llvm-6502/lib/Target/R600/SIISelLowering.cpp
Jan Vesely b7239d3aa5 R600: Make FMIN/MAXNUM legal on all asics
v2: Add tests

Signed-off-by: Jan Vesely <jan.vesely@rutgers.edu>
reviewer: arsenm

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234716 91177308-0d34-0410-b5e6-96231b3b80d8
2015-04-12 23:45:05 +00:00

2125 lines
73 KiB
C++

//===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// \brief Custom DAG lowering for SI
//
//===----------------------------------------------------------------------===//
#ifdef _MSC_VER
// Provide M_PI.
#define _USE_MATH_DEFINES
#include <cmath>
#endif
#include "SIISelLowering.h"
#include "AMDGPU.h"
#include "AMDGPUIntrinsicInfo.h"
#include "AMDGPUSubtarget.h"
#include "SIInstrInfo.h"
#include "SIMachineFunctionInfo.h"
#include "SIRegisterInfo.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/IR/Function.h"
#include "llvm/ADT/SmallString.h"
using namespace llvm;
SITargetLowering::SITargetLowering(TargetMachine &TM,
const AMDGPUSubtarget &STI)
: AMDGPUTargetLowering(TM, STI) {
addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass);
addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass);
addRegisterClass(MVT::v32i8, &AMDGPU::SReg_256RegClass);
addRegisterClass(MVT::v64i8, &AMDGPU::SReg_512RegClass);
addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass);
addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass);
addRegisterClass(MVT::f64, &AMDGPU::VReg_64RegClass);
addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass);
addRegisterClass(MVT::v2f32, &AMDGPU::VReg_64RegClass);
addRegisterClass(MVT::v4i32, &AMDGPU::SReg_128RegClass);
addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass);
addRegisterClass(MVT::v8i32, &AMDGPU::SReg_256RegClass);
addRegisterClass(MVT::v8f32, &AMDGPU::VReg_256RegClass);
addRegisterClass(MVT::v16i32, &AMDGPU::SReg_512RegClass);
addRegisterClass(MVT::v16f32, &AMDGPU::VReg_512RegClass);
computeRegisterProperties(STI.getRegisterInfo());
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand);
setOperationAction(ISD::ADD, MVT::i32, Legal);
setOperationAction(ISD::ADDC, MVT::i32, Legal);
setOperationAction(ISD::ADDE, MVT::i32, Legal);
setOperationAction(ISD::SUBC, MVT::i32, Legal);
setOperationAction(ISD::SUBE, MVT::i32, Legal);
setOperationAction(ISD::FSIN, MVT::f32, Custom);
setOperationAction(ISD::FCOS, MVT::f32, Custom);
setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
// We need to custom lower vector stores from local memory
setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
setOperationAction(ISD::LOAD, MVT::v8i32, Custom);
setOperationAction(ISD::LOAD, MVT::v16i32, Custom);
setOperationAction(ISD::STORE, MVT::v8i32, Custom);
setOperationAction(ISD::STORE, MVT::v16i32, Custom);
setOperationAction(ISD::STORE, MVT::i1, Custom);
setOperationAction(ISD::STORE, MVT::v4i32, Custom);
setOperationAction(ISD::SELECT, MVT::i64, Custom);
setOperationAction(ISD::SELECT, MVT::f64, Promote);
AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64);
setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
setOperationAction(ISD::SETCC, MVT::v2i1, Expand);
setOperationAction(ISD::SETCC, MVT::v4i1, Expand);
setOperationAction(ISD::BSWAP, MVT::i32, Legal);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Legal);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Legal);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Legal);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom);
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom);
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v16i8, Custom);
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom);
setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
setOperationAction(ISD::BRCOND, MVT::Other, Custom);
for (MVT VT : MVT::integer_valuetypes()) {
if (VT == MVT::i64)
continue;
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal);
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal);
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal);
setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal);
setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal);
setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal);
setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand);
}
for (MVT VT : MVT::integer_vector_valuetypes()) {
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v8i16, Expand);
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v16i16, Expand);
}
for (MVT VT : MVT::fp_valuetypes())
setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
setTruncStoreAction(MVT::i64, MVT::i32, Expand);
setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand);
setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand);
setOperationAction(ISD::LOAD, MVT::i1, Custom);
setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
// These should use UDIVREM, so set them to expand
setOperationAction(ISD::UDIV, MVT::i64, Expand);
setOperationAction(ISD::UREM, MVT::i64, Expand);
setOperationAction(ISD::SELECT_CC, MVT::i1, Expand);
setOperationAction(ISD::SELECT, MVT::i1, Promote);
// We only support LOAD/STORE and vector manipulation ops for vectors
// with > 4 elements.
for (MVT VT : {MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32}) {
for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
switch(Op) {
case ISD::LOAD:
case ISD::STORE:
case ISD::BUILD_VECTOR:
case ISD::BITCAST:
case ISD::EXTRACT_VECTOR_ELT:
case ISD::INSERT_VECTOR_ELT:
case ISD::INSERT_SUBVECTOR:
case ISD::EXTRACT_SUBVECTOR:
break;
case ISD::CONCAT_VECTORS:
setOperationAction(Op, VT, Custom);
break;
default:
setOperationAction(Op, VT, Expand);
break;
}
}
}
if (Subtarget->getGeneration() >= AMDGPUSubtarget::SEA_ISLANDS) {
setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
setOperationAction(ISD::FCEIL, MVT::f64, Legal);
setOperationAction(ISD::FRINT, MVT::f64, Legal);
}
setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
setOperationAction(ISD::FDIV, MVT::f32, Custom);
setOperationAction(ISD::FDIV, MVT::f64, Custom);
setTargetDAGCombine(ISD::FADD);
setTargetDAGCombine(ISD::FSUB);
setTargetDAGCombine(ISD::FMINNUM);
setTargetDAGCombine(ISD::FMAXNUM);
setTargetDAGCombine(ISD::SELECT_CC);
setTargetDAGCombine(ISD::SETCC);
setTargetDAGCombine(ISD::AND);
setTargetDAGCombine(ISD::OR);
setTargetDAGCombine(ISD::UINT_TO_FP);
// All memory operations. Some folding on the pointer operand is done to help
// matching the constant offsets in the addressing modes.
setTargetDAGCombine(ISD::LOAD);
setTargetDAGCombine(ISD::STORE);
setTargetDAGCombine(ISD::ATOMIC_LOAD);
setTargetDAGCombine(ISD::ATOMIC_STORE);
setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP);
setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
setTargetDAGCombine(ISD::ATOMIC_SWAP);
setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD);
setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB);
setTargetDAGCombine(ISD::ATOMIC_LOAD_AND);
setTargetDAGCombine(ISD::ATOMIC_LOAD_OR);
setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR);
setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND);
setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN);
setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX);
setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN);
setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX);
setSchedulingPreference(Sched::RegPressure);
}
//===----------------------------------------------------------------------===//
// TargetLowering queries
//===----------------------------------------------------------------------===//
bool SITargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &,
EVT) const {
// SI has some legal vector types, but no legal vector operations. Say no
// shuffles are legal in order to prefer scalarizing some vector operations.
return false;
}
// FIXME: This really needs an address space argument. The immediate offset
// size is different for different sets of memory instruction sets.
// The single offset DS instructions have a 16-bit unsigned byte offset.
//
// MUBUF / MTBUF have a 12-bit unsigned byte offset, and additionally can do r +
// r + i with addr64. 32-bit has more addressing mode options. Depending on the
// resource constant, it can also do (i64 r0) + (i32 r1) * (i14 i).
//
// SMRD instructions have an 8-bit, dword offset.
//
bool SITargetLowering::isLegalAddressingMode(const AddrMode &AM,
Type *Ty) const {
// No global is ever allowed as a base.
if (AM.BaseGV)
return false;
// Allow a 16-bit unsigned immediate field, since this is what DS instructions
// use.
if (!isUInt<16>(AM.BaseOffs))
return false;
// Only support r+r,
switch (AM.Scale) {
case 0: // "r+i" or just "i", depending on HasBaseReg.
break;
case 1:
if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
return false;
// Otherwise we have r+r or r+i.
break;
case 2:
if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
return false;
// Allow 2*r as r+r.
break;
default: // Don't allow n * r
return false;
}
return true;
}
bool SITargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
unsigned AddrSpace,
unsigned Align,
bool *IsFast) const {
if (IsFast)
*IsFast = false;
// TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96,
// which isn't a simple VT.
if (!VT.isSimple() || VT == MVT::Other)
return false;
// TODO - CI+ supports unaligned memory accesses, but this requires driver
// support.
// XXX - The only mention I see of this in the ISA manual is for LDS direct
// reads the "byte address and must be dword aligned". Is it also true for the
// normal loads and stores?
if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS) {
// ds_read/write_b64 require 8-byte alignment, but we can do a 4 byte
// aligned, 8 byte access in a single operation using ds_read2/write2_b32
// with adjacent offsets.
return Align % 4 == 0;
}
// Smaller than dword value must be aligned.
// FIXME: This should be allowed on CI+
if (VT.bitsLT(MVT::i32))
return false;
// 8.1.6 - For Dword or larger reads or writes, the two LSBs of the
// byte-address are ignored, thus forcing Dword alignment.
// This applies to private, global, and constant memory.
if (IsFast)
*IsFast = true;
return VT.bitsGT(MVT::i32) && Align % 4 == 0;
}
EVT SITargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
unsigned SrcAlign, bool IsMemset,
bool ZeroMemset,
bool MemcpyStrSrc,
MachineFunction &MF) const {
// FIXME: Should account for address space here.
// The default fallback uses the private pointer size as a guess for a type to
// use. Make sure we switch these to 64-bit accesses.
if (Size >= 16 && DstAlign >= 4) // XXX: Should only do for global
return MVT::v4i32;
if (Size >= 8 && DstAlign >= 4)
return MVT::v2i32;
// Use the default.
return MVT::Other;
}
TargetLoweringBase::LegalizeTypeAction
SITargetLowering::getPreferredVectorAction(EVT VT) const {
if (VT.getVectorNumElements() != 1 && VT.getScalarType().bitsLE(MVT::i16))
return TypeSplitVector;
return TargetLoweringBase::getPreferredVectorAction(VT);
}
bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
Type *Ty) const {
const SIInstrInfo *TII =
static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
return TII->isInlineConstant(Imm);
}
SDValue SITargetLowering::LowerParameter(SelectionDAG &DAG, EVT VT, EVT MemVT,
SDLoc SL, SDValue Chain,
unsigned Offset, bool Signed) const {
const DataLayout *DL = getDataLayout();
MachineFunction &MF = DAG.getMachineFunction();
const SIRegisterInfo *TRI =
static_cast<const SIRegisterInfo*>(Subtarget->getRegisterInfo());
unsigned InputPtrReg = TRI->getPreloadedValue(MF, SIRegisterInfo::INPUT_PTR);
Type *Ty = VT.getTypeForEVT(*DAG.getContext());
MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS);
SDValue BasePtr = DAG.getCopyFromReg(Chain, SL,
MRI.getLiveInVirtReg(InputPtrReg), MVT::i64);
SDValue Ptr = DAG.getNode(ISD::ADD, SL, MVT::i64, BasePtr,
DAG.getConstant(Offset, MVT::i64));
SDValue PtrOffset = DAG.getUNDEF(getPointerTy(AMDGPUAS::CONSTANT_ADDRESS));
MachinePointerInfo PtrInfo(UndefValue::get(PtrTy));
return DAG.getLoad(ISD::UNINDEXED, Signed ? ISD::SEXTLOAD : ISD::ZEXTLOAD,
VT, SL, Chain, Ptr, PtrOffset, PtrInfo, MemVT,
false, // isVolatile
true, // isNonTemporal
true, // isInvariant
DL->getABITypeAlignment(Ty)); // Alignment
}
SDValue SITargetLowering::LowerFormalArguments(
SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const {
const SIRegisterInfo *TRI =
static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo());
MachineFunction &MF = DAG.getMachineFunction();
FunctionType *FType = MF.getFunction()->getFunctionType();
SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
assert(CallConv == CallingConv::C);
SmallVector<ISD::InputArg, 16> Splits;
BitVector Skipped(Ins.size());
for (unsigned i = 0, e = Ins.size(), PSInputNum = 0; i != e; ++i) {
const ISD::InputArg &Arg = Ins[i];
// First check if it's a PS input addr
if (Info->getShaderType() == ShaderType::PIXEL && !Arg.Flags.isInReg() &&
!Arg.Flags.isByVal()) {
assert((PSInputNum <= 15) && "Too many PS inputs!");
if (!Arg.Used) {
// We can savely skip PS inputs
Skipped.set(i);
++PSInputNum;
continue;
}
Info->PSInputAddr |= 1 << PSInputNum++;
}
// Second split vertices into their elements
if (Info->getShaderType() != ShaderType::COMPUTE && Arg.VT.isVector()) {
ISD::InputArg NewArg = Arg;
NewArg.Flags.setSplit();
NewArg.VT = Arg.VT.getVectorElementType();
// We REALLY want the ORIGINAL number of vertex elements here, e.g. a
// three or five element vertex only needs three or five registers,
// NOT four or eigth.
Type *ParamType = FType->getParamType(Arg.getOrigArgIndex());
unsigned NumElements = ParamType->getVectorNumElements();
for (unsigned j = 0; j != NumElements; ++j) {
Splits.push_back(NewArg);
NewArg.PartOffset += NewArg.VT.getStoreSize();
}
} else if (Info->getShaderType() != ShaderType::COMPUTE) {
Splits.push_back(Arg);
}
}
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
*DAG.getContext());
// At least one interpolation mode must be enabled or else the GPU will hang.
if (Info->getShaderType() == ShaderType::PIXEL &&
(Info->PSInputAddr & 0x7F) == 0) {
Info->PSInputAddr |= 1;
CCInfo.AllocateReg(AMDGPU::VGPR0);
CCInfo.AllocateReg(AMDGPU::VGPR1);
}
// The pointer to the list of arguments is stored in SGPR0, SGPR1
// The pointer to the scratch buffer is stored in SGPR2, SGPR3
if (Info->getShaderType() == ShaderType::COMPUTE) {
if (Subtarget->isAmdHsaOS())
Info->NumUserSGPRs = 2; // FIXME: Need to support scratch buffers.
else
Info->NumUserSGPRs = 4;
unsigned InputPtrReg =
TRI->getPreloadedValue(MF, SIRegisterInfo::INPUT_PTR);
unsigned InputPtrRegLo =
TRI->getPhysRegSubReg(InputPtrReg, &AMDGPU::SReg_32RegClass, 0);
unsigned InputPtrRegHi =
TRI->getPhysRegSubReg(InputPtrReg, &AMDGPU::SReg_32RegClass, 1);
unsigned ScratchPtrReg =
TRI->getPreloadedValue(MF, SIRegisterInfo::SCRATCH_PTR);
unsigned ScratchPtrRegLo =
TRI->getPhysRegSubReg(ScratchPtrReg, &AMDGPU::SReg_32RegClass, 0);
unsigned ScratchPtrRegHi =
TRI->getPhysRegSubReg(ScratchPtrReg, &AMDGPU::SReg_32RegClass, 1);
CCInfo.AllocateReg(InputPtrRegLo);
CCInfo.AllocateReg(InputPtrRegHi);
CCInfo.AllocateReg(ScratchPtrRegLo);
CCInfo.AllocateReg(ScratchPtrRegHi);
MF.addLiveIn(InputPtrReg, &AMDGPU::SReg_64RegClass);
MF.addLiveIn(ScratchPtrReg, &AMDGPU::SReg_64RegClass);
}
if (Info->getShaderType() == ShaderType::COMPUTE) {
getOriginalFunctionArgs(DAG, DAG.getMachineFunction().getFunction(), Ins,
Splits);
}
AnalyzeFormalArguments(CCInfo, Splits);
for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) {
const ISD::InputArg &Arg = Ins[i];
if (Skipped[i]) {
InVals.push_back(DAG.getUNDEF(Arg.VT));
continue;
}
CCValAssign &VA = ArgLocs[ArgIdx++];
MVT VT = VA.getLocVT();
if (VA.isMemLoc()) {
VT = Ins[i].VT;
EVT MemVT = Splits[i].VT;
const unsigned Offset = 36 + VA.getLocMemOffset();
// The first 36 bytes of the input buffer contains information about
// thread group and global sizes.
SDValue Arg = LowerParameter(DAG, VT, MemVT, DL, DAG.getRoot(),
Offset, Ins[i].Flags.isSExt());
const PointerType *ParamTy =
dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex()));
if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
ParamTy && ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
// On SI local pointers are just offsets into LDS, so they are always
// less than 16-bits. On CI and newer they could potentially be
// real pointers, so we can't guarantee their size.
Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg,
DAG.getValueType(MVT::i16));
}
InVals.push_back(Arg);
Info->ABIArgOffset = Offset + MemVT.getStoreSize();
continue;
}
assert(VA.isRegLoc() && "Parameter must be in a register!");
unsigned Reg = VA.getLocReg();
if (VT == MVT::i64) {
// For now assume it is a pointer
Reg = TRI->getMatchingSuperReg(Reg, AMDGPU::sub0,
&AMDGPU::SReg_64RegClass);
Reg = MF.addLiveIn(Reg, &AMDGPU::SReg_64RegClass);
InVals.push_back(DAG.getCopyFromReg(Chain, DL, Reg, VT));
continue;
}
const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
Reg = MF.addLiveIn(Reg, RC);
SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT);
if (Arg.VT.isVector()) {
// Build a vector from the registers
Type *ParamType = FType->getParamType(Arg.getOrigArgIndex());
unsigned NumElements = ParamType->getVectorNumElements();
SmallVector<SDValue, 4> Regs;
Regs.push_back(Val);
for (unsigned j = 1; j != NumElements; ++j) {
Reg = ArgLocs[ArgIdx++].getLocReg();
Reg = MF.addLiveIn(Reg, RC);
Regs.push_back(DAG.getCopyFromReg(Chain, DL, Reg, VT));
}
// Fill up the missing vector elements
NumElements = Arg.VT.getVectorNumElements() - NumElements;
Regs.append(NumElements, DAG.getUNDEF(VT));
InVals.push_back(DAG.getNode(ISD::BUILD_VECTOR, DL, Arg.VT, Regs));
continue;
}
InVals.push_back(Val);
}
if (Info->getShaderType() != ShaderType::COMPUTE) {
unsigned ScratchIdx = CCInfo.getFirstUnallocated(ArrayRef<MCPhysReg>(
AMDGPU::SGPR_32RegClass.begin(), AMDGPU::SGPR_32RegClass.getNumRegs()));
Info->ScratchOffsetReg = AMDGPU::SGPR_32RegClass.getRegister(ScratchIdx);
}
return Chain;
}
MachineBasicBlock * SITargetLowering::EmitInstrWithCustomInserter(
MachineInstr * MI, MachineBasicBlock * BB) const {
MachineBasicBlock::iterator I = *MI;
const SIInstrInfo *TII =
static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
switch (MI->getOpcode()) {
default:
return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
case AMDGPU::BRANCH:
return BB;
case AMDGPU::SI_RegisterStorePseudo: {
MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
unsigned Reg = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
MachineInstrBuilder MIB =
BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::SI_RegisterStore),
Reg);
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
MIB.addOperand(MI->getOperand(i));
MI->eraseFromParent();
break;
}
}
return BB;
}
bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const {
// This currently forces unfolding various combinations of fsub into fma with
// free fneg'd operands. As long as we have fast FMA (controlled by
// isFMAFasterThanFMulAndFAdd), we should perform these.
// When fma is quarter rate, for f64 where add / sub are at best half rate,
// most of these combines appear to be cycle neutral but save on instruction
// count / code size.
return true;
}
EVT SITargetLowering::getSetCCResultType(LLVMContext &Ctx, EVT VT) const {
if (!VT.isVector()) {
return MVT::i1;
}
return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements());
}
MVT SITargetLowering::getScalarShiftAmountTy(EVT VT) const {
return MVT::i32;
}
// Answering this is somewhat tricky and depends on the specific device which
// have different rates for fma or all f64 operations.
//
// v_fma_f64 and v_mul_f64 always take the same number of cycles as each other
// regardless of which device (although the number of cycles differs between
// devices), so it is always profitable for f64.
//
// v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable
// only on full rate devices. Normally, we should prefer selecting v_mad_f32
// which we can always do even without fused FP ops since it returns the same
// result as the separate operations and since it is always full
// rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32
// however does not support denormals, so we do report fma as faster if we have
// a fast fma device and require denormals.
//
bool SITargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
VT = VT.getScalarType();
if (!VT.isSimple())
return false;
switch (VT.getSimpleVT().SimpleTy) {
case MVT::f32:
// This is as fast on some subtargets. However, we always have full rate f32
// mad available which returns the same result as the separate operations
// which we should prefer over fma. We can't use this if we want to support
// denormals, so only report this in these cases.
return Subtarget->hasFP32Denormals() && Subtarget->hasFastFMAF32();
case MVT::f64:
return true;
default:
break;
}
return false;
}
//===----------------------------------------------------------------------===//
// Custom DAG Lowering Operations
//===----------------------------------------------------------------------===//
SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
switch (Op.getOpcode()) {
default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
case ISD::FrameIndex: return LowerFrameIndex(Op, DAG);
case ISD::BRCOND: return LowerBRCOND(Op, DAG);
case ISD::LOAD: {
SDValue Result = LowerLOAD(Op, DAG);
assert((!Result.getNode() ||
Result.getNode()->getNumValues() == 2) &&
"Load should return a value and a chain");
return Result;
}
case ISD::FSIN:
case ISD::FCOS:
return LowerTrig(Op, DAG);
case ISD::SELECT: return LowerSELECT(Op, DAG);
case ISD::FDIV: return LowerFDIV(Op, DAG);
case ISD::STORE: return LowerSTORE(Op, DAG);
case ISD::GlobalAddress: {
MachineFunction &MF = DAG.getMachineFunction();
SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
return LowerGlobalAddress(MFI, Op, DAG);
}
case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG);
}
return SDValue();
}
/// \brief Helper function for LowerBRCOND
static SDNode *findUser(SDValue Value, unsigned Opcode) {
SDNode *Parent = Value.getNode();
for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end();
I != E; ++I) {
if (I.getUse().get() != Value)
continue;
if (I->getOpcode() == Opcode)
return *I;
}
return nullptr;
}
SDValue SITargetLowering::LowerFrameIndex(SDValue Op, SelectionDAG &DAG) const {
FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Op);
unsigned FrameIndex = FINode->getIndex();
return DAG.getTargetFrameIndex(FrameIndex, MVT::i32);
}
/// This transforms the control flow intrinsics to get the branch destination as
/// last parameter, also switches branch target with BR if the need arise
SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND,
SelectionDAG &DAG) const {
SDLoc DL(BRCOND);
SDNode *Intr = BRCOND.getOperand(1).getNode();
SDValue Target = BRCOND.getOperand(2);
SDNode *BR = nullptr;
if (Intr->getOpcode() == ISD::SETCC) {
// As long as we negate the condition everything is fine
SDNode *SetCC = Intr;
assert(SetCC->getConstantOperandVal(1) == 1);
assert(cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() ==
ISD::SETNE);
Intr = SetCC->getOperand(0).getNode();
} else {
// Get the target from BR if we don't negate the condition
BR = findUser(BRCOND, ISD::BR);
Target = BR->getOperand(1);
}
assert(Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN);
// Build the result and
ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end());
// operands of the new intrinsic call
SmallVector<SDValue, 4> Ops;
Ops.push_back(BRCOND.getOperand(0));
Ops.append(Intr->op_begin() + 1, Intr->op_end());
Ops.push_back(Target);
// build the new intrinsic call
SDNode *Result = DAG.getNode(
Res.size() > 1 ? ISD::INTRINSIC_W_CHAIN : ISD::INTRINSIC_VOID, DL,
DAG.getVTList(Res), Ops).getNode();
if (BR) {
// Give the branch instruction our target
SDValue Ops[] = {
BR->getOperand(0),
BRCOND.getOperand(2)
};
SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops);
DAG.ReplaceAllUsesWith(BR, NewBR.getNode());
BR = NewBR.getNode();
}
SDValue Chain = SDValue(Result, Result->getNumValues() - 1);
// Copy the intrinsic results to registers
for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) {
SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg);
if (!CopyToReg)
continue;
Chain = DAG.getCopyToReg(
Chain, DL,
CopyToReg->getOperand(1),
SDValue(Result, i - 1),
SDValue());
DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0));
}
// Remove the old intrinsic from the chain
DAG.ReplaceAllUsesOfValueWith(
SDValue(Intr, Intr->getNumValues() - 1),
Intr->getOperand(0));
return Chain;
}
SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
SDValue Op,
SelectionDAG &DAG) const {
GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
if (GSD->getAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS)
return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
SDLoc DL(GSD);
const GlobalValue *GV = GSD->getGlobal();
MVT PtrVT = getPointerTy(GSD->getAddressSpace());
SDValue Ptr = DAG.getNode(AMDGPUISD::CONST_DATA_PTR, DL, PtrVT);
SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32);
SDValue PtrLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Ptr,
DAG.getConstant(0, MVT::i32));
SDValue PtrHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Ptr,
DAG.getConstant(1, MVT::i32));
SDValue Lo = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i32, MVT::Glue),
PtrLo, GA);
SDValue Hi = DAG.getNode(ISD::ADDE, DL, DAG.getVTList(MVT::i32, MVT::Glue),
PtrHi, DAG.getConstant(0, MVT::i32),
SDValue(Lo.getNode(), 1));
return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Lo, Hi);
}
SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
const SIRegisterInfo *TRI =
static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo());
EVT VT = Op.getValueType();
SDLoc DL(Op);
unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
switch (IntrinsicID) {
case Intrinsic::r600_read_ngroups_x:
return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
SI::KernelInputOffsets::NGROUPS_X, false);
case Intrinsic::r600_read_ngroups_y:
return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
SI::KernelInputOffsets::NGROUPS_Y, false);
case Intrinsic::r600_read_ngroups_z:
return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
SI::KernelInputOffsets::NGROUPS_Z, false);
case Intrinsic::r600_read_global_size_x:
return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
SI::KernelInputOffsets::GLOBAL_SIZE_X, false);
case Intrinsic::r600_read_global_size_y:
return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
SI::KernelInputOffsets::GLOBAL_SIZE_Y, false);
case Intrinsic::r600_read_global_size_z:
return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
SI::KernelInputOffsets::GLOBAL_SIZE_Z, false);
case Intrinsic::r600_read_local_size_x:
return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
SI::KernelInputOffsets::LOCAL_SIZE_X, false);
case Intrinsic::r600_read_local_size_y:
return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
SI::KernelInputOffsets::LOCAL_SIZE_Y, false);
case Intrinsic::r600_read_local_size_z:
return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
SI::KernelInputOffsets::LOCAL_SIZE_Z, false);
case Intrinsic::AMDGPU_read_workdim:
return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
MF.getInfo<SIMachineFunctionInfo>()->ABIArgOffset,
false);
case Intrinsic::r600_read_tgid_x:
return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
TRI->getPreloadedValue(MF, SIRegisterInfo::TGID_X), VT);
case Intrinsic::r600_read_tgid_y:
return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
TRI->getPreloadedValue(MF, SIRegisterInfo::TGID_Y), VT);
case Intrinsic::r600_read_tgid_z:
return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
TRI->getPreloadedValue(MF, SIRegisterInfo::TGID_Z), VT);
case Intrinsic::r600_read_tidig_x:
return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass,
TRI->getPreloadedValue(MF, SIRegisterInfo::TIDIG_X), VT);
case Intrinsic::r600_read_tidig_y:
return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass,
TRI->getPreloadedValue(MF, SIRegisterInfo::TIDIG_Y), VT);
case Intrinsic::r600_read_tidig_z:
return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass,
TRI->getPreloadedValue(MF, SIRegisterInfo::TIDIG_Z), VT);
case AMDGPUIntrinsic::SI_load_const: {
SDValue Ops[] = {
Op.getOperand(1),
Op.getOperand(2)
};
MachineMemOperand *MMO = MF.getMachineMemOperand(
MachinePointerInfo(),
MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant,
VT.getStoreSize(), 4);
return DAG.getMemIntrinsicNode(AMDGPUISD::LOAD_CONSTANT, DL,
Op->getVTList(), Ops, VT, MMO);
}
case AMDGPUIntrinsic::SI_sample:
return LowerSampleIntrinsic(AMDGPUISD::SAMPLE, Op, DAG);
case AMDGPUIntrinsic::SI_sampleb:
return LowerSampleIntrinsic(AMDGPUISD::SAMPLEB, Op, DAG);
case AMDGPUIntrinsic::SI_sampled:
return LowerSampleIntrinsic(AMDGPUISD::SAMPLED, Op, DAG);
case AMDGPUIntrinsic::SI_samplel:
return LowerSampleIntrinsic(AMDGPUISD::SAMPLEL, Op, DAG);
case AMDGPUIntrinsic::SI_vs_load_input:
return DAG.getNode(AMDGPUISD::LOAD_INPUT, DL, VT,
Op.getOperand(1),
Op.getOperand(2),
Op.getOperand(3));
case AMDGPUIntrinsic::AMDGPU_fract:
case AMDGPUIntrinsic::AMDIL_fraction: // Legacy name.
return DAG.getNode(ISD::FSUB, DL, VT, Op.getOperand(1),
DAG.getNode(ISD::FFLOOR, DL, VT, Op.getOperand(1)));
default:
return AMDGPUTargetLowering::LowerOperation(Op, DAG);
}
}
SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op,
SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
SDValue Chain = Op.getOperand(0);
unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
switch (IntrinsicID) {
case AMDGPUIntrinsic::SI_tbuffer_store: {
SDLoc DL(Op);
SDValue Ops[] = {
Chain,
Op.getOperand(2),
Op.getOperand(3),
Op.getOperand(4),
Op.getOperand(5),
Op.getOperand(6),
Op.getOperand(7),
Op.getOperand(8),
Op.getOperand(9),
Op.getOperand(10),
Op.getOperand(11),
Op.getOperand(12),
Op.getOperand(13),
Op.getOperand(14)
};
EVT VT = Op.getOperand(3).getValueType();
MachineMemOperand *MMO = MF.getMachineMemOperand(
MachinePointerInfo(),
MachineMemOperand::MOStore,
VT.getStoreSize(), 4);
return DAG.getMemIntrinsicNode(AMDGPUISD::TBUFFER_STORE_FORMAT, DL,
Op->getVTList(), Ops, VT, MMO);
}
default:
return SDValue();
}
}
SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
SDLoc DL(Op);
LoadSDNode *Load = cast<LoadSDNode>(Op);
if (Op.getValueType().isVector()) {
assert(Op.getValueType().getVectorElementType() == MVT::i32 &&
"Custom lowering for non-i32 vectors hasn't been implemented.");
unsigned NumElements = Op.getValueType().getVectorNumElements();
assert(NumElements != 2 && "v2 loads are supported for all address spaces.");
switch (Load->getAddressSpace()) {
default: break;
case AMDGPUAS::GLOBAL_ADDRESS:
case AMDGPUAS::PRIVATE_ADDRESS:
// v4 loads are supported for private and global memory.
if (NumElements <= 4)
break;
// fall-through
case AMDGPUAS::LOCAL_ADDRESS:
return ScalarizeVectorLoad(Op, DAG);
}
}
return AMDGPUTargetLowering::LowerLOAD(Op, DAG);
}
SDValue SITargetLowering::LowerSampleIntrinsic(unsigned Opcode,
const SDValue &Op,
SelectionDAG &DAG) const {
return DAG.getNode(Opcode, SDLoc(Op), Op.getValueType(), Op.getOperand(1),
Op.getOperand(2),
Op.getOperand(3),
Op.getOperand(4));
}
SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
if (Op.getValueType() != MVT::i64)
return SDValue();
SDLoc DL(Op);
SDValue Cond = Op.getOperand(0);
SDValue Zero = DAG.getConstant(0, MVT::i32);
SDValue One = DAG.getConstant(1, MVT::i32);
SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1));
SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2));
SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero);
SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero);
SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1);
SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One);
SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One);
SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1);
SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2i32, Lo, Hi);
return DAG.getNode(ISD::BITCAST, DL, MVT::i64, Res);
}
// Catch division cases where we can use shortcuts with rcp and rsq
// instructions.
SDValue SITargetLowering::LowerFastFDIV(SDValue Op, SelectionDAG &DAG) const {
SDLoc SL(Op);
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
EVT VT = Op.getValueType();
bool Unsafe = DAG.getTarget().Options.UnsafeFPMath;
if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) {
if ((Unsafe || (VT == MVT::f32 && !Subtarget->hasFP32Denormals())) &&
CLHS->isExactlyValue(1.0)) {
// v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
// the CI documentation has a worst case error of 1 ulp.
// OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
// use it as long as we aren't trying to use denormals.
// 1.0 / sqrt(x) -> rsq(x)
//
// XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP
// error seems really high at 2^29 ULP.
if (RHS.getOpcode() == ISD::FSQRT)
return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0));
// 1.0 / x -> rcp(x)
return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
}
}
if (Unsafe) {
// Turn into multiply by the reciprocal.
// x / y -> x * (1.0 / y)
SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip);
}
return SDValue();
}
SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const {
SDValue FastLowered = LowerFastFDIV(Op, DAG);
if (FastLowered.getNode())
return FastLowered;
// This uses v_rcp_f32 which does not handle denormals. Let this hit a
// selection error for now rather than do something incorrect.
if (Subtarget->hasFP32Denormals())
return SDValue();
SDLoc SL(Op);
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS);
const APFloat K0Val(BitsToFloat(0x6f800000));
const SDValue K0 = DAG.getConstantFP(K0Val, MVT::f32);
const APFloat K1Val(BitsToFloat(0x2f800000));
const SDValue K1 = DAG.getConstantFP(K1Val, MVT::f32);
const SDValue One = DAG.getConstantFP(1.0, MVT::f32);
EVT SetCCVT = getSetCCResultType(*DAG.getContext(), MVT::f32);
SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT);
SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One);
r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3);
SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1);
SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0);
return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul);
}
SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const {
if (DAG.getTarget().Options.UnsafeFPMath)
return LowerFastFDIV(Op, DAG);
SDLoc SL(Op);
SDValue X = Op.getOperand(0);
SDValue Y = Op.getOperand(1);
const SDValue One = DAG.getConstantFP(1.0, MVT::f64);
SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1);
SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X);
SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0);
SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0);
SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One);
SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp);
SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One);
SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X);
SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1);
SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3);
SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64,
NegDivScale0, Mul, DivScale1);
SDValue Scale;
if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) {
// Workaround a hardware bug on SI where the condition output from div_scale
// is not usable.
const SDValue Hi = DAG.getConstant(1, MVT::i32);
// Figure out if the scale to use for div_fmas.
SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y);
SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0);
SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1);
SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi);
SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi);
SDValue Scale0Hi
= DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi);
SDValue Scale1Hi
= DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi);
SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ);
SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ);
Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen);
} else {
Scale = DivScale1.getValue(1);
}
SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64,
Fma4, Fma3, Mul, Scale);
return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X);
}
SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
if (VT == MVT::f32)
return LowerFDIV32(Op, DAG);
if (VT == MVT::f64)
return LowerFDIV64(Op, DAG);
llvm_unreachable("Unexpected type for fdiv");
}
SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
SDLoc DL(Op);
StoreSDNode *Store = cast<StoreSDNode>(Op);
EVT VT = Store->getMemoryVT();
// These stores are legal.
if (Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) {
if (VT.isVector() && VT.getVectorNumElements() > 4)
return ScalarizeVectorStore(Op, DAG);
return SDValue();
}
SDValue Ret = AMDGPUTargetLowering::LowerSTORE(Op, DAG);
if (Ret.getNode())
return Ret;
if (VT.isVector() && VT.getVectorNumElements() >= 8)
return ScalarizeVectorStore(Op, DAG);
if (VT == MVT::i1)
return DAG.getTruncStore(Store->getChain(), DL,
DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32),
Store->getBasePtr(), MVT::i1, Store->getMemOperand());
return SDValue();
}
SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
SDValue Arg = Op.getOperand(0);
SDValue FractPart = DAG.getNode(AMDGPUISD::FRACT, SDLoc(Op), VT,
DAG.getNode(ISD::FMUL, SDLoc(Op), VT, Arg,
DAG.getConstantFP(0.5 / M_PI, VT)));
switch (Op.getOpcode()) {
case ISD::FCOS:
return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, FractPart);
case ISD::FSIN:
return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, FractPart);
default:
llvm_unreachable("Wrong trig opcode");
}
}
//===----------------------------------------------------------------------===//
// Custom DAG optimizations
//===----------------------------------------------------------------------===//
SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
EVT VT = N->getValueType(0);
EVT ScalarVT = VT.getScalarType();
if (ScalarVT != MVT::f32)
return SDValue();
SelectionDAG &DAG = DCI.DAG;
SDLoc DL(N);
SDValue Src = N->getOperand(0);
EVT SrcVT = Src.getValueType();
// TODO: We could try to match extracting the higher bytes, which would be
// easier if i8 vectors weren't promoted to i32 vectors, particularly after
// types are legalized. v4i8 -> v4f32 is probably the only case to worry
// about in practice.
if (DCI.isAfterLegalizeVectorOps() && SrcVT == MVT::i32) {
if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) {
SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Src);
DCI.AddToWorklist(Cvt.getNode());
return Cvt;
}
}
// We are primarily trying to catch operations on illegal vector types
// before they are expanded.
// For scalars, we can use the more flexible method of checking masked bits
// after legalization.
if (!DCI.isBeforeLegalize() ||
!SrcVT.isVector() ||
SrcVT.getVectorElementType() != MVT::i8) {
return SDValue();
}
assert(DCI.isBeforeLegalize() && "Unexpected legal type");
// Weird sized vectors are a pain to handle, but we know 3 is really the same
// size as 4.
unsigned NElts = SrcVT.getVectorNumElements();
if (!SrcVT.isSimple() && NElts != 3)
return SDValue();
// Handle v4i8 -> v4f32 extload. Replace the v4i8 with a legal i32 load to
// prevent a mess from expanding to v4i32 and repacking.
if (ISD::isNormalLoad(Src.getNode()) && Src.hasOneUse()) {
EVT LoadVT = getEquivalentMemType(*DAG.getContext(), SrcVT);
EVT RegVT = getEquivalentLoadRegType(*DAG.getContext(), SrcVT);
EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f32, NElts);
LoadSDNode *Load = cast<LoadSDNode>(Src);
unsigned AS = Load->getAddressSpace();
unsigned Align = Load->getAlignment();
Type *Ty = LoadVT.getTypeForEVT(*DAG.getContext());
unsigned ABIAlignment = getDataLayout()->getABITypeAlignment(Ty);
// Don't try to replace the load if we have to expand it due to alignment
// problems. Otherwise we will end up scalarizing the load, and trying to
// repack into the vector for no real reason.
if (Align < ABIAlignment &&
!allowsMisalignedMemoryAccesses(LoadVT, AS, Align, nullptr)) {
return SDValue();
}
SDValue NewLoad = DAG.getExtLoad(ISD::ZEXTLOAD, DL, RegVT,
Load->getChain(),
Load->getBasePtr(),
LoadVT,
Load->getMemOperand());
// Make sure successors of the original load stay after it by updating
// them to use the new Chain.
DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), NewLoad.getValue(1));
SmallVector<SDValue, 4> Elts;
if (RegVT.isVector())
DAG.ExtractVectorElements(NewLoad, Elts);
else
Elts.push_back(NewLoad);
SmallVector<SDValue, 4> Ops;
unsigned EltIdx = 0;
for (SDValue Elt : Elts) {
unsigned ComponentsInElt = std::min(4u, NElts - 4 * EltIdx);
for (unsigned I = 0; I < ComponentsInElt; ++I) {
unsigned Opc = AMDGPUISD::CVT_F32_UBYTE0 + I;
SDValue Cvt = DAG.getNode(Opc, DL, MVT::f32, Elt);
DCI.AddToWorklist(Cvt.getNode());
Ops.push_back(Cvt);
}
++EltIdx;
}
assert(Ops.size() == NElts);
return DAG.getNode(ISD::BUILD_VECTOR, DL, FloatVT, Ops);
}
return SDValue();
}
/// \brief Return true if the given offset Size in bytes can be folded into
/// the immediate offsets of a memory instruction for the given address space.
static bool canFoldOffset(unsigned OffsetSize, unsigned AS,
const AMDGPUSubtarget &STI) {
switch (AS) {
case AMDGPUAS::GLOBAL_ADDRESS: {
// MUBUF instructions a 12-bit offset in bytes.
return isUInt<12>(OffsetSize);
}
case AMDGPUAS::CONSTANT_ADDRESS: {
// SMRD instructions have an 8-bit offset in dwords on SI and
// a 20-bit offset in bytes on VI.
if (STI.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
return isUInt<20>(OffsetSize);
else
return (OffsetSize % 4 == 0) && isUInt<8>(OffsetSize / 4);
}
case AMDGPUAS::LOCAL_ADDRESS:
case AMDGPUAS::REGION_ADDRESS: {
// The single offset versions have a 16-bit offset in bytes.
return isUInt<16>(OffsetSize);
}
case AMDGPUAS::PRIVATE_ADDRESS:
// Indirect register addressing does not use any offsets.
default:
return 0;
}
}
// (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2)
// This is a variant of
// (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2),
//
// The normal DAG combiner will do this, but only if the add has one use since
// that would increase the number of instructions.
//
// This prevents us from seeing a constant offset that can be folded into a
// memory instruction's addressing mode. If we know the resulting add offset of
// a pointer can be folded into an addressing offset, we can replace the pointer
// operand with the add of new constant offset. This eliminates one of the uses,
// and may allow the remaining use to also be simplified.
//
SDValue SITargetLowering::performSHLPtrCombine(SDNode *N,
unsigned AddrSpace,
DAGCombinerInfo &DCI) const {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
if (N0.getOpcode() != ISD::ADD)
return SDValue();
const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1);
if (!CN1)
return SDValue();
const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1));
if (!CAdd)
return SDValue();
// If the resulting offset is too large, we can't fold it into the addressing
// mode offset.
APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue();
if (!canFoldOffset(Offset.getZExtValue(), AddrSpace, *Subtarget))
return SDValue();
SelectionDAG &DAG = DCI.DAG;
SDLoc SL(N);
EVT VT = N->getValueType(0);
SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1);
SDValue COffset = DAG.getConstant(Offset, MVT::i32);
return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset);
}
SDValue SITargetLowering::performAndCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
if (DCI.isBeforeLegalize())
return SDValue();
SelectionDAG &DAG = DCI.DAG;
// (and (fcmp ord x, x), (fcmp une (fabs x), inf)) ->
// fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity)
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
if (LHS.getOpcode() == ISD::SETCC &&
RHS.getOpcode() == ISD::SETCC) {
ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get();
SDValue X = LHS.getOperand(0);
SDValue Y = RHS.getOperand(0);
if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X)
return SDValue();
if (LCC == ISD::SETO) {
if (X != LHS.getOperand(1))
return SDValue();
if (RCC == ISD::SETUNE) {
const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1));
if (!C1 || !C1->isInfinity() || C1->isNegative())
return SDValue();
const uint32_t Mask = SIInstrFlags::N_NORMAL |
SIInstrFlags::N_SUBNORMAL |
SIInstrFlags::N_ZERO |
SIInstrFlags::P_ZERO |
SIInstrFlags::P_SUBNORMAL |
SIInstrFlags::P_NORMAL;
static_assert(((~(SIInstrFlags::S_NAN |
SIInstrFlags::Q_NAN |
SIInstrFlags::N_INFINITY |
SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask,
"mask not equal");
return DAG.getNode(AMDGPUISD::FP_CLASS, SDLoc(N), MVT::i1,
X, DAG.getConstant(Mask, MVT::i32));
}
}
}
return SDValue();
}
SDValue SITargetLowering::performOrCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
// or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2)
if (LHS.getOpcode() == AMDGPUISD::FP_CLASS &&
RHS.getOpcode() == AMDGPUISD::FP_CLASS) {
SDValue Src = LHS.getOperand(0);
if (Src != RHS.getOperand(0))
return SDValue();
const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
if (!CLHS || !CRHS)
return SDValue();
// Only 10 bits are used.
static const uint32_t MaxMask = 0x3ff;
uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask;
return DAG.getNode(AMDGPUISD::FP_CLASS, SDLoc(N), MVT::i1,
Src, DAG.getConstant(NewMask, MVT::i32));
}
return SDValue();
}
SDValue SITargetLowering::performClassCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
SDValue Mask = N->getOperand(1);
// fp_class x, 0 -> false
if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) {
if (CMask->isNullValue())
return DAG.getConstant(0, MVT::i1);
}
return SDValue();
}
static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) {
switch (Opc) {
case ISD::FMAXNUM:
return AMDGPUISD::FMAX3;
case AMDGPUISD::SMAX:
return AMDGPUISD::SMAX3;
case AMDGPUISD::UMAX:
return AMDGPUISD::UMAX3;
case ISD::FMINNUM:
return AMDGPUISD::FMIN3;
case AMDGPUISD::SMIN:
return AMDGPUISD::SMIN3;
case AMDGPUISD::UMIN:
return AMDGPUISD::UMIN3;
default:
llvm_unreachable("Not a min/max opcode");
}
}
SDValue SITargetLowering::performMin3Max3Combine(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
unsigned Opc = N->getOpcode();
SDValue Op0 = N->getOperand(0);
SDValue Op1 = N->getOperand(1);
// Only do this if the inner op has one use since this will just increases
// register pressure for no benefit.
// max(max(a, b), c)
if (Op0.getOpcode() == Opc && Op0.hasOneUse()) {
SDLoc DL(N);
return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
DL,
N->getValueType(0),
Op0.getOperand(0),
Op0.getOperand(1),
Op1);
}
// max(a, max(b, c))
if (Op1.getOpcode() == Opc && Op1.hasOneUse()) {
SDLoc DL(N);
return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
DL,
N->getValueType(0),
Op0,
Op1.getOperand(0),
Op1.getOperand(1));
}
return SDValue();
}
SDValue SITargetLowering::performSetCCCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
SDLoc SL(N);
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
EVT VT = LHS.getValueType();
if (VT != MVT::f32 && VT != MVT::f64)
return SDValue();
// Match isinf pattern
// (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity))
ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
if (CC == ISD::SETOEQ && LHS.getOpcode() == ISD::FABS) {
const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
if (!CRHS)
return SDValue();
const APFloat &APF = CRHS->getValueAPF();
if (APF.isInfinity() && !APF.isNegative()) {
unsigned Mask = SIInstrFlags::P_INFINITY | SIInstrFlags::N_INFINITY;
return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1,
LHS.getOperand(0), DAG.getConstant(Mask, MVT::i32));
}
}
return SDValue();
}
SDValue SITargetLowering::PerformDAGCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
SDLoc DL(N);
switch (N->getOpcode()) {
default:
return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
case ISD::SETCC:
return performSetCCCombine(N, DCI);
case ISD::FMAXNUM: // TODO: What about fmax_legacy?
case ISD::FMINNUM:
case AMDGPUISD::SMAX:
case AMDGPUISD::SMIN:
case AMDGPUISD::UMAX:
case AMDGPUISD::UMIN: {
if (DCI.getDAGCombineLevel() >= AfterLegalizeDAG &&
N->getValueType(0) != MVT::f64 &&
getTargetMachine().getOptLevel() > CodeGenOpt::None)
return performMin3Max3Combine(N, DCI);
break;
}
case AMDGPUISD::CVT_F32_UBYTE0:
case AMDGPUISD::CVT_F32_UBYTE1:
case AMDGPUISD::CVT_F32_UBYTE2:
case AMDGPUISD::CVT_F32_UBYTE3: {
unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0;
SDValue Src = N->getOperand(0);
APInt Demanded = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8);
APInt KnownZero, KnownOne;
TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
!DCI.isBeforeLegalizeOps());
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (TLO.ShrinkDemandedConstant(Src, Demanded) ||
TLI.SimplifyDemandedBits(Src, Demanded, KnownZero, KnownOne, TLO)) {
DCI.CommitTargetLoweringOpt(TLO);
}
break;
}
case ISD::UINT_TO_FP: {
return performUCharToFloatCombine(N, DCI);
case ISD::FADD: {
if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
break;
EVT VT = N->getValueType(0);
if (VT != MVT::f32)
break;
// Only do this if we are not trying to support denormals. v_mad_f32 does
// not support denormals ever.
if (Subtarget->hasFP32Denormals())
break;
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
// These should really be instruction patterns, but writing patterns with
// source modiifiers is a pain.
// fadd (fadd (a, a), b) -> mad 2.0, a, b
if (LHS.getOpcode() == ISD::FADD) {
SDValue A = LHS.getOperand(0);
if (A == LHS.getOperand(1)) {
const SDValue Two = DAG.getConstantFP(2.0, MVT::f32);
return DAG.getNode(ISD::FMAD, DL, VT, Two, A, RHS);
}
}
// fadd (b, fadd (a, a)) -> mad 2.0, a, b
if (RHS.getOpcode() == ISD::FADD) {
SDValue A = RHS.getOperand(0);
if (A == RHS.getOperand(1)) {
const SDValue Two = DAG.getConstantFP(2.0, MVT::f32);
return DAG.getNode(ISD::FMAD, DL, VT, Two, A, LHS);
}
}
return SDValue();
}
case ISD::FSUB: {
if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
break;
EVT VT = N->getValueType(0);
// Try to get the fneg to fold into the source modifier. This undoes generic
// DAG combines and folds them into the mad.
//
// Only do this if we are not trying to support denormals. v_mad_f32 does
// not support denormals ever.
if (VT == MVT::f32 &&
!Subtarget->hasFP32Denormals()) {
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
if (LHS.getOpcode() == ISD::FADD) {
// (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c)
SDValue A = LHS.getOperand(0);
if (A == LHS.getOperand(1)) {
const SDValue Two = DAG.getConstantFP(2.0, MVT::f32);
SDValue NegRHS = DAG.getNode(ISD::FNEG, DL, VT, RHS);
return DAG.getNode(ISD::FMAD, DL, VT, Two, A, NegRHS);
}
}
if (RHS.getOpcode() == ISD::FADD) {
// (fsub c, (fadd a, a)) -> mad -2.0, a, c
SDValue A = RHS.getOperand(0);
if (A == RHS.getOperand(1)) {
const SDValue NegTwo = DAG.getConstantFP(-2.0, MVT::f32);
return DAG.getNode(ISD::FMAD, DL, VT, NegTwo, A, LHS);
}
}
return SDValue();
}
break;
}
}
case ISD::LOAD:
case ISD::STORE:
case ISD::ATOMIC_LOAD:
case ISD::ATOMIC_STORE:
case ISD::ATOMIC_CMP_SWAP:
case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
case ISD::ATOMIC_SWAP:
case ISD::ATOMIC_LOAD_ADD:
case ISD::ATOMIC_LOAD_SUB:
case ISD::ATOMIC_LOAD_AND:
case ISD::ATOMIC_LOAD_OR:
case ISD::ATOMIC_LOAD_XOR:
case ISD::ATOMIC_LOAD_NAND:
case ISD::ATOMIC_LOAD_MIN:
case ISD::ATOMIC_LOAD_MAX:
case ISD::ATOMIC_LOAD_UMIN:
case ISD::ATOMIC_LOAD_UMAX: { // TODO: Target mem intrinsics.
if (DCI.isBeforeLegalize())
break;
MemSDNode *MemNode = cast<MemSDNode>(N);
SDValue Ptr = MemNode->getBasePtr();
// TODO: We could also do this for multiplies.
unsigned AS = MemNode->getAddressSpace();
if (Ptr.getOpcode() == ISD::SHL && AS != AMDGPUAS::PRIVATE_ADDRESS) {
SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(), AS, DCI);
if (NewPtr) {
SmallVector<SDValue, 8> NewOps(MemNode->op_begin(), MemNode->op_end());
NewOps[N->getOpcode() == ISD::STORE ? 2 : 1] = NewPtr;
return SDValue(DAG.UpdateNodeOperands(MemNode, NewOps), 0);
}
}
break;
}
case ISD::AND:
return performAndCombine(N, DCI);
case ISD::OR:
return performOrCombine(N, DCI);
case AMDGPUISD::FP_CLASS:
return performClassCombine(N, DCI);
}
return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
}
/// \brief Analyze the possible immediate value Op
///
/// Returns -1 if it isn't an immediate, 0 if it's and inline immediate
/// and the immediate value if it's a literal immediate
int32_t SITargetLowering::analyzeImmediate(const SDNode *N) const {
const SIInstrInfo *TII =
static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
if (const ConstantSDNode *Node = dyn_cast<ConstantSDNode>(N)) {
if (TII->isInlineConstant(Node->getAPIntValue()))
return 0;
uint64_t Val = Node->getZExtValue();
return isUInt<32>(Val) ? Val : -1;
}
if (const ConstantFPSDNode *Node = dyn_cast<ConstantFPSDNode>(N)) {
if (TII->isInlineConstant(Node->getValueAPF().bitcastToAPInt()))
return 0;
if (Node->getValueType(0) == MVT::f32)
return FloatToBits(Node->getValueAPF().convertToFloat());
return -1;
}
return -1;
}
/// \brief Helper function for adjustWritemask
static unsigned SubIdx2Lane(unsigned Idx) {
switch (Idx) {
default: return 0;
case AMDGPU::sub0: return 0;
case AMDGPU::sub1: return 1;
case AMDGPU::sub2: return 2;
case AMDGPU::sub3: return 3;
}
}
/// \brief Adjust the writemask of MIMG instructions
void SITargetLowering::adjustWritemask(MachineSDNode *&Node,
SelectionDAG &DAG) const {
SDNode *Users[4] = { };
unsigned Lane = 0;
unsigned OldDmask = Node->getConstantOperandVal(0);
unsigned NewDmask = 0;
// Try to figure out the used register components
for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end();
I != E; ++I) {
// Abort if we can't understand the usage
if (!I->isMachineOpcode() ||
I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
return;
// Lane means which subreg of %VGPRa_VGPRb_VGPRc_VGPRd is used.
// Note that subregs are packed, i.e. Lane==0 is the first bit set
// in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit
// set, etc.
Lane = SubIdx2Lane(I->getConstantOperandVal(1));
// Set which texture component corresponds to the lane.
unsigned Comp;
for (unsigned i = 0, Dmask = OldDmask; i <= Lane; i++) {
assert(Dmask);
Comp = countTrailingZeros(Dmask);
Dmask &= ~(1 << Comp);
}
// Abort if we have more than one user per component
if (Users[Lane])
return;
Users[Lane] = *I;
NewDmask |= 1 << Comp;
}
// Abort if there's no change
if (NewDmask == OldDmask)
return;
// Adjust the writemask in the node
std::vector<SDValue> Ops;
Ops.push_back(DAG.getTargetConstant(NewDmask, MVT::i32));
Ops.insert(Ops.end(), Node->op_begin() + 1, Node->op_end());
Node = (MachineSDNode*)DAG.UpdateNodeOperands(Node, Ops);
// If we only got one lane, replace it with a copy
// (if NewDmask has only one bit set...)
if (NewDmask && (NewDmask & (NewDmask-1)) == 0) {
SDValue RC = DAG.getTargetConstant(AMDGPU::VGPR_32RegClassID, MVT::i32);
SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
SDLoc(), Users[Lane]->getValueType(0),
SDValue(Node, 0), RC);
DAG.ReplaceAllUsesWith(Users[Lane], Copy);
return;
}
// Update the users of the node with the new indices
for (unsigned i = 0, Idx = AMDGPU::sub0; i < 4; ++i) {
SDNode *User = Users[i];
if (!User)
continue;
SDValue Op = DAG.getTargetConstant(Idx, MVT::i32);
DAG.UpdateNodeOperands(User, User->getOperand(0), Op);
switch (Idx) {
default: break;
case AMDGPU::sub0: Idx = AMDGPU::sub1; break;
case AMDGPU::sub1: Idx = AMDGPU::sub2; break;
case AMDGPU::sub2: Idx = AMDGPU::sub3; break;
}
}
}
/// \brief Legalize target independent instructions (e.g. INSERT_SUBREG)
/// with frame index operands.
/// LLVM assumes that inputs are to these instructions are registers.
void SITargetLowering::legalizeTargetIndependentNode(SDNode *Node,
SelectionDAG &DAG) const {
SmallVector<SDValue, 8> Ops;
for (unsigned i = 0; i < Node->getNumOperands(); ++i) {
if (!isa<FrameIndexSDNode>(Node->getOperand(i))) {
Ops.push_back(Node->getOperand(i));
continue;
}
SDLoc DL(Node);
Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL,
Node->getOperand(i).getValueType(),
Node->getOperand(i)), 0));
}
DAG.UpdateNodeOperands(Node, Ops);
}
/// \brief Fold the instructions after selecting them.
SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node,
SelectionDAG &DAG) const {
const SIInstrInfo *TII =
static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
if (TII->isMIMG(Node->getMachineOpcode()))
adjustWritemask(Node, DAG);
if (Node->getMachineOpcode() == AMDGPU::INSERT_SUBREG ||
Node->getMachineOpcode() == AMDGPU::REG_SEQUENCE) {
legalizeTargetIndependentNode(Node, DAG);
return Node;
}
return Node;
}
/// \brief Assign the register class depending on the number of
/// bits set in the writemask
void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
SDNode *Node) const {
const SIInstrInfo *TII =
static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
TII->legalizeOperands(MI);
if (TII->isMIMG(MI->getOpcode())) {
unsigned VReg = MI->getOperand(0).getReg();
unsigned Writemask = MI->getOperand(1).getImm();
unsigned BitsSet = 0;
for (unsigned i = 0; i < 4; ++i)
BitsSet += Writemask & (1 << i) ? 1 : 0;
const TargetRegisterClass *RC;
switch (BitsSet) {
default: return;
case 1: RC = &AMDGPU::VGPR_32RegClass; break;
case 2: RC = &AMDGPU::VReg_64RegClass; break;
case 3: RC = &AMDGPU::VReg_96RegClass; break;
}
unsigned NewOpcode = TII->getMaskedMIMGOp(MI->getOpcode(), BitsSet);
MI->setDesc(TII->get(NewOpcode));
MRI.setRegClass(VReg, RC);
return;
}
// Replace unused atomics with the no return version.
int NoRetAtomicOp = AMDGPU::getAtomicNoRetOp(MI->getOpcode());
if (NoRetAtomicOp != -1) {
if (!Node->hasAnyUseOfValue(0)) {
MI->setDesc(TII->get(NoRetAtomicOp));
MI->RemoveOperand(0);
}
return;
}
}
static SDValue buildSMovImm32(SelectionDAG &DAG, SDLoc DL, uint64_t Val) {
SDValue K = DAG.getTargetConstant(Val, MVT::i32);
return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0);
}
MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG,
SDLoc DL,
SDValue Ptr) const {
const SIInstrInfo *TII =
static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
#if 1
// XXX - Workaround for moveToVALU not handling different register class
// inserts for REG_SEQUENCE.
// Build the half of the subregister with the constants.
const SDValue Ops0[] = {
DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, MVT::i32),
buildSMovImm32(DAG, DL, 0),
DAG.getTargetConstant(AMDGPU::sub0, MVT::i32),
buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32),
DAG.getTargetConstant(AMDGPU::sub1, MVT::i32)
};
SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL,
MVT::v2i32, Ops0), 0);
// Combine the constants and the pointer.
const SDValue Ops1[] = {
DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, MVT::i32),
Ptr,
DAG.getTargetConstant(AMDGPU::sub0_sub1, MVT::i32),
SubRegHi,
DAG.getTargetConstant(AMDGPU::sub2_sub3, MVT::i32)
};
return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1);
#else
const SDValue Ops[] = {
DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, MVT::i32),
Ptr,
DAG.getTargetConstant(AMDGPU::sub0_sub1, MVT::i32),
buildSMovImm32(DAG, DL, 0),
DAG.getTargetConstant(AMDGPU::sub2, MVT::i32),
buildSMovImm32(DAG, DL, TII->getDefaultRsrcFormat() >> 32),
DAG.getTargetConstant(AMDGPU::sub3, MVT::i32)
};
return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops);
#endif
}
/// \brief Return a resource descriptor with the 'Add TID' bit enabled
/// The TID (Thread ID) is multipled by the stride value (bits [61:48]
/// of the resource descriptor) to create an offset, which is added to the
/// resource ponter.
MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG,
SDLoc DL,
SDValue Ptr,
uint32_t RsrcDword1,
uint64_t RsrcDword2And3) const {
SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr);
SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr);
if (RsrcDword1) {
PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi,
DAG.getConstant(RsrcDword1, MVT::i32)), 0);
}
SDValue DataLo = buildSMovImm32(DAG, DL,
RsrcDword2And3 & UINT64_C(0xFFFFFFFF));
SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32);
const SDValue Ops[] = {
DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, MVT::i32),
PtrLo,
DAG.getTargetConstant(AMDGPU::sub0, MVT::i32),
PtrHi,
DAG.getTargetConstant(AMDGPU::sub1, MVT::i32),
DataLo,
DAG.getTargetConstant(AMDGPU::sub2, MVT::i32),
DataHi,
DAG.getTargetConstant(AMDGPU::sub3, MVT::i32)
};
return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops);
}
MachineSDNode *SITargetLowering::buildScratchRSRC(SelectionDAG &DAG,
SDLoc DL,
SDValue Ptr) const {
const SIInstrInfo *TII =
static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
uint64_t Rsrc = TII->getDefaultRsrcDataFormat() | AMDGPU::RSRC_TID_ENABLE |
0xffffffff; // Size
return buildRSRC(DAG, DL, Ptr, 0, Rsrc);
}
SDValue SITargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
const TargetRegisterClass *RC,
unsigned Reg, EVT VT) const {
SDValue VReg = AMDGPUTargetLowering::CreateLiveInRegister(DAG, RC, Reg, VT);
return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(DAG.getEntryNode()),
cast<RegisterSDNode>(VReg)->getReg(), VT);
}
//===----------------------------------------------------------------------===//
// SI Inline Assembly Support
//===----------------------------------------------------------------------===//
std::pair<unsigned, const TargetRegisterClass *>
SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
const std::string &Constraint,
MVT VT) const {
if (Constraint == "r") {
switch(VT.SimpleTy) {
default: llvm_unreachable("Unhandled type for 'r' inline asm constraint");
case MVT::i64:
return std::make_pair(0U, &AMDGPU::SGPR_64RegClass);
case MVT::i32:
return std::make_pair(0U, &AMDGPU::SGPR_32RegClass);
}
}
if (Constraint.size() > 1) {
const TargetRegisterClass *RC = nullptr;
if (Constraint[1] == 'v') {
RC = &AMDGPU::VGPR_32RegClass;
} else if (Constraint[1] == 's') {
RC = &AMDGPU::SGPR_32RegClass;
}
if (RC) {
unsigned Idx = std::atoi(Constraint.substr(2).c_str());
if (Idx < RC->getNumRegs())
return std::make_pair(RC->getRegister(Idx), RC);
}
}
return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
}