llvm-6502/lib/CodeGen/MachineSink.cpp
Manman Ren f99efdf329 MachineSink: Sort the successors before trying to find SuccToSinkTo.
Use stable_sort instead of sort. Follow-up to r161062.

rdar://11980766


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161075 91177308-0d34-0410-b5e6-96231b3b80d8
2012-07-31 20:45:38 +00:00

715 lines
25 KiB
C++

//===-- MachineSink.cpp - Sinking for machine instructions ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass moves instructions into successor blocks when possible, so that
// they aren't executed on paths where their results aren't needed.
//
// This pass is not intended to be a replacement or a complete alternative
// for an LLVM-IR-level sinking pass. It is only designed to sink simple
// constructs that are not exposed before lowering and instruction selection.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "machine-sink"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
static cl::opt<bool>
SplitEdges("machine-sink-split",
cl::desc("Split critical edges during machine sinking"),
cl::init(true), cl::Hidden);
STATISTIC(NumSunk, "Number of machine instructions sunk");
STATISTIC(NumSplit, "Number of critical edges split");
STATISTIC(NumCoalesces, "Number of copies coalesced");
namespace {
class MachineSinking : public MachineFunctionPass {
const TargetInstrInfo *TII;
const TargetRegisterInfo *TRI;
MachineRegisterInfo *MRI; // Machine register information
MachineDominatorTree *DT; // Machine dominator tree
MachineLoopInfo *LI;
AliasAnalysis *AA;
BitVector AllocatableSet; // Which physregs are allocatable?
// Remember which edges have been considered for breaking.
SmallSet<std::pair<MachineBasicBlock*,MachineBasicBlock*>, 8>
CEBCandidates;
public:
static char ID; // Pass identification
MachineSinking() : MachineFunctionPass(ID) {
initializeMachineSinkingPass(*PassRegistry::getPassRegistry());
}
virtual bool runOnMachineFunction(MachineFunction &MF);
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
MachineFunctionPass::getAnalysisUsage(AU);
AU.addRequired<AliasAnalysis>();
AU.addRequired<MachineDominatorTree>();
AU.addRequired<MachineLoopInfo>();
AU.addPreserved<MachineDominatorTree>();
AU.addPreserved<MachineLoopInfo>();
}
virtual void releaseMemory() {
CEBCandidates.clear();
}
private:
bool ProcessBlock(MachineBasicBlock &MBB);
bool isWorthBreakingCriticalEdge(MachineInstr *MI,
MachineBasicBlock *From,
MachineBasicBlock *To);
MachineBasicBlock *SplitCriticalEdge(MachineInstr *MI,
MachineBasicBlock *From,
MachineBasicBlock *To,
bool BreakPHIEdge);
bool SinkInstruction(MachineInstr *MI, bool &SawStore);
bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB,
MachineBasicBlock *DefMBB,
bool &BreakPHIEdge, bool &LocalUse) const;
MachineBasicBlock *FindSuccToSinkTo(MachineInstr *MI, MachineBasicBlock *MBB,
bool &BreakPHIEdge);
bool isProfitableToSinkTo(unsigned Reg, MachineInstr *MI,
MachineBasicBlock *MBB,
MachineBasicBlock *SuccToSinkTo);
bool PerformTrivialForwardCoalescing(MachineInstr *MI,
MachineBasicBlock *MBB);
};
// SuccessorSorter - Sort Successors according to their loop depth.
struct SuccessorSorter {
SuccessorSorter(MachineLoopInfo *LoopInfo) : LI(LoopInfo) {}
bool operator()(const MachineBasicBlock *LHS,
const MachineBasicBlock *RHS) const {
return LI->getLoopDepth(LHS) < LI->getLoopDepth(RHS);
}
MachineLoopInfo *LI;
};
} // end anonymous namespace
char MachineSinking::ID = 0;
char &llvm::MachineSinkingID = MachineSinking::ID;
INITIALIZE_PASS_BEGIN(MachineSinking, "machine-sink",
"Machine code sinking", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
INITIALIZE_PASS_END(MachineSinking, "machine-sink",
"Machine code sinking", false, false)
bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr *MI,
MachineBasicBlock *MBB) {
if (!MI->isCopy())
return false;
unsigned SrcReg = MI->getOperand(1).getReg();
unsigned DstReg = MI->getOperand(0).getReg();
if (!TargetRegisterInfo::isVirtualRegister(SrcReg) ||
!TargetRegisterInfo::isVirtualRegister(DstReg) ||
!MRI->hasOneNonDBGUse(SrcReg))
return false;
const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg);
const TargetRegisterClass *DRC = MRI->getRegClass(DstReg);
if (SRC != DRC)
return false;
MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
if (DefMI->isCopyLike())
return false;
DEBUG(dbgs() << "Coalescing: " << *DefMI);
DEBUG(dbgs() << "*** to: " << *MI);
MRI->replaceRegWith(DstReg, SrcReg);
MI->eraseFromParent();
++NumCoalesces;
return true;
}
/// AllUsesDominatedByBlock - Return true if all uses of the specified register
/// occur in blocks dominated by the specified block. If any use is in the
/// definition block, then return false since it is never legal to move def
/// after uses.
bool
MachineSinking::AllUsesDominatedByBlock(unsigned Reg,
MachineBasicBlock *MBB,
MachineBasicBlock *DefMBB,
bool &BreakPHIEdge,
bool &LocalUse) const {
assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
"Only makes sense for vregs");
// Ignore debug uses because debug info doesn't affect the code.
if (MRI->use_nodbg_empty(Reg))
return true;
// BreakPHIEdge is true if all the uses are in the successor MBB being sunken
// into and they are all PHI nodes. In this case, machine-sink must break
// the critical edge first. e.g.
//
// BB#1: derived from LLVM BB %bb4.preheader
// Predecessors according to CFG: BB#0
// ...
// %reg16385<def> = DEC64_32r %reg16437, %EFLAGS<imp-def,dead>
// ...
// JE_4 <BB#37>, %EFLAGS<imp-use>
// Successors according to CFG: BB#37 BB#2
//
// BB#2: derived from LLVM BB %bb.nph
// Predecessors according to CFG: BB#0 BB#1
// %reg16386<def> = PHI %reg16434, <BB#0>, %reg16385, <BB#1>
BreakPHIEdge = true;
for (MachineRegisterInfo::use_nodbg_iterator
I = MRI->use_nodbg_begin(Reg), E = MRI->use_nodbg_end();
I != E; ++I) {
MachineInstr *UseInst = &*I;
MachineBasicBlock *UseBlock = UseInst->getParent();
if (!(UseBlock == MBB && UseInst->isPHI() &&
UseInst->getOperand(I.getOperandNo()+1).getMBB() == DefMBB)) {
BreakPHIEdge = false;
break;
}
}
if (BreakPHIEdge)
return true;
for (MachineRegisterInfo::use_nodbg_iterator
I = MRI->use_nodbg_begin(Reg), E = MRI->use_nodbg_end();
I != E; ++I) {
// Determine the block of the use.
MachineInstr *UseInst = &*I;
MachineBasicBlock *UseBlock = UseInst->getParent();
if (UseInst->isPHI()) {
// PHI nodes use the operand in the predecessor block, not the block with
// the PHI.
UseBlock = UseInst->getOperand(I.getOperandNo()+1).getMBB();
} else if (UseBlock == DefMBB) {
LocalUse = true;
return false;
}
// Check that it dominates.
if (!DT->dominates(MBB, UseBlock))
return false;
}
return true;
}
bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
DEBUG(dbgs() << "******** Machine Sinking ********\n");
const TargetMachine &TM = MF.getTarget();
TII = TM.getInstrInfo();
TRI = TM.getRegisterInfo();
MRI = &MF.getRegInfo();
DT = &getAnalysis<MachineDominatorTree>();
LI = &getAnalysis<MachineLoopInfo>();
AA = &getAnalysis<AliasAnalysis>();
AllocatableSet = TRI->getAllocatableSet(MF);
bool EverMadeChange = false;
while (1) {
bool MadeChange = false;
// Process all basic blocks.
CEBCandidates.clear();
for (MachineFunction::iterator I = MF.begin(), E = MF.end();
I != E; ++I)
MadeChange |= ProcessBlock(*I);
// If this iteration over the code changed anything, keep iterating.
if (!MadeChange) break;
EverMadeChange = true;
}
return EverMadeChange;
}
bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
// Can't sink anything out of a block that has less than two successors.
if (MBB.succ_size() <= 1 || MBB.empty()) return false;
// Don't bother sinking code out of unreachable blocks. In addition to being
// unprofitable, it can also lead to infinite looping, because in an
// unreachable loop there may be nowhere to stop.
if (!DT->isReachableFromEntry(&MBB)) return false;
bool MadeChange = false;
// Walk the basic block bottom-up. Remember if we saw a store.
MachineBasicBlock::iterator I = MBB.end();
--I;
bool ProcessedBegin, SawStore = false;
do {
MachineInstr *MI = I; // The instruction to sink.
// Predecrement I (if it's not begin) so that it isn't invalidated by
// sinking.
ProcessedBegin = I == MBB.begin();
if (!ProcessedBegin)
--I;
if (MI->isDebugValue())
continue;
bool Joined = PerformTrivialForwardCoalescing(MI, &MBB);
if (Joined) {
MadeChange = true;
continue;
}
if (SinkInstruction(MI, SawStore))
++NumSunk, MadeChange = true;
// If we just processed the first instruction in the block, we're done.
} while (!ProcessedBegin);
return MadeChange;
}
bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr *MI,
MachineBasicBlock *From,
MachineBasicBlock *To) {
// FIXME: Need much better heuristics.
// If the pass has already considered breaking this edge (during this pass
// through the function), then let's go ahead and break it. This means
// sinking multiple "cheap" instructions into the same block.
if (!CEBCandidates.insert(std::make_pair(From, To)))
return true;
if (!MI->isCopy() && !MI->isAsCheapAsAMove())
return true;
// MI is cheap, we probably don't want to break the critical edge for it.
// However, if this would allow some definitions of its source operands
// to be sunk then it's probably worth it.
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg()) continue;
unsigned Reg = MO.getReg();
if (Reg == 0 || !TargetRegisterInfo::isPhysicalRegister(Reg))
continue;
if (MRI->hasOneNonDBGUse(Reg))
return true;
}
return false;
}
MachineBasicBlock *MachineSinking::SplitCriticalEdge(MachineInstr *MI,
MachineBasicBlock *FromBB,
MachineBasicBlock *ToBB,
bool BreakPHIEdge) {
if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB))
return 0;
// Avoid breaking back edge. From == To means backedge for single BB loop.
if (!SplitEdges || FromBB == ToBB)
return 0;
// Check for backedges of more "complex" loops.
if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) &&
LI->isLoopHeader(ToBB))
return 0;
// It's not always legal to break critical edges and sink the computation
// to the edge.
//
// BB#1:
// v1024
// Beq BB#3
// <fallthrough>
// BB#2:
// ... no uses of v1024
// <fallthrough>
// BB#3:
// ...
// = v1024
//
// If BB#1 -> BB#3 edge is broken and computation of v1024 is inserted:
//
// BB#1:
// ...
// Bne BB#2
// BB#4:
// v1024 =
// B BB#3
// BB#2:
// ... no uses of v1024
// <fallthrough>
// BB#3:
// ...
// = v1024
//
// This is incorrect since v1024 is not computed along the BB#1->BB#2->BB#3
// flow. We need to ensure the new basic block where the computation is
// sunk to dominates all the uses.
// It's only legal to break critical edge and sink the computation to the
// new block if all the predecessors of "To", except for "From", are
// not dominated by "From". Given SSA property, this means these
// predecessors are dominated by "To".
//
// There is no need to do this check if all the uses are PHI nodes. PHI
// sources are only defined on the specific predecessor edges.
if (!BreakPHIEdge) {
for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(),
E = ToBB->pred_end(); PI != E; ++PI) {
if (*PI == FromBB)
continue;
if (!DT->dominates(ToBB, *PI))
return 0;
}
}
return FromBB->SplitCriticalEdge(ToBB, this);
}
static bool AvoidsSinking(MachineInstr *MI, MachineRegisterInfo *MRI) {
return MI->isInsertSubreg() || MI->isSubregToReg() || MI->isRegSequence();
}
/// collectDebgValues - Scan instructions following MI and collect any
/// matching DBG_VALUEs.
static void collectDebugValues(MachineInstr *MI,
SmallVector<MachineInstr *, 2> & DbgValues) {
DbgValues.clear();
if (!MI->getOperand(0).isReg())
return;
MachineBasicBlock::iterator DI = MI; ++DI;
for (MachineBasicBlock::iterator DE = MI->getParent()->end();
DI != DE; ++DI) {
if (!DI->isDebugValue())
return;
if (DI->getOperand(0).isReg() &&
DI->getOperand(0).getReg() == MI->getOperand(0).getReg())
DbgValues.push_back(DI);
}
}
/// isPostDominatedBy - Return true if A is post dominated by B.
static bool isPostDominatedBy(MachineBasicBlock *A, MachineBasicBlock *B) {
// FIXME - Use real post dominator.
if (A->succ_size() != 2)
return false;
MachineBasicBlock::succ_iterator I = A->succ_begin();
if (B == *I)
++I;
MachineBasicBlock *OtherSuccBlock = *I;
if (OtherSuccBlock->succ_size() != 1 ||
*(OtherSuccBlock->succ_begin()) != B)
return false;
return true;
}
/// isProfitableToSinkTo - Return true if it is profitable to sink MI.
bool MachineSinking::isProfitableToSinkTo(unsigned Reg, MachineInstr *MI,
MachineBasicBlock *MBB,
MachineBasicBlock *SuccToSinkTo) {
assert (MI && "Invalid MachineInstr!");
assert (SuccToSinkTo && "Invalid SinkTo Candidate BB");
if (MBB == SuccToSinkTo)
return false;
// It is profitable if SuccToSinkTo does not post dominate current block.
if (!isPostDominatedBy(MBB, SuccToSinkTo))
return true;
// Check if only use in post dominated block is PHI instruction.
bool NonPHIUse = false;
for (MachineRegisterInfo::use_nodbg_iterator
I = MRI->use_nodbg_begin(Reg), E = MRI->use_nodbg_end();
I != E; ++I) {
MachineInstr *UseInst = &*I;
MachineBasicBlock *UseBlock = UseInst->getParent();
if (UseBlock == SuccToSinkTo && !UseInst->isPHI())
NonPHIUse = true;
}
if (!NonPHIUse)
return true;
// If SuccToSinkTo post dominates then also it may be profitable if MI
// can further profitably sinked into another block in next round.
bool BreakPHIEdge = false;
// FIXME - If finding successor is compile time expensive then catch results.
if (MachineBasicBlock *MBB2 = FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge))
return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2);
// If SuccToSinkTo is final destination and it is a post dominator of current
// block then it is not profitable to sink MI into SuccToSinkTo block.
return false;
}
/// FindSuccToSinkTo - Find a successor to sink this instruction to.
MachineBasicBlock *MachineSinking::FindSuccToSinkTo(MachineInstr *MI,
MachineBasicBlock *MBB,
bool &BreakPHIEdge) {
assert (MI && "Invalid MachineInstr!");
assert (MBB && "Invalid MachineBasicBlock!");
// Loop over all the operands of the specified instruction. If there is
// anything we can't handle, bail out.
// SuccToSinkTo - This is the successor to sink this instruction to, once we
// decide.
MachineBasicBlock *SuccToSinkTo = 0;
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg()) continue; // Ignore non-register operands.
unsigned Reg = MO.getReg();
if (Reg == 0) continue;
if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
if (MO.isUse()) {
// If the physreg has no defs anywhere, it's just an ambient register
// and we can freely move its uses. Alternatively, if it's allocatable,
// it could get allocated to something with a def during allocation.
if (!MRI->isConstantPhysReg(Reg, *MBB->getParent()))
return NULL;
} else if (!MO.isDead()) {
// A def that isn't dead. We can't move it.
return NULL;
}
} else {
// Virtual register uses are always safe to sink.
if (MO.isUse()) continue;
// If it's not safe to move defs of the register class, then abort.
if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg)))
return NULL;
// FIXME: This picks a successor to sink into based on having one
// successor that dominates all the uses. However, there are cases where
// sinking can happen but where the sink point isn't a successor. For
// example:
//
// x = computation
// if () {} else {}
// use x
//
// the instruction could be sunk over the whole diamond for the
// if/then/else (or loop, etc), allowing it to be sunk into other blocks
// after that.
// Virtual register defs can only be sunk if all their uses are in blocks
// dominated by one of the successors.
if (SuccToSinkTo) {
// If a previous operand picked a block to sink to, then this operand
// must be sinkable to the same block.
bool LocalUse = false;
if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB,
BreakPHIEdge, LocalUse))
return NULL;
continue;
}
// Otherwise, we should look at all the successors and decide which one
// we should sink to.
// We give successors with smaller loop depth higher priority.
SmallVector<MachineBasicBlock*, 4> Succs(MBB->succ_begin(), MBB->succ_end());
std::stable_sort(Succs.begin(), Succs.end(), SuccessorSorter(LI));
for (SmallVector<MachineBasicBlock*, 4>::iterator SI = Succs.begin(),
E = Succs.end(); SI != E; ++SI) {
MachineBasicBlock *SuccBlock = *SI;
bool LocalUse = false;
if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB,
BreakPHIEdge, LocalUse)) {
SuccToSinkTo = SuccBlock;
break;
}
if (LocalUse)
// Def is used locally, it's never safe to move this def.
return NULL;
}
// If we couldn't find a block to sink to, ignore this instruction.
if (SuccToSinkTo == 0)
return NULL;
else if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo))
return NULL;
}
}
// It is not possible to sink an instruction into its own block. This can
// happen with loops.
if (MBB == SuccToSinkTo)
return NULL;
// It's not safe to sink instructions to EH landing pad. Control flow into
// landing pad is implicitly defined.
if (SuccToSinkTo && SuccToSinkTo->isLandingPad())
return NULL;
return SuccToSinkTo;
}
/// SinkInstruction - Determine whether it is safe to sink the specified machine
/// instruction out of its current block into a successor.
bool MachineSinking::SinkInstruction(MachineInstr *MI, bool &SawStore) {
// Don't sink insert_subreg, subreg_to_reg, reg_sequence. These are meant to
// be close to the source to make it easier to coalesce.
if (AvoidsSinking(MI, MRI))
return false;
// Check if it's safe to move the instruction.
if (!MI->isSafeToMove(TII, AA, SawStore))
return false;
// FIXME: This should include support for sinking instructions within the
// block they are currently in to shorten the live ranges. We often get
// instructions sunk into the top of a large block, but it would be better to
// also sink them down before their first use in the block. This xform has to
// be careful not to *increase* register pressure though, e.g. sinking
// "x = y + z" down if it kills y and z would increase the live ranges of y
// and z and only shrink the live range of x.
bool BreakPHIEdge = false;
MachineBasicBlock *ParentBlock = MI->getParent();
MachineBasicBlock *SuccToSinkTo = FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge);
// If there are no outputs, it must have side-effects.
if (SuccToSinkTo == 0)
return false;
// If the instruction to move defines a dead physical register which is live
// when leaving the basic block, don't move it because it could turn into a
// "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>)
for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
const MachineOperand &MO = MI->getOperand(I);
if (!MO.isReg()) continue;
unsigned Reg = MO.getReg();
if (Reg == 0 || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
if (SuccToSinkTo->isLiveIn(Reg))
return false;
}
DEBUG(dbgs() << "Sink instr " << *MI << "\tinto block " << *SuccToSinkTo);
// If the block has multiple predecessors, this would introduce computation on
// a path that it doesn't already exist. We could split the critical edge,
// but for now we just punt.
if (SuccToSinkTo->pred_size() > 1) {
// We cannot sink a load across a critical edge - there may be stores in
// other code paths.
bool TryBreak = false;
bool store = true;
if (!MI->isSafeToMove(TII, AA, store)) {
DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n");
TryBreak = true;
}
// We don't want to sink across a critical edge if we don't dominate the
// successor. We could be introducing calculations to new code paths.
if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) {
DEBUG(dbgs() << " *** NOTE: Critical edge found\n");
TryBreak = true;
}
// Don't sink instructions into a loop.
if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) {
DEBUG(dbgs() << " *** NOTE: Loop header found\n");
TryBreak = true;
}
// Otherwise we are OK with sinking along a critical edge.
if (!TryBreak)
DEBUG(dbgs() << "Sinking along critical edge.\n");
else {
MachineBasicBlock *NewSucc =
SplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge);
if (!NewSucc) {
DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
"break critical edge\n");
return false;
} else {
DEBUG(dbgs() << " *** Splitting critical edge:"
" BB#" << ParentBlock->getNumber()
<< " -- BB#" << NewSucc->getNumber()
<< " -- BB#" << SuccToSinkTo->getNumber() << '\n');
SuccToSinkTo = NewSucc;
++NumSplit;
BreakPHIEdge = false;
}
}
}
if (BreakPHIEdge) {
// BreakPHIEdge is true if all the uses are in the successor MBB being
// sunken into and they are all PHI nodes. In this case, machine-sink must
// break the critical edge first.
MachineBasicBlock *NewSucc = SplitCriticalEdge(MI, ParentBlock,
SuccToSinkTo, BreakPHIEdge);
if (!NewSucc) {
DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
"break critical edge\n");
return false;
}
DEBUG(dbgs() << " *** Splitting critical edge:"
" BB#" << ParentBlock->getNumber()
<< " -- BB#" << NewSucc->getNumber()
<< " -- BB#" << SuccToSinkTo->getNumber() << '\n');
SuccToSinkTo = NewSucc;
++NumSplit;
}
// Determine where to insert into. Skip phi nodes.
MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI())
++InsertPos;
// collect matching debug values.
SmallVector<MachineInstr *, 2> DbgValuesToSink;
collectDebugValues(MI, DbgValuesToSink);
// Move the instruction.
SuccToSinkTo->splice(InsertPos, ParentBlock, MI,
++MachineBasicBlock::iterator(MI));
// Move debug values.
for (SmallVector<MachineInstr *, 2>::iterator DBI = DbgValuesToSink.begin(),
DBE = DbgValuesToSink.end(); DBI != DBE; ++DBI) {
MachineInstr *DbgMI = *DBI;
SuccToSinkTo->splice(InsertPos, ParentBlock, DbgMI,
++MachineBasicBlock::iterator(DbgMI));
}
// Conservatively, clear any kill flags, since it's possible that they are no
// longer correct.
MI->clearKillInfo();
return true;
}