MBBI, dl, TII.get(PPC::STDUX), PPC::X1)
|
|
.addReg(PPC::X1, RegState::Kill)
|
|
.addReg(PPC::X1)
|
|
.addReg(PPC::X0);
|
|
}
|
|
}
|
|
|
|
std::vector<MachineMove> &Moves = MMI.getFrameMoves();
|
|
|
|
// Add the "machine moves" for the instructions we generated above, but in
|
|
// reverse order.
|
|
if (needsFrameMoves) {
|
|
// Mark effective beginning of when frame pointer becomes valid.
|
|
FrameLabel = MMI.getContext().CreateTempSymbol();
|
|
BuildMI(MBB, MBBI, dl, TII.get(PPC::PROLOG_LABEL)).addSym(FrameLabel);
|
|
|
|
// Show update of SP.
|
|
if (NegFrameSize) {
|
|
MachineLocation SPDst(MachineLocation::VirtualFP);
|
|
MachineLocation SPSrc(MachineLocation::VirtualFP, NegFrameSize);
|
|
Moves.push_back(MachineMove(FrameLabel, SPDst, SPSrc));
|
|
} else {
|
|
MachineLocation SP(isPPC64 ? PPC::X31 : PPC::R31);
|
|
Moves.push_back(MachineMove(FrameLabel, SP, SP));
|
|
}
|
|
|
|
if (HasFP) {
|
|
MachineLocation FPDst(MachineLocation::VirtualFP, FPOffset);
|
|
MachineLocation FPSrc(isPPC64 ? PPC::X31 : PPC::R31);
|
|
Moves.push_back(MachineMove(FrameLabel, FPDst, FPSrc));
|
|
}
|
|
|
|
if (MustSaveLR) {
|
|
MachineLocation LRDst(MachineLocation::VirtualFP, LROffset);
|
|
MachineLocation LRSrc(isPPC64 ? PPC::LR8 : PPC::LR);
|
|
Moves.push_back(MachineMove(FrameLabel, LRDst, LRSrc));
|
|
}
|
|
}
|
|
|
|
MCSymbol *ReadyLabel = 0;
|
|
|
|
// If there is a frame pointer, copy R1 into R31
|
|
if (HasFP) {
|
|
if (!isPPC64) {
|
|
BuildMI(MBB, MBBI, dl, TII.get(PPC::OR), PPC::R31)
|
|
.addReg(PPC::R1)
|
|
.addReg(PPC::R1);
|
|
} else {
|
|
BuildMI(MBB, MBBI, dl, TII.get(PPC::OR8), PPC::X31)
|
|
.addReg(PPC::X1)
|
|
.addReg(PPC::X1);
|
|
}
|
|
|
|
if (needsFrameMoves) {
|
|
ReadyLabel = MMI.getContext().CreateTempSymbol();
|
|
|
|
// Mark effective beginning of when frame pointer is ready.
|
|
BuildMI(MBB, MBBI, dl, TII.get(PPC::PROLOG_LABEL)).addSym(ReadyLabel);
|
|
|
|
MachineLocation FPDst(HasFP ? (isPPC64 ? PPC::X31 : PPC::R31) :
|
|
(isPPC64 ? PPC::X1 : PPC::R1));
|
|
MachineLocation FPSrc(MachineLocation::VirtualFP);
|
|
Moves.push_back(MachineMove(ReadyLabel, FPDst, FPSrc));
|
|
}
|
|
}
|
|
|
|
if (needsFrameMoves) {
|
|
MCSymbol *Label = HasFP ? ReadyLabel : FrameLabel;
|
|
|
|
// Add callee saved registers to move list.
|
|
const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
|
|
for (unsigned I = 0, E = CSI.size(); I != E; ++I) {
|
|
unsigned Reg = CSI[I].getReg();
|
|
if (Reg == PPC::LR || Reg == PPC::LR8 || Reg == PPC::RM) continue;
|
|
|
|
// This is a bit of a hack: CR2LT, CR2GT, CR2EQ and CR2UN are just
|
|
// subregisters of CR2. We just need to emit a move of CR2.
|
|
if (PPC::CRBITRCRegClass.contains(Reg))
|
|
continue;
|
|
|
|
// For SVR4, don't emit a move for the CR spill slot if we haven't
|
|
// spilled CRs.
|
|
if (Subtarget.isSVR4ABI()
|
|
&& (PPC::CR2 <= Reg && Reg <= PPC::CR4)
|
|
&& !spillsCR(MF))
|
|
continue;
|
|
|
|
// For 64-bit SVR4 when we have spilled CRs, the spill location
|
|
// is SP+8, not a frame-relative slot.
|
|
if (Subtarget.isSVR4ABI()
|
|
&& Subtarget.isPPC64()
|
|
&& (PPC::CR2 <= Reg && Reg <= PPC::CR4)) {
|
|
MachineLocation CSDst(PPC::X1, 8);
|
|
MachineLocation CSSrc(PPC::CR2);
|
|
Moves.push_back(MachineMove(Label, CSDst, CSSrc));
|
|
continue;
|
|
}
|
|
|
|
int Offset = MFI->getObjectOffset(CSI[I].getFrameIdx());
|
|
MachineLocation CSDst(MachineLocation::VirtualFP, Offset);
|
|
MachineLocation CSSrc(Reg);
|
|
Moves.push_back(MachineMove(Label, CSDst, CSSrc));
|
|
}
|
|
}
|
|
}
|
|
|
|
void PPCFrameLowering::emitEpilogue(MachineFunction &MF,
|
|
MachineBasicBlock &MBB) const {
|
|
MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
|
|
assert(MBBI != MBB.end() && "Returning block has no terminator");
|
|
const PPCInstrInfo &TII =
|
|
*static_cast<const PPCInstrInfo*>(MF.getTarget().getInstrInfo());
|
|
|
|
unsigned RetOpcode = MBBI->getOpcode();
|
|
DebugLoc dl;
|
|
|
|
assert((RetOpcode == PPC::BLR ||
|
|
RetOpcode == PPC::TCRETURNri ||
|
|
RetOpcode == PPC::TCRETURNdi ||
|
|
RetOpcode == PPC::TCRETURNai ||
|
|
RetOpcode == PPC::TCRETURNri8 ||
|
|
RetOpcode == PPC::TCRETURNdi8 ||
|
|
RetOpcode == PPC::TCRETURNai8) &&
|
|
"Can only insert epilog into returning blocks");
|
|
|
|
// Get alignment info so we know how to restore r1
|
|
const MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
unsigned TargetAlign = getStackAlignment();
|
|
unsigned MaxAlign = MFI->getMaxAlignment();
|
|
|
|
// Get the number of bytes allocated from the FrameInfo.
|
|
int FrameSize = MFI->getStackSize();
|
|
|
|
// Get processor type.
|
|
bool isPPC64 = Subtarget.isPPC64();
|
|
// Get operating system
|
|
bool isDarwinABI = Subtarget.isDarwinABI();
|
|
// Check if the link register (LR) has been saved.
|
|
PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
|
|
bool MustSaveLR = FI->mustSaveLR();
|
|
// Do we have a frame pointer for this function?
|
|
bool HasFP = hasFP(MF);
|
|
|
|
int LROffset = PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI);
|
|
|
|
int FPOffset = 0;
|
|
if (HasFP) {
|
|
if (Subtarget.isSVR4ABI()) {
|
|
MachineFrameInfo *FFI = MF.getFrameInfo();
|
|
int FPIndex = FI->getFramePointerSaveIndex();
|
|
assert(FPIndex && "No Frame Pointer Save Slot!");
|
|
FPOffset = FFI->getObjectOffset(FPIndex);
|
|
} else {
|
|
FPOffset = PPCFrameLowering::getFramePointerSaveOffset(isPPC64, isDarwinABI);
|
|
}
|
|
}
|
|
|
|
bool UsesTCRet = RetOpcode == PPC::TCRETURNri ||
|
|
RetOpcode == PPC::TCRETURNdi ||
|
|
RetOpcode == PPC::TCRETURNai ||
|
|
RetOpcode == PPC::TCRETURNri8 ||
|
|
RetOpcode == PPC::TCRETURNdi8 ||
|
|
RetOpcode == PPC::TCRETURNai8;
|
|
|
|
if (UsesTCRet) {
|
|
int MaxTCRetDelta = FI->getTailCallSPDelta();
|
|
MachineOperand &StackAdjust = MBBI->getOperand(1);
|
|
assert(StackAdjust.isImm() && "Expecting immediate value.");
|
|
// Adjust stack pointer.
|
|
int StackAdj = StackAdjust.getImm();
|
|
int Delta = StackAdj - MaxTCRetDelta;
|
|
assert((Delta >= 0) && "Delta must be positive");
|
|
if (MaxTCRetDelta>0)
|
|
FrameSize += (StackAdj +Delta);
|
|
else
|
|
FrameSize += StackAdj;
|
|
}
|
|
|
|
if (FrameSize) {
|
|
// The loaded (or persistent) stack pointer value is offset by the 'stwu'
|
|
// on entry to the function. Add this offset back now.
|
|
if (!isPPC64) {
|
|
// If this function contained a fastcc call and GuaranteedTailCallOpt is
|
|
// enabled (=> hasFastCall()==true) the fastcc call might contain a tail
|
|
// call which invalidates the stack pointer value in SP(0). So we use the
|
|
// value of R31 in this case.
|
|
if (FI->hasFastCall() && isInt<16>(FrameSize)) {
|
|
assert(hasFP(MF) && "Expecting a valid the frame pointer.");
|
|
BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDI), PPC::R1)
|
|
.addReg(PPC::R31).addImm(FrameSize);
|
|
} else if(FI->hasFastCall()) {
|
|
BuildMI(MBB, MBBI, dl, TII.get(PPC::LIS), PPC::R0)
|
|
.addImm(FrameSize >> 16);
|
|
BuildMI(MBB, MBBI, dl, TII.get(PPC::ORI), PPC::R0)
|
|
.addReg(PPC::R0, RegState::Kill)
|
|
.addImm(FrameSize & 0xFFFF);
|
|
BuildMI(MBB, MBBI, dl, TII.get(PPC::ADD4))
|
|
.addReg(PPC::R1)
|
|
.addReg(PPC::R31)
|
|
.addReg(PPC::R0);
|
|
} else if (isInt<16>(FrameSize) &&
|
|
(!ALIGN_STACK || TargetAlign >= MaxAlign) &&
|
|
!MFI->hasVarSizedObjects()) {
|
|
BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDI), PPC::R1)
|
|
.addReg(PPC::R1).addImm(FrameSize);
|
|
} else {
|
|
BuildMI(MBB, MBBI, dl, TII.get(PPC::LWZ),PPC::R1)
|
|
.addImm(0).addReg(PPC::R1);
|
|
}
|
|
} else {
|
|
if (FI->hasFastCall() && isInt<16>(FrameSize)) {
|
|
assert(hasFP(MF) && "Expecting a valid the frame pointer.");
|
|
BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDI8), PPC::X1)
|
|
.addReg(PPC::X31).addImm(FrameSize);
|
|
} else if(FI->hasFastCall()) {
|
|
BuildMI(MBB, MBBI, dl, TII.get(PPC::LIS8), PPC::X0)
|
|
.addImm(FrameSize >> 16);
|
|
BuildMI(MBB, MBBI, dl, TII.get(PPC::ORI8), PPC::X0)
|
|
.addReg(PPC::X0, RegState::Kill)
|
|
.addImm(FrameSize & 0xFFFF);
|
|
BuildMI(MBB, MBBI, dl, TII.get(PPC::ADD8))
|
|
.addReg(PPC::X1)
|
|
.addReg(PPC::X31)
|
|
.addReg(PPC::X0);
|
|
} else if (isInt<16>(FrameSize) && TargetAlign >= MaxAlign &&
|
|
!MFI->hasVarSizedObjects()) {
|
|
BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDI8), PPC::X1)
|
|
.addReg(PPC::X1).addImm(FrameSize);
|
|
} else {
|
|
BuildMI(MBB, MBBI, dl, TII.get(PPC::LD), PPC::X1)
|
|
.addImm(0).addReg(PPC::X1);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (isPPC64) {
|
|
if (MustSaveLR)
|
|
BuildMI(MBB, MBBI, dl, TII.get(PPC::LD), PPC::X0)
|
|
.addImm(LROffset/4).addReg(PPC::X1);
|
|
|
|
if (HasFP)
|
|
BuildMI(MBB, MBBI, dl, TII.get(PPC::LD), PPC::X31)
|
|
.addImm(FPOffset/4).addReg(PPC::X1);
|
|
|
|
if (MustSaveLR)
|
|
BuildMI(MBB, MBBI, dl, TII.get(PPC::MTLR8)).addReg(PPC::X0);
|
|
} else {
|
|
if (MustSaveLR)
|
|
BuildMI(MBB, MBBI, dl, TII.get(PPC::LWZ), PPC::R0)
|
|
.addImm(LROffset).addReg(PPC::R1);
|
|
|
|
if (HasFP)
|
|
BuildMI(MBB, MBBI, dl, TII.get(PPC::LWZ), PPC::R31)
|
|
.addImm(FPOffset).addReg(PPC::R1);
|
|
|
|
if (MustSaveLR)
|
|
BuildMI(MBB, MBBI, dl, TII.get(PPC::MTLR)).addReg(PPC::R0);
|
|
}
|
|
|
|
// Callee pop calling convention. Pop parameter/linkage area. Used for tail
|
|
// call optimization
|
|
if (MF.getTarget().Options.GuaranteedTailCallOpt && RetOpcode == PPC::BLR &&
|
|
MF.getFunction()->getCallingConv() == CallingConv::Fast) {
|
|
PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
|
|
unsigned CallerAllocatedAmt = FI->getMinReservedArea();
|
|
unsigned StackReg = isPPC64 ? PPC::X1 : PPC::R1;
|
|
unsigned FPReg = isPPC64 ? PPC::X31 : PPC::R31;
|
|
unsigned TmpReg = isPPC64 ? PPC::X0 : PPC::R0;
|
|
unsigned ADDIInstr = isPPC64 ? PPC::ADDI8 : PPC::ADDI;
|
|
unsigned ADDInstr = isPPC64 ? PPC::ADD8 : PPC::ADD4;
|
|
unsigned LISInstr = isPPC64 ? PPC::LIS8 : PPC::LIS;
|
|
unsigned ORIInstr = isPPC64 ? PPC::ORI8 : PPC::ORI;
|
|
|
|
if (CallerAllocatedAmt && isInt<16>(CallerAllocatedAmt)) {
|
|
BuildMI(MBB, MBBI, dl, TII.get(ADDIInstr), StackReg)
|
|
.addReg(StackReg).addImm(CallerAllocatedAmt);
|
|
} else {
|
|
BuildMI(MBB, MBBI, dl, TII.get(LISInstr), TmpReg)
|
|
.addImm(CallerAllocatedAmt >> 16);
|
|
BuildMI(MBB, MBBI, dl, TII.get(ORIInstr), TmpReg)
|
|
.addReg(TmpReg, RegState::Kill)
|
|
.addImm(CallerAllocatedAmt & 0xFFFF);
|
|
BuildMI(MBB, MBBI, dl, TII.get(ADDInstr))
|
|
.addReg(StackReg)
|
|
.addReg(FPReg)
|
|
.addReg(TmpReg);
|
|
}
|
|
} else if (RetOpcode == PPC::TCRETURNdi) {
|
|
MBBI = MBB.getLastNonDebugInstr();
|
|
MachineOperand &JumpTarget = MBBI->getOperand(0);
|
|
BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB)).
|
|
addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset());
|
|
} else if (RetOpcode == PPC::TCRETURNri) {
|
|
MBBI = MBB.getLastNonDebugInstr();
|
|
assert(MBBI->getOperand(0).isReg() && "Expecting register operand.");
|
|
BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBCTR));
|
|
} else if (RetOpcode == PPC::TCRETURNai) {
|
|
MBBI = MBB.getLastNonDebugInstr();
|
|
MachineOperand &JumpTarget = MBBI->getOperand(0);
|
|
BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBA)).addImm(JumpTarget.getImm());
|
|
} else if (RetOpcode == PPC::TCRETURNdi8) {
|
|
MBBI = MBB.getLastNonDebugInstr();
|
|
MachineOperand &JumpTarget = MBBI->getOperand(0);
|
|
BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB8)).
|
|
addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset());
|
|
} else if (RetOpcode == PPC::TCRETURNri8) {
|
|
MBBI = MBB.getLastNonDebugInstr();
|
|
assert(MBBI->getOperand(0).isReg() && "Expecting register operand.");
|
|
BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBCTR8));
|
|
} else if (RetOpcode == PPC::TCRETURNai8) {
|
|
MBBI = MBB.getLastNonDebugInstr();
|
|
MachineOperand &JumpTarget = MBBI->getOperand(0);
|
|
BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBA8)).addImm(JumpTarget.getImm());
|
|
}
|
|
}
|
|
|
|
/// MustSaveLR - Return true if this function requires that we save the LR
|
|
/// register onto the stack in the prolog and restore it in the epilog of the
|
|
/// function.
|
|
static bool MustSaveLR(const MachineFunction &MF, unsigned LR) {
|
|
const PPCFunctionInfo *MFI = MF.getInfo<PPCFunctionInfo>();
|
|
|
|
// We need a save/restore of LR if there is any def of LR (which is
|
|
// defined by calls, including the PIC setup sequence), or if there is
|
|
// some use of the LR stack slot (e.g. for builtin_return_address).
|
|
// (LR comes in 32 and 64 bit versions.)
|
|
MachineRegisterInfo::def_iterator RI = MF.getRegInfo().def_begin(LR);
|
|
return RI !=MF.getRegInfo().def_end() || MFI->isLRStoreRequired();
|
|
}
|
|
|
|
void
|
|
PPCFrameLowering::processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
|
|
RegScavenger *RS) const {
|
|
const TargetRegisterInfo *RegInfo = MF.getTarget().getRegisterInfo();
|
|
|
|
// Save and clear the LR state.
|
|
PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
|
|
unsigned LR = RegInfo->getRARegister();
|
|
FI->setMustSaveLR(MustSaveLR(MF, LR));
|
|
MF.getRegInfo().setPhysRegUnused(LR);
|
|
|
|
// Save R31 if necessary
|
|
int FPSI = FI->getFramePointerSaveIndex();
|
|
bool isPPC64 = Subtarget.isPPC64();
|
|
bool isDarwinABI = Subtarget.isDarwinABI();
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
|
|
// If the frame pointer save index hasn't been defined yet.
|
|
if (!FPSI && needsFP(MF)) {
|
|
// Find out what the fix offset of the frame pointer save area.
|
|
int FPOffset = getFramePointerSaveOffset(isPPC64, isDarwinABI);
|
|
// Allocate the frame index for frame pointer save area.
|
|
FPSI = MFI->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
|
|
// Save the result.
|
|
FI->setFramePointerSaveIndex(FPSI);
|
|
}
|
|
|
|
// Reserve stack space to move the linkage area to in case of a tail call.
|
|
int TCSPDelta = 0;
|
|
if (MF.getTarget().Options.GuaranteedTailCallOpt &&
|
|
(TCSPDelta = FI->getTailCallSPDelta()) < 0) {
|
|
MFI->CreateFixedObject(-1 * TCSPDelta, TCSPDelta, true);
|
|
}
|
|
|
|
// Reserve a slot closest to SP or frame pointer if we have a dynalloc or
|
|
// a large stack, which will require scavenging a register to materialize a
|
|
// large offset.
|
|
// FIXME: this doesn't actually check stack size, so is a bit pessimistic
|
|
// FIXME: doesn't detect whether or not we need to spill vXX, which requires
|
|
// r0 for now.
|
|
|
|
if (RegInfo->requiresRegisterScavenging(MF))
|
|
if (needsFP(MF) || spillsCR(MF)) {
|
|
const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
|
|
const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
|
|
const TargetRegisterClass *RC = isPPC64 ? G8RC : GPRC;
|
|
RS->setScavengingFrameIndex(MFI->CreateStackObject(RC->getSize(),
|
|
RC->getAlignment(),
|
|
false));
|
|
}
|
|
}
|
|
|
|
void PPCFrameLowering::processFunctionBeforeFrameFinalized(MachineFunction &MF)
|
|
const {
|
|
// Early exit if not using the SVR4 ABI.
|
|
if (!Subtarget.isSVR4ABI())
|
|
return;
|
|
|
|
// Get callee saved register information.
|
|
MachineFrameInfo *FFI = MF.getFrameInfo();
|
|
const std::vector<CalleeSavedInfo> &CSI = FFI->getCalleeSavedInfo();
|
|
|
|
// Early exit if no callee saved registers are modified!
|
|
if (CSI.empty() && !needsFP(MF)) {
|
|
return;
|
|
}
|
|
|
|
unsigned MinGPR = PPC::R31;
|
|
unsigned MinG8R = PPC::X31;
|
|
unsigned MinFPR = PPC::F31;
|
|
unsigned MinVR = PPC::V31;
|
|
|
|
bool HasGPSaveArea = false;
|
|
bool HasG8SaveArea = false;
|
|
bool HasFPSaveArea = false;
|
|
bool HasVRSAVESaveArea = false;
|
|
bool HasVRSaveArea = false;
|
|
|
|
SmallVector<CalleeSavedInfo, 18> GPRegs;
|
|
SmallVector<CalleeSavedInfo, 18> G8Regs;
|
|
SmallVector<CalleeSavedInfo, 18> FPRegs;
|
|
SmallVector<CalleeSavedInfo, 18> VRegs;
|
|
|
|
for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
|
|
unsigned Reg = CSI[i].getReg();
|
|
if (PPC::GPRCRegClass.contains(Reg)) {
|
|
HasGPSaveArea = true;
|
|
|
|
GPRegs.push_back(CSI[i]);
|
|
|
|
if (Reg < MinGPR) {
|
|
MinGPR = Reg;
|
|
}
|
|
} else if (PPC::G8RCRegClass.contains(Reg)) {
|
|
HasG8SaveArea = true;
|
|
|
|
G8Regs.push_back(CSI[i]);
|
|
|
|
if (Reg < MinG8R) {
|
|
MinG8R = Reg;
|
|
}
|
|
} else if (PPC::F8RCRegClass.contains(Reg)) {
|
|
HasFPSaveArea = true;
|
|
|
|
FPRegs.push_back(CSI[i]);
|
|
|
|
if (Reg < MinFPR) {
|
|
MinFPR = Reg;
|
|
}
|
|
} else if (PPC::CRBITRCRegClass.contains(Reg) ||
|
|
PPC::CRRCRegClass.contains(Reg)) {
|
|
; // do nothing, as we already know whether CRs are spilled
|
|
} else if (PPC::VRSAVERCRegClass.contains(Reg)) {
|
|
HasVRSAVESaveArea = true;
|
|
} else if (PPC::VRRCRegClass.contains(Reg)) {
|
|
HasVRSaveArea = true;
|
|
|
|
VRegs.push_back(CSI[i]);
|
|
|
|
if (Reg < MinVR) {
|
|
MinVR = Reg;
|
|
}
|
|
} else {
|
|
llvm_unreachable("Unknown RegisterClass!");
|
|
}
|
|
}
|
|
|
|
PPCFunctionInfo *PFI = MF.getInfo<PPCFunctionInfo>();
|
|
|
|
int64_t LowerBound = 0;
|
|
|
|
// Take into account stack space reserved for tail calls.
|
|
int TCSPDelta = 0;
|
|
if (MF.getTarget().Options.GuaranteedTailCallOpt &&
|
|
(TCSPDelta = PFI->getTailCallSPDelta()) < 0) {
|
|
LowerBound = TCSPDelta;
|
|
}
|
|
|
|
// The Floating-point register save area is right below the back chain word
|
|
// of the previous stack frame.
|
|
if (HasFPSaveArea) {
|
|
for (unsigned i = 0, e = FPRegs.size(); i != e; ++i) {
|
|
int FI = FPRegs[i].getFrameIdx();
|
|
|
|
FFI->setObjectOffset(FI, LowerBound + FFI->getObjectOffset(FI));
|
|
}
|
|
|
|
LowerBound -= (31 - getPPCRegisterNumbering(MinFPR) + 1) * 8;
|
|
}
|
|
|
|
// Check whether the frame pointer register is allocated. If so, make sure it
|
|
// is spilled to the correct offset.
|
|
if (needsFP(MF)) {
|
|
HasGPSaveArea = true;
|
|
|
|
int FI = PFI->getFramePointerSaveIndex();
|
|
assert(FI && "No Frame Pointer Save Slot!");
|
|
|
|
FFI->setObjectOffset(FI, LowerBound + FFI->getObjectOffset(FI));
|
|
}
|
|
|
|
// General register save area starts right below the Floating-point
|
|
// register save area.
|
|
if (HasGPSaveArea || HasG8SaveArea) {
|
|
// Move general register save area spill slots down, taking into account
|
|
// the size of the Floating-point register save area.
|
|
for (unsigned i = 0, e = GPRegs.size(); i != e; ++i) {
|
|
int FI = GPRegs[i].getFrameIdx();
|
|
|
|
FFI->setObjectOffset(FI, LowerBound + FFI->getObjectOffset(FI));
|
|
}
|
|
|
|
// Move general register save area spill slots down, taking into account
|
|
// the size of the Floating-point register save area.
|
|
for (unsigned i = 0, e = G8Regs.size(); i != e; ++i) {
|
|
int FI = G8Regs[i].getFrameIdx();
|
|
|
|
FFI->setObjectOffset(FI, LowerBound + FFI->getObjectOffset(FI));
|
|
}
|
|
|
|
unsigned MinReg =
|
|
std::min<unsigned>(getPPCRegisterNumbering(MinGPR),
|
|
getPPCRegisterNumbering(MinG8R));
|
|
|
|
if (Subtarget.isPPC64()) {
|
|
LowerBound -= (31 - MinReg + 1) * 8;
|
|
} else {
|
|
LowerBound -= (31 - MinReg + 1) * 4;
|
|
}
|
|
}
|
|
|
|
// For 32-bit only, the CR save area is below the general register
|
|
// save area. For 64-bit SVR4, the CR save area is addressed relative
|
|
// to the stack pointer and hence does not need an adjustment here.
|
|
// Only CR2 (the first nonvolatile spilled) has an associated frame
|
|
// index so that we have a single uniform save area.
|
|
if (spillsCR(MF) && !(Subtarget.isPPC64() && Subtarget.isSVR4ABI())) {
|
|
// Adjust the frame index of the CR spill slot.
|
|
for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
|
|
unsigned Reg = CSI[i].getReg();
|
|
|
|
if ((Subtarget.isSVR4ABI() && Reg == PPC::CR2)
|
|
// Leave Darwin logic as-is.
|
|
|| (!Subtarget.isSVR4ABI() &&
|
|
(PPC::CRBITRCRegClass.contains(Reg) ||
|
|
PPC::CRRCRegClass.contains(Reg)))) {
|
|
int FI = CSI[i].getFrameIdx();
|
|
|
|
FFI->setObjectOffset(FI, LowerBound + FFI->getObjectOffset(FI));
|
|
}
|
|
}
|
|
|
|
LowerBound -= 4; // The CR save area is always 4 bytes long.
|
|
}
|
|
|
|
if (HasVRSAVESaveArea) {
|
|
// FIXME SVR4: Is it actually possible to have multiple elements in CSI
|
|
// which have the VRSAVE register class?
|
|
// Adjust the frame index of the VRSAVE spill slot.
|
|
for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
|
|
unsigned Reg = CSI[i].getReg();
|
|
|
|
if (PPC::VRSAVERCRegClass.contains(Reg)) {
|
|
int FI = CSI[i].getFrameIdx();
|
|
|
|
FFI->setObjectOffset(FI, LowerBound + FFI->getObjectOffset(FI));
|
|
}
|
|
}
|
|
|
|
LowerBound -= 4; // The VRSAVE save area is always 4 bytes long.
|
|
}
|
|
|
|
if (HasVRSaveArea) {
|
|
// Insert alignment padding, we need 16-byte alignment.
|
|
LowerBound = (LowerBound - 15) & ~(15);
|
|
|
|
for (unsigned i = 0, e = VRegs.size(); i != e; ++i) {
|
|
int FI = VRegs[i].getFrameIdx();
|
|
|
|
FFI->setObjectOffset(FI, LowerBound + FFI->getObjectOffset(FI));
|
|
}
|
|
}
|
|
}
|
|
|
|
bool
|
|
PPCFrameLowering::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MI,
|
|
const std::vector<CalleeSavedInfo> &CSI,
|
|
const TargetRegisterInfo *TRI) const {
|
|
|
|
// Currently, this function only handles SVR4 32- and 64-bit ABIs.
|
|
// Return false otherwise to maintain pre-existing behavior.
|
|
if (!Subtarget.isSVR4ABI())
|
|
return false;
|
|
|
|
MachineFunction *MF = MBB.getParent();
|
|
const PPCInstrInfo &TII =
|
|
*static_cast<const PPCInstrInfo*>(MF->getTarget().getInstrInfo());
|
|
DebugLoc DL;
|
|
bool CRSpilled = false;
|
|
|
|
for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
|
|
unsigned Reg = CSI[i].getReg();
|
|
// CR2 through CR4 are the nonvolatile CR fields.
|
|
bool IsCRField = PPC::CR2 <= Reg && Reg <= PPC::CR4;
|
|
|
|
if (CRSpilled && IsCRField)
|
|
continue;
|
|
|
|
// Add the callee-saved register as live-in; it's killed at the spill.
|
|
MBB.addLiveIn(Reg);
|
|
|
|
// Insert the spill to the stack frame.
|
|
if (IsCRField) {
|
|
CRSpilled = true;
|
|
// The first time we see a CR field, store the whole CR into the
|
|
// save slot via GPR12 (available in the prolog for 32- and 64-bit).
|
|
if (Subtarget.isPPC64()) {
|
|
// 64-bit: SP+8
|
|
MBB.insert(MI, BuildMI(*MF, DL, TII.get(PPC::MFCR), PPC::X12));
|
|
MBB.insert(MI, BuildMI(*MF, DL, TII.get(PPC::STW))
|
|
.addReg(PPC::X12,
|
|
getKillRegState(true))
|
|
.addImm(8)
|
|
.addReg(PPC::X1));
|
|
} else {
|
|
// 32-bit: FP-relative. Note that we made sure CR2-CR4 all have
|
|
// the same frame index in PPCRegisterInfo::hasReservedSpillSlot.
|
|
MBB.insert(MI, BuildMI(*MF, DL, TII.get(PPC::MFCR), PPC::R12));
|
|
MBB.insert(MI, addFrameReference(BuildMI(*MF, DL, TII.get(PPC::STW))
|
|
.addReg(PPC::R12,
|
|
getKillRegState(true)),
|
|
CSI[i].getFrameIdx()));
|
|
}
|
|
|
|
// Record that we spill the CR in this function.
|
|
PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>();
|
|
FuncInfo->setSpillsCR();
|
|
} else {
|
|
const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
|
|
TII.storeRegToStackSlot(MBB, MI, Reg, true,
|
|
CSI[i].getFrameIdx(), RC, TRI);
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static void
|
|
restoreCRs(bool isPPC64, bool CR2Spilled, bool CR3Spilled, bool CR4Spilled,
|
|
MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
|
|
const std::vector<CalleeSavedInfo> &CSI, unsigned CSIIndex) {
|
|
|
|
MachineFunction *MF = MBB.getParent();
|
|
const PPCInstrInfo &TII =
|
|
*static_cast<const PPCInstrInfo*>(MF->getTarget().getInstrInfo());
|
|
DebugLoc DL;
|
|
unsigned RestoreOp, MoveReg;
|
|
|
|
if (isPPC64) {
|
|
// 64-bit: SP+8
|
|
MBB.insert(MI, BuildMI(*MF, DL, TII.get(PPC::LWZ), PPC::X12)
|
|
.addImm(8)
|
|
.addReg(PPC::X1));
|
|
RestoreOp = PPC::MTCRF8;
|
|
MoveReg = PPC::X12;
|
|
} else {
|
|
// 32-bit: FP-relative
|
|
MBB.insert(MI, addFrameReference(BuildMI(*MF, DL, TII.get(PPC::LWZ),
|
|
PPC::R12),
|
|
CSI[CSIIndex].getFrameIdx()));
|
|
RestoreOp = PPC::MTCRF;
|
|
MoveReg = PPC::R12;
|
|
}
|
|
|
|
if (CR2Spilled)
|
|
MBB.insert(MI, BuildMI(*MF, DL, TII.get(RestoreOp), PPC::CR2)
|
|
.addReg(MoveReg));
|
|
|
|
if (CR3Spilled)
|
|
MBB.insert(MI, BuildMI(*MF, DL, TII.get(RestoreOp), PPC::CR3)
|
|
.addReg(MoveReg));
|
|
|
|
if (CR4Spilled)
|
|
MBB.insert(MI, BuildMI(*MF, DL, TII.get(RestoreOp), PPC::CR4)
|
|
.addReg(MoveReg));
|
|
}
|
|
|
|
bool
|
|
PPCFrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MI,
|
|
const std::vector<CalleeSavedInfo> &CSI,
|
|
const TargetRegisterInfo *TRI) const {
|
|
|
|
// Currently, this function only handles SVR4 32- and 64-bit ABIs.
|
|
// Return false otherwise to maintain pre-existing behavior.
|
|
if (!Subtarget.isSVR4ABI())
|
|
return false;
|
|
|
|
MachineFunction *MF = MBB.getParent();
|
|
const PPCInstrInfo &TII =
|
|
*static_cast<const PPCInstrInfo*>(MF->getTarget().getInstrInfo());
|
|
bool CR2Spilled = false;
|
|
bool CR3Spilled = false;
|
|
bool CR4Spilled = false;
|
|
unsigned CSIIndex = 0;
|
|
|
|
// Initialize insertion-point logic; we will be restoring in reverse
|
|
// order of spill.
|
|
MachineBasicBlock::iterator I = MI, BeforeI = I;
|
|
bool AtStart = I == MBB.begin();
|
|
|
|
if (!AtStart)
|
|
--BeforeI;
|
|
|
|
for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
|
|
unsigned Reg = CSI[i].getReg();
|
|
|
|
if (Reg == PPC::CR2) {
|
|
CR2Spilled = true;
|
|
// The spill slot is associated only with CR2, which is the
|
|
// first nonvolatile spilled. Save it here.
|
|
CSIIndex = i;
|
|
continue;
|
|
} else if (Reg == PPC::CR3) {
|
|
CR3Spilled = true;
|
|
continue;
|
|
} else if (Reg == PPC::CR4) {
|
|
CR4Spilled = true;
|
|
continue;
|
|
} else {
|
|
// When we first encounter a non-CR register after seeing at
|
|
// least one CR register, restore all spilled CRs together.
|
|
if ((CR2Spilled || CR3Spilled || CR4Spilled)
|
|
&& !(PPC::CR2 <= Reg && Reg <= PPC::CR4)) {
|
|
restoreCRs(Subtarget.isPPC64(), CR2Spilled, CR3Spilled, CR4Spilled,
|
|
MBB, I, CSI, CSIIndex);
|
|
CR2Spilled = CR3Spilled = CR4Spilled = false;
|
|
}
|
|
|
|
// Default behavior for non-CR saves.
|
|
const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
|
|
TII.loadRegFromStackSlot(MBB, I, Reg, CSI[i].getFrameIdx(),
|
|
RC, TRI);
|
|
assert(I != MBB.begin() &&
|
|
"loadRegFromStackSlot didn't insert any code!");
|
|
}
|
|
|
|
// Insert in reverse order.
|
|
if (AtStart)
|
|
I = MBB.begin();
|
|
else {
|
|
I = BeforeI;
|
|
++I;
|
|
}
|
|
}
|
|
|
|
// If we haven't yet spilled the CRs, do so now.
|
|
if (CR2Spilled || CR3Spilled || CR4Spilled)
|
|
restoreCRs(Subtarget.isPPC64(), CR2Spilled, CR3Spilled, CR4Spilled,
|
|
MBB, I, CSI, CSIIndex);
|
|
|
|
return true;
|
|
}
|
|
|