llvm-6502/lib/Target/AArch64/AArch64InstrNEON.td

8249 lines
353 KiB
TableGen

//===-- AArch64InstrNEON.td - NEON support for AArch64 -----*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the AArch64 NEON instruction set.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// NEON-specific DAG Nodes.
//===----------------------------------------------------------------------===//
def Neon_bsl : SDNode<"AArch64ISD::NEON_BSL", SDTypeProfile<1, 3,
[SDTCisVec<0>, SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>,
SDTCisSameAs<0, 3>]>>;
// (outs Result), (ins Imm, OpCmode)
def SDT_Neon_movi : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisVT<1, i32>]>;
def Neon_movi : SDNode<"AArch64ISD::NEON_MOVIMM", SDT_Neon_movi>;
def Neon_mvni : SDNode<"AArch64ISD::NEON_MVNIMM", SDT_Neon_movi>;
// (outs Result), (ins Imm)
def Neon_fmovi : SDNode<"AArch64ISD::NEON_FMOVIMM", SDTypeProfile<1, 1,
[SDTCisVec<0>, SDTCisVT<1, i32>]>>;
// (outs Result), (ins LHS, RHS, CondCode)
def Neon_cmp : SDNode<"AArch64ISD::NEON_CMP", SDTypeProfile<1, 3,
[SDTCisVec<0>, SDTCisSameAs<1, 2>]>>;
// (outs Result), (ins LHS, 0/0.0 constant, CondCode)
def Neon_cmpz : SDNode<"AArch64ISD::NEON_CMPZ", SDTypeProfile<1, 3,
[SDTCisVec<0>, SDTCisVec<1>]>>;
// (outs Result), (ins LHS, RHS)
def Neon_tst : SDNode<"AArch64ISD::NEON_TST", SDTypeProfile<1, 2,
[SDTCisVec<0>, SDTCisSameAs<1, 2>]>>;
def SDTARMVSH : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisSameAs<0, 1>,
SDTCisVT<2, i32>]>;
def Neon_sqrshlImm : SDNode<"AArch64ISD::NEON_QSHLs", SDTARMVSH>;
def Neon_uqrshlImm : SDNode<"AArch64ISD::NEON_QSHLu", SDTARMVSH>;
def SDTPERMUTE : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisSameAs<0, 1>,
SDTCisSameAs<0, 2>]>;
def Neon_uzp1 : SDNode<"AArch64ISD::NEON_UZP1", SDTPERMUTE>;
def Neon_uzp2 : SDNode<"AArch64ISD::NEON_UZP2", SDTPERMUTE>;
def Neon_zip1 : SDNode<"AArch64ISD::NEON_ZIP1", SDTPERMUTE>;
def Neon_zip2 : SDNode<"AArch64ISD::NEON_ZIP2", SDTPERMUTE>;
def Neon_trn1 : SDNode<"AArch64ISD::NEON_TRN1", SDTPERMUTE>;
def Neon_trn2 : SDNode<"AArch64ISD::NEON_TRN2", SDTPERMUTE>;
def SDTVSHUF : SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisSameAs<0, 1>]>;
def Neon_rev64 : SDNode<"AArch64ISD::NEON_REV64", SDTVSHUF>;
def Neon_rev32 : SDNode<"AArch64ISD::NEON_REV32", SDTVSHUF>;
def Neon_rev16 : SDNode<"AArch64ISD::NEON_REV16", SDTVSHUF>;
def Neon_vdup : SDNode<"AArch64ISD::NEON_VDUP", SDTypeProfile<1, 1,
[SDTCisVec<0>]>>;
def Neon_vduplane : SDNode<"AArch64ISD::NEON_VDUPLANE", SDTypeProfile<1, 2,
[SDTCisVec<0>, SDTCisVec<1>, SDTCisVT<2, i64>]>>;
def Neon_vextract : SDNode<"AArch64ISD::NEON_VEXTRACT", SDTypeProfile<1, 3,
[SDTCisVec<0>, SDTCisSameAs<0, 1>,
SDTCisSameAs<0, 2>, SDTCisVT<3, i64>]>>;
//===----------------------------------------------------------------------===//
// Multiclasses
//===----------------------------------------------------------------------===//
multiclass NeonI_3VSame_B_sizes<bit u, bits<2> size, bits<5> opcode,
string asmop, SDPatternOperator opnode8B,
SDPatternOperator opnode16B,
bit Commutable = 0> {
let isCommutable = Commutable in {
def _8B : NeonI_3VSame<0b0, u, size, opcode,
(outs VPR64:$Rd), (ins VPR64:$Rn, VPR64:$Rm),
asmop # "\t$Rd.8b, $Rn.8b, $Rm.8b",
[(set (v8i8 VPR64:$Rd),
(v8i8 (opnode8B (v8i8 VPR64:$Rn), (v8i8 VPR64:$Rm))))],
NoItinerary>;
def _16B : NeonI_3VSame<0b1, u, size, opcode,
(outs VPR128:$Rd), (ins VPR128:$Rn, VPR128:$Rm),
asmop # "\t$Rd.16b, $Rn.16b, $Rm.16b",
[(set (v16i8 VPR128:$Rd),
(v16i8 (opnode16B (v16i8 VPR128:$Rn), (v16i8 VPR128:$Rm))))],
NoItinerary>;
}
}
multiclass NeonI_3VSame_HS_sizes<bit u, bits<5> opcode,
string asmop, SDPatternOperator opnode,
bit Commutable = 0> {
let isCommutable = Commutable in {
def _4H : NeonI_3VSame<0b0, u, 0b01, opcode,
(outs VPR64:$Rd), (ins VPR64:$Rn, VPR64:$Rm),
asmop # "\t$Rd.4h, $Rn.4h, $Rm.4h",
[(set (v4i16 VPR64:$Rd),
(v4i16 (opnode (v4i16 VPR64:$Rn), (v4i16 VPR64:$Rm))))],
NoItinerary>;
def _8H : NeonI_3VSame<0b1, u, 0b01, opcode,
(outs VPR128:$Rd), (ins VPR128:$Rn, VPR128:$Rm),
asmop # "\t$Rd.8h, $Rn.8h, $Rm.8h",
[(set (v8i16 VPR128:$Rd),
(v8i16 (opnode (v8i16 VPR128:$Rn), (v8i16 VPR128:$Rm))))],
NoItinerary>;
def _2S : NeonI_3VSame<0b0, u, 0b10, opcode,
(outs VPR64:$Rd), (ins VPR64:$Rn, VPR64:$Rm),
asmop # "\t$Rd.2s, $Rn.2s, $Rm.2s",
[(set (v2i32 VPR64:$Rd),
(v2i32 (opnode (v2i32 VPR64:$Rn), (v2i32 VPR64:$Rm))))],
NoItinerary>;
def _4S : NeonI_3VSame<0b1, u, 0b10, opcode,
(outs VPR128:$Rd), (ins VPR128:$Rn, VPR128:$Rm),
asmop # "\t$Rd.4s, $Rn.4s, $Rm.4s",
[(set (v4i32 VPR128:$Rd),
(v4i32 (opnode (v4i32 VPR128:$Rn), (v4i32 VPR128:$Rm))))],
NoItinerary>;
}
}
multiclass NeonI_3VSame_BHS_sizes<bit u, bits<5> opcode,
string asmop, SDPatternOperator opnode,
bit Commutable = 0>
: NeonI_3VSame_HS_sizes<u, opcode, asmop, opnode, Commutable> {
let isCommutable = Commutable in {
def _8B : NeonI_3VSame<0b0, u, 0b00, opcode,
(outs VPR64:$Rd), (ins VPR64:$Rn, VPR64:$Rm),
asmop # "\t$Rd.8b, $Rn.8b, $Rm.8b",
[(set (v8i8 VPR64:$Rd),
(v8i8 (opnode (v8i8 VPR64:$Rn), (v8i8 VPR64:$Rm))))],
NoItinerary>;
def _16B : NeonI_3VSame<0b1, u, 0b00, opcode,
(outs VPR128:$Rd), (ins VPR128:$Rn, VPR128:$Rm),
asmop # "\t$Rd.16b, $Rn.16b, $Rm.16b",
[(set (v16i8 VPR128:$Rd),
(v16i8 (opnode (v16i8 VPR128:$Rn), (v16i8 VPR128:$Rm))))],
NoItinerary>;
}
}
multiclass NeonI_3VSame_BHSD_sizes<bit u, bits<5> opcode,
string asmop, SDPatternOperator opnode,
bit Commutable = 0>
: NeonI_3VSame_BHS_sizes<u, opcode, asmop, opnode, Commutable> {
let isCommutable = Commutable in {
def _2D : NeonI_3VSame<0b1, u, 0b11, opcode,
(outs VPR128:$Rd), (ins VPR128:$Rn, VPR128:$Rm),
asmop # "\t$Rd.2d, $Rn.2d, $Rm.2d",
[(set (v2i64 VPR128:$Rd),
(v2i64 (opnode (v2i64 VPR128:$Rn), (v2i64 VPR128:$Rm))))],
NoItinerary>;
}
}
// Multiclass NeonI_3VSame_SD_sizes: Operand types are floating point types,
// but Result types can be integer or floating point types.
multiclass NeonI_3VSame_SD_sizes<bit u, bit size, bits<5> opcode,
string asmop, SDPatternOperator opnode2S,
SDPatternOperator opnode4S,
SDPatternOperator opnode2D,
ValueType ResTy2S, ValueType ResTy4S,
ValueType ResTy2D, bit Commutable = 0> {
let isCommutable = Commutable in {
def _2S : NeonI_3VSame<0b0, u, {size, 0b0}, opcode,
(outs VPR64:$Rd), (ins VPR64:$Rn, VPR64:$Rm),
asmop # "\t$Rd.2s, $Rn.2s, $Rm.2s",
[(set (ResTy2S VPR64:$Rd),
(ResTy2S (opnode2S (v2f32 VPR64:$Rn), (v2f32 VPR64:$Rm))))],
NoItinerary>;
def _4S : NeonI_3VSame<0b1, u, {size, 0b0}, opcode,
(outs VPR128:$Rd), (ins VPR128:$Rn, VPR128:$Rm),
asmop # "\t$Rd.4s, $Rn.4s, $Rm.4s",
[(set (ResTy4S VPR128:$Rd),
(ResTy4S (opnode4S (v4f32 VPR128:$Rn), (v4f32 VPR128:$Rm))))],
NoItinerary>;
def _2D : NeonI_3VSame<0b1, u, {size, 0b1}, opcode,
(outs VPR128:$Rd), (ins VPR128:$Rn, VPR128:$Rm),
asmop # "\t$Rd.2d, $Rn.2d, $Rm.2d",
[(set (ResTy2D VPR128:$Rd),
(ResTy2D (opnode2D (v2f64 VPR128:$Rn), (v2f64 VPR128:$Rm))))],
NoItinerary>;
}
}
//===----------------------------------------------------------------------===//
// Instruction Definitions
//===----------------------------------------------------------------------===//
// Vector Arithmetic Instructions
// Vector Add (Integer and Floating-Point)
defm ADDvvv : NeonI_3VSame_BHSD_sizes<0b0, 0b10000, "add", add, 1>;
defm FADDvvv : NeonI_3VSame_SD_sizes<0b0, 0b0, 0b11010, "fadd", fadd, fadd, fadd,
v2f32, v4f32, v2f64, 1>;
// Vector Sub (Integer and Floating-Point)
defm SUBvvv : NeonI_3VSame_BHSD_sizes<0b1, 0b10000, "sub", sub, 0>;
defm FSUBvvv : NeonI_3VSame_SD_sizes<0b0, 0b1, 0b11010, "fsub", fsub, fsub, fsub,
v2f32, v4f32, v2f64, 0>;
// Vector Multiply (Integer and Floating-Point)
defm MULvvv : NeonI_3VSame_BHS_sizes<0b0, 0b10011, "mul", mul, 1>;
defm FMULvvv : NeonI_3VSame_SD_sizes<0b1, 0b0, 0b11011, "fmul", fmul, fmul, fmul,
v2f32, v4f32, v2f64, 1>;
// Vector Multiply (Polynomial)
defm PMULvvv : NeonI_3VSame_B_sizes<0b1, 0b00, 0b10011, "pmul",
int_arm_neon_vmulp, int_arm_neon_vmulp, 1>;
// Vector Multiply-accumulate and Multiply-subtract (Integer)
// class NeonI_3VSame_Constraint_impl: NeonI_3VSame with no data type and
// two operands constraints.
class NeonI_3VSame_Constraint_impl<string asmop, string asmlane,
RegisterOperand VPRC, ValueType OpTy, bit q, bit u, bits<2> size,
bits<5> opcode, SDPatternOperator opnode>
: NeonI_3VSame<q, u, size, opcode,
(outs VPRC:$Rd), (ins VPRC:$src, VPRC:$Rn, VPRC:$Rm),
asmop # "\t$Rd" # asmlane # ", $Rn" # asmlane # ", $Rm" # asmlane,
[(set (OpTy VPRC:$Rd),
(OpTy (opnode (OpTy VPRC:$src), (OpTy VPRC:$Rn), (OpTy VPRC:$Rm))))],
NoItinerary> {
let Constraints = "$src = $Rd";
}
def Neon_mla : PatFrag<(ops node:$Ra, node:$Rn, node:$Rm),
(add node:$Ra, (mul node:$Rn, node:$Rm))>;
def Neon_mls : PatFrag<(ops node:$Ra, node:$Rn, node:$Rm),
(sub node:$Ra, (mul node:$Rn, node:$Rm))>;
def MLAvvv_8B: NeonI_3VSame_Constraint_impl<"mla", ".8b", VPR64, v8i8,
0b0, 0b0, 0b00, 0b10010, Neon_mla>;
def MLAvvv_16B: NeonI_3VSame_Constraint_impl<"mla", ".16b", VPR128, v16i8,
0b1, 0b0, 0b00, 0b10010, Neon_mla>;
def MLAvvv_4H: NeonI_3VSame_Constraint_impl<"mla", ".4h", VPR64, v4i16,
0b0, 0b0, 0b01, 0b10010, Neon_mla>;
def MLAvvv_8H: NeonI_3VSame_Constraint_impl<"mla", ".8h", VPR128, v8i16,
0b1, 0b0, 0b01, 0b10010, Neon_mla>;
def MLAvvv_2S: NeonI_3VSame_Constraint_impl<"mla", ".2s", VPR64, v2i32,
0b0, 0b0, 0b10, 0b10010, Neon_mla>;
def MLAvvv_4S: NeonI_3VSame_Constraint_impl<"mla", ".4s", VPR128, v4i32,
0b1, 0b0, 0b10, 0b10010, Neon_mla>;
def MLSvvv_8B: NeonI_3VSame_Constraint_impl<"mls", ".8b", VPR64, v8i8,
0b0, 0b1, 0b00, 0b10010, Neon_mls>;
def MLSvvv_16B: NeonI_3VSame_Constraint_impl<"mls", ".16b", VPR128, v16i8,
0b1, 0b1, 0b00, 0b10010, Neon_mls>;
def MLSvvv_4H: NeonI_3VSame_Constraint_impl<"mls", ".4h", VPR64, v4i16,
0b0, 0b1, 0b01, 0b10010, Neon_mls>;
def MLSvvv_8H: NeonI_3VSame_Constraint_impl<"mls", ".8h", VPR128, v8i16,
0b1, 0b1, 0b01, 0b10010, Neon_mls>;
def MLSvvv_2S: NeonI_3VSame_Constraint_impl<"mls", ".2s", VPR64, v2i32,
0b0, 0b1, 0b10, 0b10010, Neon_mls>;
def MLSvvv_4S: NeonI_3VSame_Constraint_impl<"mls", ".4s", VPR128, v4i32,
0b1, 0b1, 0b10, 0b10010, Neon_mls>;
// Vector Multiply-accumulate and Multiply-subtract (Floating Point)
def Neon_fmla : PatFrag<(ops node:$Ra, node:$Rn, node:$Rm),
(fadd node:$Ra, (fmul node:$Rn, node:$Rm))>;
def Neon_fmls : PatFrag<(ops node:$Ra, node:$Rn, node:$Rm),
(fsub node:$Ra, (fmul node:$Rn, node:$Rm))>;
let Predicates = [HasNEON, UseFusedMAC] in {
def FMLAvvv_2S: NeonI_3VSame_Constraint_impl<"fmla", ".2s", VPR64, v2f32,
0b0, 0b0, 0b00, 0b11001, Neon_fmla>;
def FMLAvvv_4S: NeonI_3VSame_Constraint_impl<"fmla", ".4s", VPR128, v4f32,
0b1, 0b0, 0b00, 0b11001, Neon_fmla>;
def FMLAvvv_2D: NeonI_3VSame_Constraint_impl<"fmla", ".2d", VPR128, v2f64,
0b1, 0b0, 0b01, 0b11001, Neon_fmla>;
def FMLSvvv_2S: NeonI_3VSame_Constraint_impl<"fmls", ".2s", VPR64, v2f32,
0b0, 0b0, 0b10, 0b11001, Neon_fmls>;
def FMLSvvv_4S: NeonI_3VSame_Constraint_impl<"fmls", ".4s", VPR128, v4f32,
0b1, 0b0, 0b10, 0b11001, Neon_fmls>;
def FMLSvvv_2D: NeonI_3VSame_Constraint_impl<"fmls", ".2d", VPR128, v2f64,
0b1, 0b0, 0b11, 0b11001, Neon_fmls>;
}
// We're also allowed to match the fma instruction regardless of compile
// options.
def : Pat<(v2f32 (fma VPR64:$Rn, VPR64:$Rm, VPR64:$Ra)),
(FMLAvvv_2S VPR64:$Ra, VPR64:$Rn, VPR64:$Rm)>;
def : Pat<(v4f32 (fma VPR128:$Rn, VPR128:$Rm, VPR128:$Ra)),
(FMLAvvv_4S VPR128:$Ra, VPR128:$Rn, VPR128:$Rm)>;
def : Pat<(v2f64 (fma VPR128:$Rn, VPR128:$Rm, VPR128:$Ra)),
(FMLAvvv_2D VPR128:$Ra, VPR128:$Rn, VPR128:$Rm)>;
def : Pat<(v2f32 (fma (fneg VPR64:$Rn), VPR64:$Rm, VPR64:$Ra)),
(FMLSvvv_2S VPR64:$Ra, VPR64:$Rn, VPR64:$Rm)>;
def : Pat<(v4f32 (fma (fneg VPR128:$Rn), VPR128:$Rm, VPR128:$Ra)),
(FMLSvvv_4S VPR128:$Ra, VPR128:$Rn, VPR128:$Rm)>;
def : Pat<(v2f64 (fma (fneg VPR128:$Rn), VPR128:$Rm, VPR128:$Ra)),
(FMLSvvv_2D VPR128:$Ra, VPR128:$Rn, VPR128:$Rm)>;
// Vector Divide (Floating-Point)
defm FDIVvvv : NeonI_3VSame_SD_sizes<0b1, 0b0, 0b11111, "fdiv", fdiv, fdiv, fdiv,
v2f32, v4f32, v2f64, 0>;
// Vector Bitwise Operations
// Vector Bitwise AND
defm ANDvvv : NeonI_3VSame_B_sizes<0b0, 0b00, 0b00011, "and", and, and, 1>;
// Vector Bitwise Exclusive OR
defm EORvvv : NeonI_3VSame_B_sizes<0b1, 0b00, 0b00011, "eor", xor, xor, 1>;
// Vector Bitwise OR
defm ORRvvv : NeonI_3VSame_B_sizes<0b0, 0b10, 0b00011, "orr", or, or, 1>;
// ORR disassembled as MOV if Vn==Vm
// Vector Move - register
// Alias for ORR if Vn=Vm.
// FIXME: This is actually the preferred syntax but TableGen can't deal with
// custom printing of aliases.
def : NeonInstAlias<"mov $Rd.8b, $Rn.8b",
(ORRvvv_8B VPR64:$Rd, VPR64:$Rn, VPR64:$Rn), 0>;
def : NeonInstAlias<"mov $Rd.16b, $Rn.16b",
(ORRvvv_16B VPR128:$Rd, VPR128:$Rn, VPR128:$Rn), 0>;
// The MOVI instruction takes two immediate operands. The first is the
// immediate encoding, while the second is the cmode. A cmode of 14, or
// 0b1110, produces a MOVI operation, rather than a MVNI, ORR, or BIC.
def Neon_AllZero : PatFrag<(ops), (Neon_movi (i32 0), (i32 14))>;
def Neon_AllOne : PatFrag<(ops), (Neon_movi (i32 255), (i32 14))>;
def Neon_not8B : PatFrag<(ops node:$in),
(xor node:$in, (bitconvert (v8i8 Neon_AllOne)))>;
def Neon_not16B : PatFrag<(ops node:$in),
(xor node:$in, (bitconvert (v16i8 Neon_AllOne)))>;
def Neon_orn8B : PatFrag<(ops node:$Rn, node:$Rm),
(or node:$Rn, (Neon_not8B node:$Rm))>;
def Neon_orn16B : PatFrag<(ops node:$Rn, node:$Rm),
(or node:$Rn, (Neon_not16B node:$Rm))>;
def Neon_bic8B : PatFrag<(ops node:$Rn, node:$Rm),
(and node:$Rn, (Neon_not8B node:$Rm))>;
def Neon_bic16B : PatFrag<(ops node:$Rn, node:$Rm),
(and node:$Rn, (Neon_not16B node:$Rm))>;
// Vector Bitwise OR NOT - register
defm ORNvvv : NeonI_3VSame_B_sizes<0b0, 0b11, 0b00011, "orn",
Neon_orn8B, Neon_orn16B, 0>;
// Vector Bitwise Bit Clear (AND NOT) - register
defm BICvvv : NeonI_3VSame_B_sizes<0b0, 0b01, 0b00011, "bic",
Neon_bic8B, Neon_bic16B, 0>;
multiclass Neon_bitwise2V_patterns<SDPatternOperator opnode8B,
SDPatternOperator opnode16B,
Instruction INST8B,
Instruction INST16B> {
def : Pat<(v2i32 (opnode8B VPR64:$Rn, VPR64:$Rm)),
(INST8B VPR64:$Rn, VPR64:$Rm)>;
def : Pat<(v4i16 (opnode8B VPR64:$Rn, VPR64:$Rm)),
(INST8B VPR64:$Rn, VPR64:$Rm)>;
def : Pat<(v1i64 (opnode8B VPR64:$Rn, VPR64:$Rm)),
(INST8B VPR64:$Rn, VPR64:$Rm)>;
def : Pat<(v4i32 (opnode16B VPR128:$Rn, VPR128:$Rm)),
(INST16B VPR128:$Rn, VPR128:$Rm)>;
def : Pat<(v8i16 (opnode16B VPR128:$Rn, VPR128:$Rm)),
(INST16B VPR128:$Rn, VPR128:$Rm)>;
def : Pat<(v2i64 (opnode16B VPR128:$Rn, VPR128:$Rm)),
(INST16B VPR128:$Rn, VPR128:$Rm)>;
}
// Additional patterns for bitwise instructions AND, EOR, ORR, BIC, ORN
defm : Neon_bitwise2V_patterns<and, and, ANDvvv_8B, ANDvvv_16B>;
defm : Neon_bitwise2V_patterns<or, or, ORRvvv_8B, ORRvvv_16B>;
defm : Neon_bitwise2V_patterns<xor, xor, EORvvv_8B, EORvvv_16B>;
defm : Neon_bitwise2V_patterns<Neon_bic8B, Neon_bic16B, BICvvv_8B, BICvvv_16B>;
defm : Neon_bitwise2V_patterns<Neon_orn8B, Neon_orn16B, ORNvvv_8B, ORNvvv_16B>;
// Vector Bitwise Select
def BSLvvv_8B : NeonI_3VSame_Constraint_impl<"bsl", ".8b", VPR64, v8i8,
0b0, 0b1, 0b01, 0b00011, Neon_bsl>;
def BSLvvv_16B : NeonI_3VSame_Constraint_impl<"bsl", ".16b", VPR128, v16i8,
0b1, 0b1, 0b01, 0b00011, Neon_bsl>;
multiclass Neon_bitwise3V_patterns<SDPatternOperator opnode,
Instruction INST8B,
Instruction INST16B> {
// Disassociate type from instruction definition
def : Pat<(v2i32 (opnode VPR64:$src,VPR64:$Rn, VPR64:$Rm)),
(INST8B VPR64:$src, VPR64:$Rn, VPR64:$Rm)>;
def : Pat<(v4i16 (opnode VPR64:$src, VPR64:$Rn, VPR64:$Rm)),
(INST8B VPR64:$src, VPR64:$Rn, VPR64:$Rm)>;
def : Pat<(v1i64 (opnode VPR64:$src, VPR64:$Rn, VPR64:$Rm)),
(INST8B VPR64:$src, VPR64:$Rn, VPR64:$Rm)>;
def : Pat<(v4i32 (opnode VPR128:$src, VPR128:$Rn, VPR128:$Rm)),
(INST16B VPR128:$src, VPR128:$Rn, VPR128:$Rm)>;
def : Pat<(v8i16 (opnode VPR128:$src, VPR128:$Rn, VPR128:$Rm)),
(INST16B VPR128:$src, VPR128:$Rn, VPR128:$Rm)>;
def : Pat<(v2i64 (opnode VPR128:$src, VPR128:$Rn, VPR128:$Rm)),
(INST16B VPR128:$src, VPR128:$Rn, VPR128:$Rm)>;
// Allow to match BSL instruction pattern with non-constant operand
def : Pat<(v8i8 (or (and VPR64:$Rn, VPR64:$Rd),
(and VPR64:$Rm, (Neon_not8B VPR64:$Rd)))),
(INST8B VPR64:$Rd, VPR64:$Rn, VPR64:$Rm)>;
def : Pat<(v4i16 (or (and VPR64:$Rn, VPR64:$Rd),
(and VPR64:$Rm, (Neon_not8B VPR64:$Rd)))),
(INST8B VPR64:$Rd, VPR64:$Rn, VPR64:$Rm)>;
def : Pat<(v2i32 (or (and VPR64:$Rn, VPR64:$Rd),
(and VPR64:$Rm, (Neon_not8B VPR64:$Rd)))),
(INST8B VPR64:$Rd, VPR64:$Rn, VPR64:$Rm)>;
def : Pat<(v1i64 (or (and VPR64:$Rn, VPR64:$Rd),
(and VPR64:$Rm, (Neon_not8B VPR64:$Rd)))),
(INST8B VPR64:$Rd, VPR64:$Rn, VPR64:$Rm)>;
def : Pat<(v16i8 (or (and VPR128:$Rn, VPR128:$Rd),
(and VPR128:$Rm, (Neon_not16B VPR128:$Rd)))),
(INST16B VPR128:$Rd, VPR128:$Rn, VPR128:$Rm)>;
def : Pat<(v8i16 (or (and VPR128:$Rn, VPR128:$Rd),
(and VPR128:$Rm, (Neon_not16B VPR128:$Rd)))),
(INST16B VPR128:$Rd, VPR128:$Rn, VPR128:$Rm)>;
def : Pat<(v4i32 (or (and VPR128:$Rn, VPR128:$Rd),
(and VPR128:$Rm, (Neon_not16B VPR128:$Rd)))),
(INST16B VPR128:$Rd, VPR128:$Rn, VPR128:$Rm)>;
def : Pat<(v2i64 (or (and VPR128:$Rn, VPR128:$Rd),
(and VPR128:$Rm, (Neon_not16B VPR128:$Rd)))),
(INST16B VPR128:$Rd, VPR128:$Rn, VPR128:$Rm)>;
// Allow to match llvm.arm.* intrinsics.
def : Pat<(v8i8 (int_arm_neon_vbsl (v8i8 VPR64:$src),
(v8i8 VPR64:$Rn), (v8i8 VPR64:$Rm))),
(INST8B VPR64:$src, VPR64:$Rn, VPR64:$Rm)>;
def : Pat<(v4i16 (int_arm_neon_vbsl (v4i16 VPR64:$src),
(v4i16 VPR64:$Rn), (v4i16 VPR64:$Rm))),
(INST8B VPR64:$src, VPR64:$Rn, VPR64:$Rm)>;
def : Pat<(v2i32 (int_arm_neon_vbsl (v2i32 VPR64:$src),
(v2i32 VPR64:$Rn), (v2i32 VPR64:$Rm))),
(INST8B VPR64:$src, VPR64:$Rn, VPR64:$Rm)>;
def : Pat<(v1i64 (int_arm_neon_vbsl (v1i64 VPR64:$src),
(v1i64 VPR64:$Rn), (v1i64 VPR64:$Rm))),
(INST8B VPR64:$src, VPR64:$Rn, VPR64:$Rm)>;
def : Pat<(v2f32 (int_arm_neon_vbsl (v2f32 VPR64:$src),
(v2f32 VPR64:$Rn), (v2f32 VPR64:$Rm))),
(INST8B VPR64:$src, VPR64:$Rn, VPR64:$Rm)>;
def : Pat<(v16i8 (int_arm_neon_vbsl (v16i8 VPR128:$src),
(v16i8 VPR128:$Rn), (v16i8 VPR128:$Rm))),
(INST16B VPR128:$src, VPR128:$Rn, VPR128:$Rm)>;
def : Pat<(v8i16 (int_arm_neon_vbsl (v8i16 VPR128:$src),
(v8i16 VPR128:$Rn), (v8i16 VPR128:$Rm))),
(INST16B VPR128:$src, VPR128:$Rn, VPR128:$Rm)>;
def : Pat<(v4i32 (int_arm_neon_vbsl (v4i32 VPR128:$src),
(v4i32 VPR128:$Rn), (v4i32 VPR128:$Rm))),
(INST16B VPR128:$src, VPR128:$Rn, VPR128:$Rm)>;
def : Pat<(v2i64 (int_arm_neon_vbsl (v2i64 VPR128:$src),
(v2i64 VPR128:$Rn), (v2i64 VPR128:$Rm))),
(INST16B VPR128:$src, VPR128:$Rn, VPR128:$Rm)>;
def : Pat<(v4f32 (int_arm_neon_vbsl (v4f32 VPR128:$src),
(v4f32 VPR128:$Rn), (v4f32 VPR128:$Rm))),
(INST16B VPR128:$src, VPR128:$Rn, VPR128:$Rm)>;
def : Pat<(v2f64 (int_arm_neon_vbsl (v2f64 VPR128:$src),
(v2f64 VPR128:$Rn), (v2f64 VPR128:$Rm))),
(INST16B VPR128:$src, VPR128:$Rn, VPR128:$Rm)>;
}
// Additional patterns for bitwise instruction BSL
defm: Neon_bitwise3V_patterns<Neon_bsl, BSLvvv_8B, BSLvvv_16B>;
def Neon_NoBSLop : PatFrag<(ops node:$src, node:$Rn, node:$Rm),
(Neon_bsl node:$src, node:$Rn, node:$Rm),
[{ (void)N; return false; }]>;
// Vector Bitwise Insert if True
def BITvvv_8B : NeonI_3VSame_Constraint_impl<"bit", ".8b", VPR64, v8i8,
0b0, 0b1, 0b10, 0b00011, Neon_NoBSLop>;
def BITvvv_16B : NeonI_3VSame_Constraint_impl<"bit", ".16b", VPR128, v16i8,
0b1, 0b1, 0b10, 0b00011, Neon_NoBSLop>;
// Vector Bitwise Insert if False
def BIFvvv_8B : NeonI_3VSame_Constraint_impl<"bif", ".8b", VPR64, v8i8,
0b0, 0b1, 0b11, 0b00011, Neon_NoBSLop>;
def BIFvvv_16B : NeonI_3VSame_Constraint_impl<"bif", ".16b", VPR128, v16i8,
0b1, 0b1, 0b11, 0b00011, Neon_NoBSLop>;
// Vector Absolute Difference and Accumulate (Signed, Unsigned)
def Neon_uaba : PatFrag<(ops node:$Ra, node:$Rn, node:$Rm),
(add node:$Ra, (int_arm_neon_vabdu node:$Rn, node:$Rm))>;
def Neon_saba : PatFrag<(ops node:$Ra, node:$Rn, node:$Rm),
(add node:$Ra, (int_arm_neon_vabds node:$Rn, node:$Rm))>;
// Vector Absolute Difference and Accumulate (Unsigned)
def UABAvvv_8B : NeonI_3VSame_Constraint_impl<"uaba", ".8b", VPR64, v8i8,
0b0, 0b1, 0b00, 0b01111, Neon_uaba>;
def UABAvvv_16B : NeonI_3VSame_Constraint_impl<"uaba", ".16b", VPR128, v16i8,
0b1, 0b1, 0b00, 0b01111, Neon_uaba>;
def UABAvvv_4H : NeonI_3VSame_Constraint_impl<"uaba", ".4h", VPR64, v4i16,
0b0, 0b1, 0b01, 0b01111, Neon_uaba>;
def UABAvvv_8H : NeonI_3VSame_Constraint_impl<"uaba", ".8h", VPR128, v8i16,
0b1, 0b1, 0b01, 0b01111, Neon_uaba>;
def UABAvvv_2S : NeonI_3VSame_Constraint_impl<"uaba", ".2s", VPR64, v2i32,
0b0, 0b1, 0b10, 0b01111, Neon_uaba>;
def UABAvvv_4S : NeonI_3VSame_Constraint_impl<"uaba", ".4s", VPR128, v4i32,
0b1, 0b1, 0b10, 0b01111, Neon_uaba>;
// Vector Absolute Difference and Accumulate (Signed)
def SABAvvv_8B : NeonI_3VSame_Constraint_impl<"saba", ".8b", VPR64, v8i8,
0b0, 0b0, 0b00, 0b01111, Neon_saba>;
def SABAvvv_16B : NeonI_3VSame_Constraint_impl<"saba", ".16b", VPR128, v16i8,
0b1, 0b0, 0b00, 0b01111, Neon_saba>;
def SABAvvv_4H : NeonI_3VSame_Constraint_impl<"saba", ".4h", VPR64, v4i16,
0b0, 0b0, 0b01, 0b01111, Neon_saba>;
def SABAvvv_8H : NeonI_3VSame_Constraint_impl<"saba", ".8h", VPR128, v8i16,
0b1, 0b0, 0b01, 0b01111, Neon_saba>;
def SABAvvv_2S : NeonI_3VSame_Constraint_impl<"saba", ".2s", VPR64, v2i32,
0b0, 0b0, 0b10, 0b01111, Neon_saba>;
def SABAvvv_4S : NeonI_3VSame_Constraint_impl<"saba", ".4s", VPR128, v4i32,
0b1, 0b0, 0b10, 0b01111, Neon_saba>;
// Vector Absolute Difference (Signed, Unsigned)
defm UABDvvv : NeonI_3VSame_BHS_sizes<0b1, 0b01110, "uabd", int_arm_neon_vabdu, 0>;
defm SABDvvv : NeonI_3VSame_BHS_sizes<0b0, 0b01110, "sabd", int_arm_neon_vabds, 0>;
// Vector Absolute Difference (Floating Point)
defm FABDvvv: NeonI_3VSame_SD_sizes<0b1, 0b1, 0b11010, "fabd",
int_arm_neon_vabds, int_arm_neon_vabds,
int_arm_neon_vabds, v2f32, v4f32, v2f64, 0>;
// Vector Reciprocal Step (Floating Point)
defm FRECPSvvv : NeonI_3VSame_SD_sizes<0b0, 0b0, 0b11111, "frecps",
int_arm_neon_vrecps, int_arm_neon_vrecps,
int_arm_neon_vrecps,
v2f32, v4f32, v2f64, 0>;
// Vector Reciprocal Square Root Step (Floating Point)
defm FRSQRTSvvv : NeonI_3VSame_SD_sizes<0b0, 0b1, 0b11111, "frsqrts",
int_arm_neon_vrsqrts,
int_arm_neon_vrsqrts,
int_arm_neon_vrsqrts,
v2f32, v4f32, v2f64, 0>;
// Vector Comparisons
def Neon_cmeq : PatFrag<(ops node:$lhs, node:$rhs),
(Neon_cmp node:$lhs, node:$rhs, SETEQ)>;
def Neon_cmphs : PatFrag<(ops node:$lhs, node:$rhs),
(Neon_cmp node:$lhs, node:$rhs, SETUGE)>;
def Neon_cmge : PatFrag<(ops node:$lhs, node:$rhs),
(Neon_cmp node:$lhs, node:$rhs, SETGE)>;
def Neon_cmhi : PatFrag<(ops node:$lhs, node:$rhs),
(Neon_cmp node:$lhs, node:$rhs, SETUGT)>;
def Neon_cmgt : PatFrag<(ops node:$lhs, node:$rhs),
(Neon_cmp node:$lhs, node:$rhs, SETGT)>;
// NeonI_compare_aliases class: swaps register operands to implement
// comparison aliases, e.g., CMLE is alias for CMGE with operands reversed.
class NeonI_compare_aliases<string asmop, string asmlane,
Instruction inst, RegisterOperand VPRC>
: NeonInstAlias<asmop # "\t$Rd" # asmlane #", $Rn" # asmlane #
", $Rm" # asmlane,
(inst VPRC:$Rd, VPRC:$Rm, VPRC:$Rn), 0b0>;
// Vector Comparisons (Integer)
// Vector Compare Mask Equal (Integer)
let isCommutable =1 in {
defm CMEQvvv : NeonI_3VSame_BHSD_sizes<0b1, 0b10001, "cmeq", Neon_cmeq, 0>;
}
// Vector Compare Mask Higher or Same (Unsigned Integer)
defm CMHSvvv : NeonI_3VSame_BHSD_sizes<0b1, 0b00111, "cmhs", Neon_cmphs, 0>;
// Vector Compare Mask Greater Than or Equal (Integer)
defm CMGEvvv : NeonI_3VSame_BHSD_sizes<0b0, 0b00111, "cmge", Neon_cmge, 0>;
// Vector Compare Mask Higher (Unsigned Integer)
defm CMHIvvv : NeonI_3VSame_BHSD_sizes<0b1, 0b00110, "cmhi", Neon_cmhi, 0>;
// Vector Compare Mask Greater Than (Integer)
defm CMGTvvv : NeonI_3VSame_BHSD_sizes<0b0, 0b00110, "cmgt", Neon_cmgt, 0>;
// Vector Compare Mask Bitwise Test (Integer)
defm CMTSTvvv: NeonI_3VSame_BHSD_sizes<0b0, 0b10001, "cmtst", Neon_tst, 0>;
// Vector Compare Mask Less or Same (Unsigned Integer)
// CMLS is alias for CMHS with operands reversed.
def CMLSvvv_8B : NeonI_compare_aliases<"cmls", ".8b", CMHSvvv_8B, VPR64>;
def CMLSvvv_16B : NeonI_compare_aliases<"cmls", ".16b", CMHSvvv_16B, VPR128>;
def CMLSvvv_4H : NeonI_compare_aliases<"cmls", ".4h", CMHSvvv_4H, VPR64>;
def CMLSvvv_8H : NeonI_compare_aliases<"cmls", ".8h", CMHSvvv_8H, VPR128>;
def CMLSvvv_2S : NeonI_compare_aliases<"cmls", ".2s", CMHSvvv_2S, VPR64>;
def CMLSvvv_4S : NeonI_compare_aliases<"cmls", ".4s", CMHSvvv_4S, VPR128>;
def CMLSvvv_2D : NeonI_compare_aliases<"cmls", ".2d", CMHSvvv_2D, VPR128>;
// Vector Compare Mask Less Than or Equal (Integer)
// CMLE is alias for CMGE with operands reversed.
def CMLEvvv_8B : NeonI_compare_aliases<"cmle", ".8b", CMGEvvv_8B, VPR64>;
def CMLEvvv_16B : NeonI_compare_aliases<"cmle", ".16b", CMGEvvv_16B, VPR128>;
def CMLEvvv_4H : NeonI_compare_aliases<"cmle", ".4h", CMGEvvv_4H, VPR64>;
def CMLEvvv_8H : NeonI_compare_aliases<"cmle", ".8h", CMGEvvv_8H, VPR128>;
def CMLEvvv_2S : NeonI_compare_aliases<"cmle", ".2s", CMGEvvv_2S, VPR64>;
def CMLEvvv_4S : NeonI_compare_aliases<"cmle", ".4s", CMGEvvv_4S, VPR128>;
def CMLEvvv_2D : NeonI_compare_aliases<"cmle", ".2d", CMGEvvv_2D, VPR128>;
// Vector Compare Mask Lower (Unsigned Integer)
// CMLO is alias for CMHI with operands reversed.
def CMLOvvv_8B : NeonI_compare_aliases<"cmlo", ".8b", CMHIvvv_8B, VPR64>;
def CMLOvvv_16B : NeonI_compare_aliases<"cmlo", ".16b", CMHIvvv_16B, VPR128>;
def CMLOvvv_4H : NeonI_compare_aliases<"cmlo", ".4h", CMHIvvv_4H, VPR64>;
def CMLOvvv_8H : NeonI_compare_aliases<"cmlo", ".8h", CMHIvvv_8H, VPR128>;
def CMLOvvv_2S : NeonI_compare_aliases<"cmlo", ".2s", CMHIvvv_2S, VPR64>;
def CMLOvvv_4S : NeonI_compare_aliases<"cmlo", ".4s", CMHIvvv_4S, VPR128>;
def CMLOvvv_2D : NeonI_compare_aliases<"cmlo", ".2d", CMHIvvv_2D, VPR128>;
// Vector Compare Mask Less Than (Integer)
// CMLT is alias for CMGT with operands reversed.
def CMLTvvv_8B : NeonI_compare_aliases<"cmlt", ".8b", CMGTvvv_8B, VPR64>;
def CMLTvvv_16B : NeonI_compare_aliases<"cmlt", ".16b", CMGTvvv_16B, VPR128>;
def CMLTvvv_4H : NeonI_compare_aliases<"cmlt", ".4h", CMGTvvv_4H, VPR64>;
def CMLTvvv_8H : NeonI_compare_aliases<"cmlt", ".8h", CMGTvvv_8H, VPR128>;
def CMLTvvv_2S : NeonI_compare_aliases<"cmlt", ".2s", CMGTvvv_2S, VPR64>;
def CMLTvvv_4S : NeonI_compare_aliases<"cmlt", ".4s", CMGTvvv_4S, VPR128>;
def CMLTvvv_2D : NeonI_compare_aliases<"cmlt", ".2d", CMGTvvv_2D, VPR128>;
def neon_uimm0_asmoperand : AsmOperandClass
{
let Name = "UImm0";
let PredicateMethod = "isUImm<0>";
let RenderMethod = "addImmOperands";
}
def neon_uimm0 : Operand<i32>, ImmLeaf<i32, [{return Imm == 0;}]> {
let ParserMatchClass = neon_uimm0_asmoperand;
let PrintMethod = "printNeonUImm0Operand";
}
multiclass NeonI_cmpz_sizes<bit u, bits<5> opcode, string asmop, CondCode CC>
{
def _8B : NeonI_2VMisc<0b0, u, 0b00, opcode,
(outs VPR64:$Rd), (ins VPR64:$Rn, neon_uimm0:$Imm),
asmop # "\t$Rd.8b, $Rn.8b, $Imm",
[(set (v8i8 VPR64:$Rd),
(v8i8 (Neon_cmpz (v8i8 VPR64:$Rn), (i32 imm:$Imm), CC)))],
NoItinerary>;
def _16B : NeonI_2VMisc<0b1, u, 0b00, opcode,
(outs VPR128:$Rd), (ins VPR128:$Rn, neon_uimm0:$Imm),
asmop # "\t$Rd.16b, $Rn.16b, $Imm",
[(set (v16i8 VPR128:$Rd),
(v16i8 (Neon_cmpz (v16i8 VPR128:$Rn), (i32 imm:$Imm), CC)))],
NoItinerary>;
def _4H : NeonI_2VMisc<0b0, u, 0b01, opcode,
(outs VPR64:$Rd), (ins VPR64:$Rn, neon_uimm0:$Imm),
asmop # "\t$Rd.4h, $Rn.4h, $Imm",
[(set (v4i16 VPR64:$Rd),
(v4i16 (Neon_cmpz (v4i16 VPR64:$Rn), (i32 imm:$Imm), CC)))],
NoItinerary>;
def _8H : NeonI_2VMisc<0b1, u, 0b01, opcode,
(outs VPR128:$Rd), (ins VPR128:$Rn, neon_uimm0:$Imm),
asmop # "\t$Rd.8h, $Rn.8h, $Imm",
[(set (v8i16 VPR128:$Rd),
(v8i16 (Neon_cmpz (v8i16 VPR128:$Rn), (i32 imm:$Imm), CC)))],
NoItinerary>;
def _2S : NeonI_2VMisc<0b0, u, 0b10, opcode,
(outs VPR64:$Rd), (ins VPR64:$Rn, neon_uimm0:$Imm),
asmop # "\t$Rd.2s, $Rn.2s, $Imm",
[(set (v2i32 VPR64:$Rd),
(v2i32 (Neon_cmpz (v2i32 VPR64:$Rn), (i32 imm:$Imm), CC)))],
NoItinerary>;
def _4S : NeonI_2VMisc<0b1, u, 0b10, opcode,
(outs VPR128:$Rd), (ins VPR128:$Rn, neon_uimm0:$Imm),
asmop # "\t$Rd.4s, $Rn.4s, $Imm",
[(set (v4i32 VPR128:$Rd),
(v4i32 (Neon_cmpz (v4i32 VPR128:$Rn), (i32 imm:$Imm), CC)))],
NoItinerary>;
def _2D : NeonI_2VMisc<0b1, u, 0b11, opcode,
(outs VPR128:$Rd), (ins VPR128:$Rn, neon_uimm0:$Imm),
asmop # "\t$Rd.2d, $Rn.2d, $Imm",
[(set (v2i64 VPR128:$Rd),
(v2i64 (Neon_cmpz (v2i64 VPR128:$Rn), (i32 imm:$Imm), CC)))],
NoItinerary>;
}
// Vector Compare Mask Equal to Zero (Integer)
defm CMEQvvi : NeonI_cmpz_sizes<0b0, 0b01001, "cmeq", SETEQ>;
// Vector Compare Mask Greater Than or Equal to Zero (Signed Integer)
defm CMGEvvi : NeonI_cmpz_sizes<0b1, 0b01000, "cmge", SETGE>;
// Vector Compare Mask Greater Than Zero (Signed Integer)
defm CMGTvvi : NeonI_cmpz_sizes<0b0, 0b01000, "cmgt", SETGT>;
// Vector Compare Mask Less Than or Equal To Zero (Signed Integer)
defm CMLEvvi : NeonI_cmpz_sizes<0b1, 0b01001, "cmle", SETLE>;
// Vector Compare Mask Less Than Zero (Signed Integer)
defm CMLTvvi : NeonI_cmpz_sizes<0b0, 0b01010, "cmlt", SETLT>;
// Vector Comparisons (Floating Point)
// Vector Compare Mask Equal (Floating Point)
let isCommutable =1 in {
defm FCMEQvvv : NeonI_3VSame_SD_sizes<0b0, 0b0, 0b11100, "fcmeq", Neon_cmeq,
Neon_cmeq, Neon_cmeq,
v2i32, v4i32, v2i64, 0>;
}
// Vector Compare Mask Greater Than Or Equal (Floating Point)
defm FCMGEvvv : NeonI_3VSame_SD_sizes<0b1, 0b0, 0b11100, "fcmge", Neon_cmge,
Neon_cmge, Neon_cmge,
v2i32, v4i32, v2i64, 0>;
// Vector Compare Mask Greater Than (Floating Point)
defm FCMGTvvv : NeonI_3VSame_SD_sizes<0b1, 0b1, 0b11100, "fcmgt", Neon_cmgt,
Neon_cmgt, Neon_cmgt,
v2i32, v4i32, v2i64, 0>;
// Vector Compare Mask Less Than Or Equal (Floating Point)
// FCMLE is alias for FCMGE with operands reversed.
def FCMLEvvv_2S : NeonI_compare_aliases<"fcmle", ".2s", FCMGEvvv_2S, VPR64>;
def FCMLEvvv_4S : NeonI_compare_aliases<"fcmle", ".4s", FCMGEvvv_4S, VPR128>;
def FCMLEvvv_2D : NeonI_compare_aliases<"fcmle", ".2d", FCMGEvvv_2D, VPR128>;
// Vector Compare Mask Less Than (Floating Point)
// FCMLT is alias for FCMGT with operands reversed.
def FCMLTvvv_2S : NeonI_compare_aliases<"fcmlt", ".2s", FCMGTvvv_2S, VPR64>;
def FCMLTvvv_4S : NeonI_compare_aliases<"fcmlt", ".4s", FCMGTvvv_4S, VPR128>;
def FCMLTvvv_2D : NeonI_compare_aliases<"fcmlt", ".2d", FCMGTvvv_2D, VPR128>;
multiclass NeonI_fpcmpz_sizes<bit u, bit size, bits<5> opcode,
string asmop, CondCode CC>
{
def _2S : NeonI_2VMisc<0b0, u, {size, 0b0}, opcode,
(outs VPR64:$Rd), (ins VPR64:$Rn, fpz32:$FPImm),
asmop # "\t$Rd.2s, $Rn.2s, $FPImm",
[(set (v2i32 VPR64:$Rd),
(v2i32 (Neon_cmpz (v2f32 VPR64:$Rn), (f32 fpimm:$FPImm), CC)))],
NoItinerary>;
def _4S : NeonI_2VMisc<0b1, u, {size, 0b0}, opcode,
(outs VPR128:$Rd), (ins VPR128:$Rn, fpz32:$FPImm),
asmop # "\t$Rd.4s, $Rn.4s, $FPImm",
[(set (v4i32 VPR128:$Rd),
(v4i32 (Neon_cmpz (v4f32 VPR128:$Rn), (f32 fpimm:$FPImm), CC)))],
NoItinerary>;
def _2D : NeonI_2VMisc<0b1, u, {size, 0b1}, opcode,
(outs VPR128:$Rd), (ins VPR128:$Rn, fpz32:$FPImm),
asmop # "\t$Rd.2d, $Rn.2d, $FPImm",
[(set (v2i64 VPR128:$Rd),
(v2i64 (Neon_cmpz (v2f64 VPR128:$Rn), (f32 fpimm:$FPImm), CC)))],
NoItinerary>;
}
// Vector Compare Mask Equal to Zero (Floating Point)
defm FCMEQvvi : NeonI_fpcmpz_sizes<0b0, 0b1, 0b01101, "fcmeq", SETEQ>;
// Vector Compare Mask Greater Than or Equal to Zero (Floating Point)
defm FCMGEvvi : NeonI_fpcmpz_sizes<0b1, 0b1, 0b01100, "fcmge", SETGE>;
// Vector Compare Mask Greater Than Zero (Floating Point)
defm FCMGTvvi : NeonI_fpcmpz_sizes<0b0, 0b1, 0b01100, "fcmgt", SETGT>;
// Vector Compare Mask Less Than or Equal To Zero (Floating Point)
defm FCMLEvvi : NeonI_fpcmpz_sizes<0b1, 0b1, 0b01101, "fcmle", SETLE>;
// Vector Compare Mask Less Than Zero (Floating Point)
defm FCMLTvvi : NeonI_fpcmpz_sizes<0b0, 0b1, 0b01110, "fcmlt", SETLT>;
// Vector Absolute Comparisons (Floating Point)
// Vector Absolute Compare Mask Greater Than Or Equal (Floating Point)
defm FACGEvvv : NeonI_3VSame_SD_sizes<0b1, 0b0, 0b11101, "facge",
int_arm_neon_vacged, int_arm_neon_vacgeq,
int_aarch64_neon_vacgeq,
v2i32, v4i32, v2i64, 0>;
// Vector Absolute Compare Mask Greater Than (Floating Point)
defm FACGTvvv : NeonI_3VSame_SD_sizes<0b1, 0b1, 0b11101, "facgt",
int_arm_neon_vacgtd, int_arm_neon_vacgtq,
int_aarch64_neon_vacgtq,
v2i32, v4i32, v2i64, 0>;
// Vector Absolute Compare Mask Less Than Or Equal (Floating Point)
// FACLE is alias for FACGE with operands reversed.
def FACLEvvv_2S : NeonI_compare_aliases<"facle", ".2s", FACGEvvv_2S, VPR64>;
def FACLEvvv_4S : NeonI_compare_aliases<"facle", ".4s", FACGEvvv_4S, VPR128>;
def FACLEvvv_2D : NeonI_compare_aliases<"facle", ".2d", FACGEvvv_2D, VPR128>;
// Vector Absolute Compare Mask Less Than (Floating Point)
// FACLT is alias for FACGT with operands reversed.
def FACLTvvv_2S : NeonI_compare_aliases<"faclt", ".2s", FACGTvvv_2S, VPR64>;
def FACLTvvv_4S : NeonI_compare_aliases<"faclt", ".4s", FACGTvvv_4S, VPR128>;
def FACLTvvv_2D : NeonI_compare_aliases<"faclt", ".2d", FACGTvvv_2D, VPR128>;
// Vector halving add (Integer Signed, Unsigned)
defm SHADDvvv : NeonI_3VSame_BHS_sizes<0b0, 0b00000, "shadd",
int_arm_neon_vhadds, 1>;
defm UHADDvvv : NeonI_3VSame_BHS_sizes<0b1, 0b00000, "uhadd",
int_arm_neon_vhaddu, 1>;
// Vector halving sub (Integer Signed, Unsigned)
defm SHSUBvvv : NeonI_3VSame_BHS_sizes<0b0, 0b00100, "shsub",
int_arm_neon_vhsubs, 0>;
defm UHSUBvvv : NeonI_3VSame_BHS_sizes<0b1, 0b00100, "uhsub",
int_arm_neon_vhsubu, 0>;
// Vector rouding halving add (Integer Signed, Unsigned)
defm SRHADDvvv : NeonI_3VSame_BHS_sizes<0b0, 0b00010, "srhadd",
int_arm_neon_vrhadds, 1>;
defm URHADDvvv : NeonI_3VSame_BHS_sizes<0b1, 0b00010, "urhadd",
int_arm_neon_vrhaddu, 1>;
// Vector Saturating add (Integer Signed, Unsigned)
defm SQADDvvv : NeonI_3VSame_BHSD_sizes<0b0, 0b00001, "sqadd",
int_arm_neon_vqadds, 1>;
defm UQADDvvv : NeonI_3VSame_BHSD_sizes<0b1, 0b00001, "uqadd",
int_arm_neon_vqaddu, 1>;
// Vector Saturating sub (Integer Signed, Unsigned)
defm SQSUBvvv : NeonI_3VSame_BHSD_sizes<0b0, 0b00101, "sqsub",
int_arm_neon_vqsubs, 1>;
defm UQSUBvvv : NeonI_3VSame_BHSD_sizes<0b1, 0b00101, "uqsub",
int_arm_neon_vqsubu, 1>;
// Vector Shift Left (Signed and Unsigned Integer)
defm SSHLvvv : NeonI_3VSame_BHSD_sizes<0b0, 0b01000, "sshl",
int_arm_neon_vshifts, 1>;
defm USHLvvv : NeonI_3VSame_BHSD_sizes<0b1, 0b01000, "ushl",
int_arm_neon_vshiftu, 1>;
// Vector Saturating Shift Left (Signed and Unsigned Integer)
defm SQSHLvvv : NeonI_3VSame_BHSD_sizes<0b0, 0b01001, "sqshl",
int_arm_neon_vqshifts, 1>;
defm UQSHLvvv : NeonI_3VSame_BHSD_sizes<0b1, 0b01001, "uqshl",
int_arm_neon_vqshiftu, 1>;
// Vector Rouding Shift Left (Signed and Unsigned Integer)
defm SRSHLvvv : NeonI_3VSame_BHSD_sizes<0b0, 0b01010, "srshl",
int_arm_neon_vrshifts, 1>;
defm URSHLvvv : NeonI_3VSame_BHSD_sizes<0b1, 0b01010, "urshl",
int_arm_neon_vrshiftu, 1>;
// Vector Saturating Rouding Shift Left (Signed and Unsigned Integer)
defm SQRSHLvvv : NeonI_3VSame_BHSD_sizes<0b0, 0b01011, "sqrshl",
int_arm_neon_vqrshifts, 1>;
defm UQRSHLvvv : NeonI_3VSame_BHSD_sizes<0b1, 0b01011, "uqrshl",
int_arm_neon_vqrshiftu, 1>;
// Vector Maximum (Signed and Unsigned Integer)
defm SMAXvvv : NeonI_3VSame_BHS_sizes<0b0, 0b01100, "smax", int_arm_neon_vmaxs, 1>;
defm UMAXvvv : NeonI_3VSame_BHS_sizes<0b1, 0b01100, "umax", int_arm_neon_vmaxu, 1>;
// Vector Minimum (Signed and Unsigned Integer)
defm SMINvvv : NeonI_3VSame_BHS_sizes<0b0, 0b01101, "smin", int_arm_neon_vmins, 1>;
defm UMINvvv : NeonI_3VSame_BHS_sizes<0b1, 0b01101, "umin", int_arm_neon_vminu, 1>;
// Vector Maximum (Floating Point)
defm FMAXvvv : NeonI_3VSame_SD_sizes<0b0, 0b0, 0b11110, "fmax",
int_arm_neon_vmaxs, int_arm_neon_vmaxs,
int_arm_neon_vmaxs, v2f32, v4f32, v2f64, 1>;
// Vector Minimum (Floating Point)
defm FMINvvv : NeonI_3VSame_SD_sizes<0b0, 0b1, 0b11110, "fmin",
int_arm_neon_vmins, int_arm_neon_vmins,
int_arm_neon_vmins, v2f32, v4f32, v2f64, 1>;
// Vector maxNum (Floating Point) - prefer a number over a quiet NaN)
defm FMAXNMvvv : NeonI_3VSame_SD_sizes<0b0, 0b0, 0b11000, "fmaxnm",
int_aarch64_neon_vmaxnm,
int_aarch64_neon_vmaxnm,
int_aarch64_neon_vmaxnm,
v2f32, v4f32, v2f64, 1>;
// Vector minNum (Floating Point) - prefer a number over a quiet NaN)
defm FMINNMvvv : NeonI_3VSame_SD_sizes<0b0, 0b1, 0b11000, "fminnm",
int_aarch64_neon_vminnm,
int_aarch64_neon_vminnm,
int_aarch64_neon_vminnm,
v2f32, v4f32, v2f64, 1>;
// Vector Maximum Pairwise (Signed and Unsigned Integer)
defm SMAXPvvv : NeonI_3VSame_BHS_sizes<0b0, 0b10100, "smaxp", int_arm_neon_vpmaxs, 1>;
defm UMAXPvvv : NeonI_3VSame_BHS_sizes<0b1, 0b10100, "umaxp", int_arm_neon_vpmaxu, 1>;
// Vector Minimum Pairwise (Signed and Unsigned Integer)
defm SMINPvvv : NeonI_3VSame_BHS_sizes<0b0, 0b10101, "sminp", int_arm_neon_vpmins, 1>;
defm UMINPvvv : NeonI_3VSame_BHS_sizes<0b1, 0b10101, "uminp", int_arm_neon_vpminu, 1>;
// Vector Maximum Pairwise (Floating Point)
defm FMAXPvvv : NeonI_3VSame_SD_sizes<0b1, 0b0, 0b11110, "fmaxp",
int_arm_neon_vpmaxs, int_arm_neon_vpmaxs,
int_arm_neon_vpmaxs, v2f32, v4f32, v2f64, 1>;
// Vector Minimum Pairwise (Floating Point)
defm FMINPvvv : NeonI_3VSame_SD_sizes<0b1, 0b1, 0b11110, "fminp",
int_arm_neon_vpmins, int_arm_neon_vpmins,
int_arm_neon_vpmins, v2f32, v4f32, v2f64, 1>;
// Vector maxNum Pairwise (Floating Point) - prefer a number over a quiet NaN)
defm FMAXNMPvvv : NeonI_3VSame_SD_sizes<0b1, 0b0, 0b11000, "fmaxnmp",
int_aarch64_neon_vpmaxnm,
int_aarch64_neon_vpmaxnm,
int_aarch64_neon_vpmaxnm,
v2f32, v4f32, v2f64, 1>;
// Vector minNum Pairwise (Floating Point) - prefer a number over a quiet NaN)
defm FMINNMPvvv : NeonI_3VSame_SD_sizes<0b1, 0b1, 0b11000, "fminnmp",
int_aarch64_neon_vpminnm,
int_aarch64_neon_vpminnm,
int_aarch64_neon_vpminnm,
v2f32, v4f32, v2f64, 1>;
// Vector Addition Pairwise (Integer)
defm ADDP : NeonI_3VSame_BHSD_sizes<0b0, 0b10111, "addp", int_arm_neon_vpadd, 1>;
// Vector Addition Pairwise (Floating Point)
defm FADDP : NeonI_3VSame_SD_sizes<0b1, 0b0, 0b11010, "faddp",
int_arm_neon_vpadd,
int_arm_neon_vpadd,
int_arm_neon_vpadd,
v2f32, v4f32, v2f64, 1>;
// Vector Saturating Doubling Multiply High
defm SQDMULHvvv : NeonI_3VSame_HS_sizes<0b0, 0b10110, "sqdmulh",
int_arm_neon_vqdmulh, 1>;
// Vector Saturating Rouding Doubling Multiply High
defm SQRDMULHvvv : NeonI_3VSame_HS_sizes<0b1, 0b10110, "sqrdmulh",
int_arm_neon_vqrdmulh, 1>;
// Vector Multiply Extended (Floating Point)
defm FMULXvvv : NeonI_3VSame_SD_sizes<0b0, 0b0, 0b11011, "fmulx",
int_aarch64_neon_vmulx,
int_aarch64_neon_vmulx,
int_aarch64_neon_vmulx,
v2f32, v4f32, v2f64, 1>;
// Vector Immediate Instructions
multiclass neon_mov_imm_shift_asmoperands<string PREFIX>
{
def _asmoperand : AsmOperandClass
{
let Name = "NeonMovImmShift" # PREFIX;
let RenderMethod = "addNeonMovImmShift" # PREFIX # "Operands";
let PredicateMethod = "isNeonMovImmShift" # PREFIX;
}
}
// Definition of vector immediates shift operands
// The selectable use-cases extract the shift operation
// information from the OpCmode fields encoded in the immediate.
def neon_mod_shift_imm_XFORM : SDNodeXForm<imm, [{
uint64_t OpCmode = N->getZExtValue();
unsigned ShiftImm;
unsigned ShiftOnesIn;
unsigned HasShift =
A64Imms::decodeNeonModShiftImm(OpCmode, ShiftImm, ShiftOnesIn);
if (!HasShift) return SDValue();
return CurDAG->getTargetConstant(ShiftImm, MVT::i32);
}]>;
// Vector immediates shift operands which accept LSL and MSL
// shift operators with shift value in the range of 0, 8, 16, 24 (LSL),
// or 0, 8 (LSLH) or 8, 16 (MSL).
defm neon_mov_imm_LSL : neon_mov_imm_shift_asmoperands<"LSL">;
defm neon_mov_imm_MSL : neon_mov_imm_shift_asmoperands<"MSL">;
// LSLH restricts shift amount to 0, 8 out of 0, 8, 16, 24
defm neon_mov_imm_LSLH : neon_mov_imm_shift_asmoperands<"LSLH">;
multiclass neon_mov_imm_shift_operands<string PREFIX,
string HALF, string ISHALF, code pred>
{
def _operand : Operand<i32>, ImmLeaf<i32, pred, neon_mod_shift_imm_XFORM>
{
let PrintMethod =
"printNeonMovImmShiftOperand<A64SE::" # PREFIX # ", " # ISHALF # ">";
let DecoderMethod =
"DecodeNeonMovImmShiftOperand<A64SE::" # PREFIX # ", " # ISHALF # ">";
let ParserMatchClass =
!cast<AsmOperandClass>("neon_mov_imm_" # PREFIX # HALF # "_asmoperand");
}
}
defm neon_mov_imm_LSL : neon_mov_imm_shift_operands<"LSL", "", "false", [{
unsigned ShiftImm;
unsigned ShiftOnesIn;
unsigned HasShift =
A64Imms::decodeNeonModShiftImm(Imm, ShiftImm, ShiftOnesIn);
return (HasShift && !ShiftOnesIn);
}]>;
defm neon_mov_imm_MSL : neon_mov_imm_shift_operands<"MSL", "", "false", [{
unsigned ShiftImm;
unsigned ShiftOnesIn;
unsigned HasShift =
A64Imms::decodeNeonModShiftImm(Imm, ShiftImm, ShiftOnesIn);
return (HasShift && ShiftOnesIn);
}]>;
defm neon_mov_imm_LSLH : neon_mov_imm_shift_operands<"LSL", "H", "true", [{
unsigned ShiftImm;
unsigned ShiftOnesIn;
unsigned HasShift =
A64Imms::decodeNeonModShiftImm(Imm, ShiftImm, ShiftOnesIn);
return (HasShift && !ShiftOnesIn);
}]>;
def neon_uimm1_asmoperand : AsmOperandClass
{
let Name = "UImm1";
let PredicateMethod = "isUImm<1>";
let RenderMethod = "addImmOperands";
}
def neon_uimm2_asmoperand : AsmOperandClass
{
let Name = "UImm2";
let PredicateMethod = "isUImm<2>";
let RenderMethod = "addImmOperands";
}
def neon_uimm8_asmoperand : AsmOperandClass
{
let Name = "UImm8";
let PredicateMethod = "isUImm<8>";
let RenderMethod = "addImmOperands";
}
def neon_uimm8 : Operand<i32>, ImmLeaf<i32, [{(void)Imm; return true;}]> {
let ParserMatchClass = neon_uimm8_asmoperand;
let PrintMethod = "printUImmHexOperand";
}
def neon_uimm64_mask_asmoperand : AsmOperandClass
{
let Name = "NeonUImm64Mask";
let PredicateMethod = "isNeonUImm64Mask";
let RenderMethod = "addNeonUImm64MaskOperands";
}
// MCOperand for 64-bit bytemask with each byte having only the
// value 0x00 and 0xff is encoded as an unsigned 8-bit value
def neon_uimm64_mask : Operand<i32>, ImmLeaf<i32, [{(void)Imm; return true;}]> {
let ParserMatchClass = neon_uimm64_mask_asmoperand;
let PrintMethod = "printNeonUImm64MaskOperand";
}
multiclass NeonI_mov_imm_lsl_sizes<string asmop, bit op,
SDPatternOperator opnode>
{
// shift zeros, per word
def _2S : NeonI_1VModImm<0b0, op,
(outs VPR64:$Rd),
(ins neon_uimm8:$Imm,
neon_mov_imm_LSL_operand:$Simm),
!strconcat(asmop, "\t$Rd.2s, $Imm$Simm"),
[(set (v2i32 VPR64:$Rd),
(v2i32 (opnode (timm:$Imm),
(neon_mov_imm_LSL_operand:$Simm))))],
NoItinerary> {
bits<2> Simm;
let cmode = {0b0, Simm{1}, Simm{0}, 0b0};
}
def _4S : NeonI_1VModImm<0b1, op,
(outs VPR128:$Rd),
(ins neon_uimm8:$Imm,
neon_mov_imm_LSL_operand:$Simm),
!strconcat(asmop, "\t$Rd.4s, $Imm$Simm"),
[(set (v4i32 VPR128:$Rd),
(v4i32 (opnode (timm:$Imm),
(neon_mov_imm_LSL_operand:$Simm))))],
NoItinerary> {
bits<2> Simm;
let cmode = {0b0, Simm{1}, Simm{0}, 0b0};
}
// shift zeros, per halfword
def _4H : NeonI_1VModImm<0b0, op,
(outs VPR64:$Rd),
(ins neon_uimm8:$Imm,
neon_mov_imm_LSLH_operand:$Simm),
!strconcat(asmop, "\t$Rd.4h, $Imm$Simm"),
[(set (v4i16 VPR64:$Rd),
(v4i16 (opnode (timm:$Imm),
(neon_mov_imm_LSLH_operand:$Simm))))],
NoItinerary> {
bit Simm;
let cmode = {0b1, 0b0, Simm, 0b0};
}
def _8H : NeonI_1VModImm<0b1, op,
(outs VPR128:$Rd),
(ins neon_uimm8:$Imm,
neon_mov_imm_LSLH_operand:$Simm),
!strconcat(asmop, "\t$Rd.8h, $Imm$Simm"),
[(set (v8i16 VPR128:$Rd),
(v8i16 (opnode (timm:$Imm),
(neon_mov_imm_LSLH_operand:$Simm))))],
NoItinerary> {
bit Simm;
let cmode = {0b1, 0b0, Simm, 0b0};
}
}
multiclass NeonI_mov_imm_with_constraint_lsl_sizes<string asmop, bit op,
SDPatternOperator opnode,
SDPatternOperator neonopnode>
{
let Constraints = "$src = $Rd" in {
// shift zeros, per word
def _2S : NeonI_1VModImm<0b0, op,
(outs VPR64:$Rd),
(ins VPR64:$src, neon_uimm8:$Imm,
neon_mov_imm_LSL_operand:$Simm),
!strconcat(asmop, "\t$Rd.2s, $Imm$Simm"),
[(set (v2i32 VPR64:$Rd),
(v2i32 (opnode (v2i32 VPR64:$src),
(v2i32 (bitconvert (v2i32 (neonopnode timm:$Imm,
neon_mov_imm_LSL_operand:$Simm)))))))],
NoItinerary> {
bits<2> Simm;
let cmode = {0b0, Simm{1}, Simm{0}, 0b1};
}
def _4S : NeonI_1VModImm<0b1, op,
(outs VPR128:$Rd),
(ins VPR128:$src, neon_uimm8:$Imm,
neon_mov_imm_LSL_operand:$Simm),
!strconcat(asmop, "\t$Rd.4s, $Imm$Simm"),
[(set (v4i32 VPR128:$Rd),
(v4i32 (opnode (v4i32 VPR128:$src),
(v4i32 (bitconvert (v4i32 (neonopnode timm:$Imm,
neon_mov_imm_LSL_operand:$Simm)))))))],
NoItinerary> {
bits<2> Simm;
let cmode = {0b0, Simm{1}, Simm{0}, 0b1};
}
// shift zeros, per halfword
def _4H : NeonI_1VModImm<0b0, op,
(outs VPR64:$Rd),
(ins VPR64:$src, neon_uimm8:$Imm,
neon_mov_imm_LSLH_operand:$Simm),
!strconcat(asmop, "\t$Rd.4h, $Imm$Simm"),
[(set (v4i16 VPR64:$Rd),
(v4i16 (opnode (v4i16 VPR64:$src),
(v4i16 (bitconvert (v4i16 (neonopnode timm:$Imm,
neon_mov_imm_LSL_operand:$Simm)))))))],
NoItinerary> {
bit Simm;
let cmode = {0b1, 0b0, Simm, 0b1};
}
def _8H : NeonI_1VModImm<0b1, op,
(outs VPR128:$Rd),
(ins VPR128:$src, neon_uimm8:$Imm,
neon_mov_imm_LSLH_operand:$Simm),
!strconcat(asmop, "\t$Rd.8h, $Imm$Simm"),
[(set (v8i16 VPR128:$Rd),
(v8i16 (opnode (v8i16 VPR128:$src),
(v8i16 (bitconvert (v8i16 (neonopnode timm:$Imm,
neon_mov_imm_LSL_operand:$Simm)))))))],
NoItinerary> {
bit Simm;
let cmode = {0b1, 0b0, Simm, 0b1};
}
}
}
multiclass NeonI_mov_imm_msl_sizes<string asmop, bit op,
SDPatternOperator opnode>
{
// shift ones, per word
def _2S : NeonI_1VModImm<0b0, op,
(outs VPR64:$Rd),
(ins neon_uimm8:$Imm,
neon_mov_imm_MSL_operand:$Simm),
!strconcat(asmop, "\t$Rd.2s, $Imm$Simm"),
[(set (v2i32 VPR64:$Rd),
(v2i32 (opnode (timm:$Imm),
(neon_mov_imm_MSL_operand:$Simm))))],
NoItinerary> {
bit Simm;
let cmode = {0b1, 0b1, 0b0, Simm};
}
def _4S : NeonI_1VModImm<0b1, op,
(outs VPR128:$Rd),
(ins neon_uimm8:$Imm,
neon_mov_imm_MSL_operand:$Simm),
!strconcat(asmop, "\t$Rd.4s, $Imm$Simm"),
[(set (v4i32 VPR128:$Rd),
(v4i32 (opnode (timm:$Imm),
(neon_mov_imm_MSL_operand:$Simm))))],
NoItinerary> {
bit Simm;
let cmode = {0b1, 0b1, 0b0, Simm};
}
}
// Vector Move Immediate Shifted
let isReMaterializable = 1 in {
defm MOVIvi_lsl : NeonI_mov_imm_lsl_sizes<"movi", 0b0, Neon_movi>;
}
// Vector Move Inverted Immediate Shifted
let isReMaterializable = 1 in {
defm MVNIvi_lsl : NeonI_mov_imm_lsl_sizes<"mvni", 0b1, Neon_mvni>;
}
// Vector Bitwise Bit Clear (AND NOT) - immediate
let isReMaterializable = 1 in {
defm BICvi_lsl : NeonI_mov_imm_with_constraint_lsl_sizes<"bic", 0b1,
and, Neon_mvni>;
}
// Vector Bitwise OR - immedidate
let isReMaterializable = 1 in {
defm ORRvi_lsl : NeonI_mov_imm_with_constraint_lsl_sizes<"orr", 0b0,
or, Neon_movi>;
}
// Additional patterns for Vector Bitwise Bit Clear (AND NOT) - immedidate
// LowerBUILD_VECTOR favors lowering MOVI over MVNI.
// BIC immediate instructions selection requires additional patterns to
// transform Neon_movi operands into BIC immediate operands
def neon_mov_imm_LSLH_transform_XFORM : SDNodeXForm<imm, [{
uint64_t OpCmode = N->getZExtValue();
unsigned ShiftImm;
unsigned ShiftOnesIn;
(void)A64Imms::decodeNeonModShiftImm(OpCmode, ShiftImm, ShiftOnesIn);
// LSLH restricts shift amount to 0, 8 which are encoded as 0 and 1
// Transform encoded shift amount 0 to 1 and 1 to 0.
return CurDAG->getTargetConstant(!ShiftImm, MVT::i32);
}]>;
def neon_mov_imm_LSLH_transform_operand
: ImmLeaf<i32, [{
unsigned ShiftImm;
unsigned ShiftOnesIn;
unsigned HasShift =
A64Imms::decodeNeonModShiftImm(Imm, ShiftImm, ShiftOnesIn);
return (HasShift && !ShiftOnesIn); }],
neon_mov_imm_LSLH_transform_XFORM>;
// Transform (and A, (4h Neon_movi 0xff)) -> BIC 4h (A, 0x00, LSL 8)
// Transform (and A, (4h Neon_movi 0xff LSL #8)) -> BIC 4h (A, 0x00)
def : Pat<(v4i16 (and VPR64:$src,
(v4i16 (Neon_movi 255, neon_mov_imm_LSLH_transform_operand:$Simm)))),
(BICvi_lsl_4H VPR64:$src, 0,
neon_mov_imm_LSLH_transform_operand:$Simm)>;
// Transform (and A, (8h Neon_movi 8h 0xff)) -> BIC 8h (A, 0x00, LSL 8)
// Transform (and A, (8h Neon_movi 0xff LSL #8)) -> BIC 8h (A, 0x00)
def : Pat<(v8i16 (and VPR128:$src,
(v8i16 (Neon_movi 255, neon_mov_imm_LSLH_transform_operand:$Simm)))),
(BICvi_lsl_8H VPR128:$src, 0,
neon_mov_imm_LSLH_transform_operand:$Simm)>;
multiclass Neon_bitwiseVi_patterns<SDPatternOperator opnode,
SDPatternOperator neonopnode,
Instruction INST4H,
Instruction INST8H> {
def : Pat<(v8i8 (opnode VPR64:$src,
(bitconvert(v4i16 (neonopnode timm:$Imm,
neon_mov_imm_LSLH_operand:$Simm))))),
(INST4H VPR64:$src, neon_uimm8:$Imm,
neon_mov_imm_LSLH_operand:$Simm)>;
def : Pat<(v1i64 (opnode VPR64:$src,
(bitconvert(v4i16 (neonopnode timm:$Imm,
neon_mov_imm_LSLH_operand:$Simm))))),
(INST4H VPR64:$src, neon_uimm8:$Imm,
neon_mov_imm_LSLH_operand:$Simm)>;
def : Pat<(v16i8 (opnode VPR128:$src,
(bitconvert(v8i16 (neonopnode timm:$Imm,
neon_mov_imm_LSLH_operand:$Simm))))),
(INST8H VPR128:$src, neon_uimm8:$Imm,
neon_mov_imm_LSLH_operand:$Simm)>;
def : Pat<(v4i32 (opnode VPR128:$src,
(bitconvert(v8i16 (neonopnode timm:$Imm,
neon_mov_imm_LSLH_operand:$Simm))))),
(INST8H VPR128:$src, neon_uimm8:$Imm,
neon_mov_imm_LSLH_operand:$Simm)>;
def : Pat<(v2i64 (opnode VPR128:$src,
(bitconvert(v8i16 (neonopnode timm:$Imm,
neon_mov_imm_LSLH_operand:$Simm))))),
(INST8H VPR128:$src, neon_uimm8:$Imm,
neon_mov_imm_LSLH_operand:$Simm)>;
}
// Additional patterns for Vector Vector Bitwise Bit Clear (AND NOT) - immediate
defm : Neon_bitwiseVi_patterns<or, Neon_mvni, BICvi_lsl_4H, BICvi_lsl_8H>;
// Additional patterns for Vector Bitwise OR - immedidate
defm : Neon_bitwiseVi_patterns<or, Neon_movi, ORRvi_lsl_4H, ORRvi_lsl_8H>;
// Vector Move Immediate Masked
let isReMaterializable = 1 in {
defm MOVIvi_msl : NeonI_mov_imm_msl_sizes<"movi", 0b0, Neon_movi>;
}
// Vector Move Inverted Immediate Masked
let isReMaterializable = 1 in {
defm MVNIvi_msl : NeonI_mov_imm_msl_sizes<"mvni", 0b1, Neon_mvni>;
}
class NeonI_mov_imm_lsl_aliases<string asmop, string asmlane,
Instruction inst, RegisterOperand VPRC>
: NeonInstAlias<!strconcat(asmop, "\t$Rd," # asmlane # ", $Imm"),
(inst VPRC:$Rd, neon_uimm8:$Imm, 0), 0b0>;
// Aliases for Vector Move Immediate Shifted
def : NeonI_mov_imm_lsl_aliases<"movi", ".2s", MOVIvi_lsl_2S, VPR64>;
def : NeonI_mov_imm_lsl_aliases<"movi", ".4s", MOVIvi_lsl_4S, VPR128>;
def : NeonI_mov_imm_lsl_aliases<"movi", ".4h", MOVIvi_lsl_4H, VPR64>;
def : NeonI_mov_imm_lsl_aliases<"movi", ".8h", MOVIvi_lsl_8H, VPR128>;
// Aliases for Vector Move Inverted Immediate Shifted
def : NeonI_mov_imm_lsl_aliases<"mvni", ".2s", MVNIvi_lsl_2S, VPR64>;
def : NeonI_mov_imm_lsl_aliases<"mvni", ".4s", MVNIvi_lsl_4S, VPR128>;
def : NeonI_mov_imm_lsl_aliases<"mvni", ".4h", MVNIvi_lsl_4H, VPR64>;
def : NeonI_mov_imm_lsl_aliases<"mvni", ".8h", MVNIvi_lsl_8H, VPR128>;
// Aliases for Vector Bitwise Bit Clear (AND NOT) - immediate
def : NeonI_mov_imm_lsl_aliases<"bic", ".2s", BICvi_lsl_2S, VPR64>;
def : NeonI_mov_imm_lsl_aliases<"bic", ".4s", BICvi_lsl_4S, VPR128>;
def : NeonI_mov_imm_lsl_aliases<"bic", ".4h", BICvi_lsl_4H, VPR64>;
def : NeonI_mov_imm_lsl_aliases<"bic", ".8h", BICvi_lsl_8H, VPR128>;
// Aliases for Vector Bitwise OR - immedidate
def : NeonI_mov_imm_lsl_aliases<"orr", ".2s", ORRvi_lsl_2S, VPR64>;
def : NeonI_mov_imm_lsl_aliases<"orr", ".4s", ORRvi_lsl_4S, VPR128>;
def : NeonI_mov_imm_lsl_aliases<"orr", ".4h", ORRvi_lsl_4H, VPR64>;
def : NeonI_mov_imm_lsl_aliases<"orr", ".8h", ORRvi_lsl_8H, VPR128>;
// Vector Move Immediate - per byte
let isReMaterializable = 1 in {
def MOVIvi_8B : NeonI_1VModImm<0b0, 0b0,
(outs VPR64:$Rd), (ins neon_uimm8:$Imm),
"movi\t$Rd.8b, $Imm",
[(set (v8i8 VPR64:$Rd),
(v8i8 (Neon_movi (timm:$Imm), (i32 imm))))],
NoItinerary> {
let cmode = 0b1110;
}
def MOVIvi_16B : NeonI_1VModImm<0b1, 0b0,
(outs VPR128:$Rd), (ins neon_uimm8:$Imm),
"movi\t$Rd.16b, $Imm",
[(set (v16i8 VPR128:$Rd),
(v16i8 (Neon_movi (timm:$Imm), (i32 imm))))],
NoItinerary> {
let cmode = 0b1110;
}
}
// Vector Move Immediate - bytemask, per double word
let isReMaterializable = 1 in {
def MOVIvi_2D : NeonI_1VModImm<0b1, 0b1,
(outs VPR128:$Rd), (ins neon_uimm64_mask:$Imm),
"movi\t $Rd.2d, $Imm",
[(set (v2i64 VPR128:$Rd),
(v2i64 (Neon_movi (timm:$Imm), (i32 imm))))],
NoItinerary> {
let cmode = 0b1110;
}
}
// Vector Move Immediate - bytemask, one doubleword
let isReMaterializable = 1 in {
def MOVIdi : NeonI_1VModImm<0b0, 0b1,
(outs FPR64:$Rd), (ins neon_uimm64_mask:$Imm),
"movi\t $Rd, $Imm",
[(set (f64 FPR64:$Rd),
(f64 (bitconvert
(v1i64 (Neon_movi (timm:$Imm), (i32 imm))))))],
NoItinerary> {
let cmode = 0b1110;
}
}
// Vector Floating Point Move Immediate
class NeonI_FMOV_impl<string asmlane, RegisterOperand VPRC, ValueType OpTy,
Operand immOpType, bit q, bit op>
: NeonI_1VModImm<q, op,
(outs VPRC:$Rd), (ins immOpType:$Imm),
"fmov\t$Rd" # asmlane # ", $Imm",
[(set (OpTy VPRC:$Rd),
(OpTy (Neon_fmovi (timm:$Imm))))],
NoItinerary> {
let cmode = 0b1111;
}
let isReMaterializable = 1 in {
def FMOVvi_2S : NeonI_FMOV_impl<".2s", VPR64, v2f32, fmov32_operand, 0b0, 0b0>;
def FMOVvi_4S : NeonI_FMOV_impl<".4s", VPR128, v4f32, fmov32_operand, 0b1, 0b0>;
def FMOVvi_2D : NeonI_FMOV_impl<".2d", VPR128, v2f64, fmov64_operand, 0b1, 0b1>;
}
// Vector Shift (Immediate)
// Immediate in [0, 63]
def imm0_63 : Operand<i32> {
let ParserMatchClass = uimm6_asmoperand;
}
// Shift Right/Left Immediate - The immh:immb field of these shifts are encoded
// as follows:
//
// Offset Encoding
// 8 immh:immb<6:3> = '0001xxx', <imm> is encoded in immh:immb<2:0>
// 16 immh:immb<6:4> = '001xxxx', <imm> is encoded in immh:immb<3:0>
// 32 immh:immb<6:5> = '01xxxxx', <imm> is encoded in immh:immb<4:0>
// 64 immh:immb<6> = '1xxxxxx', <imm> is encoded in immh:immb<5:0>
//
// The shift right immediate amount, in the range 1 to element bits, is computed
// as Offset - UInt(immh:immb). The shift left immediate amount, in the range 0
// to element bits - 1, is computed as UInt(immh:immb) - Offset.
class shr_imm_asmoperands<string OFFSET> : AsmOperandClass {
let Name = "ShrImm" # OFFSET;
let RenderMethod = "addImmOperands";
let DiagnosticType = "ShrImm" # OFFSET;
}
class shr_imm<string OFFSET> : Operand<i32> {
let EncoderMethod = "getShiftRightImm" # OFFSET;
let DecoderMethod = "DecodeShiftRightImm" # OFFSET;
let ParserMatchClass =
!cast<AsmOperandClass>("shr_imm" # OFFSET # "_asmoperand");
}
def shr_imm8_asmoperand : shr_imm_asmoperands<"8">;
def shr_imm16_asmoperand : shr_imm_asmoperands<"16">;
def shr_imm32_asmoperand : shr_imm_asmoperands<"32">;
def shr_imm64_asmoperand : shr_imm_asmoperands<"64">;
def shr_imm8 : shr_imm<"8">;
def shr_imm16 : shr_imm<"16">;
def shr_imm32 : shr_imm<"32">;
def shr_imm64 : shr_imm<"64">;
class shl_imm_asmoperands<string OFFSET> : AsmOperandClass {
let Name = "ShlImm" # OFFSET;
let RenderMethod = "addImmOperands";
let DiagnosticType = "ShlImm" # OFFSET;
}
class shl_imm<string OFFSET> : Operand<i32> {
let EncoderMethod = "getShiftLeftImm" # OFFSET;
let DecoderMethod = "DecodeShiftLeftImm" # OFFSET;
let ParserMatchClass =
!cast<AsmOperandClass>("shl_imm" # OFFSET # "_asmoperand");
}
def shl_imm8_asmoperand : shl_imm_asmoperands<"8">;
def shl_imm16_asmoperand : shl_imm_asmoperands<"16">;
def shl_imm32_asmoperand : shl_imm_asmoperands<"32">;
def shl_imm64_asmoperand : shl_imm_asmoperands<"64">;
def shl_imm8 : shl_imm<"8">;
def shl_imm16 : shl_imm<"16">;
def shl_imm32 : shl_imm<"32">;
def shl_imm64 : shl_imm<"64">;
class N2VShift<bit q, bit u, bits<5> opcode, string asmop, string T,
RegisterOperand VPRC, ValueType Ty, Operand ImmTy, SDNode OpNode>
: NeonI_2VShiftImm<q, u, opcode,
(outs VPRC:$Rd), (ins VPRC:$Rn, ImmTy:$Imm),
asmop # "\t$Rd." # T # ", $Rn." # T # ", $Imm",
[(set (Ty VPRC:$Rd),
(Ty (OpNode (Ty VPRC:$Rn),
(Ty (Neon_vdup (i32 imm:$Imm))))))],
NoItinerary>;
multiclass NeonI_N2VShL<bit u, bits<5> opcode, string asmop> {
// 64-bit vector types.
def _8B : N2VShift<0b0, u, opcode, asmop, "8b", VPR64, v8i8, uimm3, shl> {
let Inst{22-19} = 0b0001; // immh:immb = 0001xxx
}
def _4H : N2VShift<0b0, u, opcode, asmop, "4h", VPR64, v4i16, uimm4, shl> {
let Inst{22-20} = 0b001; // immh:immb = 001xxxx
}
def _2S : N2VShift<0b0, u, opcode, asmop, "2s", VPR64, v2i32, uimm5, shl> {
let Inst{22-21} = 0b01; // immh:immb = 01xxxxx
}
// 128-bit vector types.
def _16B : N2VShift<0b1, u, opcode, asmop, "16b", VPR128, v16i8, uimm3, shl> {
let Inst{22-19} = 0b0001; // immh:immb = 0001xxx
}
def _8H : N2VShift<0b1, u, opcode, asmop, "8h", VPR128, v8i16, uimm4, shl> {
let Inst{22-20} = 0b001; // immh:immb = 001xxxx
}
def _4S : N2VShift<0b1, u, opcode, asmop, "4s", VPR128, v4i32, uimm5, shl> {
let Inst{22-21} = 0b01; // immh:immb = 01xxxxx
}
def _2D : N2VShift<0b1, u, opcode, asmop, "2d", VPR128, v2i64, imm0_63, shl> {
let Inst{22} = 0b1; // immh:immb = 1xxxxxx
}
}
multiclass NeonI_N2VShR<bit u, bits<5> opcode, string asmop, SDNode OpNode> {
def _8B : N2VShift<0b0, u, opcode, asmop, "8b", VPR64, v8i8, shr_imm8,
OpNode> {
let Inst{22-19} = 0b0001;
}
def _4H : N2VShift<0b0, u, opcode, asmop, "4h", VPR64, v4i16, shr_imm16,
OpNode> {
let Inst{22-20} = 0b001;
}
def _2S : N2VShift<0b0, u, opcode, asmop, "2s", VPR64, v2i32, shr_imm32,
OpNode> {
let Inst{22-21} = 0b01;
}
def _16B : N2VShift<0b1, u, opcode, asmop, "16b", VPR128, v16i8, shr_imm8,
OpNode> {
let Inst{22-19} = 0b0001;
}
def _8H : N2VShift<0b1, u, opcode, asmop, "8h", VPR128, v8i16, shr_imm16,
OpNode> {
let Inst{22-20} = 0b001;
}
def _4S : N2VShift<0b1, u, opcode, asmop, "4s", VPR128, v4i32, shr_imm32,
OpNode> {
let Inst{22-21} = 0b01;
}
def _2D : N2VShift<0b1, u, opcode, asmop, "2d", VPR128, v2i64, shr_imm64,
OpNode> {
let Inst{22} = 0b1;
}
}
// Shift left
defm SHLvvi : NeonI_N2VShL<0b0, 0b01010, "shl">;
// Shift right
defm SSHRvvi : NeonI_N2VShR<0b0, 0b00000, "sshr", sra>;
defm USHRvvi : NeonI_N2VShR<0b1, 0b00000, "ushr", srl>;
def Neon_High16B : PatFrag<(ops node:$in),
(extract_subvector (v16i8 node:$in), (iPTR 8))>;
def Neon_High8H : PatFrag<(ops node:$in),
(extract_subvector (v8i16 node:$in), (iPTR 4))>;
def Neon_High4S : PatFrag<(ops node:$in),
(extract_subvector (v4i32 node:$in), (iPTR 2))>;
def Neon_High2D : PatFrag<(ops node:$in),
(extract_subvector (v2i64 node:$in), (iPTR 1))>;
def Neon_High4float : PatFrag<(ops node:$in),
(extract_subvector (v4f32 node:$in), (iPTR 2))>;
def Neon_High2double : PatFrag<(ops node:$in),
(extract_subvector (v2f64 node:$in), (iPTR 1))>;
def Neon_Low16B : PatFrag<(ops node:$in),
(v8i8 (extract_subvector (v16i8 node:$in),
(iPTR 0)))>;
def Neon_Low8H : PatFrag<(ops node:$in),
(v4i16 (extract_subvector (v8i16 node:$in),
(iPTR 0)))>;
def Neon_Low4S : PatFrag<(ops node:$in),
(v2i32 (extract_subvector (v4i32 node:$in),
(iPTR 0)))>;
def Neon_Low2D : PatFrag<(ops node:$in),
(v1i64 (extract_subvector (v2i64 node:$in),
(iPTR 0)))>;
def Neon_Low4float : PatFrag<(ops node:$in),
(v2f32 (extract_subvector (v4f32 node:$in),
(iPTR 0)))>;
def Neon_Low2double : PatFrag<(ops node:$in),
(v1f64 (extract_subvector (v2f64 node:$in),
(iPTR 0)))>;
def neon_uimm3_shift : Operand<i32>,
ImmLeaf<i32, [{return Imm < 8;}]> {
let ParserMatchClass = uimm3_asmoperand;
}
def neon_uimm4_shift : Operand<i32>,
ImmLeaf<i32, [{return Imm < 16;}]> {
let ParserMatchClass = uimm4_asmoperand;
}
def neon_uimm5_shift : Operand<i32>,
ImmLeaf<i32, [{return Imm < 32;}]> {
let ParserMatchClass = uimm5_asmoperand;
}
class N2VShiftLong<bit q, bit u, bits<5> opcode, string asmop, string DestT,
string SrcT, ValueType DestTy, ValueType SrcTy,
Operand ImmTy, SDPatternOperator ExtOp>
: NeonI_2VShiftImm<q, u, opcode, (outs VPR128:$Rd),
(ins VPR64:$Rn, ImmTy:$Imm),
asmop # "\t$Rd." # DestT # ", $Rn." # SrcT # ", $Imm",
[(set (DestTy VPR128:$Rd),
(DestTy (shl
(DestTy (ExtOp (SrcTy VPR64:$Rn))),
(DestTy (Neon_vdup (i32 ImmTy:$Imm))))))],
NoItinerary>;
class N2VShiftLongHigh<bit q, bit u, bits<5> opcode, string asmop, string DestT,
string SrcT, ValueType DestTy, ValueType SrcTy,
int StartIndex, Operand ImmTy,
SDPatternOperator ExtOp, PatFrag getTop>
: NeonI_2VShiftImm<q, u, opcode, (outs VPR128:$Rd),
(ins VPR128:$Rn, ImmTy:$Imm),
asmop # "2\t$Rd." # DestT # ", $Rn." # SrcT # ", $Imm",
[(set (DestTy VPR128:$Rd),
(DestTy (shl
(DestTy (ExtOp
(SrcTy (getTop VPR128:$Rn)))),
(DestTy (Neon_vdup (i32 ImmTy:$Imm))))))],
NoItinerary>;
multiclass NeonI_N2VShLL<string prefix, bit u, bits<5> opcode, string asmop,
SDNode ExtOp> {
// 64-bit vector types.
def _8B : N2VShiftLong<0b0, u, opcode, asmop, "8h", "8b", v8i16, v8i8,
neon_uimm3_shift, ExtOp> {
let Inst{22-19} = 0b0001; // immh:immb = 0001xxx
}
def _4H : N2VShiftLong<0b0, u, opcode, asmop, "4s", "4h", v4i32, v4i16,
neon_uimm4_shift, ExtOp> {
let Inst{22-20} = 0b001; // immh:immb = 001xxxx
}
def _2S : N2VShiftLong<0b0, u, opcode, asmop, "2d", "2s", v2i64, v2i32,
neon_uimm5_shift, ExtOp> {
let Inst{22-21} = 0b01; // immh:immb = 01xxxxx
}
// 128-bit vector types
def _16B : N2VShiftLongHigh<0b1, u, opcode, asmop, "8h", "16b", v8i16, v8i8,
8, neon_uimm3_shift, ExtOp, Neon_High16B> {
let Inst{22-19} = 0b0001; // immh:immb = 0001xxx
}
def _8H : N2VShiftLongHigh<0b1, u, opcode, asmop, "4s", "8h", v4i32, v4i16,
4, neon_uimm4_shift, ExtOp, Neon_High8H> {
let Inst{22-20} = 0b001; // immh:immb = 001xxxx
}
def _4S : N2VShiftLongHigh<0b1, u, opcode, asmop, "2d", "4s", v2i64, v2i32,
2, neon_uimm5_shift, ExtOp, Neon_High4S> {
let Inst{22-21} = 0b01; // immh:immb = 01xxxxx
}
// Use other patterns to match when the immediate is 0.
def : Pat<(v8i16 (ExtOp (v8i8 VPR64:$Rn))),
(!cast<Instruction>(prefix # "_8B") VPR64:$Rn, 0)>;
def : Pat<(v4i32 (ExtOp (v4i16 VPR64:$Rn))),
(!cast<Instruction>(prefix # "_4H") VPR64:$Rn, 0)>;
def : Pat<(v2i64 (ExtOp (v2i32 VPR64:$Rn))),
(!cast<Instruction>(prefix # "_2S") VPR64:$Rn, 0)>;
def : Pat<(v8i16 (ExtOp (v8i8 (Neon_High16B VPR128:$Rn)))),
(!cast<Instruction>(prefix # "_16B") VPR128:$Rn, 0)>;
def : Pat<(v4i32 (ExtOp (v4i16 (Neon_High8H VPR128:$Rn)))),
(!cast<Instruction>(prefix # "_8H") VPR128:$Rn, 0)>;
def : Pat<(v2i64 (ExtOp (v2i32 (Neon_High4S VPR128:$Rn)))),
(!cast<Instruction>(prefix # "_4S") VPR128:$Rn, 0)>;
}
// Shift left long
defm SSHLLvvi : NeonI_N2VShLL<"SSHLLvvi", 0b0, 0b10100, "sshll", sext>;
defm USHLLvvi : NeonI_N2VShLL<"USHLLvvi", 0b1, 0b10100, "ushll", zext>;
// Rounding/Saturating shift
class N2VShift_RQ<bit q, bit u, bits<5> opcode, string asmop, string T,
RegisterOperand VPRC, ValueType Ty, Operand ImmTy,
SDPatternOperator OpNode>
: NeonI_2VShiftImm<q, u, opcode,
(outs VPRC:$Rd), (ins VPRC:$Rn, ImmTy:$Imm),
asmop # "\t$Rd." # T # ", $Rn." # T # ", $Imm",
[(set (Ty VPRC:$Rd), (Ty (OpNode (Ty VPRC:$Rn),
(i32 imm:$Imm))))],
NoItinerary>;
// shift right (vector by immediate)
multiclass NeonI_N2VShR_RQ<bit u, bits<5> opcode, string asmop,
SDPatternOperator OpNode> {
def _8B : N2VShift_RQ<0b0, u, opcode, asmop, "8b", VPR64, v8i8, shr_imm8,
OpNode> {
let Inst{22-19} = 0b0001;
}
def _4H : N2VShift_RQ<0b0, u, opcode, asmop, "4h", VPR64, v4i16, shr_imm16,
OpNode> {
let Inst{22-20} = 0b001;
}
def _2S : N2VShift_RQ<0b0, u, opcode, asmop, "2s", VPR64, v2i32, shr_imm32,
OpNode> {
let Inst{22-21} = 0b01;
}
def _16B : N2VShift_RQ<0b1, u, opcode, asmop, "16b", VPR128, v16i8, shr_imm8,
OpNode> {
let Inst{22-19} = 0b0001;
}
def _8H : N2VShift_RQ<0b1, u, opcode, asmop, "8h", VPR128, v8i16, shr_imm16,
OpNode> {
let Inst{22-20} = 0b001;
}
def _4S : N2VShift_RQ<0b1, u, opcode, asmop, "4s", VPR128, v4i32, shr_imm32,
OpNode> {
let Inst{22-21} = 0b01;
}
def _2D : N2VShift_RQ<0b1, u, opcode, asmop, "2d", VPR128, v2i64, shr_imm64,
OpNode> {
let Inst{22} = 0b1;
}
}
multiclass NeonI_N2VShL_Q<bit u, bits<5> opcode, string asmop,
SDPatternOperator OpNode> {
// 64-bit vector types.
def _8B : N2VShift_RQ<0b0, u, opcode, asmop, "8b", VPR64, v8i8, uimm3,
OpNode> {
let Inst{22-19} = 0b0001;
}
def _4H : N2VShift_RQ<0b0, u, opcode, asmop, "4h", VPR64, v4i16, uimm4,
OpNode> {
let Inst{22-20} = 0b001;
}
def _2S : N2VShift_RQ<0b0, u, opcode, asmop, "2s", VPR64, v2i32, uimm5,
OpNode> {
let Inst{22-21} = 0b01;
}
// 128-bit vector types.
def _16B : N2VShift_RQ<0b1, u, opcode, asmop, "16b", VPR128, v16i8, uimm3,
OpNode> {
let Inst{22-19} = 0b0001;
}
def _8H : N2VShift_RQ<0b1, u, opcode, asmop, "8h", VPR128, v8i16, uimm4,
OpNode> {
let Inst{22-20} = 0b001;
}
def _4S : N2VShift_RQ<0b1, u, opcode, asmop, "4s", VPR128, v4i32, uimm5,
OpNode> {
let Inst{22-21} = 0b01;
}
def _2D : N2VShift_RQ<0b1, u, opcode, asmop, "2d", VPR128, v2i64, imm0_63,
OpNode> {
let Inst{22} = 0b1;
}
}
// Rounding shift right
defm SRSHRvvi : NeonI_N2VShR_RQ<0b0, 0b00100, "srshr",
int_aarch64_neon_vsrshr>;
defm URSHRvvi : NeonI_N2VShR_RQ<0b1, 0b00100, "urshr",
int_aarch64_neon_vurshr>;
// Saturating shift left unsigned
defm SQSHLUvvi : NeonI_N2VShL_Q<0b1, 0b01100, "sqshlu", int_aarch64_neon_vsqshlu>;
// Saturating shift left
defm SQSHLvvi : NeonI_N2VShL_Q<0b0, 0b01110, "sqshl", Neon_sqrshlImm>;
defm UQSHLvvi : NeonI_N2VShL_Q<0b1, 0b01110, "uqshl", Neon_uqrshlImm>;
class N2VShiftAdd<bit q, bit u, bits<5> opcode, string asmop, string T,
RegisterOperand VPRC, ValueType Ty, Operand ImmTy,
SDNode OpNode>
: NeonI_2VShiftImm<q, u, opcode,
(outs VPRC:$Rd), (ins VPRC:$src, VPRC:$Rn, ImmTy:$Imm),
asmop # "\t$Rd." # T # ", $Rn." # T # ", $Imm",
[(set (Ty VPRC:$Rd), (Ty (add (Ty VPRC:$src),
(Ty (OpNode (Ty VPRC:$Rn),
(Ty (Neon_vdup (i32 imm:$Imm))))))))],
NoItinerary> {
let Constraints = "$src = $Rd";
}
// Shift Right accumulate
multiclass NeonI_N2VShRAdd<bit u, bits<5> opcode, string asmop, SDNode OpNode> {
def _8B : N2VShiftAdd<0b0, u, opcode, asmop, "8b", VPR64, v8i8, shr_imm8,
OpNode> {
let Inst{22-19} = 0b0001;
}
def _4H : N2VShiftAdd<0b0, u, opcode, asmop, "4h", VPR64, v4i16, shr_imm16,
OpNode> {
let Inst{22-20} = 0b001;
}
def _2S : N2VShiftAdd<0b0, u, opcode, asmop, "2s", VPR64, v2i32, shr_imm32,
OpNode> {
let Inst{22-21} = 0b01;
}
def _16B : N2VShiftAdd<0b1, u, opcode, asmop, "16b", VPR128, v16i8, shr_imm8,
OpNode> {
let Inst{22-19} = 0b0001;
}
def _8H : N2VShiftAdd<0b1, u, opcode, asmop, "8h", VPR128, v8i16, shr_imm16,
OpNode> {
let Inst{22-20} = 0b001;
}
def _4S : N2VShiftAdd<0b1, u, opcode, asmop, "4s", VPR128, v4i32, shr_imm32,
OpNode> {
let Inst{22-21} = 0b01;
}
def _2D : N2VShiftAdd<0b1, u, opcode, asmop, "2d", VPR128, v2i64, shr_imm64,
OpNode> {
let Inst{22} = 0b1;
}
}
// Shift right and accumulate
defm SSRAvvi : NeonI_N2VShRAdd<0, 0b00010, "ssra", sra>;
defm USRAvvi : NeonI_N2VShRAdd<1, 0b00010, "usra", srl>;
// Rounding shift accumulate
class N2VShiftAdd_R<bit q, bit u, bits<5> opcode, string asmop, string T,
RegisterOperand VPRC, ValueType Ty, Operand ImmTy,
SDPatternOperator OpNode>
: NeonI_2VShiftImm<q, u, opcode,
(outs VPRC:$Rd), (ins VPRC:$src, VPRC:$Rn, ImmTy:$Imm),
asmop # "\t$Rd." # T # ", $Rn." # T # ", $Imm",
[(set (Ty VPRC:$Rd), (Ty (add (Ty VPRC:$src),
(Ty (OpNode (Ty VPRC:$Rn), (i32 imm:$Imm))))))],
NoItinerary> {
let Constraints = "$src = $Rd";
}
multiclass NeonI_N2VShRAdd_R<bit u, bits<5> opcode, string asmop,
SDPatternOperator OpNode> {
def _8B : N2VShiftAdd_R<0b0, u, opcode, asmop, "8b", VPR64, v8i8, shr_imm8,
OpNode> {
let Inst{22-19} = 0b0001;
}
def _4H : N2VShiftAdd_R<0b0, u, opcode, asmop, "4h", VPR64, v4i16, shr_imm16,
OpNode> {
let Inst{22-20} = 0b001;
}
def _2S : N2VShiftAdd_R<0b0, u, opcode, asmop, "2s", VPR64, v2i32, shr_imm32,
OpNode> {
let Inst{22-21} = 0b01;
}
def _16B : N2VShiftAdd_R<0b1, u, opcode, asmop, "16b", VPR128, v16i8, shr_imm8,
OpNode> {
let Inst{22-19} = 0b0001;
}
def _8H : N2VShiftAdd_R<0b1, u, opcode, asmop, "8h", VPR128, v8i16, shr_imm16,
OpNode> {
let Inst{22-20} = 0b001;
}
def _4S : N2VShiftAdd_R<0b1, u, opcode, asmop, "4s", VPR128, v4i32, shr_imm32,
OpNode> {
let Inst{22-21} = 0b01;
}
def _2D : N2VShiftAdd_R<0b1, u, opcode, asmop, "2d", VPR128, v2i64, shr_imm64,
OpNode> {
let Inst{22} = 0b1;
}
}
// Rounding shift right and accumulate
defm SRSRAvvi : NeonI_N2VShRAdd_R<0, 0b00110, "srsra", int_aarch64_neon_vsrshr>;
defm URSRAvvi : NeonI_N2VShRAdd_R<1, 0b00110, "ursra", int_aarch64_neon_vurshr>;
// Shift insert by immediate
class N2VShiftIns<bit q, bit u, bits<5> opcode, string asmop, string T,
RegisterOperand VPRC, ValueType Ty, Operand ImmTy,
SDPatternOperator OpNode>
: NeonI_2VShiftImm<q, u, opcode,
(outs VPRC:$Rd), (ins VPRC:$src, VPRC:$Rn, ImmTy:$Imm),
asmop # "\t$Rd." # T # ", $Rn." # T # ", $Imm",
[(set (Ty VPRC:$Rd), (Ty (OpNode (Ty VPRC:$src), (Ty VPRC:$Rn),
(i32 imm:$Imm))))],
NoItinerary> {
let Constraints = "$src = $Rd";
}
// shift left insert (vector by immediate)
multiclass NeonI_N2VShLIns<bit u, bits<5> opcode, string asmop> {
def _8B : N2VShiftIns<0b0, u, opcode, asmop, "8b", VPR64, v8i8, uimm3,
int_aarch64_neon_vsli> {
let Inst{22-19} = 0b0001;
}
def _4H : N2VShiftIns<0b0, u, opcode, asmop, "4h", VPR64, v4i16, uimm4,
int_aarch64_neon_vsli> {
let Inst{22-20} = 0b001;
}
def _2S : N2VShiftIns<0b0, u, opcode, asmop, "2s", VPR64, v2i32, uimm5,
int_aarch64_neon_vsli> {
let Inst{22-21} = 0b01;
}
// 128-bit vector types
def _16B : N2VShiftIns<0b1, u, opcode, asmop, "16b", VPR128, v16i8, uimm3,
int_aarch64_neon_vsli> {
let Inst{22-19} = 0b0001;
}
def _8H : N2VShiftIns<0b1, u, opcode, asmop, "8h", VPR128, v8i16, uimm4,
int_aarch64_neon_vsli> {
let Inst{22-20} = 0b001;
}
def _4S : N2VShiftIns<0b1, u, opcode, asmop, "4s", VPR128, v4i32, uimm5,
int_aarch64_neon_vsli> {
let Inst{22-21} = 0b01;
}
def _2D : N2VShiftIns<0b1, u, opcode, asmop, "2d", VPR128, v2i64, imm0_63,
int_aarch64_neon_vsli> {
let Inst{22} = 0b1;
}
}
// shift right insert (vector by immediate)
multiclass NeonI_N2VShRIns<bit u, bits<5> opcode, string asmop> {
// 64-bit vector types.
def _8B : N2VShiftIns<0b0, u, opcode, asmop, "8b", VPR64, v8i8, shr_imm8,
int_aarch64_neon_vsri> {
let Inst{22-19} = 0b0001;
}
def _4H : N2VShiftIns<0b0, u, opcode, asmop, "4h", VPR64, v4i16, shr_imm16,
int_aarch64_neon_vsri> {
let Inst{22-20} = 0b001;
}
def _2S : N2VShiftIns<0b0, u, opcode, asmop, "2s", VPR64, v2i32, shr_imm32,
int_aarch64_neon_vsri> {
let Inst{22-21} = 0b01;
}
// 128-bit vector types
def _16B : N2VShiftIns<0b1, u, opcode, asmop, "16b", VPR128, v16i8, shr_imm8,
int_aarch64_neon_vsri> {
let Inst{22-19} = 0b0001;
}
def _8H : N2VShiftIns<0b1, u, opcode, asmop, "8h", VPR128, v8i16, shr_imm16,
int_aarch64_neon_vsri> {
let Inst{22-20} = 0b001;
}
def _4S : N2VShiftIns<0b1, u, opcode, asmop, "4s", VPR128, v4i32, shr_imm32,
int_aarch64_neon_vsri> {
let Inst{22-21} = 0b01;
}
def _2D : N2VShiftIns<0b1, u, opcode, asmop, "2d", VPR128, v2i64, shr_imm64,
int_aarch64_neon_vsri> {
let Inst{22} = 0b1;
}
}
// Shift left and insert
defm SLIvvi : NeonI_N2VShLIns<0b1, 0b01010, "sli">;
// Shift right and insert
defm SRIvvi : NeonI_N2VShRIns<0b1, 0b01000, "sri">;
class N2VShR_Narrow<bit q, bit u, bits<5> opcode, string asmop, string DestT,
string SrcT, Operand ImmTy>
: NeonI_2VShiftImm<q, u, opcode,
(outs VPR64:$Rd), (ins VPR128:$Rn, ImmTy:$Imm),
asmop # "\t$Rd." # DestT # ", $Rn." # SrcT # ", $Imm",
[], NoItinerary>;
class N2VShR_Narrow_Hi<bit q, bit u, bits<5> opcode, string asmop, string DestT,
string SrcT, Operand ImmTy>
: NeonI_2VShiftImm<q, u, opcode, (outs VPR128:$Rd),
(ins VPR128:$src, VPR128:$Rn, ImmTy:$Imm),
asmop # "\t$Rd." # DestT # ", $Rn." # SrcT # ", $Imm",
[], NoItinerary> {
let Constraints = "$src = $Rd";
}
// left long shift by immediate
multiclass NeonI_N2VShR_Narrow<bit u, bits<5> opcode, string asmop> {
def _8B : N2VShR_Narrow<0b0, u, opcode, asmop, "8b", "8h", shr_imm8> {
let Inst{22-19} = 0b0001;
}
def _4H : N2VShR_Narrow<0b0, u, opcode, asmop, "4h", "4s", shr_imm16> {
let Inst{22-20} = 0b001;
}
def _2S : N2VShR_Narrow<0b0, u, opcode, asmop, "2s", "2d", shr_imm32> {
let Inst{22-21} = 0b01;
}
// Shift Narrow High
def _16B : N2VShR_Narrow_Hi<0b1, u, opcode, asmop # "2", "16b", "8h",
shr_imm8> {
let Inst{22-19} = 0b0001;
}
def _8H : N2VShR_Narrow_Hi<0b1, u, opcode, asmop # "2", "8h", "4s",
shr_imm16> {
let Inst{22-20} = 0b001;
}
def _4S : N2VShR_Narrow_Hi<0b1, u, opcode, asmop # "2", "4s", "2d",
shr_imm32> {
let Inst{22-21} = 0b01;
}
}
// Shift right narrow
defm SHRNvvi : NeonI_N2VShR_Narrow<0b0, 0b10000, "shrn">;
// Shift right narrow (prefix Q is saturating, prefix R is rounding)
defm QSHRUNvvi :NeonI_N2VShR_Narrow<0b1, 0b10000, "sqshrun">;
defm RSHRNvvi : NeonI_N2VShR_Narrow<0b0, 0b10001, "rshrn">;
defm QRSHRUNvvi : NeonI_N2VShR_Narrow<0b1, 0b10001, "sqrshrun">;
defm SQSHRNvvi : NeonI_N2VShR_Narrow<0b0, 0b10010, "sqshrn">;
defm UQSHRNvvi : NeonI_N2VShR_Narrow<0b1, 0b10010, "uqshrn">;
defm SQRSHRNvvi : NeonI_N2VShR_Narrow<0b0, 0b10011, "sqrshrn">;
defm UQRSHRNvvi : NeonI_N2VShR_Narrow<0b1, 0b10011, "uqrshrn">;
def Neon_combine_2D : PatFrag<(ops node:$Rm, node:$Rn),
(v2i64 (concat_vectors (v1i64 node:$Rm),
(v1i64 node:$Rn)))>;
def Neon_combine_8H : PatFrag<(ops node:$Rm, node:$Rn),
(v8i16 (concat_vectors (v4i16 node:$Rm),
(v4i16 node:$Rn)))>;
def Neon_combine_4S : PatFrag<(ops node:$Rm, node:$Rn),
(v4i32 (concat_vectors (v2i32 node:$Rm),
(v2i32 node:$Rn)))>;
def Neon_combine_4f : PatFrag<(ops node:$Rm, node:$Rn),
(v4f32 (concat_vectors (v2f32 node:$Rm),
(v2f32 node:$Rn)))>;
def Neon_combine_2d : PatFrag<(ops node:$Rm, node:$Rn),
(v2f64 (concat_vectors (v1f64 node:$Rm),
(v1f64 node:$Rn)))>;
def Neon_lshrImm8H : PatFrag<(ops node:$lhs, node:$rhs),
(v8i16 (srl (v8i16 node:$lhs),
(v8i16 (Neon_vdup (i32 node:$rhs)))))>;
def Neon_lshrImm4S : PatFrag<(ops node:$lhs, node:$rhs),
(v4i32 (srl (v4i32 node:$lhs),
(v4i32 (Neon_vdup (i32 node:$rhs)))))>;
def Neon_lshrImm2D : PatFrag<(ops node:$lhs, node:$rhs),
(v2i64 (srl (v2i64 node:$lhs),
(v2i64 (Neon_vdup (i32 node:$rhs)))))>;
def Neon_ashrImm8H : PatFrag<(ops node:$lhs, node:$rhs),
(v8i16 (sra (v8i16 node:$lhs),
(v8i16 (Neon_vdup (i32 node:$rhs)))))>;
def Neon_ashrImm4S : PatFrag<(ops node:$lhs, node:$rhs),
(v4i32 (sra (v4i32 node:$lhs),
(v4i32 (Neon_vdup (i32 node:$rhs)))))>;
def Neon_ashrImm2D : PatFrag<(ops node:$lhs, node:$rhs),
(v2i64 (sra (v2i64 node:$lhs),
(v2i64 (Neon_vdup (i32 node:$rhs)))))>;
// Normal shift right narrow is matched by IR (srl/sra, trunc, concat_vectors)
multiclass Neon_shiftNarrow_patterns<string shr> {
def : Pat<(v8i8 (trunc (!cast<PatFrag>("Neon_" # shr # "Imm8H") VPR128:$Rn,
(i32 imm:$Imm)))),
(SHRNvvi_8B VPR128:$Rn, imm:$Imm)>;
def : Pat<(v4i16 (trunc (!cast<PatFrag>("Neon_" # shr # "Imm4S") VPR128:$Rn,
(i32 imm:$Imm)))),
(SHRNvvi_4H VPR128:$Rn, imm:$Imm)>;
def : Pat<(v2i32 (trunc (!cast<PatFrag>("Neon_" # shr # "Imm2D") VPR128:$Rn,
(i32 imm:$Imm)))),
(SHRNvvi_2S VPR128:$Rn, imm:$Imm)>;
def : Pat<(Neon_combine_2D (v1i64 VPR64:$src), (v1i64 (bitconvert
(v8i8 (trunc (!cast<PatFrag>("Neon_" # shr # "Imm8H")
VPR128:$Rn, (i32 imm:$Imm))))))),
(SHRNvvi_16B (v2i64 (SUBREG_TO_REG (i64 0), VPR64:$src, sub_64)),
VPR128:$Rn, imm:$Imm)>;
def : Pat<(Neon_combine_2D (v1i64 VPR64:$src), (v1i64 (bitconvert
(v4i16 (trunc (!cast<PatFrag>("Neon_" # shr # "Imm4S")
VPR128:$Rn, (i32 imm:$Imm))))))),
(SHRNvvi_8H (SUBREG_TO_REG (i64 0), VPR64:$src, sub_64),
VPR128:$Rn, imm:$Imm)>;
def : Pat<(Neon_combine_2D (v1i64 VPR64:$src), (v1i64 (bitconvert
(v2i32 (trunc (!cast<PatFrag>("Neon_" # shr # "Imm2D")
VPR128:$Rn, (i32 imm:$Imm))))))),
(SHRNvvi_4S (SUBREG_TO_REG (i64 0), VPR64:$src, sub_64),
VPR128:$Rn, imm:$Imm)>;
}
multiclass Neon_shiftNarrow_QR_patterns<SDPatternOperator op, string prefix> {
def : Pat<(v8i8 (op (v8i16 VPR128:$Rn), imm:$Imm)),
(!cast<Instruction>(prefix # "_8B") VPR128:$Rn, imm:$Imm)>;
def : Pat<(v4i16 (op (v4i32 VPR128:$Rn), imm:$Imm)),
(!cast<Instruction>(prefix # "_4H") VPR128:$Rn, imm:$Imm)>;
def : Pat<(v2i32 (op (v2i64 VPR128:$Rn), imm:$Imm)),
(!cast<Instruction>(prefix # "_2S") VPR128:$Rn, imm:$Imm)>;
def : Pat<(Neon_combine_2D (v1i64 VPR64:$src),
(v1i64 (bitconvert (v8i8 (op (v8i16 VPR128:$Rn), imm:$Imm))))),
(!cast<Instruction>(prefix # "_16B")
(SUBREG_TO_REG (i64 0), VPR64:$src, sub_64),
VPR128:$Rn, imm:$Imm)>;
def : Pat<(Neon_combine_2D (v1i64 VPR64:$src),
(v1i64 (bitconvert (v4i16 (op (v4i32 VPR128:$Rn), imm:$Imm))))),
(!cast<Instruction>(prefix # "_8H")
(SUBREG_TO_REG (i64 0), VPR64:$src, sub_64),
VPR128:$Rn, imm:$Imm)>;
def : Pat<(Neon_combine_2D (v1i64 VPR64:$src),
(v1i64 (bitconvert (v2i32 (op (v2i64 VPR128:$Rn), imm:$Imm))))),
(!cast<Instruction>(prefix # "_4S")
(SUBREG_TO_REG (i64 0), VPR64:$src, sub_64),
VPR128:$Rn, imm:$Imm)>;
}
defm : Neon_shiftNarrow_patterns<"lshr">;
defm : Neon_shiftNarrow_patterns<"ashr">;
defm : Neon_shiftNarrow_QR_patterns<int_aarch64_neon_vsqshrun, "QSHRUNvvi">;
defm : Neon_shiftNarrow_QR_patterns<int_aarch64_neon_vrshrn, "RSHRNvvi">;
defm : Neon_shiftNarrow_QR_patterns<int_aarch64_neon_vsqrshrun, "QRSHRUNvvi">;
defm : Neon_shiftNarrow_QR_patterns<int_aarch64_neon_vsqshrn, "SQSHRNvvi">;
defm : Neon_shiftNarrow_QR_patterns<int_aarch64_neon_vuqshrn, "UQSHRNvvi">;
defm : Neon_shiftNarrow_QR_patterns<int_aarch64_neon_vsqrshrn, "SQRSHRNvvi">;
defm : Neon_shiftNarrow_QR_patterns<int_aarch64_neon_vuqrshrn, "UQRSHRNvvi">;
// Convert fix-point and float-pointing
class N2VCvt_Fx<bit q, bit u, bits<5> opcode, string asmop, string T,
RegisterOperand VPRC, ValueType DestTy, ValueType SrcTy,
Operand ImmTy, SDPatternOperator IntOp>
: NeonI_2VShiftImm<q, u, opcode,
(outs VPRC:$Rd), (ins VPRC:$Rn, ImmTy:$Imm),
asmop # "\t$Rd." # T # ", $Rn." # T # ", $Imm",
[(set (DestTy VPRC:$Rd), (DestTy (IntOp (SrcTy VPRC:$Rn),
(i32 imm:$Imm))))],
NoItinerary>;
multiclass NeonI_N2VCvt_Fx2fp<bit u, bits<5> opcode, string asmop,
SDPatternOperator IntOp> {
def _2S : N2VCvt_Fx<0, u, opcode, asmop, "2s", VPR64, v2f32, v2i32,
shr_imm32, IntOp> {
let Inst{22-21} = 0b01;
}
def _4S : N2VCvt_Fx<1, u, opcode, asmop, "4s", VPR128, v4f32, v4i32,
shr_imm32, IntOp> {
let Inst{22-21} = 0b01;
}
def _2D : N2VCvt_Fx<1, u, opcode, asmop, "2d", VPR128, v2f64, v2i64,
shr_imm64, IntOp> {
let Inst{22} = 0b1;
}
}
multiclass NeonI_N2VCvt_Fp2fx<bit u, bits<5> opcode, string asmop,
SDPatternOperator IntOp> {
def _2S : N2VCvt_Fx<0, u, opcode, asmop, "2s", VPR64, v2i32, v2f32,
shr_imm32, IntOp> {
let Inst{22-21} = 0b01;
}
def _4S : N2VCvt_Fx<1, u, opcode, asmop, "4s", VPR128, v4i32, v4f32,
shr_imm32, IntOp> {
let Inst{22-21} = 0b01;
}
def _2D : N2VCvt_Fx<1, u, opcode, asmop, "2d", VPR128, v2i64, v2f64,
shr_imm64, IntOp> {
let Inst{22} = 0b1;
}
}
// Convert fixed-point to floating-point
defm VCVTxs2f : NeonI_N2VCvt_Fx2fp<0, 0b11100, "scvtf",
int_arm_neon_vcvtfxs2fp>;
defm VCVTxu2f : NeonI_N2VCvt_Fx2fp<1, 0b11100, "ucvtf",
int_arm_neon_vcvtfxu2fp>;
// Convert floating-point to fixed-point
defm VCVTf2xs : NeonI_N2VCvt_Fp2fx<0, 0b11111, "fcvtzs",
int_arm_neon_vcvtfp2fxs>;
defm VCVTf2xu : NeonI_N2VCvt_Fp2fx<1, 0b11111, "fcvtzu",
int_arm_neon_vcvtfp2fxu>;
multiclass Neon_sshll2_0<SDNode ext>
{
def _v8i8 : PatFrag<(ops node:$Rn),
(v8i16 (ext (v8i8 (Neon_High16B node:$Rn))))>;
def _v4i16 : PatFrag<(ops node:$Rn),
(v4i32 (ext (v4i16 (Neon_High8H node:$Rn))))>;
def _v2i32 : PatFrag<(ops node:$Rn),
(v2i64 (ext (v2i32 (Neon_High4S node:$Rn))))>;
}
defm NI_sext_high : Neon_sshll2_0<sext>;
defm NI_zext_high : Neon_sshll2_0<zext>;
//===----------------------------------------------------------------------===//
// Multiclasses for NeonI_Across
//===----------------------------------------------------------------------===//
// Variant 1
multiclass NeonI_2VAcross_1<bit u, bits<5> opcode,
string asmop, SDPatternOperator opnode>
{
def _1h8b: NeonI_2VAcross<0b0, u, 0b00, opcode,
(outs FPR16:$Rd), (ins VPR64:$Rn),
asmop # "\t$Rd, $Rn.8b",
[(set (v1i16 FPR16:$Rd),
(v1i16 (opnode (v8i8 VPR64:$Rn))))],
NoItinerary>;
def _1h16b: NeonI_2VAcross<0b1, u, 0b00, opcode,
(outs FPR16:$Rd), (ins VPR128:$Rn),
asmop # "\t$Rd, $Rn.16b",
[(set (v1i16 FPR16:$Rd),
(v1i16 (opnode (v16i8 VPR128:$Rn))))],
NoItinerary>;
def _1s4h: NeonI_2VAcross<0b0, u, 0b01, opcode,
(outs FPR32:$Rd), (ins VPR64:$Rn),
asmop # "\t$Rd, $Rn.4h",
[(set (v1i32 FPR32:$Rd),
(v1i32 (opnode (v4i16 VPR64:$Rn))))],
NoItinerary>;
def _1s8h: NeonI_2VAcross<0b1, u, 0b01, opcode,
(outs FPR32:$Rd), (ins VPR128:$Rn),
asmop # "\t$Rd, $Rn.8h",
[(set (v1i32 FPR32:$Rd),
(v1i32 (opnode (v8i16 VPR128:$Rn))))],
NoItinerary>;
// _1d2s doesn't exist!
def _1d4s: NeonI_2VAcross<0b1, u, 0b10, opcode,
(outs FPR64:$Rd), (ins VPR128:$Rn),
asmop # "\t$Rd, $Rn.4s",
[(set (v1i64 FPR64:$Rd),
(v1i64 (opnode (v4i32 VPR128:$Rn))))],
NoItinerary>;
}
defm SADDLV : NeonI_2VAcross_1<0b0, 0b00011, "saddlv", int_aarch64_neon_saddlv>;
defm UADDLV : NeonI_2VAcross_1<0b1, 0b00011, "uaddlv", int_aarch64_neon_uaddlv>;
// Variant 2
multiclass NeonI_2VAcross_2<bit u, bits<5> opcode,
string asmop, SDPatternOperator opnode>
{
def _1b8b: NeonI_2VAcross<0b0, u, 0b00, opcode,
(outs FPR8:$Rd), (ins VPR64:$Rn),
asmop # "\t$Rd, $Rn.8b",
[(set (v1i8 FPR8:$Rd),
(v1i8 (opnode (v8i8 VPR64:$Rn))))],
NoItinerary>;
def _1b16b: NeonI_2VAcross<0b1, u, 0b00, opcode,
(outs FPR8:$Rd), (ins VPR128:$Rn),
asmop # "\t$Rd, $Rn.16b",
[(set (v1i8 FPR8:$Rd),
(v1i8 (opnode (v16i8 VPR128:$Rn))))],
NoItinerary>;
def _1h4h: NeonI_2VAcross<0b0, u, 0b01, opcode,
(outs FPR16:$Rd), (ins VPR64:$Rn),
asmop # "\t$Rd, $Rn.4h",
[(set (v1i16 FPR16:$Rd),
(v1i16 (opnode (v4i16 VPR64:$Rn))))],
NoItinerary>;
def _1h8h: NeonI_2VAcross<0b1, u, 0b01, opcode,
(outs FPR16:$Rd), (ins VPR128:$Rn),
asmop # "\t$Rd, $Rn.8h",
[(set (v1i16 FPR16:$Rd),
(v1i16 (opnode (v8i16 VPR128:$Rn))))],
NoItinerary>;
// _1s2s doesn't exist!
def _1s4s: NeonI_2VAcross<0b1, u, 0b10, opcode,
(outs FPR32:$Rd), (ins VPR128:$Rn),
asmop # "\t$Rd, $Rn.4s",
[(set (v1i32 FPR32:$Rd),
(v1i32 (opnode (v4i32 VPR128:$Rn))))],
NoItinerary>;
}
defm SMAXV : NeonI_2VAcross_2<0b0, 0b01010, "smaxv", int_aarch64_neon_smaxv>;
defm UMAXV : NeonI_2VAcross_2<0b1, 0b01010, "umaxv", int_aarch64_neon_umaxv>;
defm SMINV : NeonI_2VAcross_2<0b0, 0b11010, "sminv", int_aarch64_neon_sminv>;
defm UMINV : NeonI_2VAcross_2<0b1, 0b11010, "uminv", int_aarch64_neon_uminv>;
defm ADDV : NeonI_2VAcross_2<0b0, 0b11011, "addv", int_aarch64_neon_vaddv>;
// Variant 3
multiclass NeonI_2VAcross_3<bit u, bits<5> opcode, bits<2> size,
string asmop, SDPatternOperator opnode> {
def _1s4s: NeonI_2VAcross<0b1, u, size, opcode,
(outs FPR32:$Rd), (ins VPR128:$Rn),
asmop # "\t$Rd, $Rn.4s",
[(set (v1f32 FPR32:$Rd),
(v1f32 (opnode (v4f32 VPR128:$Rn))))],
NoItinerary>;
}
defm FMAXNMV : NeonI_2VAcross_3<0b1, 0b01100, 0b00, "fmaxnmv",
int_aarch64_neon_vmaxnmv>;
defm FMINNMV : NeonI_2VAcross_3<0b1, 0b01100, 0b10, "fminnmv",
int_aarch64_neon_vminnmv>;
defm FMAXV : NeonI_2VAcross_3<0b1, 0b01111, 0b00, "fmaxv",
int_aarch64_neon_vmaxv>;
defm FMINV : NeonI_2VAcross_3<0b1, 0b01111, 0b10, "fminv",
int_aarch64_neon_vminv>;
// The followings are for instruction class (Perm)
class NeonI_Permute<bit q, bits<2> size, bits<3> opcode,
string asmop, RegisterOperand OpVPR, string OpS,
SDPatternOperator opnode, ValueType Ty>
: NeonI_Perm<q, size, opcode,
(outs OpVPR:$Rd), (ins OpVPR:$Rn, OpVPR:$Rm),
asmop # "\t$Rd." # OpS # ", $Rn." # OpS # ", $Rm." # OpS,
[(set (Ty OpVPR:$Rd),
(Ty (opnode (Ty OpVPR:$Rn), (Ty OpVPR:$Rm))))],
NoItinerary>;
multiclass NeonI_Perm_pat<bits<3> opcode, string asmop,
SDPatternOperator opnode> {
def _8b : NeonI_Permute<0b0, 0b00, opcode, asmop,
VPR64, "8b", opnode, v8i8>;
def _16b : NeonI_Permute<0b1, 0b00, opcode, asmop,
VPR128, "16b",opnode, v16i8>;
def _4h : NeonI_Permute<0b0, 0b01, opcode, asmop,
VPR64, "4h", opnode, v4i16>;
def _8h : NeonI_Permute<0b1, 0b01, opcode, asmop,
VPR128, "8h", opnode, v8i16>;
def _2s : NeonI_Permute<0b0, 0b10, opcode, asmop,
VPR64, "2s", opnode, v2i32>;
def _4s : NeonI_Permute<0b1, 0b10, opcode, asmop,
VPR128, "4s", opnode, v4i32>;
def _2d : NeonI_Permute<0b1, 0b11, opcode, asmop,
VPR128, "2d", opnode, v2i64>;
}
defm UZP1vvv : NeonI_Perm_pat<0b001, "uzp1", Neon_uzp1>;
defm TRN1vvv : NeonI_Perm_pat<0b010, "trn1", Neon_trn1>;
defm ZIP1vvv : NeonI_Perm_pat<0b011, "zip1", Neon_zip1>;
defm UZP2vvv : NeonI_Perm_pat<0b101, "uzp2", Neon_uzp2>;
defm TRN2vvv : NeonI_Perm_pat<0b110, "trn2", Neon_trn2>;
defm ZIP2vvv : NeonI_Perm_pat<0b111, "zip2", Neon_zip2>;
multiclass NeonI_Perm_float_pat<string INS, SDPatternOperator opnode> {
def : Pat<(v2f32 (opnode (v2f32 VPR64:$Rn), (v2f32 VPR64:$Rm))),
(!cast<Instruction>(INS # "_2s") VPR64:$Rn, VPR64:$Rm)>;
def : Pat<(v4f32 (opnode (v4f32 VPR128:$Rn), (v4f32 VPR128:$Rm))),
(!cast<Instruction>(INS # "_4s") VPR128:$Rn, VPR128:$Rm)>;
def : Pat<(v2f64 (opnode (v2f64 VPR128:$Rn), (v2f64 VPR128:$Rm))),
(!cast<Instruction>(INS # "_2d") VPR128:$Rn, VPR128:$Rm)>;
}
defm : NeonI_Perm_float_pat<"UZP1vvv", Neon_uzp1>;
defm : NeonI_Perm_float_pat<"UZP2vvv", Neon_uzp2>;
defm : NeonI_Perm_float_pat<"ZIP1vvv", Neon_zip1>;
defm : NeonI_Perm_float_pat<"ZIP2vvv", Neon_zip2>;
defm : NeonI_Perm_float_pat<"TRN1vvv", Neon_trn1>;
defm : NeonI_Perm_float_pat<"TRN2vvv", Neon_trn2>;
// The followings are for instruction class (3V Diff)
// normal long/long2 pattern
class NeonI_3VDL<bit q, bit u, bits<2> size, bits<4> opcode,
string asmop, string ResS, string OpS,
SDPatternOperator opnode, SDPatternOperator ext,
RegisterOperand OpVPR,
ValueType ResTy, ValueType OpTy>
: NeonI_3VDiff<q, u, size, opcode,
(outs VPR128:$Rd), (ins OpVPR:$Rn, OpVPR:$Rm),
asmop # "\t$Rd." # ResS # ", $Rn." # OpS # ", $Rm." # OpS,
[(set (ResTy VPR128:$Rd),
(ResTy (opnode (ResTy (ext (OpTy OpVPR:$Rn))),
(ResTy (ext (OpTy OpVPR:$Rm))))))],
NoItinerary>;
multiclass NeonI_3VDL_s<bit u, bits<4> opcode,
string asmop, SDPatternOperator opnode,
bit Commutable = 0> {
let isCommutable = Commutable in {
def _8h8b : NeonI_3VDL<0b0, u, 0b00, opcode, asmop, "8h", "8b",
opnode, sext, VPR64, v8i16, v8i8>;
def _4s4h : NeonI_3VDL<0b0, u, 0b01, opcode, asmop, "4s", "4h",
opnode, sext, VPR64, v4i32, v4i16>;
def _2d2s : NeonI_3VDL<0b0, u, 0b10, opcode, asmop, "2d", "2s",
opnode, sext, VPR64, v2i64, v2i32>;
}
}
multiclass NeonI_3VDL2_s<bit u, bits<4> opcode, string asmop,
SDPatternOperator opnode, bit Commutable = 0> {
let isCommutable = Commutable in {
def _8h16b : NeonI_3VDL<0b1, u, 0b00, opcode, asmop, "8h", "16b",
opnode, NI_sext_high_v8i8, VPR128, v8i16, v16i8>;
def _4s8h : NeonI_3VDL<0b1, u, 0b01, opcode, asmop, "4s", "8h",
opnode, NI_sext_high_v4i16, VPR128, v4i32, v8i16>;
def _2d4s : NeonI_3VDL<0b1, u, 0b10, opcode, asmop, "2d", "4s",
opnode, NI_sext_high_v2i32, VPR128, v2i64, v4i32>;
}
}
multiclass NeonI_3VDL_u<bit u, bits<4> opcode, string asmop,
SDPatternOperator opnode, bit Commutable = 0> {
let isCommutable = Commutable in {
def _8h8b : NeonI_3VDL<0b0, u, 0b00, opcode, asmop, "8h", "8b",
opnode, zext, VPR64, v8i16, v8i8>;
def _4s4h : NeonI_3VDL<0b0, u, 0b01, opcode, asmop, "4s", "4h",
opnode, zext, VPR64, v4i32, v4i16>;
def _2d2s : NeonI_3VDL<0b0, u, 0b10, opcode, asmop, "2d", "2s",
opnode, zext, VPR64, v2i64, v2i32>;
}
}
multiclass NeonI_3VDL2_u<bit u, bits<4> opcode, string asmop,
SDPatternOperator opnode, bit Commutable = 0> {
let isCommutable = Commutable in {
def _8h16b : NeonI_3VDL<0b1, u, 0b00, opcode, asmop, "8h", "16b",
opnode, NI_zext_high_v8i8, VPR128, v8i16, v16i8>;
def _4s8h : NeonI_3VDL<0b1, u, 0b01, opcode, asmop, "4s", "8h",
opnode, NI_zext_high_v4i16, VPR128, v4i32, v8i16>;
def _2d4s : NeonI_3VDL<0b1, u, 0b10, opcode, asmop, "2d", "4s",
opnode, NI_zext_high_v2i32, VPR128, v2i64, v4i32>;
}
}
defm SADDLvvv : NeonI_3VDL_s<0b0, 0b0000, "saddl", add, 1>;
defm UADDLvvv : NeonI_3VDL_u<0b1, 0b0000, "uaddl", add, 1>;
defm SADDL2vvv : NeonI_3VDL2_s<0b0, 0b0000, "saddl2", add, 1>;
defm UADDL2vvv : NeonI_3VDL2_u<0b1, 0b0000, "uaddl2", add, 1>;
defm SSUBLvvv : NeonI_3VDL_s<0b0, 0b0010, "ssubl", sub, 0>;
defm USUBLvvv : NeonI_3VDL_u<0b1, 0b0010, "usubl", sub, 0>;
defm SSUBL2vvv : NeonI_3VDL2_s<0b0, 0b0010, "ssubl2", sub, 0>;
defm USUBL2vvv : NeonI_3VDL2_u<0b1, 0b0010, "usubl2", sub, 0>;
// normal wide/wide2 pattern
class NeonI_3VDW<bit q, bit u, bits<2> size, bits<4> opcode,
string asmop, string ResS, string OpS,
SDPatternOperator opnode, SDPatternOperator ext,
RegisterOperand OpVPR,
ValueType ResTy, ValueType OpTy>
: NeonI_3VDiff<q, u, size, opcode,
(outs VPR128:$Rd), (ins VPR128:$Rn, OpVPR:$Rm),
asmop # "\t$Rd." # ResS # ", $Rn." # ResS # ", $Rm." # OpS,
[(set (ResTy VPR128:$Rd),
(ResTy (opnode (ResTy VPR128:$Rn),
(ResTy (ext (OpTy OpVPR:$Rm))))))],
NoItinerary>;
multiclass NeonI_3VDW_s<bit u, bits<4> opcode, string asmop,
SDPatternOperator opnode> {
def _8h8b : NeonI_3VDW<0b0, u, 0b00, opcode, asmop, "8h", "8b",
opnode, sext, VPR64, v8i16, v8i8>;
def _4s4h : NeonI_3VDW<0b0, u, 0b01, opcode, asmop, "4s", "4h",
opnode, sext, VPR64, v4i32, v4i16>;
def _2d2s : NeonI_3VDW<0b0, u, 0b10, opcode, asmop, "2d", "2s",
opnode, sext, VPR64, v2i64, v2i32>;
}
defm SADDWvvv : NeonI_3VDW_s<0b0, 0b0001, "saddw", add>;
defm SSUBWvvv : NeonI_3VDW_s<0b0, 0b0011, "ssubw", sub>;
multiclass NeonI_3VDW2_s<bit u, bits<4> opcode, string asmop,
SDPatternOperator opnode> {
def _8h16b : NeonI_3VDW<0b1, u, 0b00, opcode, asmop, "8h", "16b",
opnode, NI_sext_high_v8i8, VPR128, v8i16, v16i8>;
def _4s8h : NeonI_3VDW<0b1, u, 0b01, opcode, asmop, "4s", "8h",
opnode, NI_sext_high_v4i16, VPR128, v4i32, v8i16>;
def _2d4s : NeonI_3VDW<0b1, u, 0b10, opcode, asmop, "2d", "4s",
opnode, NI_sext_high_v2i32, VPR128, v2i64, v4i32>;
}
defm SADDW2vvv : NeonI_3VDW2_s<0b0, 0b0001, "saddw2", add>;
defm SSUBW2vvv : NeonI_3VDW2_s<0b0, 0b0011, "ssubw2", sub>;
multiclass NeonI_3VDW_u<bit u, bits<4> opcode, string asmop,
SDPatternOperator opnode> {
def _8h8b : NeonI_3VDW<0b0, u, 0b00, opcode, asmop, "8h", "8b",
opnode, zext, VPR64, v8i16, v8i8>;
def _4s4h : NeonI_3VDW<0b0, u, 0b01, opcode, asmop, "4s", "4h",
opnode, zext, VPR64, v4i32, v4i16>;
def _2d2s : NeonI_3VDW<0b0, u, 0b10, opcode, asmop, "2d", "2s",
opnode, zext, VPR64, v2i64, v2i32>;
}
defm UADDWvvv : NeonI_3VDW_u<0b1, 0b0001, "uaddw", add>;
defm USUBWvvv : NeonI_3VDW_u<0b1, 0b0011, "usubw", sub>;
multiclass NeonI_3VDW2_u<bit u, bits<4> opcode, string asmop,
SDPatternOperator opnode> {
def _8h16b : NeonI_3VDW<0b1, u, 0b00, opcode, asmop, "8h", "16b",
opnode, NI_zext_high_v8i8, VPR128, v8i16, v16i8>;
def _4s8h : NeonI_3VDW<0b1, u, 0b01, opcode, asmop, "4s", "8h",
opnode, NI_zext_high_v4i16, VPR128, v4i32, v8i16>;
def _2d4s : NeonI_3VDW<0b1, u, 0b10, opcode, asmop, "2d", "4s",
opnode, NI_zext_high_v2i32, VPR128, v2i64, v4i32>;
}
defm UADDW2vvv : NeonI_3VDW2_u<0b1, 0b0001, "uaddw2", add>;
defm USUBW2vvv : NeonI_3VDW2_u<0b1, 0b0011, "usubw2", sub>;
// Get the high half part of the vector element.
multiclass NeonI_get_high {
def _8h : PatFrag<(ops node:$Rn),
(v8i8 (trunc (v8i16 (srl (v8i16 node:$Rn),
(v8i16 (Neon_vdup (i32 8)))))))>;
def _4s : PatFrag<(ops node:$Rn),
(v4i16 (trunc (v4i32 (srl (v4i32 node:$Rn),
(v4i32 (Neon_vdup (i32 16)))))))>;
def _2d : PatFrag<(ops node:$Rn),
(v2i32 (trunc (v2i64 (srl (v2i64 node:$Rn),
(v2i64 (Neon_vdup (i32 32)))))))>;
}
defm NI_get_hi : NeonI_get_high;
// pattern for addhn/subhn with 2 operands
class NeonI_3VDN_addhn_2Op<bit q, bit u, bits<2> size, bits<4> opcode,
string asmop, string ResS, string OpS,
SDPatternOperator opnode, SDPatternOperator get_hi,
ValueType ResTy, ValueType OpTy>
: NeonI_3VDiff<q, u, size, opcode,
(outs VPR64:$Rd), (ins VPR128:$Rn, VPR128:$Rm),
asmop # "\t$Rd." # ResS # ", $Rn." # OpS # ", $Rm." # OpS,
[(set (ResTy VPR64:$Rd),
(ResTy (get_hi
(OpTy (opnode (OpTy VPR128:$Rn),
(OpTy VPR128:$Rm))))))],
NoItinerary>;
multiclass NeonI_3VDN_addhn_2Op<bit u, bits<4> opcode, string asmop,
SDPatternOperator opnode, bit Commutable = 0> {
let isCommutable = Commutable in {
def _8b8h : NeonI_3VDN_addhn_2Op<0b0, u, 0b00, opcode, asmop, "8b", "8h",
opnode, NI_get_hi_8h, v8i8, v8i16>;
def _4h4s : NeonI_3VDN_addhn_2Op<0b0, u, 0b01, opcode, asmop, "4h", "4s",
opnode, NI_get_hi_4s, v4i16, v4i32>;
def _2s2d : NeonI_3VDN_addhn_2Op<0b0, u, 0b10, opcode, asmop, "2s", "2d",
opnode, NI_get_hi_2d, v2i32, v2i64>;
}
}
defm ADDHNvvv : NeonI_3VDN_addhn_2Op<0b0, 0b0100, "addhn", add, 1>;
defm SUBHNvvv : NeonI_3VDN_addhn_2Op<0b0, 0b0110, "subhn", sub, 0>;
// pattern for operation with 2 operands
class NeonI_3VD_2Op<bit q, bit u, bits<2> size, bits<4> opcode,
string asmop, string ResS, string OpS,
SDPatternOperator opnode,
RegisterOperand ResVPR, RegisterOperand OpVPR,
ValueType ResTy, ValueType OpTy>
: NeonI_3VDiff<q, u, size, opcode,
(outs ResVPR:$Rd), (ins OpVPR:$Rn, OpVPR:$Rm),
asmop # "\t$Rd." # ResS # ", $Rn." # OpS # ", $Rm." # OpS,
[(set (ResTy ResVPR:$Rd),
(ResTy (opnode (OpTy OpVPR:$Rn), (OpTy OpVPR:$Rm))))],
NoItinerary>;
// normal narrow pattern
multiclass NeonI_3VDN_2Op<bit u, bits<4> opcode, string asmop,
SDPatternOperator opnode, bit Commutable = 0> {
let isCommutable = Commutable in {
def _8b8h : NeonI_3VD_2Op<0b0, u, 0b00, opcode, asmop, "8b", "8h",
opnode, VPR64, VPR128, v8i8, v8i16>;
def _4h4s : NeonI_3VD_2Op<0b0, u, 0b01, opcode, asmop, "4h", "4s",
opnode, VPR64, VPR128, v4i16, v4i32>;
def _2s2d : NeonI_3VD_2Op<0b0, u, 0b10, opcode, asmop, "2s", "2d",
opnode, VPR64, VPR128, v2i32, v2i64>;
}
}
defm RADDHNvvv : NeonI_3VDN_2Op<0b1, 0b0100, "raddhn", int_arm_neon_vraddhn, 1>;
defm RSUBHNvvv : NeonI_3VDN_2Op<0b1, 0b0110, "rsubhn", int_arm_neon_vrsubhn, 0>;
// pattern for acle intrinsic with 3 operands
class NeonI_3VDN_3Op<bit q, bit u, bits<2> size, bits<4> opcode,
string asmop, string ResS, string OpS>
: NeonI_3VDiff<q, u, size, opcode,
(outs VPR128:$Rd), (ins VPR128:$src, VPR128:$Rn, VPR128:$Rm),
asmop # "\t$Rd." # ResS # ", $Rn." # OpS # ", $Rm." # OpS,
[], NoItinerary> {
let Constraints = "$src = $Rd";
let neverHasSideEffects = 1;
}
multiclass NeonI_3VDN_3Op_v1<bit u, bits<4> opcode, string asmop> {
def _16b8h : NeonI_3VDN_3Op<0b1, u, 0b00, opcode, asmop, "16b", "8h">;
def _8h4s : NeonI_3VDN_3Op<0b1, u, 0b01, opcode, asmop, "8h", "4s">;
def _4s2d : NeonI_3VDN_3Op<0b1, u, 0b10, opcode, asmop, "4s", "2d">;
}
defm ADDHN2vvv : NeonI_3VDN_3Op_v1<0b0, 0b0100, "addhn2">;
defm SUBHN2vvv : NeonI_3VDN_3Op_v1<0b0, 0b0110, "subhn2">;
defm RADDHN2vvv : NeonI_3VDN_3Op_v1<0b1, 0b0100, "raddhn2">;
defm RSUBHN2vvv : NeonI_3VDN_3Op_v1<0b1, 0b0110, "rsubhn2">;
// Patterns have to be separate because there's a SUBREG_TO_REG in the output
// part.
class NarrowHighHalfPat<Instruction INST, ValueType DstTy, ValueType SrcTy,
SDPatternOperator coreop>
: Pat<(Neon_combine_2D (v1i64 VPR64:$src),
(v1i64 (bitconvert (DstTy (coreop (SrcTy VPR128:$Rn),
(SrcTy VPR128:$Rm)))))),
(INST (SUBREG_TO_REG (i64 0), VPR64:$src, sub_64),
VPR128:$Rn, VPR128:$Rm)>;
// addhn2 patterns
def : NarrowHighHalfPat<ADDHN2vvv_16b8h, v8i8, v8i16,
BinOpFrag<(NI_get_hi_8h (add node:$LHS, node:$RHS))>>;
def : NarrowHighHalfPat<ADDHN2vvv_8h4s, v4i16, v4i32,
BinOpFrag<(NI_get_hi_4s (add node:$LHS, node:$RHS))>>;
def : NarrowHighHalfPat<ADDHN2vvv_4s2d, v2i32, v2i64,
BinOpFrag<(NI_get_hi_2d (add node:$LHS, node:$RHS))>>;
// subhn2 patterns
def : NarrowHighHalfPat<SUBHN2vvv_16b8h, v8i8, v8i16,
BinOpFrag<(NI_get_hi_8h (sub node:$LHS, node:$RHS))>>;
def : NarrowHighHalfPat<SUBHN2vvv_8h4s, v4i16, v4i32,
BinOpFrag<(NI_get_hi_4s (sub node:$LHS, node:$RHS))>>;
def : NarrowHighHalfPat<SUBHN2vvv_4s2d, v2i32, v2i64,
BinOpFrag<(NI_get_hi_2d (sub node:$LHS, node:$RHS))>>;
// raddhn2 patterns
def : NarrowHighHalfPat<RADDHN2vvv_16b8h, v8i8, v8i16, int_arm_neon_vraddhn>;
def : NarrowHighHalfPat<RADDHN2vvv_8h4s, v4i16, v4i32, int_arm_neon_vraddhn>;
def : NarrowHighHalfPat<RADDHN2vvv_4s2d, v2i32, v2i64, int_arm_neon_vraddhn>;
// rsubhn2 patterns
def : NarrowHighHalfPat<RSUBHN2vvv_16b8h, v8i8, v8i16, int_arm_neon_vrsubhn>;
def : NarrowHighHalfPat<RSUBHN2vvv_8h4s, v4i16, v4i32, int_arm_neon_vrsubhn>;
def : NarrowHighHalfPat<RSUBHN2vvv_4s2d, v2i32, v2i64, int_arm_neon_vrsubhn>;
// pattern that need to extend result
class NeonI_3VDL_Ext<bit q, bit u, bits<2> size, bits<4> opcode,
string asmop, string ResS, string OpS,
SDPatternOperator opnode,
RegisterOperand OpVPR,
ValueType ResTy, ValueType OpTy, ValueType OpSTy>
: NeonI_3VDiff<q, u, size, opcode,
(outs VPR128:$Rd), (ins OpVPR:$Rn, OpVPR:$Rm),
asmop # "\t$Rd." # ResS # ", $Rn." # OpS # ", $Rm." # OpS,
[(set (ResTy VPR128:$Rd),
(ResTy (zext (OpSTy (opnode (OpTy OpVPR:$Rn),
(OpTy OpVPR:$Rm))))))],
NoItinerary>;
multiclass NeonI_3VDL_zext<bit u, bits<4> opcode, string asmop,
SDPatternOperator opnode, bit Commutable = 0> {
let isCommutable = Commutable in {
def _8h8b : NeonI_3VDL_Ext<0b0, u, 0b00, opcode, asmop, "8h", "8b",
opnode, VPR64, v8i16, v8i8, v8i8>;
def _4s4h : NeonI_3VDL_Ext<0b0, u, 0b01, opcode, asmop, "4s", "4h",
opnode, VPR64, v4i32, v4i16, v4i16>;
def _2d2s : NeonI_3VDL_Ext<0b0, u, 0b10, opcode, asmop, "2d", "2s",
opnode, VPR64, v2i64, v2i32, v2i32>;
}
}
defm SABDLvvv : NeonI_3VDL_zext<0b0, 0b0111, "sabdl", int_arm_neon_vabds, 1>;
defm UABDLvvv : NeonI_3VDL_zext<0b1, 0b0111, "uabdl", int_arm_neon_vabdu, 1>;
multiclass NeonI_Op_High<SDPatternOperator op> {
def _16B : PatFrag<(ops node:$Rn, node:$Rm),
(op (v8i8 (Neon_High16B node:$Rn)),
(v8i8 (Neon_High16B node:$Rm)))>;
def _8H : PatFrag<(ops node:$Rn, node:$Rm),
(op (v4i16 (Neon_High8H node:$Rn)),
(v4i16 (Neon_High8H node:$Rm)))>;
def _4S : PatFrag<(ops node:$Rn, node:$Rm),
(op (v2i32 (Neon_High4S node:$Rn)),
(v2i32 (Neon_High4S node:$Rm)))>;
}
defm NI_sabdl_hi : NeonI_Op_High<int_arm_neon_vabds>;
defm NI_uabdl_hi : NeonI_Op_High<int_arm_neon_vabdu>;
defm NI_smull_hi : NeonI_Op_High<int_arm_neon_vmulls>;
defm NI_umull_hi : NeonI_Op_High<int_arm_neon_vmullu>;
defm NI_qdmull_hi : NeonI_Op_High<int_arm_neon_vqdmull>;
defm NI_pmull_hi : NeonI_Op_High<int_arm_neon_vmullp>;
multiclass NeonI_3VDL_Abd_u<bit u, bits<4> opcode, string asmop, string opnode,
bit Commutable = 0> {
let isCommutable = Commutable in {
def _8h8b : NeonI_3VDL_Ext<0b1, u, 0b00, opcode, asmop, "8h", "16b",
!cast<PatFrag>(opnode # "_16B"),
VPR128, v8i16, v16i8, v8i8>;
def _4s4h : NeonI_3VDL_Ext<0b1, u, 0b01, opcode, asmop, "4s", "8h",
!cast<PatFrag>(opnode # "_8H"),
VPR128, v4i32, v8i16, v4i16>;
def _2d2s : NeonI_3VDL_Ext<0b1, u, 0b10, opcode, asmop, "2d", "4s",
!cast<PatFrag>(opnode # "_4S"),
VPR128, v2i64, v4i32, v2i32>;
}
}
defm SABDL2vvv : NeonI_3VDL_Abd_u<0b0, 0b0111, "sabdl2", "NI_sabdl_hi", 1>;
defm UABDL2vvv : NeonI_3VDL_Abd_u<0b1, 0b0111, "uabdl2", "NI_uabdl_hi", 1>;
// For pattern that need two operators being chained.
class NeonI_3VDL_Aba<bit q, bit u, bits<2> size, bits<4> opcode,
string asmop, string ResS, string OpS,
SDPatternOperator opnode, SDPatternOperator subop,
RegisterOperand OpVPR,
ValueType ResTy, ValueType OpTy, ValueType OpSTy>
: NeonI_3VDiff<q, u, size, opcode,
(outs VPR128:$Rd), (ins VPR128:$src, OpVPR:$Rn, OpVPR:$Rm),
asmop # "\t$Rd." # ResS # ", $Rn." # OpS # ", $Rm." # OpS,
[(set (ResTy VPR128:$Rd),
(ResTy (opnode
(ResTy VPR128:$src),
(ResTy (zext (OpSTy (subop (OpTy OpVPR:$Rn),
(OpTy OpVPR:$Rm))))))))],
NoItinerary> {
let Constraints = "$src = $Rd";
}
multiclass NeonI_3VDL_Aba_v1<bit u, bits<4> opcode, string asmop,
SDPatternOperator opnode, SDPatternOperator subop>{
def _8h8b : NeonI_3VDL_Aba<0b0, u, 0b00, opcode, asmop, "8h", "8b",
opnode, subop, VPR64, v8i16, v8i8, v8i8>;
def _4s4h : NeonI_3VDL_Aba<0b0, u, 0b01, opcode, asmop, "4s", "4h",
opnode, subop, VPR64, v4i32, v4i16, v4i16>;
def _2d2s : NeonI_3VDL_Aba<0b0, u, 0b10, opcode, asmop, "2d", "2s",
opnode, subop, VPR64, v2i64, v2i32, v2i32>;
}
defm SABALvvv : NeonI_3VDL_Aba_v1<0b0, 0b0101, "sabal",
add, int_arm_neon_vabds>;
defm UABALvvv : NeonI_3VDL_Aba_v1<0b1, 0b0101, "uabal",
add, int_arm_neon_vabdu>;
multiclass NeonI_3VDL2_Aba_v1<bit u, bits<4> opcode, string asmop,
SDPatternOperator opnode, string subop> {
def _8h8b : NeonI_3VDL_Aba<0b1, u, 0b00, opcode, asmop, "8h", "16b",
opnode, !cast<PatFrag>(subop # "_16B"),
VPR128, v8i16, v16i8, v8i8>;
def _4s4h : NeonI_3VDL_Aba<0b1, u, 0b01, opcode, asmop, "4s", "8h",
opnode, !cast<PatFrag>(subop # "_8H"),
VPR128, v4i32, v8i16, v4i16>;
def _2d2s : NeonI_3VDL_Aba<0b1, u, 0b10, opcode, asmop, "2d", "4s",
opnode, !cast<PatFrag>(subop # "_4S"),
VPR128, v2i64, v4i32, v2i32>;
}
defm SABAL2vvv : NeonI_3VDL2_Aba_v1<0b0, 0b0101, "sabal2", add,
"NI_sabdl_hi">;
defm UABAL2vvv : NeonI_3VDL2_Aba_v1<0b1, 0b0101, "uabal2", add,
"NI_uabdl_hi">;
// Long pattern with 2 operands
multiclass NeonI_3VDL_2Op<bit u, bits<4> opcode, string asmop,
SDPatternOperator opnode, bit Commutable = 0> {
let isCommutable = Commutable in {
def _8h8b : NeonI_3VD_2Op<0b0, u, 0b00, opcode, asmop, "8h", "8b",
opnode, VPR128, VPR64, v8i16, v8i8>;
def _4s4h : NeonI_3VD_2Op<0b0, u, 0b01, opcode, asmop, "4s", "4h",
opnode, VPR128, VPR64, v4i32, v4i16>;
def _2d2s : NeonI_3VD_2Op<0b0, u, 0b10, opcode, asmop, "2d", "2s",
opnode, VPR128, VPR64, v2i64, v2i32>;
}
}
defm SMULLvvv : NeonI_3VDL_2Op<0b0, 0b1100, "smull", int_arm_neon_vmulls, 1>;
defm UMULLvvv : NeonI_3VDL_2Op<0b1, 0b1100, "umull", int_arm_neon_vmullu, 1>;
class NeonI_3VDL2_2Op_mull<bit q, bit u, bits<2> size, bits<4> opcode,
string asmop, string ResS, string OpS,
SDPatternOperator opnode,
ValueType ResTy, ValueType OpTy>
: NeonI_3VDiff<q, u, size, opcode,
(outs VPR128:$Rd), (ins VPR128:$Rn, VPR128:$Rm),
asmop # "\t$Rd." # ResS # ", $Rn." # OpS # ", $Rm." # OpS,
[(set (ResTy VPR128:$Rd),
(ResTy (opnode (OpTy VPR128:$Rn), (OpTy VPR128:$Rm))))],
NoItinerary>;
multiclass NeonI_3VDL2_2Op_mull_v1<bit u, bits<4> opcode, string asmop,
string opnode, bit Commutable = 0> {
let isCommutable = Commutable in {
def _8h16b : NeonI_3VDL2_2Op_mull<0b1, u, 0b00, opcode, asmop, "8h", "16b",
!cast<PatFrag>(opnode # "_16B"),
v8i16, v16i8>;
def _4s8h : NeonI_3VDL2_2Op_mull<0b1, u, 0b01, opcode, asmop, "4s", "8h",
!cast<PatFrag>(opnode # "_8H"),
v4i32, v8i16>;
def _2d4s : NeonI_3VDL2_2Op_mull<0b1, u, 0b10, opcode, asmop, "2d", "4s",
!cast<PatFrag>(opnode # "_4S"),
v2i64, v4i32>;
}
}
defm SMULL2vvv : NeonI_3VDL2_2Op_mull_v1<0b0, 0b1100, "smull2",
"NI_smull_hi", 1>;
defm UMULL2vvv : NeonI_3VDL2_2Op_mull_v1<0b1, 0b1100, "umull2",
"NI_umull_hi", 1>;
// Long pattern with 3 operands
class NeonI_3VDL_3Op<bit q, bit u, bits<2> size, bits<4> opcode,
string asmop, string ResS, string OpS,
SDPatternOperator opnode,
ValueType ResTy, ValueType OpTy>
: NeonI_3VDiff<q, u, size, opcode,
(outs VPR128:$Rd), (ins VPR128:$src, VPR64:$Rn, VPR64:$Rm),
asmop # "\t$Rd." # ResS # ", $Rn." # OpS # ", $Rm." # OpS,
[(set (ResTy VPR128:$Rd),
(ResTy (opnode
(ResTy VPR128:$src),
(OpTy VPR64:$Rn), (OpTy VPR64:$Rm))))],
NoItinerary> {
let Constraints = "$src = $Rd";
}
multiclass NeonI_3VDL_3Op_v1<bit u, bits<4> opcode, string asmop,
SDPatternOperator opnode> {
def _8h8b : NeonI_3VDL_3Op<0b0, u, 0b00, opcode, asmop, "8h", "8b",
opnode, v8i16, v8i8>;
def _4s4h : NeonI_3VDL_3Op<0b0, u, 0b01, opcode, asmop, "4s", "4h",
opnode, v4i32, v4i16>;
def _2d2s : NeonI_3VDL_3Op<0b0, u, 0b10, opcode, asmop, "2d", "2s",
opnode, v2i64, v2i32>;
}
def Neon_smlal : PatFrag<(ops node:$Rd, node:$Rn, node:$Rm),
(add node:$Rd,
(int_arm_neon_vmulls node:$Rn, node:$Rm))>;
def Neon_umlal : PatFrag<(ops node:$Rd, node:$Rn, node:$Rm),
(add node:$Rd,
(int_arm_neon_vmullu node:$Rn, node:$Rm))>;
def Neon_smlsl : PatFrag<(ops node:$Rd, node:$Rn, node:$Rm),
(sub node:$Rd,
(int_arm_neon_vmulls node:$Rn, node:$Rm))>;
def Neon_umlsl : PatFrag<(ops node:$Rd, node:$Rn, node:$Rm),
(sub node:$Rd,
(int_arm_neon_vmullu node:$Rn, node:$Rm))>;
defm SMLALvvv : NeonI_3VDL_3Op_v1<0b0, 0b1000, "smlal", Neon_smlal>;
defm UMLALvvv : NeonI_3VDL_3Op_v1<0b1, 0b1000, "umlal", Neon_umlal>;
defm SMLSLvvv : NeonI_3VDL_3Op_v1<0b0, 0b1010, "smlsl", Neon_smlsl>;
defm UMLSLvvv : NeonI_3VDL_3Op_v1<0b1, 0b1010, "umlsl", Neon_umlsl>;
class NeonI_3VDL2_3Op_mlas<bit q, bit u, bits<2> size, bits<4> opcode,
string asmop, string ResS, string OpS,
SDPatternOperator subop, SDPatternOperator opnode,
RegisterOperand OpVPR,
ValueType ResTy, ValueType OpTy>
: NeonI_3VDiff<q, u, size, opcode,
(outs VPR128:$Rd), (ins VPR128:$src, OpVPR:$Rn, OpVPR:$Rm),
asmop # "\t$Rd." # ResS # ", $Rn." # OpS # ", $Rm." # OpS,
[(set (ResTy VPR128:$Rd),
(ResTy (subop
(ResTy VPR128:$src),
(ResTy (opnode (OpTy OpVPR:$Rn), (OpTy OpVPR:$Rm))))))],
NoItinerary> {
let Constraints = "$src = $Rd";
}
multiclass NeonI_3VDL2_3Op_mlas_v1<bit u, bits<4> opcode, string asmop,
SDPatternOperator subop, string opnode> {
def _8h16b : NeonI_3VDL2_3Op_mlas<0b1, u, 0b00, opcode, asmop, "8h", "16b",
subop, !cast<PatFrag>(opnode # "_16B"),
VPR128, v8i16, v16i8>;
def _4s8h : NeonI_3VDL2_3Op_mlas<0b1, u, 0b01, opcode, asmop, "4s", "8h",
subop, !cast<PatFrag>(opnode # "_8H"),
VPR128, v4i32, v8i16>;
def _2d4s : NeonI_3VDL2_3Op_mlas<0b1, u, 0b10, opcode, asmop, "2d", "4s",
subop, !cast<PatFrag>(opnode # "_4S"),
VPR128, v2i64, v4i32>;
}
defm SMLAL2vvv : NeonI_3VDL2_3Op_mlas_v1<0b0, 0b1000, "smlal2",
add, "NI_smull_hi">;
defm UMLAL2vvv : NeonI_3VDL2_3Op_mlas_v1<0b1, 0b1000, "umlal2",
add, "NI_umull_hi">;
defm SMLSL2vvv : NeonI_3VDL2_3Op_mlas_v1<0b0, 0b1010, "smlsl2",
sub, "NI_smull_hi">;
defm UMLSL2vvv : NeonI_3VDL2_3Op_mlas_v1<0b1, 0b1010, "umlsl2",
sub, "NI_umull_hi">;
multiclass NeonI_3VDL_qdmlal_3Op_v2<bit u, bits<4> opcode, string asmop,
SDPatternOperator opnode> {
def _4s4h : NeonI_3VDL2_3Op_mlas<0b0, u, 0b01, opcode, asmop, "4s", "4h",
opnode, int_arm_neon_vqdmull,
VPR64, v4i32, v4i16>;
def _2d2s : NeonI_3VDL2_3Op_mlas<0b0, u, 0b10, opcode, asmop, "2d", "2s",
opnode, int_arm_neon_vqdmull,
VPR64, v2i64, v2i32>;
}
defm SQDMLALvvv : NeonI_3VDL_qdmlal_3Op_v2<0b0, 0b1001, "sqdmlal",
int_arm_neon_vqadds>;
defm SQDMLSLvvv : NeonI_3VDL_qdmlal_3Op_v2<0b0, 0b1011, "sqdmlsl",
int_arm_neon_vqsubs>;
multiclass NeonI_3VDL_v2<bit u, bits<4> opcode, string asmop,
SDPatternOperator opnode, bit Commutable = 0> {
let isCommutable = Commutable in {
def _4s4h : NeonI_3VD_2Op<0b0, u, 0b01, opcode, asmop, "4s", "4h",
opnode, VPR128, VPR64, v4i32, v4i16>;
def _2d2s : NeonI_3VD_2Op<0b0, u, 0b10, opcode, asmop, "2d", "2s",
opnode, VPR128, VPR64, v2i64, v2i32>;
}
}
defm SQDMULLvvv : NeonI_3VDL_v2<0b0, 0b1101, "sqdmull",
int_arm_neon_vqdmull, 1>;
multiclass NeonI_3VDL2_2Op_mull_v2<bit u, bits<4> opcode, string asmop,
string opnode, bit Commutable = 0> {
let isCommutable = Commutable in {
def _4s8h : NeonI_3VDL2_2Op_mull<0b1, u, 0b01, opcode, asmop, "4s", "8h",
!cast<PatFrag>(opnode # "_8H"),
v4i32, v8i16>;
def _2d4s : NeonI_3VDL2_2Op_mull<0b1, u, 0b10, opcode, asmop, "2d", "4s",
!cast<PatFrag>(opnode # "_4S"),
v2i64, v4i32>;
}
}
defm SQDMULL2vvv : NeonI_3VDL2_2Op_mull_v2<0b0, 0b1101, "sqdmull2",
"NI_qdmull_hi", 1>;
multiclass NeonI_3VDL2_3Op_qdmlal_v2<bit u, bits<4> opcode, string asmop,
SDPatternOperator opnode> {
def _4s8h : NeonI_3VDL2_3Op_mlas<0b1, u, 0b01, opcode, asmop, "4s", "8h",
opnode, NI_qdmull_hi_8H,
VPR128, v4i32, v8i16>;
def _2d4s : NeonI_3VDL2_3Op_mlas<0b1, u, 0b10, opcode, asmop, "2d", "4s",
opnode, NI_qdmull_hi_4S,
VPR128, v2i64, v4i32>;
}
defm SQDMLAL2vvv : NeonI_3VDL2_3Op_qdmlal_v2<0b0, 0b1001, "sqdmlal2",
int_arm_neon_vqadds>;
defm SQDMLSL2vvv : NeonI_3VDL2_3Op_qdmlal_v2<0b0, 0b1011, "sqdmlsl2",
int_arm_neon_vqsubs>;
multiclass NeonI_3VDL_v3<bit u, bits<4> opcode, string asmop,
SDPatternOperator opnode, bit Commutable = 0> {
let isCommutable = Commutable in {
def _8h8b : NeonI_3VD_2Op<0b0, u, 0b00, opcode, asmop, "8h", "8b",
opnode, VPR128, VPR64, v8i16, v8i8>;
def _1q1d : NeonI_3VDiff<0b0, u, 0b11, opcode,
(outs VPR128:$Rd), (ins VPR64:$Rn, VPR64:$Rm),
asmop # "\t$Rd.1q, $Rn.1d, $Rm.1d",
[], NoItinerary>;
}
}
defm PMULLvvv : NeonI_3VDL_v3<0b0, 0b1110, "pmull", int_arm_neon_vmullp, 1>;
multiclass NeonI_3VDL2_2Op_mull_v3<bit u, bits<4> opcode, string asmop,
string opnode, bit Commutable = 0> {
let isCommutable = Commutable in {
def _8h16b : NeonI_3VDL2_2Op_mull<0b1, u, 0b00, opcode, asmop, "8h", "16b",
!cast<PatFrag>(opnode # "_16B"),
v8i16, v16i8>;
def _1q2d : NeonI_3VDiff<0b1, u, 0b11, opcode,
(outs VPR128:$Rd), (ins VPR128:$Rn, VPR128:$Rm),
asmop # "\t$Rd.1q, $Rn.2d, $Rm.2d",
[], NoItinerary>;
}
}
defm PMULL2vvv : NeonI_3VDL2_2Op_mull_v3<0b0, 0b1110, "pmull2", "NI_pmull_hi",
1>;
// End of implementation for instruction class (3V Diff)
// The followings are vector load/store multiple N-element structure
// (class SIMD lselem).
// ld1: load multiple 1-element structure to 1/2/3/4 registers.
// ld2/ld3/ld4: load multiple N-element structure to N registers (N = 2, 3, 4).
// The structure consists of a sequence of sets of N values.
// The first element of the structure is placed in the first lane
// of the first first vector, the second element in the first lane
// of the second vector, and so on.
// E.g. LD1_3V_2S will load 32-bit elements {A, B, C, D, E, F} sequentially into
// the three 64-bit vectors list {BA, DC, FE}.
// E.g. LD3_2S will load 32-bit elements {A, B, C, D, E, F} into the three
// 64-bit vectors list {DA, EB, FC}.
// Store instructions store multiple structure to N registers like load.
class NeonI_LDVList<bit q, bits<4> opcode, bits<2> size,
RegisterOperand VecList, string asmop>
: NeonI_LdStMult<q, 1, opcode, size,
(outs VecList:$Rt), (ins GPR64xsp:$Rn),
asmop # "\t$Rt, [$Rn]",
[],
NoItinerary> {
let mayLoad = 1;
let neverHasSideEffects = 1;
}
multiclass LDVList_BHSD<bits<4> opcode, string List, string asmop> {
def _8B : NeonI_LDVList<0, opcode, 0b00,
!cast<RegisterOperand>(List # "8B_operand"), asmop>;
def _4H : NeonI_LDVList<0, opcode, 0b01,
!cast<RegisterOperand>(List # "4H_operand"), asmop>;
def _2S : NeonI_LDVList<0, opcode, 0b10,
!cast<RegisterOperand>(List # "2S_operand"), asmop>;
def _16B : NeonI_LDVList<1, opcode, 0b00,
!cast<RegisterOperand>(List # "16B_operand"), asmop>;
def _8H : NeonI_LDVList<1, opcode, 0b01,
!cast<RegisterOperand>(List # "8H_operand"), asmop>;
def _4S : NeonI_LDVList<1, opcode, 0b10,
!cast<RegisterOperand>(List # "4S_operand"), asmop>;
def _2D : NeonI_LDVList<1, opcode, 0b11,
!cast<RegisterOperand>(List # "2D_operand"), asmop>;
}
// Load multiple N-element structure to N consecutive registers (N = 1,2,3,4)
defm LD1 : LDVList_BHSD<0b0111, "VOne", "ld1">;
def LD1_1D : NeonI_LDVList<0, 0b0111, 0b11, VOne1D_operand, "ld1">;
defm LD2 : LDVList_BHSD<0b1000, "VPair", "ld2">;
defm LD3 : LDVList_BHSD<0b0100, "VTriple", "ld3">;
defm LD4 : LDVList_BHSD<0b0000, "VQuad", "ld4">;
// Load multiple 1-element structure to N consecutive registers (N = 2,3,4)
defm LD1x2 : LDVList_BHSD<0b1010, "VPair", "ld1">;
def LD1x2_1D : NeonI_LDVList<0, 0b1010, 0b11, VPair1D_operand, "ld1">;
defm LD1x3 : LDVList_BHSD<0b0110, "VTriple", "ld1">;
def LD1x3_1D : NeonI_LDVList<0, 0b0110, 0b11, VTriple1D_operand, "ld1">;
defm LD1x4 : LDVList_BHSD<0b0010, "VQuad", "ld1">;
def LD1x4_1D : NeonI_LDVList<0, 0b0010, 0b11, VQuad1D_operand, "ld1">;
class NeonI_STVList<bit q, bits<4> opcode, bits<2> size,
RegisterOperand VecList, string asmop>
: NeonI_LdStMult<q, 0, opcode, size,
(outs), (ins GPR64xsp:$Rn, VecList:$Rt),
asmop # "\t$Rt, [$Rn]",
[],
NoItinerary> {
let mayStore = 1;
let neverHasSideEffects = 1;
}
multiclass STVList_BHSD<bits<4> opcode, string List, string asmop> {
def _8B : NeonI_STVList<0, opcode, 0b00,
!cast<RegisterOperand>(List # "8B_operand"), asmop>;
def _4H : NeonI_STVList<0, opcode, 0b01,
!cast<RegisterOperand>(List # "4H_operand"), asmop>;
def _2S : NeonI_STVList<0, opcode, 0b10,
!cast<RegisterOperand>(List # "2S_operand"), asmop>;
def _16B : NeonI_STVList<1, opcode, 0b00,
!cast<RegisterOperand>(List # "16B_operand"), asmop>;
def _8H : NeonI_STVList<1, opcode, 0b01,
!cast<RegisterOperand>(List # "8H_operand"), asmop>;
def _4S : NeonI_STVList<1, opcode, 0b10,
!cast<RegisterOperand>(List # "4S_operand"), asmop>;
def _2D : NeonI_STVList<1, opcode, 0b11,
!cast<RegisterOperand>(List # "2D_operand"), asmop>;
}
// Store multiple N-element structures from N registers (N = 1,2,3,4)
defm ST1 : STVList_BHSD<0b0111, "VOne", "st1">;
def ST1_1D : NeonI_STVList<0, 0b0111, 0b11, VOne1D_operand, "st1">;
defm ST2 : STVList_BHSD<0b1000, "VPair", "st2">;
defm ST3 : STVList_BHSD<0b0100, "VTriple", "st3">;
defm ST4 : STVList_BHSD<0b0000, "VQuad", "st4">;
// Store multiple 1-element structures from N consecutive registers (N = 2,3,4)
defm ST1x2 : STVList_BHSD<0b1010, "VPair", "st1">;
def ST1x2_1D : NeonI_STVList<0, 0b1010, 0b11, VPair1D_operand, "st1">;
defm ST1x3 : STVList_BHSD<0b0110, "VTriple", "st1">;
def ST1x3_1D : NeonI_STVList<0, 0b0110, 0b11, VTriple1D_operand, "st1">;
defm ST1x4 : STVList_BHSD<0b0010, "VQuad", "st1">;
def ST1x4_1D : NeonI_STVList<0, 0b0010, 0b11, VQuad1D_operand, "st1">;
def : Pat<(v2f64 (load GPR64xsp:$addr)), (LD1_2D GPR64xsp:$addr)>;
def : Pat<(v2i64 (load GPR64xsp:$addr)), (LD1_2D GPR64xsp:$addr)>;
def : Pat<(v4f32 (load GPR64xsp:$addr)), (LD1_4S GPR64xsp:$addr)>;
def : Pat<(v4i32 (load GPR64xsp:$addr)), (LD1_4S GPR64xsp:$addr)>;
def : Pat<(v8i16 (load GPR64xsp:$addr)), (LD1_8H GPR64xsp:$addr)>;
def : Pat<(v16i8 (load GPR64xsp:$addr)), (LD1_16B GPR64xsp:$addr)>;
def : Pat<(v1f64 (load GPR64xsp:$addr)), (LD1_1D GPR64xsp:$addr)>;
def : Pat<(v1i64 (load GPR64xsp:$addr)), (LD1_1D GPR64xsp:$addr)>;
def : Pat<(v2f32 (load GPR64xsp:$addr)), (LD1_2S GPR64xsp:$addr)>;
def : Pat<(v2i32 (load GPR64xsp:$addr)), (LD1_2S GPR64xsp:$addr)>;
def : Pat<(v4i16 (load GPR64xsp:$addr)), (LD1_4H GPR64xsp:$addr)>;
def : Pat<(v8i8 (load GPR64xsp:$addr)), (LD1_8B GPR64xsp:$addr)>;
def : Pat<(store (v2i64 VPR128:$value), GPR64xsp:$addr),
(ST1_2D GPR64xsp:$addr, VPR128:$value)>;
def : Pat<(store (v2f64 VPR128:$value), GPR64xsp:$addr),
(ST1_2D GPR64xsp:$addr, VPR128:$value)>;
def : Pat<(store (v4i32 VPR128:$value), GPR64xsp:$addr),
(ST1_4S GPR64xsp:$addr, VPR128:$value)>;
def : Pat<(store (v4f32 VPR128:$value), GPR64xsp:$addr),
(ST1_4S GPR64xsp:$addr, VPR128:$value)>;
def : Pat<(store (v8i16 VPR128:$value), GPR64xsp:$addr),
(ST1_8H GPR64xsp:$addr, VPR128:$value)>;
def : Pat<(store (v16i8 VPR128:$value), GPR64xsp:$addr),
(ST1_16B GPR64xsp:$addr, VPR128:$value)>;
def : Pat<(store (v1i64 VPR64:$value), GPR64xsp:$addr),
(ST1_1D GPR64xsp:$addr, VPR64:$value)>;
def : Pat<(store (v1f64 VPR64:$value), GPR64xsp:$addr),
(ST1_1D GPR64xsp:$addr, VPR64:$value)>;
def : Pat<(store (v2i32 VPR64:$value), GPR64xsp:$addr),
(ST1_2S GPR64xsp:$addr, VPR64:$value)>;
def : Pat<(store (v2f32 VPR64:$value), GPR64xsp:$addr),
(ST1_2S GPR64xsp:$addr, VPR64:$value)>;
def : Pat<(store (v4i16 VPR64:$value), GPR64xsp:$addr),
(ST1_4H GPR64xsp:$addr, VPR64:$value)>;
def : Pat<(store (v8i8 VPR64:$value), GPR64xsp:$addr),
(ST1_8B GPR64xsp:$addr, VPR64:$value)>;
// End of vector load/store multiple N-element structure(class SIMD lselem)
// The followings are post-index vector load/store multiple N-element
// structure(class SIMD lselem-post)
def exact1_asmoperand : AsmOperandClass {
let Name = "Exact1";
let PredicateMethod = "isExactImm<1>";
let RenderMethod = "addImmOperands";
}
def uimm_exact1 : Operand<i32>, ImmLeaf<i32, [{return Imm == 1;}]> {
let ParserMatchClass = exact1_asmoperand;
}
def exact2_asmoperand : AsmOperandClass {
let Name = "Exact2";
let PredicateMethod = "isExactImm<2>";
let RenderMethod = "addImmOperands";
}
def uimm_exact2 : Operand<i32>, ImmLeaf<i32, [{return Imm == 2;}]> {
let ParserMatchClass = exact2_asmoperand;
}
def exact3_asmoperand : AsmOperandClass {
let Name = "Exact3";
let PredicateMethod = "isExactImm<3>";
let RenderMethod = "addImmOperands";
}
def uimm_exact3 : Operand<i32>, ImmLeaf<i32, [{return Imm == 3;}]> {
let ParserMatchClass = exact3_asmoperand;
}
def exact4_asmoperand : AsmOperandClass {
let Name = "Exact4";
let PredicateMethod = "isExactImm<4>";
let RenderMethod = "addImmOperands";
}
def uimm_exact4 : Operand<i32>, ImmLeaf<i32, [{return Imm == 4;}]> {
let ParserMatchClass = exact4_asmoperand;
}
def exact6_asmoperand : AsmOperandClass {
let Name = "Exact6";
let PredicateMethod = "isExactImm<6>";
let RenderMethod = "addImmOperands";
}
def uimm_exact6 : Operand<i32>, ImmLeaf<i32, [{return Imm == 6;}]> {
let ParserMatchClass = exact6_asmoperand;
}
def exact8_asmoperand : AsmOperandClass {
let Name = "Exact8";
let PredicateMethod = "isExactImm<8>";
let RenderMethod = "addImmOperands";
}
def uimm_exact8 : Operand<i32>, ImmLeaf<i32, [{return Imm == 8;}]> {
let ParserMatchClass = exact8_asmoperand;
}
def exact12_asmoperand : AsmOperandClass {
let Name = "Exact12";
let PredicateMethod = "isExactImm<12>";
let RenderMethod = "addImmOperands";
}
def uimm_exact12 : Operand<i32>, ImmLeaf<i32, [{return Imm == 12;}]> {
let ParserMatchClass = exact12_asmoperand;
}
def exact16_asmoperand : AsmOperandClass {
let Name = "Exact16";
let PredicateMethod = "isExactImm<16>";
let RenderMethod = "addImmOperands";
}
def uimm_exact16 : Operand<i32>, ImmLeaf<i32, [{return Imm == 16;}]> {
let ParserMatchClass = exact16_asmoperand;
}
def exact24_asmoperand : AsmOperandClass {
let Name = "Exact24";
let PredicateMethod = "isExactImm<24>";
let RenderMethod = "addImmOperands";
}
def uimm_exact24 : Operand<i32>, ImmLeaf<i32, [{return Imm == 24;}]> {
let ParserMatchClass = exact24_asmoperand;
}
def exact32_asmoperand : AsmOperandClass {
let Name = "Exact32";
let PredicateMethod = "isExactImm<32>";
let RenderMethod = "addImmOperands";
}
def uimm_exact32 : Operand<i32>, ImmLeaf<i32, [{return Imm == 32;}]> {
let ParserMatchClass = exact32_asmoperand;
}
def exact48_asmoperand : AsmOperandClass {
let Name = "Exact48";
let PredicateMethod = "isExactImm<48>";
let RenderMethod = "addImmOperands";
}
def uimm_exact48 : Operand<i32>, ImmLeaf<i32, [{return Imm == 48;}]> {
let ParserMatchClass = exact48_asmoperand;
}
def exact64_asmoperand : AsmOperandClass {
let Name = "Exact64";
let PredicateMethod = "isExactImm<64>";
let RenderMethod = "addImmOperands";
}
def uimm_exact64 : Operand<i32>, ImmLeaf<i32, [{return Imm == 64;}]> {
let ParserMatchClass = exact64_asmoperand;
}
multiclass NeonI_LDWB_VList<bit q, bits<4> opcode, bits<2> size,
RegisterOperand VecList, Operand ImmTy,
string asmop> {
let Constraints = "$Rn = $wb", mayLoad = 1, neverHasSideEffects = 1,
DecoderMethod = "DecodeVLDSTPostInstruction" in {
def _fixed : NeonI_LdStMult_Post<q, 1, opcode, size,
(outs VecList:$Rt, GPR64xsp:$wb),
(ins GPR64xsp:$Rn, ImmTy:$amt),
asmop # "\t$Rt, [$Rn], $amt",
[],
NoItinerary> {
let Rm = 0b11111;
}
def _register : NeonI_LdStMult_Post<q, 1, opcode, size,
(outs VecList:$Rt, GPR64xsp:$wb),
(ins GPR64xsp:$Rn, GPR64noxzr:$Rm),
asmop # "\t$Rt, [$Rn], $Rm",
[],
NoItinerary>;
}
}
multiclass LDWB_VList_BHSD<bits<4> opcode, string List, Operand ImmTy,
Operand ImmTy2, string asmop> {
defm _8B : NeonI_LDWB_VList<0, opcode, 0b00,
!cast<RegisterOperand>(List # "8B_operand"),
ImmTy, asmop>;
defm _4H : NeonI_LDWB_VList<0, opcode, 0b01,
!cast<RegisterOperand>(List # "4H_operand"),
ImmTy, asmop>;
defm _2S : NeonI_LDWB_VList<0, opcode, 0b10,
!cast<RegisterOperand>(List # "2S_operand"),
ImmTy, asmop>;
defm _16B : NeonI_LDWB_VList<1, opcode, 0b00,
!cast<RegisterOperand>(List # "16B_operand"),
ImmTy2, asmop>;
defm _8H : NeonI_LDWB_VList<1, opcode, 0b01,
!cast<RegisterOperand>(List # "8H_operand"),
ImmTy2, asmop>;
defm _4S : NeonI_LDWB_VList<1, opcode, 0b10,
!cast<RegisterOperand>(List # "4S_operand"),
ImmTy2, asmop>;
defm _2D : NeonI_LDWB_VList<1, opcode, 0b11,
!cast<RegisterOperand>(List # "2D_operand"),
ImmTy2, asmop>;
}
// Post-index load multiple N-element structures from N registers (N = 1,2,3,4)
defm LD1WB : LDWB_VList_BHSD<0b0111, "VOne", uimm_exact8, uimm_exact16, "ld1">;
defm LD1WB_1D : NeonI_LDWB_VList<0, 0b0111, 0b11, VOne1D_operand, uimm_exact8,
"ld1">;
defm LD2WB : LDWB_VList_BHSD<0b1000, "VPair", uimm_exact16, uimm_exact32, "ld2">;
defm LD3WB : LDWB_VList_BHSD<0b0100, "VTriple", uimm_exact24, uimm_exact48,
"ld3">;
defm LD4WB : LDWB_VList_BHSD<0b0000, "VQuad", uimm_exact32, uimm_exact64, "ld4">;
// Post-index load multiple 1-element structures from N consecutive registers
// (N = 2,3,4)
defm LD1x2WB : LDWB_VList_BHSD<0b1010, "VPair", uimm_exact16, uimm_exact32,
"ld1">;
defm LD1x2WB_1D : NeonI_LDWB_VList<0, 0b1010, 0b11, VPair1D_operand,
uimm_exact16, "ld1">;
defm LD1x3WB : LDWB_VList_BHSD<0b0110, "VTriple", uimm_exact24, uimm_exact48,
"ld1">;
defm LD1x3WB_1D : NeonI_LDWB_VList<0, 0b0110, 0b11, VTriple1D_operand,
uimm_exact24, "ld1">;
defm LD1x4WB : LDWB_VList_BHSD<0b0010, "VQuad", uimm_exact32, uimm_exact64,
"ld1">;
defm LD1x4WB_1D : NeonI_LDWB_VList<0, 0b0010, 0b11, VQuad1D_operand,
uimm_exact32, "ld1">;
multiclass NeonI_STWB_VList<bit q, bits<4> opcode, bits<2> size,
RegisterOperand VecList, Operand ImmTy,
string asmop> {
let Constraints = "$Rn = $wb", mayStore = 1, neverHasSideEffects = 1,
DecoderMethod = "DecodeVLDSTPostInstruction" in {
def _fixed : NeonI_LdStMult_Post<q, 0, opcode, size,
(outs GPR64xsp:$wb),
(ins GPR64xsp:$Rn, ImmTy:$amt, VecList:$Rt),
asmop # "\t$Rt, [$Rn], $amt",
[],
NoItinerary> {
let Rm = 0b11111;
}
def _register : NeonI_LdStMult_Post<q, 0, opcode, size,
(outs GPR64xsp:$wb),
(ins GPR64xsp:$Rn, GPR64noxzr:$Rm, VecList:$Rt),
asmop # "\t$Rt, [$Rn], $Rm",
[],
NoItinerary>;
}
}
multiclass STWB_VList_BHSD<bits<4> opcode, string List, Operand ImmTy,
Operand ImmTy2, string asmop> {
defm _8B : NeonI_STWB_VList<0, opcode, 0b00,
!cast<RegisterOperand>(List # "8B_operand"), ImmTy, asmop>;
defm _4H : NeonI_STWB_VList<0, opcode, 0b01,
!cast<RegisterOperand>(List # "4H_operand"),
ImmTy, asmop>;
defm _2S : NeonI_STWB_VList<0, opcode, 0b10,
!cast<RegisterOperand>(List # "2S_operand"),
ImmTy, asmop>;
defm _16B : NeonI_STWB_VList<1, opcode, 0b00,
!cast<RegisterOperand>(List # "16B_operand"),
ImmTy2, asmop>;
defm _8H : NeonI_STWB_VList<1, opcode, 0b01,
!cast<RegisterOperand>(List # "8H_operand"),
ImmTy2, asmop>;
defm _4S : NeonI_STWB_VList<1, opcode, 0b10,
!cast<RegisterOperand>(List # "4S_operand"),
ImmTy2, asmop>;
defm _2D : NeonI_STWB_VList<1, opcode, 0b11,
!cast<RegisterOperand>(List # "2D_operand"),
ImmTy2, asmop>;
}
// Post-index load multiple N-element structures from N registers (N = 1,2,3,4)
defm ST1WB : STWB_VList_BHSD<0b0111, "VOne", uimm_exact8, uimm_exact16, "st1">;
defm ST1WB_1D : NeonI_STWB_VList<0, 0b0111, 0b11, VOne1D_operand, uimm_exact8,
"st1">;
defm ST2WB : STWB_VList_BHSD<0b1000, "VPair", uimm_exact16, uimm_exact32, "st2">;
defm ST3WB : STWB_VList_BHSD<0b0100, "VTriple", uimm_exact24, uimm_exact48,
"st3">;
defm ST4WB : STWB_VList_BHSD<0b0000, "VQuad", uimm_exact32, uimm_exact64, "st4">;
// Post-index load multiple 1-element structures from N consecutive registers
// (N = 2,3,4)
defm ST1x2WB : STWB_VList_BHSD<0b1010, "VPair", uimm_exact16, uimm_exact32,
"st1">;
defm ST1x2WB_1D : NeonI_STWB_VList<0, 0b1010, 0b11, VPair1D_operand,
uimm_exact16, "st1">;
defm ST1x3WB : STWB_VList_BHSD<0b0110, "VTriple", uimm_exact24, uimm_exact48,
"st1">;
defm ST1x3WB_1D : NeonI_STWB_VList<0, 0b0110, 0b11, VTriple1D_operand,
uimm_exact24, "st1">;
defm ST1x4WB : STWB_VList_BHSD<0b0010, "VQuad", uimm_exact32, uimm_exact64,
"st1">;
defm ST1x4WB_1D : NeonI_STWB_VList<0, 0b0010, 0b11, VQuad1D_operand,
uimm_exact32, "st1">;
// End of post-index vector load/store multiple N-element structure
// (class SIMD lselem-post)
// The followings are vector load/store single N-element structure
// (class SIMD lsone).
def neon_uimm0_bare : Operand<i64>,
ImmLeaf<i64, [{return Imm == 0;}]> {
let ParserMatchClass = neon_uimm0_asmoperand;
let PrintMethod = "printUImmBareOperand";
}
def neon_uimm1_bare : Operand<i64>,
ImmLeaf<i64, [{return Imm < 2;}]> {
let ParserMatchClass = neon_uimm1_asmoperand;
let PrintMethod = "printUImmBareOperand";
}
def neon_uimm2_bare : Operand<i64>,
ImmLeaf<i64, [{return Imm < 4;}]> {
let ParserMatchClass = neon_uimm2_asmoperand;
let PrintMethod = "printUImmBareOperand";
}
def neon_uimm3_bare : Operand<i64>,
ImmLeaf<i64, [{return Imm < 8;}]> {
let ParserMatchClass = uimm3_asmoperand;
let PrintMethod = "printUImmBareOperand";
}
def neon_uimm4_bare : Operand<i64>,
ImmLeaf<i64, [{return Imm < 16;}]> {
let ParserMatchClass = uimm4_asmoperand;
let PrintMethod = "printUImmBareOperand";
}
class NeonI_LDN_Dup<bit q, bit r, bits<3> opcode, bits<2> size,
RegisterOperand VecList, string asmop>
: NeonI_LdOne_Dup<q, r, opcode, size,
(outs VecList:$Rt), (ins GPR64xsp:$Rn),
asmop # "\t$Rt, [$Rn]",
[],
NoItinerary> {
let mayLoad = 1;
let neverHasSideEffects = 1;
}
multiclass LDN_Dup_BHSD<bit r, bits<3> opcode, string List, string asmop> {
def _8B : NeonI_LDN_Dup<0, r, opcode, 0b00,
!cast<RegisterOperand>(List # "8B_operand"), asmop>;
def _4H : NeonI_LDN_Dup<0, r, opcode, 0b01,
!cast<RegisterOperand>(List # "4H_operand"), asmop>;
def _2S : NeonI_LDN_Dup<0, r, opcode, 0b10,
!cast<RegisterOperand>(List # "2S_operand"), asmop>;
def _1D : NeonI_LDN_Dup<0, r, opcode, 0b11,
!cast<RegisterOperand>(List # "1D_operand"), asmop>;
def _16B : NeonI_LDN_Dup<1, r, opcode, 0b00,
!cast<RegisterOperand>(List # "16B_operand"), asmop>;
def _8H : NeonI_LDN_Dup<1, r, opcode, 0b01,
!cast<RegisterOperand>(List # "8H_operand"), asmop>;
def _4S : NeonI_LDN_Dup<1, r, opcode, 0b10,
!cast<RegisterOperand>(List # "4S_operand"), asmop>;
def _2D : NeonI_LDN_Dup<1, r, opcode, 0b11,
!cast<RegisterOperand>(List # "2D_operand"), asmop>;
}
// Load single 1-element structure to all lanes of 1 register
defm LD1R : LDN_Dup_BHSD<0b0, 0b110, "VOne", "ld1r">;
// Load single N-element structure to all lanes of N consecutive
// registers (N = 2,3,4)
defm LD2R : LDN_Dup_BHSD<0b1, 0b110, "VPair", "ld2r">;
defm LD3R : LDN_Dup_BHSD<0b0, 0b111, "VTriple", "ld3r">;
defm LD4R : LDN_Dup_BHSD<0b1, 0b111, "VQuad", "ld4r">;
class LD1R_pattern <ValueType VTy, ValueType DTy, PatFrag LoadOp,
Instruction INST>
: Pat<(VTy (Neon_vdup (DTy (LoadOp GPR64xsp:$Rn)))),
(VTy (INST GPR64xsp:$Rn))>;
// Match all LD1R instructions
def : LD1R_pattern<v8i8, i32, extloadi8, LD1R_8B>;
def : LD1R_pattern<v16i8, i32, extloadi8, LD1R_16B>;
def : LD1R_pattern<v4i16, i32, extloadi16, LD1R_4H>;
def : LD1R_pattern<v8i16, i32, extloadi16, LD1R_8H>;
def : LD1R_pattern<v2i32, i32, load, LD1R_2S>;
def : LD1R_pattern<v2f32, f32, load, LD1R_2S>;
def : LD1R_pattern<v4i32, i32, load, LD1R_4S>;
def : LD1R_pattern<v4f32, f32, load, LD1R_4S>;
def : LD1R_pattern<v1i64, i64, load, LD1R_1D>;
def : LD1R_pattern<v1f64, f64, load, LD1R_1D>;
def : LD1R_pattern<v2i64, i64, load, LD1R_2D>;
def : LD1R_pattern<v2f64, f64, load, LD1R_2D>;
multiclass VectorList_Bare_BHSD<string PREFIX, int Count,
RegisterClass RegList> {
defm B : VectorList_operands<PREFIX, "B", Count, RegList>;
defm H : VectorList_operands<PREFIX, "H", Count, RegList>;
defm S : VectorList_operands<PREFIX, "S", Count, RegList>;
defm D : VectorList_operands<PREFIX, "D", Count, RegList>;
}
// Special vector list operand of 128-bit vectors with bare layout.
// i.e. only show ".b", ".h", ".s", ".d"
defm VOne : VectorList_Bare_BHSD<"VOne", 1, FPR128>;
defm VPair : VectorList_Bare_BHSD<"VPair", 2, QPair>;
defm VTriple : VectorList_Bare_BHSD<"VTriple", 3, QTriple>;
defm VQuad : VectorList_Bare_BHSD<"VQuad", 4, QQuad>;
class NeonI_LDN_Lane<bit r, bits<2> op2_1, bit op0, RegisterOperand VList,
Operand ImmOp, string asmop>
: NeonI_LdStOne_Lane<1, r, op2_1, op0,
(outs VList:$Rt),
(ins GPR64xsp:$Rn, VList:$src, ImmOp:$lane),
asmop # "\t$Rt[$lane], [$Rn]",
[],
NoItinerary> {
let mayLoad = 1;
let neverHasSideEffects = 1;
let hasExtraDefRegAllocReq = 1;
let Constraints = "$src = $Rt";
}
multiclass LDN_Lane_BHSD<bit r, bit op0, string List, string asmop> {
def _B : NeonI_LDN_Lane<r, 0b00, op0,
!cast<RegisterOperand>(List # "B_operand"),
neon_uimm4_bare, asmop> {
let Inst{12-10} = lane{2-0};
let Inst{30} = lane{3};
}
def _H : NeonI_LDN_Lane<r, 0b01, op0,
!cast<RegisterOperand>(List # "H_operand"),
neon_uimm3_bare, asmop> {
let Inst{12-10} = {lane{1}, lane{0}, 0b0};
let Inst{30} = lane{2};
}
def _S : NeonI_LDN_Lane<r, 0b10, op0,
!cast<RegisterOperand>(List # "S_operand"),
neon_uimm2_bare, asmop> {
let Inst{12-10} = {lane{0}, 0b0, 0b0};
let Inst{30} = lane{1};
}
def _D : NeonI_LDN_Lane<r, 0b10, op0,
!cast<RegisterOperand>(List # "D_operand"),
neon_uimm1_bare, asmop> {
let Inst{12-10} = 0b001;
let Inst{30} = lane{0};
}
}
// Load single 1-element structure to one lane of 1 register.
defm LD1LN : LDN_Lane_BHSD<0b0, 0b0, "VOne", "ld1">;
// Load single N-element structure to one lane of N consecutive registers
// (N = 2,3,4)
defm LD2LN : LDN_Lane_BHSD<0b1, 0b0, "VPair", "ld2">;
defm LD3LN : LDN_Lane_BHSD<0b0, 0b1, "VTriple", "ld3">;
defm LD4LN : LDN_Lane_BHSD<0b1, 0b1, "VQuad", "ld4">;
multiclass LD1LN_patterns<ValueType VTy, ValueType VTy2, ValueType DTy,
Operand ImmOp, Operand ImmOp2, PatFrag LoadOp,
Instruction INST> {
def : Pat<(VTy (vector_insert (VTy VPR64:$src),
(DTy (LoadOp GPR64xsp:$Rn)), (ImmOp:$lane))),
(VTy (EXTRACT_SUBREG
(INST GPR64xsp:$Rn,
(SUBREG_TO_REG (i64 0), VPR64:$src, sub_64),
ImmOp:$lane),
sub_64))>;
def : Pat<(VTy2 (vector_insert (VTy2 VPR128:$src),
(DTy (LoadOp GPR64xsp:$Rn)), (ImmOp2:$lane))),
(VTy2 (INST GPR64xsp:$Rn, VPR128:$src, ImmOp2:$lane))>;
}
// Match all LD1LN instructions
defm : LD1LN_patterns<v8i8, v16i8, i32, neon_uimm3_bare, neon_uimm4_bare,
extloadi8, LD1LN_B>;
defm : LD1LN_patterns<v4i16, v8i16, i32, neon_uimm2_bare, neon_uimm3_bare,
extloadi16, LD1LN_H>;
defm : LD1LN_patterns<v2i32, v4i32, i32, neon_uimm1_bare, neon_uimm2_bare,
load, LD1LN_S>;
defm : LD1LN_patterns<v2f32, v4f32, f32, neon_uimm1_bare, neon_uimm2_bare,
load, LD1LN_S>;
defm : LD1LN_patterns<v1i64, v2i64, i64, neon_uimm0_bare, neon_uimm1_bare,
load, LD1LN_D>;
defm : LD1LN_patterns<v1f64, v2f64, f64, neon_uimm0_bare, neon_uimm1_bare,
load, LD1LN_D>;
class NeonI_STN_Lane<bit r, bits<2> op2_1, bit op0, RegisterOperand VList,
Operand ImmOp, string asmop>
: NeonI_LdStOne_Lane<0, r, op2_1, op0,
(outs), (ins GPR64xsp:$Rn, VList:$Rt, ImmOp:$lane),
asmop # "\t$Rt[$lane], [$Rn]",
[],
NoItinerary> {
let mayStore = 1;
let neverHasSideEffects = 1;
let hasExtraDefRegAllocReq = 1;
}
multiclass STN_Lane_BHSD<bit r, bit op0, string List, string asmop> {
def _B : NeonI_STN_Lane<r, 0b00, op0,
!cast<RegisterOperand>(List # "B_operand"),
neon_uimm4_bare, asmop> {
let Inst{12-10} = lane{2-0};
let Inst{30} = lane{3};
}
def _H : NeonI_STN_Lane<r, 0b01, op0,
!cast<RegisterOperand>(List # "H_operand"),
neon_uimm3_bare, asmop> {
let Inst{12-10} = {lane{1}, lane{0}, 0b0};
let Inst{30} = lane{2};
}
def _S : NeonI_STN_Lane<r, 0b10, op0,
!cast<RegisterOperand>(List # "S_operand"),
neon_uimm2_bare, asmop> {
let Inst{12-10} = {lane{0}, 0b0, 0b0};
let Inst{30} = lane{1};
}
def _D : NeonI_STN_Lane<r, 0b10, op0,
!cast<RegisterOperand>(List # "D_operand"),
neon_uimm1_bare, asmop>{
let Inst{12-10} = 0b001;
let Inst{30} = lane{0};
}
}
// Store single 1-element structure from one lane of 1 register.
defm ST1LN : STN_Lane_BHSD<0b0, 0b0, "VOne", "st1">;
// Store single N-element structure from one lane of N consecutive registers
// (N = 2,3,4)
defm ST2LN : STN_Lane_BHSD<0b1, 0b0, "VPair", "st2">;
defm ST3LN : STN_Lane_BHSD<0b0, 0b1, "VTriple", "st3">;
defm ST4LN : STN_Lane_BHSD<0b1, 0b1, "VQuad", "st4">;
multiclass ST1LN_patterns<ValueType VTy, ValueType VTy2, ValueType DTy,
Operand ImmOp, Operand ImmOp2, PatFrag StoreOp,
Instruction INST> {
def : Pat<(StoreOp (DTy (vector_extract (VTy VPR64:$Rt), ImmOp:$lane)),
GPR64xsp:$Rn),
(INST GPR64xsp:$Rn,
(SUBREG_TO_REG (i64 0), VPR64:$Rt, sub_64),
ImmOp:$lane)>;
def : Pat<(StoreOp (DTy (vector_extract (VTy2 VPR128:$Rt), ImmOp2:$lane)),
GPR64xsp:$Rn),
(INST GPR64xsp:$Rn, VPR128:$Rt, ImmOp2:$lane)>;
}
// Match all ST1LN instructions
defm : ST1LN_patterns<v8i8, v16i8, i32, neon_uimm3_bare, neon_uimm4_bare,
truncstorei8, ST1LN_B>;
defm : ST1LN_patterns<v4i16, v8i16, i32, neon_uimm2_bare, neon_uimm3_bare,
truncstorei16, ST1LN_H>;
defm : ST1LN_patterns<v2i32, v4i32, i32, neon_uimm1_bare, neon_uimm2_bare,
store, ST1LN_S>;
defm : ST1LN_patterns<v2f32, v4f32, f32, neon_uimm1_bare, neon_uimm2_bare,
store, ST1LN_S>;
defm : ST1LN_patterns<v1i64, v2i64, i64, neon_uimm0_bare, neon_uimm1_bare,
store, ST1LN_D>;
defm : ST1LN_patterns<v1f64, v2f64, f64, neon_uimm0_bare, neon_uimm1_bare,
store, ST1LN_D>;
// End of vector load/store single N-element structure (class SIMD lsone).
// The following are post-index load/store single N-element instructions
// (class SIMD lsone-post)
multiclass NeonI_LDN_WB_Dup<bit q, bit r, bits<3> opcode, bits<2> size,
RegisterOperand VecList, Operand ImmTy,
string asmop> {
let mayLoad = 1, neverHasSideEffects = 1, Constraints = "$wb = $Rn",
DecoderMethod = "DecodeVLDSTLanePostInstruction" in {
def _fixed : NeonI_LdOne_Dup_Post<q, r, opcode, size,
(outs VecList:$Rt, GPR64xsp:$wb),
(ins GPR64xsp:$Rn, ImmTy:$amt),
asmop # "\t$Rt, [$Rn], $amt",
[],
NoItinerary> {
let Rm = 0b11111;
}
def _register : NeonI_LdOne_Dup_Post<q, r, opcode, size,
(outs VecList:$Rt, GPR64xsp:$wb),
(ins GPR64xsp:$Rn, GPR64noxzr:$Rm),
asmop # "\t$Rt, [$Rn], $Rm",
[],
NoItinerary>;
}
}
multiclass LDWB_Dup_BHSD<bit r, bits<3> opcode, string List, string asmop,
Operand uimm_b, Operand uimm_h,
Operand uimm_s, Operand uimm_d> {
defm _8B : NeonI_LDN_WB_Dup<0, r, opcode, 0b00,
!cast<RegisterOperand>(List # "8B_operand"),
uimm_b, asmop>;
defm _4H : NeonI_LDN_WB_Dup<0, r, opcode, 0b01,
!cast<RegisterOperand>(List # "4H_operand"),
uimm_h, asmop>;
defm _2S : NeonI_LDN_WB_Dup<0, r, opcode, 0b10,
!cast<RegisterOperand>(List # "2S_operand"),
uimm_s, asmop>;
defm _1D : NeonI_LDN_WB_Dup<0, r, opcode, 0b11,
!cast<RegisterOperand>(List # "1D_operand"),
uimm_d, asmop>;
defm _16B : NeonI_LDN_WB_Dup<1, r, opcode, 0b00,
!cast<RegisterOperand>(List # "16B_operand"),
uimm_b, asmop>;
defm _8H : NeonI_LDN_WB_Dup<1, r, opcode, 0b01,
!cast<RegisterOperand>(List # "8H_operand"),
uimm_h, asmop>;
defm _4S : NeonI_LDN_WB_Dup<1, r, opcode, 0b10,
!cast<RegisterOperand>(List # "4S_operand"),
uimm_s, asmop>;
defm _2D : NeonI_LDN_WB_Dup<1, r, opcode, 0b11,
!cast<RegisterOperand>(List # "2D_operand"),
uimm_d, asmop>;
}
// Post-index load single 1-element structure to all lanes of 1 register
defm LD1R_WB : LDWB_Dup_BHSD<0b0, 0b110, "VOne", "ld1r", uimm_exact1,
uimm_exact2, uimm_exact4, uimm_exact8>;
// Post-index load single N-element structure to all lanes of N consecutive
// registers (N = 2,3,4)
defm LD2R_WB : LDWB_Dup_BHSD<0b1, 0b110, "VPair", "ld2r", uimm_exact2,
uimm_exact4, uimm_exact8, uimm_exact16>;
defm LD3R_WB : LDWB_Dup_BHSD<0b0, 0b111, "VTriple", "ld3r", uimm_exact3,
uimm_exact6, uimm_exact12, uimm_exact24>;
defm LD4R_WB : LDWB_Dup_BHSD<0b1, 0b111, "VQuad", "ld4r", uimm_exact4,
uimm_exact8, uimm_exact16, uimm_exact32>;
let mayLoad = 1, neverHasSideEffects = 1, hasExtraDefRegAllocReq = 1,
Constraints = "$Rn = $wb, $Rt = $src",
DecoderMethod = "DecodeVLDSTLanePostInstruction" in {
class LDN_WBFx_Lane<bit r, bits<2> op2_1, bit op0, RegisterOperand VList,
Operand ImmTy, Operand ImmOp, string asmop>
: NeonI_LdStOne_Lane_Post<1, r, op2_1, op0,
(outs VList:$Rt, GPR64xsp:$wb),
(ins GPR64xsp:$Rn, ImmTy:$amt,
VList:$src, ImmOp:$lane),
asmop # "\t$Rt[$lane], [$Rn], $amt",
[],
NoItinerary> {
let Rm = 0b11111;
}
class LDN_WBReg_Lane<bit r, bits<2> op2_1, bit op0, RegisterOperand VList,
Operand ImmTy, Operand ImmOp, string asmop>
: NeonI_LdStOne_Lane_Post<1, r, op2_1, op0,
(outs VList:$Rt, GPR64xsp:$wb),
(ins GPR64xsp:$Rn, GPR64noxzr:$Rm,
VList:$src, ImmOp:$lane),
asmop # "\t$Rt[$lane], [$Rn], $Rm",
[],
NoItinerary>;
}
multiclass LD_Lane_WB_BHSD<bit r, bit op0, string List, string asmop,
Operand uimm_b, Operand uimm_h,
Operand uimm_s, Operand uimm_d> {
def _B_fixed : LDN_WBFx_Lane<r, 0b00, op0,
!cast<RegisterOperand>(List # "B_operand"),
uimm_b, neon_uimm4_bare, asmop> {
let Inst{12-10} = lane{2-0};
let Inst{30} = lane{3};
}
def _B_register : LDN_WBReg_Lane<r, 0b00, op0,
!cast<RegisterOperand>(List # "B_operand"),
uimm_b, neon_uimm4_bare, asmop> {
let Inst{12-10} = lane{2-0};
let Inst{30} = lane{3};
}
def _H_fixed : LDN_WBFx_Lane<r, 0b01, op0,
!cast<RegisterOperand>(List # "H_operand"),
uimm_h, neon_uimm3_bare, asmop> {
let Inst{12-10} = {lane{1}, lane{0}, 0b0};
let Inst{30} = lane{2};
}
def _H_register : LDN_WBReg_Lane<r, 0b01, op0,
!cast<RegisterOperand>(List # "H_operand"),
uimm_h, neon_uimm3_bare, asmop> {
let Inst{12-10} = {lane{1}, lane{0}, 0b0};
let Inst{30} = lane{2};
}
def _S_fixed : LDN_WBFx_Lane<r, 0b10, op0,
!cast<RegisterOperand>(List # "S_operand"),
uimm_s, neon_uimm2_bare, asmop> {
let Inst{12-10} = {lane{0}, 0b0, 0b0};
let Inst{30} = lane{1};
}
def _S_register : LDN_WBReg_Lane<r, 0b10, op0,
!cast<RegisterOperand>(List # "S_operand"),
uimm_s, neon_uimm2_bare, asmop> {
let Inst{12-10} = {lane{0}, 0b0, 0b0};
let Inst{30} = lane{1};
}
def _D_fixed : LDN_WBFx_Lane<r, 0b10, op0,
!cast<RegisterOperand>(List # "D_operand"),
uimm_d, neon_uimm1_bare, asmop> {
let Inst{12-10} = 0b001;
let Inst{30} = lane{0};
}
def _D_register : LDN_WBReg_Lane<r, 0b10, op0,
!cast<RegisterOperand>(List # "D_operand"),
uimm_d, neon_uimm1_bare, asmop> {
let Inst{12-10} = 0b001;
let Inst{30} = lane{0};
}
}
// Post-index load single 1-element structure to one lane of 1 register.
defm LD1LN_WB : LD_Lane_WB_BHSD<0b0, 0b0, "VOne", "ld1", uimm_exact1,
uimm_exact2, uimm_exact4, uimm_exact8>;
// Post-index load single N-element structure to one lane of N consecutive
// registers
// (N = 2,3,4)
defm LD2LN_WB : LD_Lane_WB_BHSD<0b1, 0b0, "VPair", "ld2", uimm_exact2,
uimm_exact4, uimm_exact8, uimm_exact16>;
defm LD3LN_WB : LD_Lane_WB_BHSD<0b0, 0b1, "VTriple", "ld3", uimm_exact3,
uimm_exact6, uimm_exact12, uimm_exact24>;
defm LD4LN_WB : LD_Lane_WB_BHSD<0b1, 0b1, "VQuad", "ld4", uimm_exact4,
uimm_exact8, uimm_exact16, uimm_exact32>;
let mayStore = 1, neverHasSideEffects = 1,
hasExtraDefRegAllocReq = 1, Constraints = "$Rn = $wb",
DecoderMethod = "DecodeVLDSTLanePostInstruction" in {
class STN_WBFx_Lane<bit r, bits<2> op2_1, bit op0, RegisterOperand VList,
Operand ImmTy, Operand ImmOp, string asmop>
: NeonI_LdStOne_Lane_Post<0, r, op2_1, op0,
(outs GPR64xsp:$wb),
(ins GPR64xsp:$Rn, ImmTy:$amt,
VList:$Rt, ImmOp:$lane),
asmop # "\t$Rt[$lane], [$Rn], $amt",
[],
NoItinerary> {
let Rm = 0b11111;
}
class STN_WBReg_Lane<bit r, bits<2> op2_1, bit op0, RegisterOperand VList,
Operand ImmTy, Operand ImmOp, string asmop>
: NeonI_LdStOne_Lane_Post<0, r, op2_1, op0,
(outs GPR64xsp:$wb),
(ins GPR64xsp:$Rn, GPR64noxzr:$Rm, VList:$Rt,
ImmOp:$lane),
asmop # "\t$Rt[$lane], [$Rn], $Rm",
[],
NoItinerary>;
}
multiclass ST_Lane_WB_BHSD<bit r, bit op0, string List, string asmop,
Operand uimm_b, Operand uimm_h,
Operand uimm_s, Operand uimm_d> {
def _B_fixed : STN_WBFx_Lane<r, 0b00, op0,
!cast<RegisterOperand>(List # "B_operand"),
uimm_b, neon_uimm4_bare, asmop> {
let Inst{12-10} = lane{2-0};
let Inst{30} = lane{3};
}
def _B_register : STN_WBReg_Lane<r, 0b00, op0,
!cast<RegisterOperand>(List # "B_operand"),
uimm_b, neon_uimm4_bare, asmop> {
let Inst{12-10} = lane{2-0};
let Inst{30} = lane{3};
}
def _H_fixed : STN_WBFx_Lane<r, 0b01, op0,
!cast<RegisterOperand>(List # "H_operand"),
uimm_h, neon_uimm3_bare, asmop> {
let Inst{12-10} = {lane{1}, lane{0}, 0b0};
let Inst{30} = lane{2};
}
def _H_register : STN_WBReg_Lane<r, 0b01, op0,
!cast<RegisterOperand>(List # "H_operand"),
uimm_h, neon_uimm3_bare, asmop> {
let Inst{12-10} = {lane{1}, lane{0}, 0b0};
let Inst{30} = lane{2};
}
def _S_fixed : STN_WBFx_Lane<r, 0b10, op0,
!cast<RegisterOperand>(List # "S_operand"),
uimm_s, neon_uimm2_bare, asmop> {
let Inst{12-10} = {lane{0}, 0b0, 0b0};
let Inst{30} = lane{1};
}
def _S_register : STN_WBReg_Lane<r, 0b10, op0,
!cast<RegisterOperand>(List # "S_operand"),
uimm_s, neon_uimm2_bare, asmop> {
let Inst{12-10} = {lane{0}, 0b0, 0b0};
let Inst{30} = lane{1};
}
def _D_fixed : STN_WBFx_Lane<r, 0b10, op0,
!cast<RegisterOperand>(List # "D_operand"),
uimm_d, neon_uimm1_bare, asmop> {
let Inst{12-10} = 0b001;
let Inst{30} = lane{0};
}
def _D_register : STN_WBReg_Lane<r, 0b10, op0,
!cast<RegisterOperand>(List # "D_operand"),
uimm_d, neon_uimm1_bare, asmop> {
let Inst{12-10} = 0b001;
let Inst{30} = lane{0};
}
}
// Post-index store single 1-element structure from one lane of 1 register.
defm ST1LN_WB : ST_Lane_WB_BHSD<0b0, 0b0, "VOne", "st1", uimm_exact1,
uimm_exact2, uimm_exact4, uimm_exact8>;
// Post-index store single N-element structure from one lane of N consecutive
// registers (N = 2,3,4)
defm ST2LN_WB : ST_Lane_WB_BHSD<0b1, 0b0, "VPair", "st2", uimm_exact2,
uimm_exact4, uimm_exact8, uimm_exact16>;
defm ST3LN_WB : ST_Lane_WB_BHSD<0b0, 0b1, "VTriple", "st3", uimm_exact3,
uimm_exact6, uimm_exact12, uimm_exact24>;
defm ST4LN_WB : ST_Lane_WB_BHSD<0b1, 0b1, "VQuad", "st4", uimm_exact4,
uimm_exact8, uimm_exact16, uimm_exact32>;
// End of post-index load/store single N-element instructions
// (class SIMD lsone-post)
// Neon Scalar instructions implementation
// Scalar Three Same
class NeonI_Scalar3Same_size<bit u, bits<2> size, bits<5> opcode, string asmop,
RegisterClass FPRC>
: NeonI_Scalar3Same<u, size, opcode,
(outs FPRC:$Rd), (ins FPRC:$Rn, FPRC:$Rm),
!strconcat(asmop, "\t$Rd, $Rn, $Rm"),
[],
NoItinerary>;
class NeonI_Scalar3Same_D_size<bit u, bits<5> opcode, string asmop>
: NeonI_Scalar3Same_size<u, 0b11, opcode, asmop, FPR64>;
multiclass NeonI_Scalar3Same_HS_sizes<bit u, bits<5> opcode, string asmop,
bit Commutable = 0> {
let isCommutable = Commutable in {
def hhh : NeonI_Scalar3Same_size<u, 0b01, opcode, asmop, FPR16>;
def sss : NeonI_Scalar3Same_size<u, 0b10, opcode, asmop, FPR32>;
}
}
multiclass NeonI_Scalar3Same_SD_sizes<bit u, bit size_high, bits<5> opcode,
string asmop, bit Commutable = 0> {
let isCommutable = Commutable in {
def sss : NeonI_Scalar3Same_size<u, {size_high, 0b0}, opcode, asmop, FPR32>;
def ddd : NeonI_Scalar3Same_size<u, {size_high, 0b1}, opcode, asmop, FPR64>;
}
}
multiclass NeonI_Scalar3Same_BHSD_sizes<bit u, bits<5> opcode,
string asmop, bit Commutable = 0> {
let isCommutable = Commutable in {
def bbb : NeonI_Scalar3Same_size<u, 0b00, opcode, asmop, FPR8>;
def hhh : NeonI_Scalar3Same_size<u, 0b01, opcode, asmop, FPR16>;
def sss : NeonI_Scalar3Same_size<u, 0b10, opcode, asmop, FPR32>;
def ddd : NeonI_Scalar3Same_size<u, 0b11, opcode, asmop, FPR64>;
}
}
multiclass Neon_Scalar3Same_D_size_patterns<SDPatternOperator opnode,
Instruction INSTD> {
def : Pat<(v1i64 (opnode (v1i64 FPR64:$Rn), (v1i64 FPR64:$Rm))),
(INSTD FPR64:$Rn, FPR64:$Rm)>;
}
multiclass Neon_Scalar3Same_BHSD_size_patterns<SDPatternOperator opnode,
Instruction INSTB,
Instruction INSTH,
Instruction INSTS,
Instruction INSTD>
: Neon_Scalar3Same_D_size_patterns<opnode, INSTD> {
def: Pat<(v1i8 (opnode (v1i8 FPR8:$Rn), (v1i8 FPR8:$Rm))),
(INSTB FPR8:$Rn, FPR8:$Rm)>;
def: Pat<(v1i16 (opnode (v1i16 FPR16:$Rn), (v1i16 FPR16:$Rm))),
(INSTH FPR16:$Rn, FPR16:$Rm)>;
def: Pat<(v1i32 (opnode (v1i32 FPR32:$Rn), (v1i32 FPR32:$Rm))),
(INSTS FPR32:$Rn, FPR32:$Rm)>;
}
class Neon_Scalar3Same_cmp_D_size_patterns<SDPatternOperator opnode,
Instruction INSTD>
: Pat<(v1i64 (opnode (v1i64 FPR64:$Rn), (v1i64 FPR64:$Rm))),
(INSTD FPR64:$Rn, FPR64:$Rm)>;
multiclass Neon_Scalar3Same_HS_size_patterns<SDPatternOperator opnode,
Instruction INSTH,
Instruction INSTS> {
def : Pat<(v1i16 (opnode (v1i16 FPR16:$Rn), (v1i16 FPR16:$Rm))),
(INSTH FPR16:$Rn, FPR16:$Rm)>;
def : Pat<(v1i32 (opnode (v1i32 FPR32:$Rn), (v1i32 FPR32:$Rm))),
(INSTS FPR32:$Rn, FPR32:$Rm)>;
}
multiclass Neon_Scalar3Same_SD_size_patterns<SDPatternOperator opnode,
Instruction INSTS,
Instruction INSTD> {
def : Pat<(v1f32 (opnode (v1f32 FPR32:$Rn), (v1f32 FPR32:$Rm))),
(INSTS FPR32:$Rn, FPR32:$Rm)>;
def : Pat<(v1f64 (opnode (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
(INSTD FPR64:$Rn, FPR64:$Rm)>;
}
multiclass Neon_Scalar3Same_cmp_SD_size_patterns<SDPatternOperator opnode,
Instruction INSTS,
Instruction INSTD> {
def : Pat<(v1i32 (opnode (v1f32 FPR32:$Rn), (v1f32 FPR32:$Rm))),
(INSTS FPR32:$Rn, FPR32:$Rm)>;
def : Pat<(v1i64 (opnode (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
(INSTD FPR64:$Rn, FPR64:$Rm)>;
}
// Scalar Three Different
class NeonI_Scalar3Diff_size<bit u, bits<2> size, bits<4> opcode, string asmop,
RegisterClass FPRCD, RegisterClass FPRCS>
: NeonI_Scalar3Diff<u, size, opcode,
(outs FPRCD:$Rd), (ins FPRCS:$Rn, FPRCS:$Rm),
!strconcat(asmop, "\t$Rd, $Rn, $Rm"),
[],
NoItinerary>;
multiclass NeonI_Scalar3Diff_HS_size<bit u, bits<4> opcode, string asmop> {
def shh : NeonI_Scalar3Diff_size<u, 0b01, opcode, asmop, FPR32, FPR16>;
def dss : NeonI_Scalar3Diff_size<u, 0b10, opcode, asmop, FPR64, FPR32>;
}
multiclass NeonI_Scalar3Diff_ml_HS_size<bit u, bits<4> opcode, string asmop> {
let Constraints = "$Src = $Rd" in {
def shh : NeonI_Scalar3Diff<u, 0b01, opcode,
(outs FPR32:$Rd), (ins FPR32:$Src, FPR16:$Rn, FPR16:$Rm),
!strconcat(asmop, "\t$Rd, $Rn, $Rm"),
[],
NoItinerary>;
def dss : NeonI_Scalar3Diff<u, 0b10, opcode,
(outs FPR64:$Rd), (ins FPR64:$Src, FPR32:$Rn, FPR32:$Rm),
!strconcat(asmop, "\t$Rd, $Rn, $Rm"),
[],
NoItinerary>;
}
}
multiclass Neon_Scalar3Diff_HS_size_patterns<SDPatternOperator opnode,
Instruction INSTH,
Instruction INSTS> {
def : Pat<(v1i32 (opnode (v1i16 FPR16:$Rn), (v1i16 FPR16:$Rm))),
(INSTH FPR16:$Rn, FPR16:$Rm)>;
def : Pat<(v1i64 (opnode (v1i32 FPR32:$Rn), (v1i32 FPR32:$Rm))),
(INSTS FPR32:$Rn, FPR32:$Rm)>;
}
multiclass Neon_Scalar3Diff_ml_HS_size_patterns<SDPatternOperator opnode,
Instruction INSTH,
Instruction INSTS> {
def : Pat<(v1i32 (opnode (v1i32 FPR32:$Src), (v1i16 FPR16:$Rn), (v1i16 FPR16:$Rm))),
(INSTH FPR32:$Src, FPR16:$Rn, FPR16:$Rm)>;
def : Pat<(v1i64 (opnode (v1i64 FPR64:$Src), (v1i32 FPR32:$Rn), (v1i32 FPR32:$Rm))),
(INSTS FPR64:$Src, FPR32:$Rn, FPR32:$Rm)>;
}
// Scalar Two Registers Miscellaneous
class NeonI_Scalar2SameMisc_size<bit u, bits<2> size, bits<5> opcode, string asmop,
RegisterClass FPRCD, RegisterClass FPRCS>
: NeonI_Scalar2SameMisc<u, size, opcode,
(outs FPRCD:$Rd), (ins FPRCS:$Rn),
!strconcat(asmop, "\t$Rd, $Rn"),
[],
NoItinerary>;
multiclass NeonI_Scalar2SameMisc_SD_size<bit u, bit size_high, bits<5> opcode,
string asmop> {
def ss : NeonI_Scalar2SameMisc_size<u, {size_high, 0b0}, opcode, asmop, FPR32,
FPR32>;
def dd : NeonI_Scalar2SameMisc_size<u, {size_high, 0b1}, opcode, asmop, FPR64,
FPR64>;
}
multiclass NeonI_Scalar2SameMisc_D_size<bit u, bits<5> opcode, string asmop> {
def dd : NeonI_Scalar2SameMisc_size<u, 0b11, opcode, asmop, FPR64, FPR64>;
}
multiclass NeonI_Scalar2SameMisc_BHSD_size<bit u, bits<5> opcode, string asmop>
: NeonI_Scalar2SameMisc_D_size<u, opcode, asmop> {
def bb : NeonI_Scalar2SameMisc_size<u, 0b00, opcode, asmop, FPR8, FPR8>;
def hh : NeonI_Scalar2SameMisc_size<u, 0b01, opcode, asmop, FPR16, FPR16>;
def ss : NeonI_Scalar2SameMisc_size<u, 0b10, opcode, asmop, FPR32, FPR32>;
}
class NeonI_Scalar2SameMisc_fcvtxn_D_size<bit u, bits<5> opcode, string asmop>
: NeonI_Scalar2SameMisc_size<u, 0b01, opcode, asmop, FPR32, FPR64>;
multiclass NeonI_Scalar2SameMisc_narrow_HSD_size<bit u, bits<5> opcode,
string asmop> {
def bh : NeonI_Scalar2SameMisc_size<u, 0b00, opcode, asmop, FPR8, FPR16>;
def hs : NeonI_Scalar2SameMisc_size<u, 0b01, opcode, asmop, FPR16, FPR32>;
def sd : NeonI_Scalar2SameMisc_size<u, 0b10, opcode, asmop, FPR32, FPR64>;
}
class NeonI_Scalar2SameMisc_accum_size<bit u, bits<2> size, bits<5> opcode,
string asmop, RegisterClass FPRC>
: NeonI_Scalar2SameMisc<u, size, opcode,
(outs FPRC:$Rd), (ins FPRC:$Src, FPRC:$Rn),
!strconcat(asmop, "\t$Rd, $Rn"),
[],
NoItinerary>;
multiclass NeonI_Scalar2SameMisc_accum_BHSD_size<bit u, bits<5> opcode,
string asmop> {
let Constraints = "$Src = $Rd" in {
def bb : NeonI_Scalar2SameMisc_accum_size<u, 0b00, opcode, asmop, FPR8>;
def hh : NeonI_Scalar2SameMisc_accum_size<u, 0b01, opcode, asmop, FPR16>;
def ss : NeonI_Scalar2SameMisc_accum_size<u, 0b10, opcode, asmop, FPR32>;
def dd : NeonI_Scalar2SameMisc_accum_size<u, 0b11, opcode, asmop, FPR64>;
}
}
class Neon_Scalar2SameMisc_fcvtxn_D_size_patterns<SDPatternOperator opnode,
Instruction INSTD>
: Pat<(v1f32 (opnode (v1f64 FPR64:$Rn))),
(INSTD FPR64:$Rn)>;
multiclass Neon_Scalar2SameMisc_fcvt_SD_size_patterns<SDPatternOperator opnode,
Instruction INSTS,
Instruction INSTD> {
def : Pat<(v1i32 (opnode (v1f32 FPR32:$Rn))),
(INSTS FPR32:$Rn)>;
def : Pat<(v1i64 (opnode (v1f64 FPR64:$Rn))),
(INSTD FPR64:$Rn)>;
}
multiclass Neon_Scalar2SameMisc_cvt_SD_size_patterns<SDPatternOperator Sopnode,
SDPatternOperator Dopnode,
Instruction INSTS,
Instruction INSTD> {
def : Pat<(f32 (Sopnode (v1i32 FPR32:$Rn))),
(INSTS FPR32:$Rn)>;
def : Pat<(f64 (Dopnode (v1i64 FPR64:$Rn))),
(INSTD FPR64:$Rn)>;
}
multiclass Neon_Scalar2SameMisc_SD_size_patterns<SDPatternOperator opnode,
Instruction INSTS,
Instruction INSTD> {
def : Pat<(v1f32 (opnode (v1f32 FPR32:$Rn))),
(INSTS FPR32:$Rn)>;
def : Pat<(v1f64 (opnode (v1f64 FPR64:$Rn))),
(INSTD FPR64:$Rn)>;
}
class NeonI_Scalar2SameMisc_cmpz_D_size<bit u, bits<5> opcode, string asmop>
: NeonI_Scalar2SameMisc<u, 0b11, opcode,
(outs FPR64:$Rd), (ins FPR64:$Rn, neon_uimm0:$Imm),
!strconcat(asmop, "\t$Rd, $Rn, $Imm"),
[],
NoItinerary>;
multiclass NeonI_Scalar2SameMisc_cmpz_SD_size<bit u, bits<5> opcode,
string asmop> {
def ssi : NeonI_Scalar2SameMisc<u, 0b10, opcode,
(outs FPR32:$Rd), (ins FPR32:$Rn, fpz32:$FPImm),
!strconcat(asmop, "\t$Rd, $Rn, $FPImm"),
[],
NoItinerary>;
def ddi : NeonI_Scalar2SameMisc<u, 0b11, opcode,
(outs FPR64:$Rd), (ins FPR64:$Rn, fpz64movi:$FPImm),
!strconcat(asmop, "\t$Rd, $Rn, $FPImm"),
[],
NoItinerary>;
}
class Neon_Scalar2SameMisc_cmpz_D_size_patterns<SDPatternOperator opnode,
Instruction INSTD>
: Pat<(v1i64 (opnode (v1i64 FPR64:$Rn),
(v1i64 (bitconvert (v8i8 Neon_AllZero))))),
(INSTD FPR64:$Rn, 0)>;
multiclass Neon_Scalar2SameMisc_cmpz_SD_size_patterns<SDPatternOperator opnode,
Instruction INSTS,
Instruction INSTD> {
def : Pat<(v1i32 (opnode (v1f32 FPR32:$Rn),
(v1f32 (scalar_to_vector (f32 fpimm:$FPImm))))),
(INSTS FPR32:$Rn, fpimm:$FPImm)>;
def : Pat<(v1i64 (opnode (v1f64 FPR64:$Rn),
(v1f64 (bitconvert (v8i8 Neon_AllZero))))),
(INSTD FPR64:$Rn, 0)>;
}
multiclass Neon_Scalar2SameMisc_D_size_patterns<SDPatternOperator opnode,
Instruction INSTD> {
def : Pat<(v1i64 (opnode (v1i64 FPR64:$Rn))),
(INSTD FPR64:$Rn)>;
}
multiclass Neon_Scalar2SameMisc_BHSD_size_patterns<SDPatternOperator opnode,
Instruction INSTB,
Instruction INSTH,
Instruction INSTS,
Instruction INSTD>
: Neon_Scalar2SameMisc_D_size_patterns<opnode, INSTD> {
def : Pat<(v1i8 (opnode (v1i8 FPR8:$Rn))),
(INSTB FPR8:$Rn)>;
def : Pat<(v1i16 (opnode (v1i16 FPR16:$Rn))),
(INSTH FPR16:$Rn)>;
def : Pat<(v1i32 (opnode (v1i32 FPR32:$Rn))),
(INSTS FPR32:$Rn)>;
}
multiclass Neon_Scalar2SameMisc_narrow_HSD_size_patterns<
SDPatternOperator opnode,
Instruction INSTH,
Instruction INSTS,
Instruction INSTD> {
def : Pat<(v1i8 (opnode (v1i16 FPR16:$Rn))),
(INSTH FPR16:$Rn)>;
def : Pat<(v1i16 (opnode (v1i32 FPR32:$Rn))),
(INSTS FPR32:$Rn)>;
def : Pat<(v1i32 (opnode (v1i64 FPR64:$Rn))),
(INSTD FPR64:$Rn)>;
}
multiclass Neon_Scalar2SameMisc_accum_BHSD_size_patterns<
SDPatternOperator opnode,
Instruction INSTB,
Instruction INSTH,
Instruction INSTS,
Instruction INSTD> {
def : Pat<(v1i8 (opnode (v1i8 FPR8:$Src), (v1i8 FPR8:$Rn))),
(INSTB FPR8:$Src, FPR8:$Rn)>;
def : Pat<(v1i16 (opnode (v1i16 FPR16:$Src), (v1i16 FPR16:$Rn))),
(INSTH FPR16:$Src, FPR16:$Rn)>;
def : Pat<(v1i32 (opnode (v1i32 FPR32:$Src), (v1i32 FPR32:$Rn))),
(INSTS FPR32:$Src, FPR32:$Rn)>;
def : Pat<(v1i64 (opnode (v1i64 FPR64:$Src), (v1i64 FPR64:$Rn))),
(INSTD FPR64:$Src, FPR64:$Rn)>;
}
// Scalar Shift By Immediate
class NeonI_ScalarShiftImm_size<bit u, bits<5> opcode, string asmop,
RegisterClass FPRC, Operand ImmTy>
: NeonI_ScalarShiftImm<u, opcode,
(outs FPRC:$Rd), (ins FPRC:$Rn, ImmTy:$Imm),
!strconcat(asmop, "\t$Rd, $Rn, $Imm"),
[], NoItinerary>;
multiclass NeonI_ScalarShiftRightImm_D_size<bit u, bits<5> opcode,
string asmop> {
def ddi : NeonI_ScalarShiftImm_size<u, opcode, asmop, FPR64, shr_imm64> {
bits<6> Imm;
let Inst{22} = 0b1; // immh:immb = 1xxxxxx
let Inst{21-16} = Imm;
}
}
multiclass NeonI_ScalarShiftRightImm_BHSD_size<bit u, bits<5> opcode,
string asmop>
: NeonI_ScalarShiftRightImm_D_size<u, opcode, asmop> {
def bbi : NeonI_ScalarShiftImm_size<u, opcode, asmop, FPR8, shr_imm8> {
bits<3> Imm;
let Inst{22-19} = 0b0001; // immh:immb = 0001xxx
let Inst{18-16} = Imm;
}
def hhi : NeonI_ScalarShiftImm_size<u, opcode, asmop, FPR16, shr_imm16> {
bits<4> Imm;
let Inst{22-20} = 0b001; // immh:immb = 001xxxx
let Inst{19-16} = Imm;
}
def ssi : NeonI_ScalarShiftImm_size<u, opcode, asmop, FPR32, shr_imm32> {
bits<5> Imm;
let Inst{22-21} = 0b01; // immh:immb = 01xxxxx
let Inst{20-16} = Imm;
}
}
multiclass NeonI_ScalarShiftLeftImm_D_size<bit u, bits<5> opcode,
string asmop> {
def ddi : NeonI_ScalarShiftImm_size<u, opcode, asmop, FPR64, shl_imm64> {
bits<6> Imm;
let Inst{22} = 0b1; // immh:immb = 1xxxxxx
let Inst{21-16} = Imm;
}
}
multiclass NeonI_ScalarShiftLeftImm_BHSD_size<bit u, bits<5> opcode,
string asmop>
: NeonI_ScalarShiftLeftImm_D_size<u, opcode, asmop> {
def bbi : NeonI_ScalarShiftImm_size<u, opcode, asmop, FPR8, shl_imm8> {
bits<3> Imm;
let Inst{22-19} = 0b0001; // immh:immb = 0001xxx
let Inst{18-16} = Imm;
}
def hhi : NeonI_ScalarShiftImm_size<u, opcode, asmop, FPR16, shl_imm16> {
bits<4> Imm;
let Inst{22-20} = 0b001; // immh:immb = 001xxxx
let Inst{19-16} = Imm;
}
def ssi : NeonI_ScalarShiftImm_size<u, opcode, asmop, FPR32, shl_imm32> {
bits<5> Imm;
let Inst{22-21} = 0b01; // immh:immb = 01xxxxx
let Inst{20-16} = Imm;
}
}
class NeonI_ScalarShiftRightImm_accum_D_size<bit u, bits<5> opcode, string asmop>
: NeonI_ScalarShiftImm<u, opcode,
(outs FPR64:$Rd), (ins FPR64:$Src, FPR64:$Rn, shr_imm64:$Imm),
!strconcat(asmop, "\t$Rd, $Rn, $Imm"),
[], NoItinerary> {
bits<6> Imm;
let Inst{22} = 0b1; // immh:immb = 1xxxxxx
let Inst{21-16} = Imm;
let Constraints = "$Src = $Rd";
}
class NeonI_ScalarShiftLeftImm_accum_D_size<bit u, bits<5> opcode, string asmop>
: NeonI_ScalarShiftImm<u, opcode,
(outs FPR64:$Rd), (ins FPR64:$Src, FPR64:$Rn, shl_imm64:$Imm),
!strconcat(asmop, "\t$Rd, $Rn, $Imm"),
[], NoItinerary> {
bits<6> Imm;
let Inst{22} = 0b1; // immh:immb = 1xxxxxx
let Inst{21-16} = Imm;
let Constraints = "$Src = $Rd";
}
class NeonI_ScalarShiftImm_narrow_size<bit u, bits<5> opcode, string asmop,
RegisterClass FPRCD, RegisterClass FPRCS,
Operand ImmTy>
: NeonI_ScalarShiftImm<u, opcode,
(outs FPRCD:$Rd), (ins FPRCS:$Rn, ImmTy:$Imm),
!strconcat(asmop, "\t$Rd, $Rn, $Imm"),
[], NoItinerary>;
multiclass NeonI_ScalarShiftImm_narrow_HSD_size<bit u, bits<5> opcode,
string asmop> {
def bhi : NeonI_ScalarShiftImm_narrow_size<u, opcode, asmop, FPR8, FPR16,
shr_imm8> {
bits<3> Imm;
let Inst{22-19} = 0b0001; // immh:immb = 0001xxx
let Inst{18-16} = Imm;
}
def hsi : NeonI_ScalarShiftImm_narrow_size<u, opcode, asmop, FPR16, FPR32,
shr_imm16> {
bits<4> Imm;
let Inst{22-20} = 0b001; // immh:immb = 001xxxx
let Inst{19-16} = Imm;
}
def sdi : NeonI_ScalarShiftImm_narrow_size<u, opcode, asmop, FPR32, FPR64,
shr_imm32> {
bits<5> Imm;
let Inst{22-21} = 0b01; // immh:immb = 01xxxxx
let Inst{20-16} = Imm;
}
}
multiclass NeonI_ScalarShiftImm_cvt_SD_size<bit u, bits<5> opcode, string asmop> {
def ssi : NeonI_ScalarShiftImm_size<u, opcode, asmop, FPR32, shr_imm32> {
bits<5> Imm;
let Inst{22-21} = 0b01; // immh:immb = 01xxxxx
let Inst{20-16} = Imm;
}
def ddi : NeonI_ScalarShiftImm_size<u, opcode, asmop, FPR64, shr_imm64> {
bits<6> Imm;
let Inst{22} = 0b1; // immh:immb = 1xxxxxx
let Inst{21-16} = Imm;
}
}
multiclass Neon_ScalarShiftImm_D_size_patterns<SDPatternOperator opnode,
Instruction INSTD> {
def ddi : Pat<(v1i64 (opnode (v1i64 FPR64:$Rn), (i32 imm:$Imm))),
(INSTD FPR64:$Rn, imm:$Imm)>;
}
class Neon_ScalarShiftImm_arm_D_size_patterns<SDPatternOperator opnode,
Instruction INSTD>
: Pat<(v1i64 (opnode (v1i64 FPR64:$Rn), (v1i64 (Neon_vdup (i32 imm:$Imm))))),
(INSTD FPR64:$Rn, imm:$Imm)>;
multiclass Neon_ScalarShiftImm_BHSD_size_patterns<SDPatternOperator opnode,
Instruction INSTB,
Instruction INSTH,
Instruction INSTS,
Instruction INSTD>
: Neon_ScalarShiftImm_D_size_patterns<opnode, INSTD> {
def bbi : Pat<(v1i8 (opnode (v1i8 FPR8:$Rn), (i32 imm:$Imm))),
(INSTB FPR8:$Rn, imm:$Imm)>;
def hhi : Pat<(v1i16 (opnode (v1i16 FPR16:$Rn), (i32 imm:$Imm))),
(INSTH FPR16:$Rn, imm:$Imm)>;
def ssi : Pat<(v1i32 (opnode (v1i32 FPR32:$Rn), (i32 imm:$Imm))),
(INSTS FPR32:$Rn, imm:$Imm)>;
}
class Neon_ScalarShiftImm_accum_D_size_patterns<SDPatternOperator opnode,
Instruction INSTD>
: Pat<(v1i64 (opnode (v1i64 FPR64:$Src), (v1i64 FPR64:$Rn), (i32 imm:$Imm))),
(INSTD FPR64:$Src, FPR64:$Rn, imm:$Imm)>;
multiclass Neon_ScalarShiftImm_narrow_HSD_size_patterns<
SDPatternOperator opnode,
Instruction INSTH,
Instruction INSTS,
Instruction INSTD> {
def bhi : Pat<(v1i8 (opnode (v1i16 FPR16:$Rn), (i32 imm:$Imm))),
(INSTH FPR16:$Rn, imm:$Imm)>;
def hsi : Pat<(v1i16 (opnode (v1i32 FPR32:$Rn), (i32 imm:$Imm))),
(INSTS FPR32:$Rn, imm:$Imm)>;
def sdi : Pat<(v1i32 (opnode (v1i64 FPR64:$Rn), (i32 imm:$Imm))),
(INSTD FPR64:$Rn, imm:$Imm)>;
}
multiclass Neon_ScalarShiftImm_scvtf_SD_size_patterns<SDPatternOperator Sopnode,
SDPatternOperator Dopnode,
Instruction INSTS,
Instruction INSTD> {
def ssi : Pat<(f32 (Sopnode (v1i32 FPR32:$Rn), (i32 imm:$Imm))),
(INSTS FPR32:$Rn, imm:$Imm)>;
def ddi : Pat<(f64 (Dopnode (v1i64 FPR64:$Rn), (i32 imm:$Imm))),
(INSTD FPR64:$Rn, imm:$Imm)>;
}
multiclass Neon_ScalarShiftImm_fcvts_SD_size_patterns<SDPatternOperator Sopnode,
SDPatternOperator Dopnode,
Instruction INSTS,
Instruction INSTD> {
def ssi : Pat<(v1i32 (Sopnode (v1f32 FPR32:$Rn), (i32 imm:$Imm))),
(INSTS FPR32:$Rn, imm:$Imm)>;
def ddi : Pat<(v1i64 (Dopnode (v1f64 FPR64:$Rn), (i32 imm:$Imm))),
(INSTD FPR64:$Rn, imm:$Imm)>;
}
// Scalar Signed Shift Right (Immediate)
defm SSHR : NeonI_ScalarShiftRightImm_D_size<0b0, 0b00000, "sshr">;
defm : Neon_ScalarShiftImm_D_size_patterns<int_aarch64_neon_vshrds_n, SSHRddi>;
// Pattern to match llvm.arm.* intrinsic.
def : Neon_ScalarShiftImm_arm_D_size_patterns<sra, SSHRddi>;
// Scalar Unsigned Shift Right (Immediate)
defm USHR : NeonI_ScalarShiftRightImm_D_size<0b1, 0b00000, "ushr">;
defm : Neon_ScalarShiftImm_D_size_patterns<int_aarch64_neon_vshrdu_n, USHRddi>;
// Pattern to match llvm.arm.* intrinsic.
def : Neon_ScalarShiftImm_arm_D_size_patterns<srl, USHRddi>;
// Scalar Signed Rounding Shift Right (Immediate)
defm SRSHR : NeonI_ScalarShiftRightImm_D_size<0b0, 0b00100, "srshr">;
defm : Neon_ScalarShiftImm_D_size_patterns<int_aarch64_neon_vsrshr, SRSHRddi>;
// Scalar Unigned Rounding Shift Right (Immediate)
defm URSHR : NeonI_ScalarShiftRightImm_D_size<0b1, 0b00100, "urshr">;
defm : Neon_ScalarShiftImm_D_size_patterns<int_aarch64_neon_vurshr, URSHRddi>;
// Scalar Signed Shift Right and Accumulate (Immediate)
def SSRA : NeonI_ScalarShiftRightImm_accum_D_size<0b0, 0b00010, "ssra">;
def : Neon_ScalarShiftImm_accum_D_size_patterns<int_aarch64_neon_vsrads_n, SSRA>;
// Scalar Unsigned Shift Right and Accumulate (Immediate)
def USRA : NeonI_ScalarShiftRightImm_accum_D_size<0b1, 0b00010, "usra">;
def : Neon_ScalarShiftImm_accum_D_size_patterns<int_aarch64_neon_vsradu_n, USRA>;
// Scalar Signed Rounding Shift Right and Accumulate (Immediate)
def SRSRA : NeonI_ScalarShiftRightImm_accum_D_size<0b0, 0b00110, "srsra">;
def : Neon_ScalarShiftImm_accum_D_size_patterns<int_aarch64_neon_vrsrads_n, SRSRA>;
// Scalar Unsigned Rounding Shift Right and Accumulate (Immediate)
def URSRA : NeonI_ScalarShiftRightImm_accum_D_size<0b1, 0b00110, "ursra">;
def : Neon_ScalarShiftImm_accum_D_size_patterns<int_aarch64_neon_vrsradu_n, URSRA>;
// Scalar Shift Left (Immediate)
defm SHL : NeonI_ScalarShiftLeftImm_D_size<0b0, 0b01010, "shl">;
defm : Neon_ScalarShiftImm_D_size_patterns<int_aarch64_neon_vshld_n, SHLddi>;
// Pattern to match llvm.arm.* intrinsic.
def : Neon_ScalarShiftImm_arm_D_size_patterns<shl, SHLddi>;
// Signed Saturating Shift Left (Immediate)
defm SQSHL : NeonI_ScalarShiftLeftImm_BHSD_size<0b0, 0b01110, "sqshl">;
defm : Neon_ScalarShiftImm_BHSD_size_patterns<int_aarch64_neon_vqshls_n,
SQSHLbbi, SQSHLhhi,
SQSHLssi, SQSHLddi>;
// Pattern to match llvm.arm.* intrinsic.
defm : Neon_ScalarShiftImm_D_size_patterns<Neon_sqrshlImm, SQSHLddi>;
// Unsigned Saturating Shift Left (Immediate)
defm UQSHL : NeonI_ScalarShiftLeftImm_BHSD_size<0b1, 0b01110, "uqshl">;
defm : Neon_ScalarShiftImm_BHSD_size_patterns<int_aarch64_neon_vqshlu_n,
UQSHLbbi, UQSHLhhi,
UQSHLssi, UQSHLddi>;
// Pattern to match llvm.arm.* intrinsic.
defm : Neon_ScalarShiftImm_D_size_patterns<Neon_uqrshlImm, UQSHLddi>;
// Signed Saturating Shift Left Unsigned (Immediate)
defm SQSHLU : NeonI_ScalarShiftLeftImm_BHSD_size<0b1, 0b01100, "sqshlu">;
defm : Neon_ScalarShiftImm_BHSD_size_patterns<int_aarch64_neon_vsqshlu,
SQSHLUbbi, SQSHLUhhi,
SQSHLUssi, SQSHLUddi>;
// Shift Right And Insert (Immediate)
def SRI : NeonI_ScalarShiftRightImm_accum_D_size<0b1, 0b01000, "sri">;
def : Neon_ScalarShiftImm_accum_D_size_patterns<int_aarch64_neon_vsri, SRI>;
// Shift Left And Insert (Immediate)
def SLI : NeonI_ScalarShiftLeftImm_accum_D_size<0b1, 0b01010, "sli">;
def : Neon_ScalarShiftImm_accum_D_size_patterns<int_aarch64_neon_vsli, SLI>;
// Signed Saturating Shift Right Narrow (Immediate)
defm SQSHRN : NeonI_ScalarShiftImm_narrow_HSD_size<0b0, 0b10010, "sqshrn">;
defm : Neon_ScalarShiftImm_narrow_HSD_size_patterns<int_aarch64_neon_vsqshrn,
SQSHRNbhi, SQSHRNhsi,
SQSHRNsdi>;
// Unsigned Saturating Shift Right Narrow (Immediate)
defm UQSHRN : NeonI_ScalarShiftImm_narrow_HSD_size<0b1, 0b10010, "uqshrn">;
defm : Neon_ScalarShiftImm_narrow_HSD_size_patterns<int_aarch64_neon_vuqshrn,
UQSHRNbhi, UQSHRNhsi,
UQSHRNsdi>;
// Signed Saturating Rounded Shift Right Narrow (Immediate)
defm SQRSHRN : NeonI_ScalarShiftImm_narrow_HSD_size<0b0, 0b10011, "sqrshrn">;
defm : Neon_ScalarShiftImm_narrow_HSD_size_patterns<int_aarch64_neon_vsqrshrn,
SQRSHRNbhi, SQRSHRNhsi,
SQRSHRNsdi>;
// Unsigned Saturating Rounded Shift Right Narrow (Immediate)
defm UQRSHRN : NeonI_ScalarShiftImm_narrow_HSD_size<0b1, 0b10011, "uqrshrn">;
defm : Neon_ScalarShiftImm_narrow_HSD_size_patterns<int_aarch64_neon_vuqrshrn,
UQRSHRNbhi, UQRSHRNhsi,
UQRSHRNsdi>;
// Signed Saturating Shift Right Unsigned Narrow (Immediate)
defm SQSHRUN : NeonI_ScalarShiftImm_narrow_HSD_size<0b1, 0b10000, "sqshrun">;
defm : Neon_ScalarShiftImm_narrow_HSD_size_patterns<int_aarch64_neon_vsqshrun,
SQSHRUNbhi, SQSHRUNhsi,
SQSHRUNsdi>;
// Signed Saturating Rounded Shift Right Unsigned Narrow (Immediate)
defm SQRSHRUN : NeonI_ScalarShiftImm_narrow_HSD_size<0b1, 0b10001, "sqrshrun">;
defm : Neon_ScalarShiftImm_narrow_HSD_size_patterns<int_aarch64_neon_vsqrshrun,
SQRSHRUNbhi, SQRSHRUNhsi,
SQRSHRUNsdi>;
// Scalar Signed Fixed-point Convert To Floating-Point (Immediate)
defm SCVTF_N : NeonI_ScalarShiftImm_cvt_SD_size<0b0, 0b11100, "scvtf">;
defm : Neon_ScalarShiftImm_scvtf_SD_size_patterns<int_aarch64_neon_vcvtf32_n_s32,
int_aarch64_neon_vcvtf64_n_s64,
SCVTF_Nssi, SCVTF_Nddi>;
// Scalar Unsigned Fixed-point Convert To Floating-Point (Immediate)
defm UCVTF_N : NeonI_ScalarShiftImm_cvt_SD_size<0b1, 0b11100, "ucvtf">;
defm : Neon_ScalarShiftImm_scvtf_SD_size_patterns<int_aarch64_neon_vcvtf32_n_u32,
int_aarch64_neon_vcvtf64_n_u64,
UCVTF_Nssi, UCVTF_Nddi>;
// Scalar Floating-point Convert To Signed Fixed-point (Immediate)
defm FCVTZS_N : NeonI_ScalarShiftImm_cvt_SD_size<0b0, 0b11111, "fcvtzs">;
defm : Neon_ScalarShiftImm_fcvts_SD_size_patterns<int_aarch64_neon_vcvts_n_s32_f32,
int_aarch64_neon_vcvtd_n_s64_f64,
FCVTZS_Nssi, FCVTZS_Nddi>;
// Scalar Floating-point Convert To Unsigned Fixed-point (Immediate)
defm FCVTZU_N : NeonI_ScalarShiftImm_cvt_SD_size<0b1, 0b11111, "fcvtzu">;
defm : Neon_ScalarShiftImm_fcvts_SD_size_patterns<int_aarch64_neon_vcvts_n_u32_f32,
int_aarch64_neon_vcvtd_n_u64_f64,
FCVTZU_Nssi, FCVTZU_Nddi>;
// Scalar Integer Add
let isCommutable = 1 in {
def ADDddd : NeonI_Scalar3Same_D_size<0b0, 0b10000, "add">;
}
// Scalar Integer Sub
def SUBddd : NeonI_Scalar3Same_D_size<0b1, 0b10000, "sub">;
// Pattern for Scalar Integer Add and Sub with D register only
defm : Neon_Scalar3Same_D_size_patterns<add, ADDddd>;
defm : Neon_Scalar3Same_D_size_patterns<sub, SUBddd>;
// Patterns to match llvm.aarch64.* intrinsic for Scalar Add, Sub
defm : Neon_Scalar3Same_D_size_patterns<int_aarch64_neon_vaddds, ADDddd>;
defm : Neon_Scalar3Same_D_size_patterns<int_aarch64_neon_vadddu, ADDddd>;
defm : Neon_Scalar3Same_D_size_patterns<int_aarch64_neon_vsubds, SUBddd>;
defm : Neon_Scalar3Same_D_size_patterns<int_aarch64_neon_vsubdu, SUBddd>;
// Scalar Integer Saturating Add (Signed, Unsigned)
defm SQADD : NeonI_Scalar3Same_BHSD_sizes<0b0, 0b00001, "sqadd", 1>;
defm UQADD : NeonI_Scalar3Same_BHSD_sizes<0b1, 0b00001, "uqadd", 1>;
// Scalar Integer Saturating Sub (Signed, Unsigned)
defm SQSUB : NeonI_Scalar3Same_BHSD_sizes<0b0, 0b00101, "sqsub", 0>;
defm UQSUB : NeonI_Scalar3Same_BHSD_sizes<0b1, 0b00101, "uqsub", 0>;
// Patterns to match llvm.aarch64.* intrinsic for
// Scalar Integer Saturating Add, Sub (Signed, Unsigned)
defm : Neon_Scalar3Same_BHSD_size_patterns<int_arm_neon_vqadds, SQADDbbb,
SQADDhhh, SQADDsss, SQADDddd>;
defm : Neon_Scalar3Same_BHSD_size_patterns<int_arm_neon_vqaddu, UQADDbbb,
UQADDhhh, UQADDsss, UQADDddd>;
defm : Neon_Scalar3Same_BHSD_size_patterns<int_arm_neon_vqsubs, SQSUBbbb,
SQSUBhhh, SQSUBsss, SQSUBddd>;
defm : Neon_Scalar3Same_BHSD_size_patterns<int_arm_neon_vqsubu, UQSUBbbb,
UQSUBhhh, UQSUBsss, UQSUBddd>;
// Scalar Integer Saturating Doubling Multiply Half High
defm SQDMULH : NeonI_Scalar3Same_HS_sizes<0b0, 0b10110, "sqdmulh", 1>;
// Scalar Integer Saturating Rounding Doubling Multiply Half High
defm SQRDMULH : NeonI_Scalar3Same_HS_sizes<0b1, 0b10110, "sqrdmulh", 1>;
// Patterns to match llvm.arm.* intrinsic for
// Scalar Integer Saturating Doubling Multiply Half High and
// Scalar Integer Saturating Rounding Doubling Multiply Half High
defm : Neon_Scalar3Same_HS_size_patterns<int_arm_neon_vqdmulh, SQDMULHhhh,
SQDMULHsss>;
defm : Neon_Scalar3Same_HS_size_patterns<int_arm_neon_vqrdmulh, SQRDMULHhhh,
SQRDMULHsss>;
// Scalar Floating-point Multiply Extended
defm FMULX : NeonI_Scalar3Same_SD_sizes<0b0, 0b0, 0b11011, "fmulx", 1>;
// Scalar Floating-point Reciprocal Step
defm FRECPS : NeonI_Scalar3Same_SD_sizes<0b0, 0b0, 0b11111, "frecps", 0>;
// Scalar Floating-point Reciprocal Square Root Step
defm FRSQRTS : NeonI_Scalar3Same_SD_sizes<0b0, 0b1, 0b11111, "frsqrts", 0>;
// Patterns to match llvm.arm.* intrinsic for
// Scalar Floating-point Reciprocal Step and
// Scalar Floating-point Reciprocal Square Root Step
defm : Neon_Scalar3Same_SD_size_patterns<int_arm_neon_vrecps, FRECPSsss,
FRECPSddd>;
defm : Neon_Scalar3Same_SD_size_patterns<int_arm_neon_vrsqrts, FRSQRTSsss,
FRSQRTSddd>;
// Patterns to match llvm.aarch64.* intrinsic for
// Scalar Floating-point Multiply Extended,
multiclass Neon_Scalar3Same_MULX_SD_size_patterns<SDPatternOperator opnode,
Instruction INSTS,
Instruction INSTD> {
def : Pat<(f32 (opnode (f32 FPR32:$Rn), (f32 FPR32:$Rm))),
(INSTS FPR32:$Rn, FPR32:$Rm)>;
def : Pat<(f64 (opnode (f64 FPR64:$Rn), (f64 FPR64:$Rm))),
(INSTD FPR64:$Rn, FPR64:$Rm)>;
}
defm : Neon_Scalar3Same_MULX_SD_size_patterns<int_aarch64_neon_vmulx,
FMULXsss,FMULXddd>;
// Scalar Integer Shift Left (Signed, Unsigned)
def SSHLddd : NeonI_Scalar3Same_D_size<0b0, 0b01000, "sshl">;
def USHLddd : NeonI_Scalar3Same_D_size<0b1, 0b01000, "ushl">;
// Patterns to match llvm.arm.* intrinsic for
// Scalar Integer Shift Left (Signed, Unsigned)
defm : Neon_Scalar3Same_D_size_patterns<int_arm_neon_vshifts, SSHLddd>;
defm : Neon_Scalar3Same_D_size_patterns<int_arm_neon_vshiftu, USHLddd>;
// Patterns to match llvm.aarch64.* intrinsic for
// Scalar Integer Shift Left (Signed, Unsigned)
defm : Neon_Scalar3Same_D_size_patterns<int_aarch64_neon_vshlds, SSHLddd>;
defm : Neon_Scalar3Same_D_size_patterns<int_aarch64_neon_vshldu, USHLddd>;
// Scalar Integer Saturating Shift Left (Signed, Unsigned)
defm SQSHL: NeonI_Scalar3Same_BHSD_sizes<0b0, 0b01001, "sqshl", 0>;
defm UQSHL: NeonI_Scalar3Same_BHSD_sizes<0b1, 0b01001, "uqshl", 0>;
// Patterns to match llvm.aarch64.* intrinsic for
// Scalar Integer Saturating Shift Letf (Signed, Unsigned)
defm : Neon_Scalar3Same_BHSD_size_patterns<int_aarch64_neon_vqshls, SQSHLbbb,
SQSHLhhh, SQSHLsss, SQSHLddd>;
defm : Neon_Scalar3Same_BHSD_size_patterns<int_aarch64_neon_vqshlu, UQSHLbbb,
UQSHLhhh, UQSHLsss, UQSHLddd>;
// Patterns to match llvm.arm.* intrinsic for
// Scalar Integer Saturating Shift Letf (Signed, Unsigned)
defm : Neon_Scalar3Same_D_size_patterns<int_arm_neon_vqshifts, SQSHLddd>;
defm : Neon_Scalar3Same_D_size_patterns<int_arm_neon_vqshiftu, UQSHLddd>;
// Scalar Integer Rounding Shift Left (Signed, Unsigned)
def SRSHLddd: NeonI_Scalar3Same_D_size<0b0, 0b01010, "srshl">;
def URSHLddd: NeonI_Scalar3Same_D_size<0b1, 0b01010, "urshl">;
// Patterns to match llvm.aarch64.* intrinsic for
// Scalar Integer Rounding Shift Left (Signed, Unsigned)
defm : Neon_Scalar3Same_D_size_patterns<int_aarch64_neon_vrshlds, SRSHLddd>;
defm : Neon_Scalar3Same_D_size_patterns<int_aarch64_neon_vrshldu, URSHLddd>;
// Patterns to match llvm.arm.* intrinsic for
// Scalar Integer Rounding Shift Left (Signed, Unsigned)
defm : Neon_Scalar3Same_D_size_patterns<int_arm_neon_vrshifts, SRSHLddd>;
defm : Neon_Scalar3Same_D_size_patterns<int_arm_neon_vrshiftu, URSHLddd>;
// Scalar Integer Saturating Rounding Shift Left (Signed, Unsigned)
defm SQRSHL: NeonI_Scalar3Same_BHSD_sizes<0b0, 0b01011, "sqrshl", 0>;
defm UQRSHL: NeonI_Scalar3Same_BHSD_sizes<0b1, 0b01011, "uqrshl", 0>;
// Patterns to match llvm.aarch64.* intrinsic for
// Scalar Integer Saturating Rounding Shift Left (Signed, Unsigned)
defm : Neon_Scalar3Same_BHSD_size_patterns<int_aarch64_neon_vqrshls, SQRSHLbbb,
SQRSHLhhh, SQRSHLsss, SQRSHLddd>;
defm : Neon_Scalar3Same_BHSD_size_patterns<int_aarch64_neon_vqrshlu, UQRSHLbbb,
UQRSHLhhh, UQRSHLsss, UQRSHLddd>;
// Patterns to match llvm.arm.* intrinsic for
// Scalar Integer Saturating Rounding Shift Left (Signed, Unsigned)
defm : Neon_Scalar3Same_D_size_patterns<int_arm_neon_vqrshifts, SQRSHLddd>;
defm : Neon_Scalar3Same_D_size_patterns<int_arm_neon_vqrshiftu, UQRSHLddd>;
// Signed Saturating Doubling Multiply-Add Long
defm SQDMLAL : NeonI_Scalar3Diff_ml_HS_size<0b0, 0b1001, "sqdmlal">;
defm : Neon_Scalar3Diff_ml_HS_size_patterns<int_aarch64_neon_vqdmlal,
SQDMLALshh, SQDMLALdss>;
// Signed Saturating Doubling Multiply-Subtract Long
defm SQDMLSL : NeonI_Scalar3Diff_ml_HS_size<0b0, 0b1011, "sqdmlsl">;
defm : Neon_Scalar3Diff_ml_HS_size_patterns<int_aarch64_neon_vqdmlsl,
SQDMLSLshh, SQDMLSLdss>;
// Signed Saturating Doubling Multiply Long
defm SQDMULL : NeonI_Scalar3Diff_HS_size<0b0, 0b1101, "sqdmull">;
defm : Neon_Scalar3Diff_HS_size_patterns<int_arm_neon_vqdmull,
SQDMULLshh, SQDMULLdss>;
// Scalar Signed Integer Convert To Floating-point
defm SCVTF : NeonI_Scalar2SameMisc_SD_size<0b0, 0b0, 0b11101, "scvtf">;
defm : Neon_Scalar2SameMisc_cvt_SD_size_patterns<int_aarch64_neon_vcvtf32_s32,
int_aarch64_neon_vcvtf64_s64,
SCVTFss, SCVTFdd>;
// Scalar Unsigned Integer Convert To Floating-point
defm UCVTF : NeonI_Scalar2SameMisc_SD_size<0b1, 0b0, 0b11101, "ucvtf">;
defm : Neon_Scalar2SameMisc_cvt_SD_size_patterns<int_aarch64_neon_vcvtf32_u32,
int_aarch64_neon_vcvtf64_u64,
UCVTFss, UCVTFdd>;
// Scalar Floating-point Converts
def FCVTXN : NeonI_Scalar2SameMisc_fcvtxn_D_size<0b1, 0b10110, "fcvtxn">;
def : Neon_Scalar2SameMisc_fcvtxn_D_size_patterns<int_aarch64_neon_fcvtxn,
FCVTXN>;
defm FCVTNS : NeonI_Scalar2SameMisc_SD_size<0b0, 0b0, 0b11010, "fcvtns">;
defm : Neon_Scalar2SameMisc_fcvt_SD_size_patterns<int_aarch64_neon_fcvtns,
FCVTNSss, FCVTNSdd>;
defm FCVTNU : NeonI_Scalar2SameMisc_SD_size<0b1, 0b0, 0b11010, "fcvtnu">;
defm : Neon_Scalar2SameMisc_fcvt_SD_size_patterns<int_aarch64_neon_fcvtnu,
FCVTNUss, FCVTNUdd>;
defm FCVTMS : NeonI_Scalar2SameMisc_SD_size<0b0, 0b0, 0b11011, "fcvtms">;
defm : Neon_Scalar2SameMisc_fcvt_SD_size_patterns<int_aarch64_neon_fcvtms,
FCVTMSss, FCVTMSdd>;
defm FCVTMU : NeonI_Scalar2SameMisc_SD_size<0b1, 0b0, 0b11011, "fcvtmu">;
defm : Neon_Scalar2SameMisc_fcvt_SD_size_patterns<int_aarch64_neon_fcvtmu,
FCVTMUss, FCVTMUdd>;
defm FCVTAS : NeonI_Scalar2SameMisc_SD_size<0b0, 0b0, 0b11100, "fcvtas">;
defm : Neon_Scalar2SameMisc_fcvt_SD_size_patterns<int_aarch64_neon_fcvtas,
FCVTASss, FCVTASdd>;
defm FCVTAU : NeonI_Scalar2SameMisc_SD_size<0b1, 0b0, 0b11100, "fcvtau">;
defm : Neon_Scalar2SameMisc_fcvt_SD_size_patterns<int_aarch64_neon_fcvtau,
FCVTAUss, FCVTAUdd>;
defm FCVTPS : NeonI_Scalar2SameMisc_SD_size<0b0, 0b1, 0b11010, "fcvtps">;
defm : Neon_Scalar2SameMisc_fcvt_SD_size_patterns<int_aarch64_neon_fcvtps,
FCVTPSss, FCVTPSdd>;
defm FCVTPU : NeonI_Scalar2SameMisc_SD_size<0b1, 0b1, 0b11010, "fcvtpu">;
defm : Neon_Scalar2SameMisc_fcvt_SD_size_patterns<int_aarch64_neon_fcvtpu,
FCVTPUss, FCVTPUdd>;
defm FCVTZS : NeonI_Scalar2SameMisc_SD_size<0b0, 0b1, 0b11011, "fcvtzs">;
defm : Neon_Scalar2SameMisc_fcvt_SD_size_patterns<int_aarch64_neon_fcvtzs,
FCVTZSss, FCVTZSdd>;
defm FCVTZU : NeonI_Scalar2SameMisc_SD_size<0b1, 0b1, 0b11011, "fcvtzu">;
defm : Neon_Scalar2SameMisc_fcvt_SD_size_patterns<int_aarch64_neon_fcvtzu,
FCVTZUss, FCVTZUdd>;
// Scalar Floating-point Reciprocal Estimate
defm FRECPE : NeonI_Scalar2SameMisc_SD_size<0b0, 0b1, 0b11101, "frecpe">;
defm : Neon_Scalar2SameMisc_SD_size_patterns<int_arm_neon_vrecpe,
FRECPEss, FRECPEdd>;
// Scalar Floating-point Reciprocal Exponent
defm FRECPX : NeonI_Scalar2SameMisc_SD_size<0b0, 0b1, 0b11111, "frecpx">;
defm : Neon_Scalar2SameMisc_SD_size_patterns<int_aarch64_neon_vrecpx,
FRECPXss, FRECPXdd>;
// Scalar Floating-point Reciprocal Square Root Estimate
defm FRSQRTE: NeonI_Scalar2SameMisc_SD_size<0b1, 0b1, 0b11101, "frsqrte">;
defm : Neon_Scalar2SameMisc_SD_size_patterns<int_arm_neon_vrsqrte,
FRSQRTEss, FRSQRTEdd>;
// Scalar Integer Compare
// Scalar Compare Bitwise Equal
def CMEQddd: NeonI_Scalar3Same_D_size<0b1, 0b10001, "cmeq">;
def : Neon_Scalar3Same_cmp_D_size_patterns<int_aarch64_neon_vceq, CMEQddd>;
class Neon_Scalar3Same_cmp_D_size_v1_patterns<SDPatternOperator opnode,
Instruction INSTD,
CondCode CC>
: Pat<(v1i64 (opnode (v1i64 FPR64:$Rn), (v1i64 FPR64:$Rm), CC)),
(INSTD FPR64:$Rn, FPR64:$Rm)>;
def : Neon_Scalar3Same_cmp_D_size_v1_patterns<Neon_cmp, CMEQddd, SETEQ>;
// Scalar Compare Signed Greather Than Or Equal
def CMGEddd: NeonI_Scalar3Same_D_size<0b0, 0b00111, "cmge">;
def : Neon_Scalar3Same_cmp_D_size_patterns<int_aarch64_neon_vcge, CMGEddd>;
// Scalar Compare Unsigned Higher Or Same
def CMHSddd: NeonI_Scalar3Same_D_size<0b1, 0b00111, "cmhs">;
def : Neon_Scalar3Same_cmp_D_size_patterns<int_aarch64_neon_vchs, CMHSddd>;
// Scalar Compare Unsigned Higher
def CMHIddd: NeonI_Scalar3Same_D_size<0b1, 0b00110, "cmhi">;
def : Neon_Scalar3Same_cmp_D_size_patterns<int_aarch64_neon_vchi, CMHIddd>;
// Scalar Compare Signed Greater Than
def CMGTddd: NeonI_Scalar3Same_D_size<0b0, 0b00110, "cmgt">;
def : Neon_Scalar3Same_cmp_D_size_patterns<int_aarch64_neon_vcgt, CMGTddd>;
// Scalar Compare Bitwise Test Bits
def CMTSTddd: NeonI_Scalar3Same_D_size<0b0, 0b10001, "cmtst">;
def : Neon_Scalar3Same_cmp_D_size_patterns<int_aarch64_neon_vtstd, CMTSTddd>;
def : Neon_Scalar3Same_cmp_D_size_patterns<Neon_tst, CMTSTddd>;
// Scalar Compare Bitwise Equal To Zero
def CMEQddi: NeonI_Scalar2SameMisc_cmpz_D_size<0b0, 0b01001, "cmeq">;
def : Neon_Scalar2SameMisc_cmpz_D_size_patterns<int_aarch64_neon_vceq,
CMEQddi>;
// Scalar Compare Signed Greather Than Or Equal To Zero
def CMGEddi: NeonI_Scalar2SameMisc_cmpz_D_size<0b1, 0b01000, "cmge">;
def : Neon_Scalar2SameMisc_cmpz_D_size_patterns<int_aarch64_neon_vcge,
CMGEddi>;
// Scalar Compare Signed Greater Than Zero
def CMGTddi: NeonI_Scalar2SameMisc_cmpz_D_size<0b0, 0b01000, "cmgt">;
def : Neon_Scalar2SameMisc_cmpz_D_size_patterns<int_aarch64_neon_vcgt,
CMGTddi>;
// Scalar Compare Signed Less Than Or Equal To Zero
def CMLEddi: NeonI_Scalar2SameMisc_cmpz_D_size<0b1, 0b01001, "cmle">;
def : Neon_Scalar2SameMisc_cmpz_D_size_patterns<int_aarch64_neon_vclez,
CMLEddi>;
// Scalar Compare Less Than Zero
def CMLTddi: NeonI_Scalar2SameMisc_cmpz_D_size<0b0, 0b01010, "cmlt">;
def : Neon_Scalar2SameMisc_cmpz_D_size_patterns<int_aarch64_neon_vcltz,
CMLTddi>;
// Scalar Floating-point Compare
// Scalar Floating-point Compare Mask Equal
defm FCMEQ: NeonI_Scalar3Same_SD_sizes<0b0, 0b0, 0b11100, "fcmeq">;
defm : Neon_Scalar3Same_cmp_SD_size_patterns<int_aarch64_neon_vceq,
FCMEQsss, FCMEQddd>;
// Scalar Floating-point Compare Mask Equal To Zero
defm FCMEQZ: NeonI_Scalar2SameMisc_cmpz_SD_size<0b0, 0b01101, "fcmeq">;
defm : Neon_Scalar2SameMisc_cmpz_SD_size_patterns<int_aarch64_neon_vceq,
FCMEQZssi, FCMEQZddi>;
// Scalar Floating-point Compare Mask Greater Than Or Equal
defm FCMGE: NeonI_Scalar3Same_SD_sizes<0b1, 0b0, 0b11100, "fcmge">;
defm : Neon_Scalar3Same_cmp_SD_size_patterns<int_aarch64_neon_vcge,
FCMGEsss, FCMGEddd>;
// Scalar Floating-point Compare Mask Greater Than Or Equal To Zero
defm FCMGEZ: NeonI_Scalar2SameMisc_cmpz_SD_size<0b1, 0b01100, "fcmge">;
defm : Neon_Scalar2SameMisc_cmpz_SD_size_patterns<int_aarch64_neon_vcge,
FCMGEZssi, FCMGEZddi>;
// Scalar Floating-point Compare Mask Greather Than
defm FCMGT: NeonI_Scalar3Same_SD_sizes<0b1, 0b1, 0b11100, "fcmgt">;
defm : Neon_Scalar3Same_cmp_SD_size_patterns<int_aarch64_neon_vcgt,
FCMGTsss, FCMGTddd>;
// Scalar Floating-point Compare Mask Greather Than Zero
defm FCMGTZ: NeonI_Scalar2SameMisc_cmpz_SD_size<0b0, 0b01100, "fcmgt">;
defm : Neon_Scalar2SameMisc_cmpz_SD_size_patterns<int_aarch64_neon_vcgt,
FCMGTZssi, FCMGTZddi>;
// Scalar Floating-point Compare Mask Less Than Or Equal To Zero
defm FCMLEZ: NeonI_Scalar2SameMisc_cmpz_SD_size<0b1, 0b01101, "fcmle">;
defm : Neon_Scalar2SameMisc_cmpz_SD_size_patterns<int_aarch64_neon_vclez,
FCMLEZssi, FCMLEZddi>;
// Scalar Floating-point Compare Mask Less Than Zero
defm FCMLTZ: NeonI_Scalar2SameMisc_cmpz_SD_size<0b0, 0b01110, "fcmlt">;
defm : Neon_Scalar2SameMisc_cmpz_SD_size_patterns<int_aarch64_neon_vcltz,
FCMLTZssi, FCMLTZddi>;
// Scalar Floating-point Absolute Compare Mask Greater Than Or Equal
defm FACGE: NeonI_Scalar3Same_SD_sizes<0b1, 0b0, 0b11101, "facge">;
defm : Neon_Scalar3Same_cmp_SD_size_patterns<int_aarch64_neon_vcage,
FACGEsss, FACGEddd>;
// Scalar Floating-point Absolute Compare Mask Greater Than
defm FACGT: NeonI_Scalar3Same_SD_sizes<0b1, 0b1, 0b11101, "facgt">;
defm : Neon_Scalar3Same_cmp_SD_size_patterns<int_aarch64_neon_vcagt,
FACGTsss, FACGTddd>;
// Scakar Floating-point Absolute Difference
defm FABD: NeonI_Scalar3Same_SD_sizes<0b1, 0b1, 0b11010, "fabd">;
defm : Neon_Scalar3Same_SD_size_patterns<int_aarch64_neon_vabd,
FABDsss, FABDddd>;
// Scalar Absolute Value
defm ABS : NeonI_Scalar2SameMisc_D_size<0b0, 0b01011, "abs">;
defm : Neon_Scalar2SameMisc_D_size_patterns<int_aarch64_neon_vabs, ABSdd>;
// Scalar Signed Saturating Absolute Value
defm SQABS : NeonI_Scalar2SameMisc_BHSD_size<0b0, 0b00111, "sqabs">;
defm : Neon_Scalar2SameMisc_BHSD_size_patterns<int_arm_neon_vqabs,
SQABSbb, SQABShh, SQABSss, SQABSdd>;
// Scalar Negate
defm NEG : NeonI_Scalar2SameMisc_D_size<0b1, 0b01011, "neg">;
defm : Neon_Scalar2SameMisc_D_size_patterns<int_aarch64_neon_vneg, NEGdd>;
// Scalar Signed Saturating Negate
defm SQNEG : NeonI_Scalar2SameMisc_BHSD_size<0b1, 0b00111, "sqneg">;
defm : Neon_Scalar2SameMisc_BHSD_size_patterns<int_arm_neon_vqneg,
SQNEGbb, SQNEGhh, SQNEGss, SQNEGdd>;
// Scalar Signed Saturating Accumulated of Unsigned Value
defm SUQADD : NeonI_Scalar2SameMisc_accum_BHSD_size<0b0, 0b00011, "suqadd">;
defm : Neon_Scalar2SameMisc_accum_BHSD_size_patterns<int_aarch64_neon_vuqadd,
SUQADDbb, SUQADDhh,
SUQADDss, SUQADDdd>;
// Scalar Unsigned Saturating Accumulated of Signed Value
defm USQADD : NeonI_Scalar2SameMisc_accum_BHSD_size<0b1, 0b00011, "usqadd">;
defm : Neon_Scalar2SameMisc_accum_BHSD_size_patterns<int_aarch64_neon_vsqadd,
USQADDbb, USQADDhh,
USQADDss, USQADDdd>;
// Scalar Signed Saturating Extract Unsigned Narrow
defm SQXTUN : NeonI_Scalar2SameMisc_narrow_HSD_size<0b1, 0b10010, "sqxtun">;
defm : Neon_Scalar2SameMisc_narrow_HSD_size_patterns<int_arm_neon_vqmovnsu,
SQXTUNbh, SQXTUNhs,
SQXTUNsd>;
// Scalar Signed Saturating Extract Narrow
defm SQXTN : NeonI_Scalar2SameMisc_narrow_HSD_size<0b0, 0b10100, "sqxtn">;
defm : Neon_Scalar2SameMisc_narrow_HSD_size_patterns<int_arm_neon_vqmovns,
SQXTNbh, SQXTNhs,
SQXTNsd>;
// Scalar Unsigned Saturating Extract Narrow
defm UQXTN : NeonI_Scalar2SameMisc_narrow_HSD_size<0b1, 0b10100, "uqxtn">;
defm : Neon_Scalar2SameMisc_narrow_HSD_size_patterns<int_arm_neon_vqmovnu,
UQXTNbh, UQXTNhs,
UQXTNsd>;
// Scalar Reduce Pairwise
multiclass NeonI_ScalarPair_D_sizes<bit u, bit size, bits<5> opcode,
string asmop, bit Commutable = 0> {
let isCommutable = Commutable in {
def _D_2D : NeonI_ScalarPair<u, {size, 0b1}, opcode,
(outs FPR64:$Rd), (ins VPR128:$Rn),
!strconcat(asmop, "\t$Rd, $Rn.2d"),
[],
NoItinerary>;
}
}
multiclass NeonI_ScalarPair_SD_sizes<bit u, bit size, bits<5> opcode,
string asmop, bit Commutable = 0>
: NeonI_ScalarPair_D_sizes<u, size, opcode, asmop, Commutable> {
let isCommutable = Commutable in {
def _S_2S : NeonI_ScalarPair<u, {size, 0b0}, opcode,
(outs FPR32:$Rd), (ins VPR64:$Rn),
!strconcat(asmop, "\t$Rd, $Rn.2s"),
[],
NoItinerary>;
}
}
// Scalar Reduce Addition Pairwise (Integer) with
// Pattern to match llvm.arm.* intrinsic
defm ADDPvv : NeonI_ScalarPair_D_sizes<0b0, 0b1, 0b11011, "addp", 0>;
// Pattern to match llvm.aarch64.* intrinsic for
// Scalar Reduce Addition Pairwise (Integer)
def : Pat<(v1i64 (int_aarch64_neon_vpadd (v2i64 VPR128:$Rn))),
(ADDPvv_D_2D VPR128:$Rn)>;
// Scalar Reduce Addition Pairwise (Floating Point)
defm FADDPvv : NeonI_ScalarPair_SD_sizes<0b1, 0b0, 0b01101, "faddp", 0>;
// Scalar Reduce Maximum Pairwise (Floating Point)
defm FMAXPvv : NeonI_ScalarPair_SD_sizes<0b1, 0b0, 0b01111, "fmaxp", 0>;
// Scalar Reduce Minimum Pairwise (Floating Point)
defm FMINPvv : NeonI_ScalarPair_SD_sizes<0b1, 0b1, 0b01111, "fminp", 0>;
// Scalar Reduce maxNum Pairwise (Floating Point)
defm FMAXNMPvv : NeonI_ScalarPair_SD_sizes<0b1, 0b0, 0b01100, "fmaxnmp", 0>;
// Scalar Reduce minNum Pairwise (Floating Point)
defm FMINNMPvv : NeonI_ScalarPair_SD_sizes<0b1, 0b1, 0b01100, "fminnmp", 0>;
multiclass Neon_ScalarPair_SD_size_patterns<SDPatternOperator opnodeS,
SDPatternOperator opnodeD,
Instruction INSTS,
Instruction INSTD> {
def : Pat<(v1f32 (opnodeS (v2f32 VPR64:$Rn))),
(INSTS VPR64:$Rn)>;
def : Pat<(v1f64 (opnodeD (v2f64 VPR128:$Rn))),
(INSTD VPR128:$Rn)>;
}
// Patterns to match llvm.aarch64.* intrinsic for
// Scalar Reduce Add, Max, Min, MaxiNum, MinNum Pairwise (Floating Point)
defm : Neon_ScalarPair_SD_size_patterns<int_aarch64_neon_vpfadd,
int_aarch64_neon_vpfaddq, FADDPvv_S_2S, FADDPvv_D_2D>;
defm : Neon_ScalarPair_SD_size_patterns<int_aarch64_neon_vpmax,
int_aarch64_neon_vpmaxq, FMAXPvv_S_2S, FMAXPvv_D_2D>;
defm : Neon_ScalarPair_SD_size_patterns<int_aarch64_neon_vpmin,
int_aarch64_neon_vpminq, FMINPvv_S_2S, FMINPvv_D_2D>;
defm : Neon_ScalarPair_SD_size_patterns<int_aarch64_neon_vpfmaxnm,
int_aarch64_neon_vpfmaxnmq, FMAXNMPvv_S_2S, FMAXNMPvv_D_2D>;
defm : Neon_ScalarPair_SD_size_patterns<int_aarch64_neon_vpfminnm,
int_aarch64_neon_vpfminnmq, FMINNMPvv_S_2S, FMINNMPvv_D_2D>;
// Scalar by element Arithmetic
class NeonI_ScalarXIndexedElemArith<string asmop, bits<4> opcode,
string rmlane, bit u, bit szhi, bit szlo,
RegisterClass ResFPR, RegisterClass OpFPR,
RegisterOperand OpVPR, Operand OpImm>
: NeonI_ScalarXIndexedElem<u, szhi, szlo, opcode,
(outs ResFPR:$Rd),
(ins OpFPR:$Rn, OpVPR:$MRm, OpImm:$Imm),
asmop # "\t$Rd, $Rn, $MRm" # rmlane # "[$Imm]",
[],
NoItinerary> {
bits<3> Imm;
bits<5> MRm;
}
class NeonI_ScalarXIndexedElemArith_Constraint_Impl<string asmop, bits<4> opcode,
string rmlane,
bit u, bit szhi, bit szlo,
RegisterClass ResFPR,
RegisterClass OpFPR,
RegisterOperand OpVPR,
Operand OpImm>
: NeonI_ScalarXIndexedElem<u, szhi, szlo, opcode,
(outs ResFPR:$Rd),
(ins ResFPR:$src, OpFPR:$Rn, OpVPR:$MRm, OpImm:$Imm),
asmop # "\t$Rd, $Rn, $MRm" # rmlane # "[$Imm]",
[],
NoItinerary> {
let Constraints = "$src = $Rd";
bits<3> Imm;
bits<5> MRm;
}
// Scalar Floating Point multiply (scalar, by element)
def FMULssv_4S : NeonI_ScalarXIndexedElemArith<"fmul",
0b1001, ".s", 0b0, 0b1, 0b0, FPR32, FPR32, VPR128, neon_uimm2_bare> {
let Inst{11} = Imm{1}; // h
let Inst{21} = Imm{0}; // l
let Inst{20-16} = MRm;
}
def FMULddv_2D : NeonI_ScalarXIndexedElemArith<"fmul",
0b1001, ".d", 0b0, 0b1, 0b1, FPR64, FPR64, VPR128, neon_uimm1_bare> {
let Inst{11} = Imm{0}; // h
let Inst{21} = 0b0; // l
let Inst{20-16} = MRm;
}
// Scalar Floating Point multiply extended (scalar, by element)
def FMULXssv_4S : NeonI_ScalarXIndexedElemArith<"fmulx",
0b1001, ".s", 0b1, 0b1, 0b0, FPR32, FPR32, VPR128, neon_uimm2_bare> {
let Inst{11} = Imm{1}; // h
let Inst{21} = Imm{0}; // l
let Inst{20-16} = MRm;
}
def FMULXddv_2D : NeonI_ScalarXIndexedElemArith<"fmulx",
0b1001, ".d", 0b1, 0b1, 0b1, FPR64, FPR64, VPR128, neon_uimm1_bare> {
let Inst{11} = Imm{0}; // h
let Inst{21} = 0b0; // l
let Inst{20-16} = MRm;
}
multiclass Neon_ScalarXIndexedElem_MUL_MULX_Patterns<
SDPatternOperator opnode,
Instruction INST,
ValueType ResTy, RegisterClass FPRC, ValueType OpTy, Operand OpImm,
ValueType OpNTy, ValueType ExTy, Operand OpNImm> {
def : Pat<(ResTy (opnode (ResTy FPRC:$Rn),
(ResTy (vector_extract (OpTy VPR128:$MRm), OpImm:$Imm)))),
(ResTy (INST (ResTy FPRC:$Rn), (OpTy VPR128:$MRm), OpImm:$Imm))>;
def : Pat<(ResTy (opnode (ResTy FPRC:$Rn),
(ResTy (vector_extract (OpNTy VPR64:$MRm), OpNImm:$Imm)))),
(ResTy (INST (ResTy FPRC:$Rn),
(ExTy (SUBREG_TO_REG (i64 0), VPR64:$MRm, sub_64)),
OpNImm:$Imm))>;
// swapped operands
def : Pat<(ResTy (opnode
(ResTy (vector_extract (OpTy VPR128:$MRm), OpImm:$Imm)),
(ResTy FPRC:$Rn))),
(ResTy (INST (ResTy FPRC:$Rn), (OpTy VPR128:$MRm), OpImm:$Imm))>;
def : Pat<(ResTy (opnode
(ResTy (vector_extract (OpNTy VPR64:$MRm), OpNImm:$Imm)),
(ResTy FPRC:$Rn))),
(ResTy (INST (ResTy FPRC:$Rn),
(ExTy (SUBREG_TO_REG (i64 0), VPR64:$MRm, sub_64)),
OpNImm:$Imm))>;
}
// Patterns for Scalar Floating Point multiply (scalar, by element)
defm : Neon_ScalarXIndexedElem_MUL_MULX_Patterns<fmul, FMULssv_4S,
f32, FPR32, v4f32, neon_uimm2_bare, v2f32, v4f32, neon_uimm1_bare>;
defm : Neon_ScalarXIndexedElem_MUL_MULX_Patterns<fmul, FMULddv_2D,
f64, FPR64, v2f64, neon_uimm1_bare, v1f64, v2f64, neon_uimm0_bare>;
// Patterns for Scalar Floating Point multiply extended (scalar, by element)
defm : Neon_ScalarXIndexedElem_MUL_MULX_Patterns<int_aarch64_neon_vmulx,
FMULXssv_4S, f32, FPR32, v4f32, neon_uimm2_bare,
v2f32, v4f32, neon_uimm1_bare>;
defm : Neon_ScalarXIndexedElem_MUL_MULX_Patterns<int_aarch64_neon_vmulx,
FMULXddv_2D, f64, FPR64, v2f64, neon_uimm1_bare,
v1f64, v2f64, neon_uimm0_bare>;
// Scalar Floating Point fused multiply-add (scalar, by element)
def FMLAssv_4S : NeonI_ScalarXIndexedElemArith_Constraint_Impl<"fmla",
0b0001, ".s", 0b0, 0b1, 0b0, FPR32, FPR32, VPR128, neon_uimm2_bare> {
let Inst{11} = Imm{1}; // h
let Inst{21} = Imm{0}; // l
let Inst{20-16} = MRm;
}
def FMLAddv_2D : NeonI_ScalarXIndexedElemArith_Constraint_Impl<"fmla",
0b0001, ".d", 0b0, 0b1, 0b1, FPR64, FPR64, VPR128, neon_uimm1_bare> {
let Inst{11} = Imm{0}; // h
let Inst{21} = 0b0; // l
let Inst{20-16} = MRm;
}
// Scalar Floating Point fused multiply-subtract (scalar, by element)
def FMLSssv_4S : NeonI_ScalarXIndexedElemArith_Constraint_Impl<"fmls",
0b0101, ".s", 0b0, 0b1, 0b0, FPR32, FPR32, VPR128, neon_uimm2_bare> {
let Inst{11} = Imm{1}; // h
let Inst{21} = Imm{0}; // l
let Inst{20-16} = MRm;
}
def FMLSddv_2D : NeonI_ScalarXIndexedElemArith_Constraint_Impl<"fmls",
0b0101, ".d", 0b0, 0b1, 0b1, FPR64, FPR64, VPR128, neon_uimm1_bare> {
let Inst{11} = Imm{0}; // h
let Inst{21} = 0b0; // l
let Inst{20-16} = MRm;
}
// We are allowed to match the fma instruction regardless of compile options.
multiclass Neon_ScalarXIndexedElem_FMA_Patterns<
Instruction FMLAI, Instruction FMLSI,
ValueType ResTy, RegisterClass FPRC, ValueType OpTy, Operand OpImm,
ValueType OpNTy, ValueType ExTy, Operand OpNImm> {
// fmla
def : Pat<(ResTy (fma (ResTy FPRC:$Rn),
(ResTy (vector_extract (OpTy VPR128:$MRm), OpImm:$Imm)),
(ResTy FPRC:$Ra))),
(ResTy (FMLAI (ResTy FPRC:$Ra),
(ResTy FPRC:$Rn), (OpTy VPR128:$MRm), OpImm:$Imm))>;
def : Pat<(ResTy (fma (ResTy FPRC:$Rn),
(ResTy (vector_extract (OpNTy VPR64:$MRm), OpNImm:$Imm)),
(ResTy FPRC:$Ra))),
(ResTy (FMLAI (ResTy FPRC:$Ra),
(ResTy FPRC:$Rn),
(ExTy (SUBREG_TO_REG (i64 0), VPR64:$MRm, sub_64)),
OpNImm:$Imm))>;
// swapped fmla operands
def : Pat<(ResTy (fma
(ResTy (vector_extract (OpTy VPR128:$MRm), OpImm:$Imm)),
(ResTy FPRC:$Rn),
(ResTy FPRC:$Ra))),
(ResTy (FMLAI (ResTy FPRC:$Ra),
(ResTy FPRC:$Rn), (OpTy VPR128:$MRm), OpImm:$Imm))>;
def : Pat<(ResTy (fma
(ResTy (vector_extract (OpNTy VPR64:$MRm), OpNImm:$Imm)),
(ResTy FPRC:$Rn),
(ResTy FPRC:$Ra))),
(ResTy (FMLAI (ResTy FPRC:$Ra),
(ResTy FPRC:$Rn),
(ExTy (SUBREG_TO_REG (i64 0), VPR64:$MRm, sub_64)),
OpNImm:$Imm))>;
// fmls
def : Pat<(ResTy (fma (ResTy FPRC:$Rn),
(fneg (ResTy (vector_extract (OpTy VPR128:$MRm), OpImm:$Imm))),
(ResTy FPRC:$Ra))),
(ResTy (FMLSI (ResTy FPRC:$Ra),
(ResTy FPRC:$Rn), (OpTy VPR128:$MRm), OpImm:$Imm))>;
def : Pat<(ResTy (fma (ResTy FPRC:$Rn),
(fneg (ResTy (vector_extract (OpNTy VPR64:$MRm), OpNImm:$Imm))),
(ResTy FPRC:$Ra))),
(ResTy (FMLSI (ResTy FPRC:$Ra),
(ResTy FPRC:$Rn),
(ExTy (SUBREG_TO_REG (i64 0), VPR64:$MRm, sub_64)),
OpNImm:$Imm))>;
// swapped fmls operands
def : Pat<(ResTy (fma
(fneg (ResTy (vector_extract (OpTy VPR128:$MRm), OpImm:$Imm))),
(ResTy FPRC:$Rn),
(ResTy FPRC:$Ra))),
(ResTy (FMLSI (ResTy FPRC:$Ra),
(ResTy FPRC:$Rn), (OpTy VPR128:$MRm), OpImm:$Imm))>;
def : Pat<(ResTy (fma
(fneg (ResTy (vector_extract (OpNTy VPR64:$MRm), OpNImm:$Imm))),
(ResTy FPRC:$Rn),
(ResTy FPRC:$Ra))),
(ResTy (FMLSI (ResTy FPRC:$Ra),
(ResTy FPRC:$Rn),
(ExTy (SUBREG_TO_REG (i64 0), VPR64:$MRm, sub_64)),
OpNImm:$Imm))>;
}
// Scalar Floating Point fused multiply-add and
// multiply-subtract (scalar, by element)
defm : Neon_ScalarXIndexedElem_FMA_Patterns<FMLAssv_4S, FMLSssv_4S,
f32, FPR32, v4f32, neon_uimm2_bare, v2f32, v4f32, neon_uimm1_bare>;
defm : Neon_ScalarXIndexedElem_FMA_Patterns<FMLAddv_2D, FMLSddv_2D,
f64, FPR64, v2f64, neon_uimm1_bare, v1f64, v2f64, neon_uimm0_bare>;
defm : Neon_ScalarXIndexedElem_FMA_Patterns<FMLAddv_2D, FMLSddv_2D,
f64, FPR64, v2f64, neon_uimm1_bare, v1f64, v2f64, neon_uimm0_bare>;
// Scalar Signed saturating doubling multiply long (scalar, by element)
def SQDMULLshv_4H : NeonI_ScalarXIndexedElemArith<"sqdmull",
0b1011, ".h", 0b0, 0b0, 0b1, FPR32, FPR16, VPR64Lo, neon_uimm2_bare> {
let Inst{11} = 0b0; // h
let Inst{21} = Imm{1}; // l
let Inst{20} = Imm{0}; // m
let Inst{19-16} = MRm{3-0};
}
def SQDMULLshv_8H : NeonI_ScalarXIndexedElemArith<"sqdmull",
0b1011, ".h", 0b0, 0b0, 0b1, FPR32, FPR16, VPR128Lo, neon_uimm3_bare> {
let Inst{11} = Imm{2}; // h
let Inst{21} = Imm{1}; // l
let Inst{20} = Imm{0}; // m
let Inst{19-16} = MRm{3-0};
}
def SQDMULLdsv_2S : NeonI_ScalarXIndexedElemArith<"sqdmull",
0b1011, ".s", 0b0, 0b1, 0b0, FPR64, FPR32, VPR64, neon_uimm1_bare> {
let Inst{11} = 0b0; // h
let Inst{21} = Imm{0}; // l
let Inst{20-16} = MRm;
}
def SQDMULLdsv_4S : NeonI_ScalarXIndexedElemArith<"sqdmull",
0b1011, ".s", 0b0, 0b1, 0b0, FPR64, FPR32, VPR128, neon_uimm2_bare> {
let Inst{11} = Imm{1}; // h
let Inst{21} = Imm{0}; // l
let Inst{20-16} = MRm;
}
multiclass Neon_ScalarXIndexedElem_MUL_Patterns<
SDPatternOperator opnode,
Instruction INST,
ValueType ResTy, RegisterClass FPRC,
ValueType OpVTy, ValueType OpTy,
ValueType VecOpTy, ValueType ExTy, RegisterOperand VPRC, Operand OpImm> {
def : Pat<(ResTy (opnode (OpVTy FPRC:$Rn),
(OpVTy (scalar_to_vector
(ExTy (vector_extract (VecOpTy VPRC:$MRm), OpImm:$Imm)))))),
(ResTy (INST (OpVTy FPRC:$Rn), (VecOpTy VPRC:$MRm), OpImm:$Imm))>;
//swapped operands
def : Pat<(ResTy (opnode
(OpVTy (scalar_to_vector
(ExTy (vector_extract (VecOpTy VPRC:$MRm), OpImm:$Imm)))),
(OpVTy FPRC:$Rn))),
(ResTy (INST (OpVTy FPRC:$Rn), (VecOpTy VPRC:$MRm), OpImm:$Imm))>;
}
// Patterns for Scalar Signed saturating doubling
// multiply long (scalar, by element)
defm : Neon_ScalarXIndexedElem_MUL_Patterns<int_arm_neon_vqdmull,
SQDMULLshv_4H, v1i32, FPR16, v1i16, i16, v4i16,
i32, VPR64Lo, neon_uimm2_bare>;
defm : Neon_ScalarXIndexedElem_MUL_Patterns<int_arm_neon_vqdmull,
SQDMULLshv_8H, v1i32, FPR16, v1i16, i16, v8i16,
i32, VPR128Lo, neon_uimm3_bare>;
defm : Neon_ScalarXIndexedElem_MUL_Patterns<int_arm_neon_vqdmull,
SQDMULLdsv_2S, v1i64, FPR32, v1i32, i32, v2i32,
i32, VPR64Lo, neon_uimm1_bare>;
defm : Neon_ScalarXIndexedElem_MUL_Patterns<int_arm_neon_vqdmull,
SQDMULLdsv_4S, v1i64, FPR32, v1i32, i32, v4i32,
i32, VPR128Lo, neon_uimm2_bare>;
// Scalar Signed saturating doubling multiply-add long (scalar, by element)
def SQDMLALshv_4H : NeonI_ScalarXIndexedElemArith_Constraint_Impl<"sqdmlal",
0b0011, ".h", 0b0, 0b0, 0b1, FPR32, FPR16, VPR64Lo, neon_uimm2_bare> {
let Inst{11} = 0b0; // h
let Inst{21} = Imm{1}; // l
let Inst{20} = Imm{0}; // m
let Inst{19-16} = MRm{3-0};
}
def SQDMLALshv_8H : NeonI_ScalarXIndexedElemArith_Constraint_Impl<"sqdmlal",
0b0011, ".h", 0b0, 0b0, 0b1, FPR32, FPR16, VPR128Lo, neon_uimm3_bare> {
let Inst{11} = Imm{2}; // h
let Inst{21} = Imm{1}; // l
let Inst{20} = Imm{0}; // m
let Inst{19-16} = MRm{3-0};
}
def SQDMLALdsv_2S : NeonI_ScalarXIndexedElemArith_Constraint_Impl<"sqdmlal",
0b0011, ".s", 0b0, 0b1, 0b0, FPR64, FPR32, VPR64, neon_uimm1_bare> {
let Inst{11} = 0b0; // h
let Inst{21} = Imm{0}; // l
let Inst{20-16} = MRm;
}
def SQDMLALdsv_4S : NeonI_ScalarXIndexedElemArith_Constraint_Impl<"sqdmlal",
0b0011, ".s", 0b0, 0b1, 0b0, FPR64, FPR32, VPR128, neon_uimm2_bare> {
let Inst{11} = Imm{1}; // h
let Inst{21} = Imm{0}; // l
let Inst{20-16} = MRm;
}
// Scalar Signed saturating doubling
// multiply-subtract long (scalar, by element)
def SQDMLSLshv_4H : NeonI_ScalarXIndexedElemArith_Constraint_Impl<"sqdmlsl",
0b0111, ".h", 0b0, 0b0, 0b1, FPR32, FPR16, VPR64Lo, neon_uimm2_bare> {
let Inst{11} = 0b0; // h
let Inst{21} = Imm{1}; // l
let Inst{20} = Imm{0}; // m
let Inst{19-16} = MRm{3-0};
}
def SQDMLSLshv_8H : NeonI_ScalarXIndexedElemArith_Constraint_Impl<"sqdmlsl",
0b0111, ".h", 0b0, 0b0, 0b1, FPR32, FPR16, VPR128Lo, neon_uimm3_bare> {
let Inst{11} = Imm{2}; // h
let Inst{21} = Imm{1}; // l
let Inst{20} = Imm{0}; // m
let Inst{19-16} = MRm{3-0};
}
def SQDMLSLdsv_2S : NeonI_ScalarXIndexedElemArith_Constraint_Impl<"sqdmlsl",
0b0111, ".s", 0b0, 0b1, 0b0, FPR64, FPR32, VPR64, neon_uimm1_bare> {
let Inst{11} = 0b0; // h
let Inst{21} = Imm{0}; // l
let Inst{20-16} = MRm;
}
def SQDMLSLdsv_4S : NeonI_ScalarXIndexedElemArith_Constraint_Impl<"sqdmlsl",
0b0111, ".s", 0b0, 0b1, 0b0, FPR64, FPR32, VPR128, neon_uimm2_bare> {
let Inst{11} = Imm{1}; // h
let Inst{21} = Imm{0}; // l
let Inst{20-16} = MRm;
}
multiclass Neon_ScalarXIndexedElem_MLAL_Patterns<
SDPatternOperator opnode,
SDPatternOperator coreopnode,
Instruction INST,
ValueType ResTy, RegisterClass ResFPRC, RegisterClass FPRC,
ValueType OpTy,
ValueType OpVTy, ValueType ExTy, RegisterOperand VPRC, Operand OpImm> {
def : Pat<(ResTy (opnode
(ResTy ResFPRC:$Ra),
(ResTy (coreopnode (OpTy FPRC:$Rn),
(OpTy (scalar_to_vector
(ExTy (vector_extract (OpVTy VPRC:$MRm), OpImm:$Imm)))))))),
(ResTy (INST (ResTy ResFPRC:$Ra),
(OpTy FPRC:$Rn), (OpVTy VPRC:$MRm), OpImm:$Imm))>;
// swapped operands
def : Pat<(ResTy (opnode
(ResTy ResFPRC:$Ra),
(ResTy (coreopnode
(OpTy (scalar_to_vector
(ExTy (vector_extract (OpVTy VPRC:$MRm), OpImm:$Imm)))),
(OpTy FPRC:$Rn))))),
(ResTy (INST (ResTy ResFPRC:$Ra),
(OpTy FPRC:$Rn), (OpVTy VPRC:$MRm), OpImm:$Imm))>;
}
// Patterns for Scalar Signed saturating
// doubling multiply-add long (scalar, by element)
defm : Neon_ScalarXIndexedElem_MLAL_Patterns<int_arm_neon_vqadds,
int_arm_neon_vqdmull, SQDMLALshv_4H, v1i32, FPR32, FPR16, v1i16, v4i16,
i32, VPR64Lo, neon_uimm2_bare>;
defm : Neon_ScalarXIndexedElem_MLAL_Patterns<int_arm_neon_vqadds,
int_arm_neon_vqdmull, SQDMLALshv_8H, v1i32, FPR32, FPR16, v1i16, v8i16,
i32, VPR128Lo, neon_uimm3_bare>;
defm : Neon_ScalarXIndexedElem_MLAL_Patterns<int_arm_neon_vqadds,
int_arm_neon_vqdmull, SQDMLALdsv_2S, v1i64, FPR64, FPR32, v1i32, v2i32,
i32, VPR64Lo, neon_uimm1_bare>;
defm : Neon_ScalarXIndexedElem_MLAL_Patterns<int_arm_neon_vqadds,
int_arm_neon_vqdmull, SQDMLALdsv_4S, v1i64, FPR64, FPR32, v1i32, v4i32,
i32, VPR128Lo, neon_uimm2_bare>;
// Patterns for Scalar Signed saturating
// doubling multiply-sub long (scalar, by element)
defm : Neon_ScalarXIndexedElem_MLAL_Patterns<int_arm_neon_vqsubs,
int_arm_neon_vqdmull, SQDMLSLshv_4H, v1i32, FPR32, FPR16, v1i16, v4i16,
i32, VPR64Lo, neon_uimm2_bare>;
defm : Neon_ScalarXIndexedElem_MLAL_Patterns<int_arm_neon_vqsubs,
int_arm_neon_vqdmull, SQDMLSLshv_8H, v1i32, FPR32, FPR16, v1i16, v8i16,
i32, VPR128Lo, neon_uimm3_bare>;
defm : Neon_ScalarXIndexedElem_MLAL_Patterns<int_arm_neon_vqsubs,
int_arm_neon_vqdmull, SQDMLSLdsv_2S, v1i64, FPR64, FPR32, v1i32, v2i32,
i32, VPR64Lo, neon_uimm1_bare>;
defm : Neon_ScalarXIndexedElem_MLAL_Patterns<int_arm_neon_vqsubs,
int_arm_neon_vqdmull, SQDMLSLdsv_4S, v1i64, FPR64, FPR32, v1i32, v4i32,
i32, VPR128Lo, neon_uimm2_bare>;
// Scalar Signed saturating doubling multiply returning
// high half (scalar, by element)
def SQDMULHhhv_4H : NeonI_ScalarXIndexedElemArith<"sqdmulh",
0b1100, ".h", 0b0, 0b0, 0b1, FPR16, FPR16, VPR64Lo, neon_uimm2_bare> {
let Inst{11} = 0b0; // h
let Inst{21} = Imm{1}; // l
let Inst{20} = Imm{0}; // m
let Inst{19-16} = MRm{3-0};
}
def SQDMULHhhv_8H : NeonI_ScalarXIndexedElemArith<"sqdmulh",
0b1100, ".h", 0b0, 0b0, 0b1, FPR16, FPR16, VPR128Lo, neon_uimm3_bare> {
let Inst{11} = Imm{2}; // h
let Inst{21} = Imm{1}; // l
let Inst{20} = Imm{0}; // m
let Inst{19-16} = MRm{3-0};
}
def SQDMULHssv_2S : NeonI_ScalarXIndexedElemArith<"sqdmulh",
0b1100, ".s", 0b0, 0b1, 0b0, FPR32, FPR32, VPR64, neon_uimm1_bare> {
let Inst{11} = 0b0; // h
let Inst{21} = Imm{0}; // l
let Inst{20-16} = MRm;
}
def SQDMULHssv_4S : NeonI_ScalarXIndexedElemArith<"sqdmulh",
0b1100, ".s", 0b0, 0b1, 0b0, FPR32, FPR32, VPR128, neon_uimm2_bare> {
let Inst{11} = Imm{1}; // h
let Inst{21} = Imm{0}; // l
let Inst{20-16} = MRm;
}
// Patterns for Scalar Signed saturating doubling multiply returning
// high half (scalar, by element)
defm : Neon_ScalarXIndexedElem_MUL_Patterns<int_arm_neon_vqdmulh,
SQDMULHhhv_4H, v1i16, FPR16, v1i16, i16, v4i16,
i32, VPR64Lo, neon_uimm2_bare>;
defm : Neon_ScalarXIndexedElem_MUL_Patterns<int_arm_neon_vqdmulh,
SQDMULHhhv_8H, v1i16, FPR16, v1i16, i16, v8i16,
i32, VPR128Lo, neon_uimm3_bare>;
defm : Neon_ScalarXIndexedElem_MUL_Patterns<int_arm_neon_vqdmulh,
SQDMULHssv_2S, v1i32, FPR32, v1i32, i32, v2i32,
i32, VPR64Lo, neon_uimm1_bare>;
defm : Neon_ScalarXIndexedElem_MUL_Patterns<int_arm_neon_vqdmulh,
SQDMULHssv_4S, v1i32, FPR32, v1i32, i32, v4i32,
i32, VPR128Lo, neon_uimm2_bare>;
// Scalar Signed saturating rounding doubling multiply
// returning high half (scalar, by element)
def SQRDMULHhhv_4H : NeonI_ScalarXIndexedElemArith<"sqrdmulh",
0b1101, ".h", 0b0, 0b0, 0b1, FPR16, FPR16, VPR64Lo, neon_uimm2_bare> {
let Inst{11} = 0b0; // h
let Inst{21} = Imm{1}; // l
let Inst{20} = Imm{0}; // m
let Inst{19-16} = MRm{3-0};
}
def SQRDMULHhhv_8H : NeonI_ScalarXIndexedElemArith<"sqrdmulh",
0b1101, ".h", 0b0, 0b0, 0b1, FPR16, FPR16, VPR128Lo, neon_uimm3_bare> {
let Inst{11} = Imm{2}; // h
let Inst{21} = Imm{1}; // l
let Inst{20} = Imm{0}; // m
let Inst{19-16} = MRm{3-0};
}
def SQRDMULHssv_2S : NeonI_ScalarXIndexedElemArith<"sqrdmulh",
0b1101, ".s", 0b0, 0b1, 0b0, FPR32, FPR32, VPR64, neon_uimm1_bare> {
let Inst{11} = 0b0; // h
let Inst{21} = Imm{0}; // l
let Inst{20-16} = MRm;
}
def SQRDMULHssv_4S : NeonI_ScalarXIndexedElemArith<"sqrdmulh",
0b1101, ".s", 0b0, 0b1, 0b0, FPR32, FPR32, VPR128, neon_uimm2_bare> {
let Inst{11} = Imm{1}; // h
let Inst{21} = Imm{0}; // l
let Inst{20-16} = MRm;
}
defm : Neon_ScalarXIndexedElem_MUL_Patterns<int_arm_neon_vqrdmulh,
SQRDMULHhhv_4H, v1i16, FPR16, v1i16, i16, v4i16, i32,
VPR64Lo, neon_uimm2_bare>;
defm : Neon_ScalarXIndexedElem_MUL_Patterns<int_arm_neon_vqrdmulh,
SQRDMULHhhv_8H, v1i16, FPR16, v1i16, i16, v8i16, i32,
VPR128Lo, neon_uimm3_bare>;
defm : Neon_ScalarXIndexedElem_MUL_Patterns<int_arm_neon_vqrdmulh,
SQRDMULHssv_2S, v1i32, FPR32, v1i32, i32, v2i32, i32,
VPR64Lo, neon_uimm1_bare>;
defm : Neon_ScalarXIndexedElem_MUL_Patterns<int_arm_neon_vqrdmulh,
SQRDMULHssv_4S, v1i32, FPR32, v1i32, i32, v4i32, i32,
VPR128Lo, neon_uimm2_bare>;
// Scalar Copy - DUP element to scalar
class NeonI_Scalar_DUP<string asmop, string asmlane,
RegisterClass ResRC, RegisterOperand VPRC,
Operand OpImm>
: NeonI_ScalarCopy<(outs ResRC:$Rd), (ins VPRC:$Rn, OpImm:$Imm),
asmop # "\t$Rd, $Rn." # asmlane # "[$Imm]",
[],
NoItinerary> {
bits<4> Imm;
}
def DUPbv_B : NeonI_Scalar_DUP<"dup", "b", FPR8, VPR128, neon_uimm4_bare> {
let Inst{20-16} = {Imm{3}, Imm{2}, Imm{1}, Imm{0}, 0b1};
}
def DUPhv_H : NeonI_Scalar_DUP<"dup", "h", FPR16, VPR128, neon_uimm3_bare> {
let Inst{20-16} = {Imm{2}, Imm{1}, Imm{0}, 0b1, 0b0};
}
def DUPsv_S : NeonI_Scalar_DUP<"dup", "s", FPR32, VPR128, neon_uimm2_bare> {
let Inst{20-16} = {Imm{1}, Imm{0}, 0b1, 0b0, 0b0};
}
def DUPdv_D : NeonI_Scalar_DUP<"dup", "d", FPR64, VPR128, neon_uimm1_bare> {
let Inst{20-16} = {Imm, 0b1, 0b0, 0b0, 0b0};
}
multiclass NeonI_Scalar_DUP_Elt_pattern<Instruction DUPI, ValueType ResTy,
ValueType OpTy, Operand OpImm,
ValueType OpNTy, ValueType ExTy, Operand OpNImm> {
def : Pat<(ResTy (vector_extract (OpTy VPR128:$Rn), OpImm:$Imm)),
(ResTy (DUPI (OpTy VPR128:$Rn), OpImm:$Imm))>;
def : Pat<(ResTy (vector_extract (OpNTy VPR64:$Rn), OpNImm:$Imm)),
(ResTy (DUPI
(ExTy (SUBREG_TO_REG (i64 0), VPR64:$Rn, sub_64)),
OpNImm:$Imm))>;
}
multiclass NeonI_SDUP<PatFrag GetLow, PatFrag GetHigh,
ValueType ResTy, ValueType OpTy> {
def : Pat<(ResTy (GetLow VPR128:$Rn)),
(ResTy (EXTRACT_SUBREG (OpTy VPR128:$Rn), sub_64))>;
def : Pat<(ResTy (GetHigh VPR128:$Rn)),
(ResTy (DUPdv_D (OpTy VPR128:$Rn), 1))>;
}
defm : NeonI_SDUP<Neon_Low16B, Neon_High16B, v8i8, v16i8>;
defm : NeonI_SDUP<Neon_Low8H, Neon_High8H, v4i16, v8i16>;
defm : NeonI_SDUP<Neon_Low4S, Neon_High4S, v2i32, v4i32>;
defm : NeonI_SDUP<Neon_Low2D, Neon_High2D, v1i64, v2i64>;
defm : NeonI_SDUP<Neon_Low4float, Neon_High4float, v2f32, v4f32>;
defm : NeonI_SDUP<Neon_Low2double, Neon_High2double, v1f64, v2f64>;
// Patterns for vector extract of FP data using scalar DUP instructions
defm : NeonI_Scalar_DUP_Elt_pattern<DUPsv_S, f32,
v4f32, neon_uimm2_bare, v2f32, v4f32, neon_uimm1_bare>;
defm : NeonI_Scalar_DUP_Elt_pattern<DUPdv_D, f64,
v2f64, neon_uimm1_bare, v1f64, v2f64, neon_uimm0_bare>;
multiclass NeonI_Scalar_DUP_Vec_pattern<Instruction DUPI,
ValueType ResTy, ValueType OpTy,Operand OpLImm,
ValueType NOpTy, ValueType ExTy, Operand OpNImm> {
def : Pat<(ResTy (extract_subvector (OpTy VPR128:$Rn), OpLImm:$Imm)),
(ResTy (DUPI VPR128:$Rn, OpLImm:$Imm))>;
def : Pat<(ResTy (extract_subvector (NOpTy VPR64:$Rn), OpNImm:$Imm)),
(ResTy (DUPI
(ExTy (SUBREG_TO_REG (i64 0), VPR64:$Rn, sub_64)),
OpNImm:$Imm))>;
}
// Patterns for extract subvectors of v1ix data using scalar DUP instructions
defm : NeonI_Scalar_DUP_Vec_pattern<DUPbv_B,
v1i8, v16i8, neon_uimm4_bare, v8i8, v16i8, neon_uimm3_bare>;
defm : NeonI_Scalar_DUP_Vec_pattern<DUPhv_H,
v1i16, v8i16, neon_uimm3_bare, v4i16, v8i16, neon_uimm2_bare>;
defm : NeonI_Scalar_DUP_Vec_pattern<DUPsv_S,
v1i32, v4i32, neon_uimm2_bare, v2i32, v4i32, neon_uimm1_bare>;
multiclass NeonI_Scalar_DUP_alias<string asmop, string asmlane,
Instruction DUPI, Operand OpImm,
RegisterClass ResRC> {
def : NeonInstAlias<!strconcat(asmop, "$Rd, $Rn" # asmlane # "[$Imm]"),
(DUPI ResRC:$Rd, VPR128:$Rn, OpImm:$Imm), 0b0>;
}
// Aliases for Scalar copy - DUP element (scalar)
// FIXME: This is actually the preferred syntax but TableGen can't deal with
// custom printing of aliases.
defm : NeonI_Scalar_DUP_alias<"mov", ".b", DUPbv_B, neon_uimm4_bare, FPR8>;
defm : NeonI_Scalar_DUP_alias<"mov", ".h", DUPhv_H, neon_uimm3_bare, FPR16>;
defm : NeonI_Scalar_DUP_alias<"mov", ".s", DUPsv_S, neon_uimm2_bare, FPR32>;
defm : NeonI_Scalar_DUP_alias<"mov", ".d", DUPdv_D, neon_uimm1_bare, FPR64>;
//===----------------------------------------------------------------------===//
// Non-Instruction Patterns
//===----------------------------------------------------------------------===//
// 64-bit vector bitcasts...
def : Pat<(v1i64 (bitconvert (v8i8 VPR64:$src))), (v1i64 VPR64:$src)>;
def : Pat<(v2f32 (bitconvert (v8i8 VPR64:$src))), (v2f32 VPR64:$src)>;
def : Pat<(v2i32 (bitconvert (v8i8 VPR64:$src))), (v2i32 VPR64:$src)>;
def : Pat<(v4i16 (bitconvert (v8i8 VPR64:$src))), (v4i16 VPR64:$src)>;
def : Pat<(v1i64 (bitconvert (v4i16 VPR64:$src))), (v1i64 VPR64:$src)>;
def : Pat<(v2i32 (bitconvert (v4i16 VPR64:$src))), (v2i32 VPR64:$src)>;
def : Pat<(v2f32 (bitconvert (v4i16 VPR64:$src))), (v2f32 VPR64:$src)>;
def : Pat<(v8i8 (bitconvert (v4i16 VPR64:$src))), (v8i8 VPR64:$src)>;
def : Pat<(v1i64 (bitconvert (v2i32 VPR64:$src))), (v1i64 VPR64:$src)>;
def : Pat<(v2f32 (bitconvert (v2i32 VPR64:$src))), (v2f32 VPR64:$src)>;
def : Pat<(v4i16 (bitconvert (v2i32 VPR64:$src))), (v4i16 VPR64:$src)>;
def : Pat<(v8i8 (bitconvert (v2i32 VPR64:$src))), (v8i8 VPR64:$src)>;
def : Pat<(v1i64 (bitconvert (v2f32 VPR64:$src))), (v1i64 VPR64:$src)>;
def : Pat<(v2i32 (bitconvert (v2f32 VPR64:$src))), (v2i32 VPR64:$src)>;
def : Pat<(v4i16 (bitconvert (v2f32 VPR64:$src))), (v4i16 VPR64:$src)>;
def : Pat<(v8i8 (bitconvert (v2f32 VPR64:$src))), (v8i8 VPR64:$src)>;
def : Pat<(v2f32 (bitconvert (v1i64 VPR64:$src))), (v2f32 VPR64:$src)>;
def : Pat<(v2i32 (bitconvert (v1i64 VPR64:$src))), (v2i32 VPR64:$src)>;
def : Pat<(v4i16 (bitconvert (v1i64 VPR64:$src))), (v4i16 VPR64:$src)>;
def : Pat<(v8i8 (bitconvert (v1i64 VPR64:$src))), (v8i8 VPR64:$src)>;
// ..and 128-bit vector bitcasts...
def : Pat<(v2f64 (bitconvert (v16i8 VPR128:$src))), (v2f64 VPR128:$src)>;
def : Pat<(v2i64 (bitconvert (v16i8 VPR128:$src))), (v2i64 VPR128:$src)>;
def : Pat<(v4f32 (bitconvert (v16i8 VPR128:$src))), (v4f32 VPR128:$src)>;
def : Pat<(v4i32 (bitconvert (v16i8 VPR128:$src))), (v4i32 VPR128:$src)>;
def : Pat<(v8i16 (bitconvert (v16i8 VPR128:$src))), (v8i16 VPR128:$src)>;
def : Pat<(v2f64 (bitconvert (v8i16 VPR128:$src))), (v2f64 VPR128:$src)>;
def : Pat<(v2i64 (bitconvert (v8i16 VPR128:$src))), (v2i64 VPR128:$src)>;
def : Pat<(v4i32 (bitconvert (v8i16 VPR128:$src))), (v4i32 VPR128:$src)>;
def : Pat<(v4f32 (bitconvert (v8i16 VPR128:$src))), (v4f32 VPR128:$src)>;
def : Pat<(v16i8 (bitconvert (v8i16 VPR128:$src))), (v16i8 VPR128:$src)>;
def : Pat<(v2f64 (bitconvert (v4i32 VPR128:$src))), (v2f64 VPR128:$src)>;
def : Pat<(v2i64 (bitconvert (v4i32 VPR128:$src))), (v2i64 VPR128:$src)>;
def : Pat<(v4f32 (bitconvert (v4i32 VPR128:$src))), (v4f32 VPR128:$src)>;
def : Pat<(v8i16 (bitconvert (v4i32 VPR128:$src))), (v8i16 VPR128:$src)>;
def : Pat<(v16i8 (bitconvert (v4i32 VPR128:$src))), (v16i8 VPR128:$src)>;
def : Pat<(v2f64 (bitconvert (v4f32 VPR128:$src))), (v2f64 VPR128:$src)>;
def : Pat<(v2i64 (bitconvert (v4f32 VPR128:$src))), (v2i64 VPR128:$src)>;
def : Pat<(v4i32 (bitconvert (v4f32 VPR128:$src))), (v4i32 VPR128:$src)>;
def : Pat<(v8i16 (bitconvert (v4f32 VPR128:$src))), (v8i16 VPR128:$src)>;
def : Pat<(v16i8 (bitconvert (v4f32 VPR128:$src))), (v16i8 VPR128:$src)>;
def : Pat<(v2f64 (bitconvert (v2i64 VPR128:$src))), (v2f64 VPR128:$src)>;
def : Pat<(v4f32 (bitconvert (v2i64 VPR128:$src))), (v4f32 VPR128:$src)>;
def : Pat<(v4i32 (bitconvert (v2i64 VPR128:$src))), (v4i32 VPR128:$src)>;
def : Pat<(v8i16 (bitconvert (v2i64 VPR128:$src))), (v8i16 VPR128:$src)>;
def : Pat<(v16i8 (bitconvert (v2i64 VPR128:$src))), (v16i8 VPR128:$src)>;
def : Pat<(v2i64 (bitconvert (v2f64 VPR128:$src))), (v2i64 VPR128:$src)>;
def : Pat<(v4f32 (bitconvert (v2f64 VPR128:$src))), (v4f32 VPR128:$src)>;
def : Pat<(v4i32 (bitconvert (v2f64 VPR128:$src))), (v4i32 VPR128:$src)>;
def : Pat<(v8i16 (bitconvert (v2f64 VPR128:$src))), (v8i16 VPR128:$src)>;
def : Pat<(v16i8 (bitconvert (v2f64 VPR128:$src))), (v16i8 VPR128:$src)>;
// ...and scalar bitcasts...
def : Pat<(f16 (bitconvert (v1i16 FPR16:$src))), (f16 FPR16:$src)>;
def : Pat<(f32 (bitconvert (v1i32 FPR32:$src))), (f32 FPR32:$src)>;
def : Pat<(f64 (bitconvert (v1i64 FPR64:$src))), (f64 FPR64:$src)>;
def : Pat<(f32 (bitconvert (v1f32 FPR32:$src))), (f32 FPR32:$src)>;
def : Pat<(f64 (bitconvert (v1f64 FPR64:$src))), (f64 FPR64:$src)>;
def : Pat<(i64 (bitconvert (v1i64 FPR64:$src))), (FMOVxd $src)>;
def : Pat<(i64 (bitconvert (v1f64 FPR64:$src))), (FMOVxd $src)>;
def : Pat<(i64 (bitconvert (v2i32 FPR64:$src))), (FMOVxd $src)>;
def : Pat<(i64 (bitconvert (v2f32 FPR64:$src))), (FMOVxd $src)>;
def : Pat<(i64 (bitconvert (v4i16 FPR64:$src))), (FMOVxd $src)>;
def : Pat<(i64 (bitconvert (v8i8 FPR64:$src))), (FMOVxd $src)>;
def : Pat<(i32 (bitconvert (v1i32 FPR32:$src))), (FMOVws $src)>;
def : Pat<(v8i8 (bitconvert (v1i64 VPR64:$src))), (v8i8 VPR64:$src)>;
def : Pat<(v4i16 (bitconvert (v1i64 VPR64:$src))), (v4i16 VPR64:$src)>;
def : Pat<(v2i32 (bitconvert (v1i64 VPR64:$src))), (v2i32 VPR64:$src)>;
def : Pat<(f64 (bitconvert (v8i8 VPR64:$src))), (f64 VPR64:$src)>;
def : Pat<(f64 (bitconvert (v4i16 VPR64:$src))), (f64 VPR64:$src)>;
def : Pat<(f64 (bitconvert (v2i32 VPR64:$src))), (f64 VPR64:$src)>;
def : Pat<(f64 (bitconvert (v2f32 VPR64:$src))), (f64 VPR64:$src)>;
def : Pat<(f64 (bitconvert (v1i64 VPR64:$src))), (f64 VPR64:$src)>;
def : Pat<(f128 (bitconvert (v16i8 VPR128:$src))), (f128 VPR128:$src)>;
def : Pat<(f128 (bitconvert (v8i16 VPR128:$src))), (f128 VPR128:$src)>;
def : Pat<(f128 (bitconvert (v4i32 VPR128:$src))), (f128 VPR128:$src)>;
def : Pat<(f128 (bitconvert (v2i64 VPR128:$src))), (f128 VPR128:$src)>;
def : Pat<(f128 (bitconvert (v4f32 VPR128:$src))), (f128 VPR128:$src)>;
def : Pat<(f128 (bitconvert (v2f64 VPR128:$src))), (f128 VPR128:$src)>;
def : Pat<(v1i16 (bitconvert (f16 FPR16:$src))), (v1i16 FPR16:$src)>;
def : Pat<(v1i32 (bitconvert (f32 FPR32:$src))), (v1i32 FPR32:$src)>;
def : Pat<(v1i64 (bitconvert (f64 FPR64:$src))), (v1i64 FPR64:$src)>;
def : Pat<(v1f32 (bitconvert (f32 FPR32:$src))), (v1f32 FPR32:$src)>;
def : Pat<(v1f64 (bitconvert (f64 FPR64:$src))), (v1f64 FPR64:$src)>;
def : Pat<(v1i64 (bitconvert (i64 GPR64:$src))), (FMOVdx $src)>;
def : Pat<(v1f64 (bitconvert (i64 GPR64:$src))), (FMOVdx $src)>;
def : Pat<(v2i32 (bitconvert (i64 GPR64:$src))), (FMOVdx $src)>;
def : Pat<(v2f32 (bitconvert (i64 GPR64:$src))), (FMOVdx $src)>;
def : Pat<(v4i16 (bitconvert (i64 GPR64:$src))), (FMOVdx $src)>;
def : Pat<(v8i8 (bitconvert (i64 GPR64:$src))), (FMOVdx $src)>;
def : Pat<(v1i32 (bitconvert (i32 GPR32:$src))), (FMOVsw $src)>;
def : Pat<(v8i8 (bitconvert (f64 FPR64:$src))), (v8i8 FPR64:$src)>;
def : Pat<(v4i16 (bitconvert (f64 FPR64:$src))), (v4i16 FPR64:$src)>;
def : Pat<(v2i32 (bitconvert (f64 FPR64:$src))), (v2i32 FPR64:$src)>;
def : Pat<(v2f32 (bitconvert (f64 FPR64:$src))), (v2f32 FPR64:$src)>;
def : Pat<(v1i64 (bitconvert (f64 FPR64:$src))), (v1i64 FPR64:$src)>;
def : Pat<(v16i8 (bitconvert (f128 FPR128:$src))), (v16i8 FPR128:$src)>;
def : Pat<(v8i16 (bitconvert (f128 FPR128:$src))), (v8i16 FPR128:$src)>;
def : Pat<(v4i32 (bitconvert (f128 FPR128:$src))), (v4i32 FPR128:$src)>;
def : Pat<(v2i64 (bitconvert (f128 FPR128:$src))), (v2i64 FPR128:$src)>;
def : Pat<(v4f32 (bitconvert (f128 FPR128:$src))), (v4f32 FPR128:$src)>;
def : Pat<(v2f64 (bitconvert (f128 FPR128:$src))), (v2f64 FPR128:$src)>;
// Scalar Three Same
def neon_uimm3 : Operand<i64>,
ImmLeaf<i64, [{return Imm < 8;}]> {
let ParserMatchClass = uimm3_asmoperand;
let PrintMethod = "printUImmHexOperand";
}
def neon_uimm4 : Operand<i64>,
ImmLeaf<i64, [{return Imm < 16;}]> {
let ParserMatchClass = uimm4_asmoperand;
let PrintMethod = "printUImmHexOperand";
}
// Bitwise Extract
class NeonI_Extract<bit q, bits<2> op2, string asmop,
string OpS, RegisterOperand OpVPR, Operand OpImm>
: NeonI_BitExtract<q, op2, (outs OpVPR:$Rd),
(ins OpVPR:$Rn, OpVPR:$Rm, OpImm:$Index),
asmop # "\t$Rd." # OpS # ", $Rn." # OpS #
", $Rm." # OpS # ", $Index",
[],
NoItinerary>{
bits<4> Index;
}
def EXTvvvi_8b : NeonI_Extract<0b0, 0b00, "ext", "8b",
VPR64, neon_uimm3> {
let Inst{14-11} = {0b0, Index{2}, Index{1}, Index{0}};
}
def EXTvvvi_16b: NeonI_Extract<0b1, 0b00, "ext", "16b",
VPR128, neon_uimm4> {
let Inst{14-11} = Index;
}
class NI_Extract<ValueType OpTy, RegisterOperand OpVPR, Instruction INST,
Operand OpImm>
: Pat<(OpTy (Neon_vextract (OpTy OpVPR:$Rn), (OpTy OpVPR:$Rm),
(i64 OpImm:$Imm))),
(INST OpVPR:$Rn, OpVPR:$Rm, OpImm:$Imm)>;
def : NI_Extract<v8i8, VPR64, EXTvvvi_8b, neon_uimm3>;
def : NI_Extract<v4i16, VPR64, EXTvvvi_8b, neon_uimm3>;
def : NI_Extract<v2i32, VPR64, EXTvvvi_8b, neon_uimm3>;
def : NI_Extract<v1i64, VPR64, EXTvvvi_8b, neon_uimm3>;
def : NI_Extract<v2f32, VPR64, EXTvvvi_8b, neon_uimm3>;
def : NI_Extract<v1f64, VPR64, EXTvvvi_8b, neon_uimm3>;
def : NI_Extract<v16i8, VPR128, EXTvvvi_16b, neon_uimm4>;
def : NI_Extract<v8i16, VPR128, EXTvvvi_16b, neon_uimm4>;
def : NI_Extract<v4i32, VPR128, EXTvvvi_16b, neon_uimm4>;
def : NI_Extract<v2i64, VPR128, EXTvvvi_16b, neon_uimm4>;
def : NI_Extract<v4f32, VPR128, EXTvvvi_16b, neon_uimm4>;
def : NI_Extract<v2f64, VPR128, EXTvvvi_16b, neon_uimm4>;
// Table lookup
class NI_TBL<bit q, bits<2> op2, bits<2> len, bit op,
string asmop, string OpS, RegisterOperand OpVPR,
RegisterOperand VecList>
: NeonI_TBL<q, op2, len, op,
(outs OpVPR:$Rd), (ins VecList:$Rn, OpVPR:$Rm),
asmop # "\t$Rd." # OpS # ", $Rn, $Rm." # OpS,
[],
NoItinerary>;
// The vectors in look up table are always 16b
multiclass NI_TBL_pat<bits<2> len, bit op, string asmop, string List> {
def _8b : NI_TBL<0, 0b00, len, op, asmop, "8b", VPR64,
!cast<RegisterOperand>(List # "16B_operand")>;
def _16b : NI_TBL<1, 0b00, len, op, asmop, "16b", VPR128,
!cast<RegisterOperand>(List # "16B_operand")>;
}
defm TBL1 : NI_TBL_pat<0b00, 0b0, "tbl", "VOne">;
defm TBL2 : NI_TBL_pat<0b01, 0b0, "tbl", "VPair">;
defm TBL3 : NI_TBL_pat<0b10, 0b0, "tbl", "VTriple">;
defm TBL4 : NI_TBL_pat<0b11, 0b0, "tbl", "VQuad">;
// Table lookup extention
class NI_TBX<bit q, bits<2> op2, bits<2> len, bit op,
string asmop, string OpS, RegisterOperand OpVPR,
RegisterOperand VecList>
: NeonI_TBL<q, op2, len, op,
(outs OpVPR:$Rd), (ins OpVPR:$src, VecList:$Rn, OpVPR:$Rm),
asmop # "\t$Rd." # OpS # ", $Rn, $Rm." # OpS,
[],
NoItinerary> {
let Constraints = "$src = $Rd";
}
// The vectors in look up table are always 16b
multiclass NI_TBX_pat<bits<2> len, bit op, string asmop, string List> {
def _8b : NI_TBX<0, 0b00, len, op, asmop, "8b", VPR64,
!cast<RegisterOperand>(List # "16B_operand")>;
def _16b : NI_TBX<1, 0b00, len, op, asmop, "16b", VPR128,
!cast<RegisterOperand>(List # "16B_operand")>;
}
defm TBX1 : NI_TBX_pat<0b00, 0b1, "tbx", "VOne">;
defm TBX2 : NI_TBX_pat<0b01, 0b1, "tbx", "VPair">;
defm TBX3 : NI_TBX_pat<0b10, 0b1, "tbx", "VTriple">;
defm TBX4 : NI_TBX_pat<0b11, 0b1, "tbx", "VQuad">;
// The followings are for instruction class (3V Elem)
// Variant 1
class NI_2VE<bit q, bit u, bits<2> size, bits<4> opcode,
string asmop, string ResS, string OpS, string EleOpS,
Operand OpImm, RegisterOperand ResVPR,
RegisterOperand OpVPR, RegisterOperand EleOpVPR>
: NeonI_2VElem<q, u, size, opcode,
(outs ResVPR:$Rd), (ins ResVPR:$src, OpVPR:$Rn,
EleOpVPR:$Re, OpImm:$Index),
asmop # "\t$Rd." # ResS # ", $Rn." # OpS #
", $Re." # EleOpS # "[$Index]",
[],
NoItinerary> {
bits<3> Index;
bits<5> Re;
let Constraints = "$src = $Rd";
}
multiclass NI_2VE_v1<bit u, bits<4> opcode, string asmop> {
// vector register class for element is always 128-bit to cover the max index
def _2s4s : NI_2VE<0b0, u, 0b10, opcode, asmop, "2s", "2s", "s",
neon_uimm2_bare, VPR64, VPR64, VPR128> {
let Inst{11} = {Index{1}};
let Inst{21} = {Index{0}};
let Inst{20-16} = Re;
}
def _4s4s : NI_2VE<0b1, u, 0b10, opcode, asmop, "4s", "4s", "s",
neon_uimm2_bare, VPR128, VPR128, VPR128> {
let Inst{11} = {Index{1}};
let Inst{21} = {Index{0}};
let Inst{20-16} = Re;
}
// Index operations on 16-bit(H) elements are restricted to using v0-v15.
def _4h8h : NI_2VE<0b0, u, 0b01, opcode, asmop, "4h", "4h", "h",
neon_uimm3_bare, VPR64, VPR64, VPR128Lo> {
let Inst{11} = {Index{2}};
let Inst{21} = {Index{1}};
let Inst{20} = {Index{0}};
let Inst{19-16} = Re{3-0};
}
def _8h8h : NI_2VE<0b1, u, 0b01, opcode, asmop, "8h", "8h", "h",
neon_uimm3_bare, VPR128, VPR128, VPR128Lo> {
let Inst{11} = {Index{2}};
let Inst{21} = {Index{1}};
let Inst{20} = {Index{0}};
let Inst{19-16} = Re{3-0};
}
}
defm MLAvve : NI_2VE_v1<0b1, 0b0000, "mla">;
defm MLSvve : NI_2VE_v1<0b1, 0b0100, "mls">;
// Pattern for lane in 128-bit vector
class NI_2VE_laneq<Instruction INST, Operand OpImm, SDPatternOperator op,
RegisterOperand ResVPR, RegisterOperand OpVPR,
RegisterOperand EleOpVPR, ValueType ResTy, ValueType OpTy,
ValueType EleOpTy>
: Pat<(ResTy (op (ResTy ResVPR:$src), (OpTy OpVPR:$Rn),
(OpTy (Neon_vduplane (EleOpTy EleOpVPR:$Re), (i64 OpImm:$Index))))),
(INST ResVPR:$src, OpVPR:$Rn, EleOpVPR:$Re, OpImm:$Index)>;
// Pattern for lane in 64-bit vector
class NI_2VE_lane<Instruction INST, Operand OpImm, SDPatternOperator op,
RegisterOperand ResVPR, RegisterOperand OpVPR,
RegisterOperand EleOpVPR, ValueType ResTy, ValueType OpTy,
ValueType EleOpTy>
: Pat<(ResTy (op (ResTy ResVPR:$src), (OpTy OpVPR:$Rn),
(OpTy (Neon_vduplane (EleOpTy EleOpVPR:$Re), (i64 OpImm:$Index))))),
(INST ResVPR:$src, OpVPR:$Rn,
(SUBREG_TO_REG (i64 0), EleOpVPR:$Re, sub_64), OpImm:$Index)>;
multiclass NI_2VE_v1_pat<string subop, SDPatternOperator op>
{
def : NI_2VE_laneq<!cast<Instruction>(subop # "_2s4s"), neon_uimm2_bare,
op, VPR64, VPR64, VPR128, v2i32, v2i32, v4i32>;
def : NI_2VE_laneq<!cast<Instruction>(subop # "_4s4s"), neon_uimm2_bare,
op, VPR128, VPR128, VPR128, v4i32, v4i32, v4i32>;
def : NI_2VE_laneq<!cast<Instruction>(subop # "_4h8h"), neon_uimm3_bare,
op, VPR64, VPR64, VPR128Lo, v4i16, v4i16, v8i16>;
def : NI_2VE_laneq<!cast<Instruction>(subop # "_8h8h"), neon_uimm3_bare,
op, VPR128, VPR128, VPR128Lo, v8i16, v8i16, v8i16>;
// Index can only be half of the max value for lane in 64-bit vector
def : NI_2VE_lane<!cast<Instruction>(subop # "_2s4s"), neon_uimm1_bare,
op, VPR64, VPR64, VPR64, v2i32, v2i32, v2i32>;
def : NI_2VE_lane<!cast<Instruction>(subop # "_4h8h"), neon_uimm2_bare,
op, VPR64, VPR64, VPR64Lo, v4i16, v4i16, v4i16>;
}
defm MLA_lane_v1 : NI_2VE_v1_pat<"MLAvve", Neon_mla>;
defm MLS_lane_v1 : NI_2VE_v1_pat<"MLSvve", Neon_mls>;
class NI_2VE_2op<bit q, bit u, bits<2> size, bits<4> opcode,
string asmop, string ResS, string OpS, string EleOpS,
Operand OpImm, RegisterOperand ResVPR,
RegisterOperand OpVPR, RegisterOperand EleOpVPR>
: NeonI_2VElem<q, u, size, opcode,
(outs ResVPR:$Rd), (ins OpVPR:$Rn,
EleOpVPR:$Re, OpImm:$Index),
asmop # "\t$Rd." # ResS # ", $Rn." # OpS #
", $Re." # EleOpS # "[$Index]",
[],
NoItinerary> {
bits<3> Index;
bits<5> Re;
}
multiclass NI_2VE_v1_2op<bit u, bits<4> opcode, string asmop> {
// vector register class for element is always 128-bit to cover the max index
def _2s4s : NI_2VE_2op<0b0, u, 0b10, opcode, asmop, "2s", "2s", "s",
neon_uimm2_bare, VPR64, VPR64, VPR128> {
let Inst{11} = {Index{1}};
let Inst{21} = {Index{0}};
let Inst{20-16} = Re;
}
def _4s4s : NI_2VE_2op<0b1, u, 0b10, opcode, asmop, "4s", "4s", "s",
neon_uimm2_bare, VPR128, VPR128, VPR128> {
let Inst{11} = {Index{1}};
let Inst{21} = {Index{0}};
let Inst{20-16} = Re;
}
// Index operations on 16-bit(H) elements are restricted to using v0-v15.
def _4h8h : NI_2VE_2op<0b0, u, 0b01, opcode, asmop, "4h", "4h", "h",
neon_uimm3_bare, VPR64, VPR64, VPR128Lo> {
let Inst{11} = {Index{2}};
let Inst{21} = {Index{1}};
let Inst{20} = {Index{0}};
let Inst{19-16} = Re{3-0};
}
def _8h8h : NI_2VE_2op<0b1, u, 0b01, opcode, asmop, "8h", "8h", "h",
neon_uimm3_bare, VPR128, VPR128, VPR128Lo> {
let Inst{11} = {Index{2}};
let Inst{21} = {Index{1}};
let Inst{20} = {Index{0}};
let Inst{19-16} = Re{3-0};
}
}
defm MULve : NI_2VE_v1_2op<0b0, 0b1000, "mul">;
defm SQDMULHve : NI_2VE_v1_2op<0b0, 0b1100, "sqdmulh">;
defm SQRDMULHve : NI_2VE_v1_2op<0b0, 0b1101, "sqrdmulh">;
// Pattern for lane in 128-bit vector
class NI_2VE_mul_laneq<Instruction INST, Operand OpImm, SDPatternOperator op,
RegisterOperand OpVPR, RegisterOperand EleOpVPR,
ValueType ResTy, ValueType OpTy, ValueType EleOpTy>
: Pat<(ResTy (op (OpTy OpVPR:$Rn),
(OpTy (Neon_vduplane (EleOpTy EleOpVPR:$Re), (i64 OpImm:$Index))))),
(INST OpVPR:$Rn, EleOpVPR:$Re, OpImm:$Index)>;
// Pattern for lane in 64-bit vector
class NI_2VE_mul_lane<Instruction INST, Operand OpImm, SDPatternOperator op,
RegisterOperand OpVPR, RegisterOperand EleOpVPR,
ValueType ResTy, ValueType OpTy, ValueType EleOpTy>
: Pat<(ResTy (op (OpTy OpVPR:$Rn),
(OpTy (Neon_vduplane (EleOpTy EleOpVPR:$Re), (i64 OpImm:$Index))))),
(INST OpVPR:$Rn,
(SUBREG_TO_REG (i64 0), EleOpVPR:$Re, sub_64), OpImm:$Index)>;
multiclass NI_2VE_mul_v1_pat<string subop, SDPatternOperator op> {
def : NI_2VE_mul_laneq<!cast<Instruction>(subop # "_2s4s"), neon_uimm2_bare,
op, VPR64, VPR128, v2i32, v2i32, v4i32>;
def : NI_2VE_mul_laneq<!cast<Instruction>(subop # "_4s4s"), neon_uimm2_bare,
op, VPR128, VPR128, v4i32, v4i32, v4i32>;
def : NI_2VE_mul_laneq<!cast<Instruction>(subop # "_4h8h"), neon_uimm3_bare,
op, VPR64, VPR128Lo, v4i16, v4i16, v8i16>;
def : NI_2VE_mul_laneq<!cast<Instruction>(subop # "_8h8h"), neon_uimm3_bare,
op, VPR128, VPR128Lo, v8i16, v8i16, v8i16>;
// Index can only be half of the max value for lane in 64-bit vector
def : NI_2VE_mul_lane<!cast<Instruction>(subop # "_2s4s"), neon_uimm1_bare,
op, VPR64, VPR64, v2i32, v2i32, v2i32>;
def : NI_2VE_mul_lane<!cast<Instruction>(subop # "_4h8h"), neon_uimm2_bare,
op, VPR64, VPR64Lo, v4i16, v4i16, v4i16>;
}
defm MUL_lane_v1 : NI_2VE_mul_v1_pat<"MULve", mul>;
defm SQDMULH_lane_v1 : NI_2VE_mul_v1_pat<"SQDMULHve", int_arm_neon_vqdmulh>;
defm SQRDMULH_lane_v1 : NI_2VE_mul_v1_pat<"SQRDMULHve", int_arm_neon_vqrdmulh>;
// Variant 2
multiclass NI_2VE_v2_2op<bit u, bits<4> opcode, string asmop> {
// vector register class for element is always 128-bit to cover the max index
def _2s4s : NI_2VE_2op<0b0, u, 0b10, opcode, asmop, "2s", "2s", "s",
neon_uimm2_bare, VPR64, VPR64, VPR128> {
let Inst{11} = {Index{1}};
let Inst{21} = {Index{0}};
let Inst{20-16} = Re;
}
def _4s4s : NI_2VE_2op<0b1, u, 0b10, opcode, asmop, "4s", "4s", "s",
neon_uimm2_bare, VPR128, VPR128, VPR128> {
let Inst{11} = {Index{1}};
let Inst{21} = {Index{0}};
let Inst{20-16} = Re;
}
// _1d2d doesn't exist!
def _2d2d : NI_2VE_2op<0b1, u, 0b11, opcode, asmop, "2d", "2d", "d",
neon_uimm1_bare, VPR128, VPR128, VPR128> {
let Inst{11} = {Index{0}};
let Inst{21} = 0b0;
let Inst{20-16} = Re;
}
}
defm FMULve : NI_2VE_v2_2op<0b0, 0b1001, "fmul">;
defm FMULXve : NI_2VE_v2_2op<0b1, 0b1001, "fmulx">;
class NI_2VE_mul_lane_2d<Instruction INST, Operand OpImm, SDPatternOperator op,
RegisterOperand OpVPR, RegisterOperand EleOpVPR,
ValueType ResTy, ValueType OpTy, ValueType EleOpTy,
SDPatternOperator coreop>
: Pat<(ResTy (op (OpTy OpVPR:$Rn),
(OpTy (coreop (EleOpTy EleOpVPR:$Re), (EleOpTy EleOpVPR:$Re))))),
(INST OpVPR:$Rn,
(SUBREG_TO_REG (i64 0), EleOpVPR:$Re, sub_64), 0)>;
multiclass NI_2VE_mul_v2_pat<string subop, SDPatternOperator op> {
def : NI_2VE_mul_laneq<!cast<Instruction>(subop # "_2s4s"), neon_uimm2_bare,
op, VPR64, VPR128, v2f32, v2f32, v4f32>;
def : NI_2VE_mul_laneq<!cast<Instruction>(subop # "_4s4s"), neon_uimm2_bare,
op, VPR128, VPR128, v4f32, v4f32, v4f32>;
def : NI_2VE_mul_laneq<!cast<Instruction>(subop # "_2d2d"), neon_uimm1_bare,
op, VPR128, VPR128, v2f64, v2f64, v2f64>;
// Index can only be half of the max value for lane in 64-bit vector
def : NI_2VE_mul_lane<!cast<Instruction>(subop # "_2s4s"), neon_uimm1_bare,
op, VPR64, VPR64, v2f32, v2f32, v2f32>;
def : NI_2VE_mul_lane_2d<!cast<Instruction>(subop # "_2d2d"), neon_uimm1_bare,
op, VPR128, VPR64, v2f64, v2f64, v1f64,
BinOpFrag<(Neon_combine_2d node:$LHS, node:$RHS)>>;
}
defm FMUL_lane_v2 : NI_2VE_mul_v2_pat<"FMULve", fmul>;
defm FMULX_lane_v2 : NI_2VE_mul_v2_pat<"FMULXve", int_aarch64_neon_vmulx>;
// The followings are patterns using fma
// -ffp-contract=fast generates fma
multiclass NI_2VE_v2<bit u, bits<4> opcode, string asmop> {
// vector register class for element is always 128-bit to cover the max index
def _2s4s : NI_2VE<0b0, u, 0b10, opcode, asmop, "2s", "2s", "s",
neon_uimm2_bare, VPR64, VPR64, VPR128> {
let Inst{11} = {Index{1}};
let Inst{21} = {Index{0}};
let Inst{20-16} = Re;
}
def _4s4s : NI_2VE<0b1, u, 0b10, opcode, asmop, "4s", "4s", "s",
neon_uimm2_bare, VPR128, VPR128, VPR128> {
let Inst{11} = {Index{1}};
let Inst{21} = {Index{0}};
let Inst{20-16} = Re;
}
// _1d2d doesn't exist!
def _2d2d : NI_2VE<0b1, u, 0b11, opcode, asmop, "2d", "2d", "d",
neon_uimm1_bare, VPR128, VPR128, VPR128> {
let Inst{11} = {Index{0}};
let Inst{21} = 0b0;
let Inst{20-16} = Re;
}
}
defm FMLAvve : NI_2VE_v2<0b0, 0b0001, "fmla">;
defm FMLSvve : NI_2VE_v2<0b0, 0b0101, "fmls">;
// Pattern for lane in 128-bit vector
class NI_2VEswap_laneq<Instruction INST, Operand OpImm, SDPatternOperator op,
RegisterOperand ResVPR, RegisterOperand OpVPR,
ValueType ResTy, ValueType OpTy,
SDPatternOperator coreop>
: Pat<(ResTy (op (ResTy (coreop (OpTy OpVPR:$Re), (i64 OpImm:$Index))),
(ResTy ResVPR:$src), (ResTy ResVPR:$Rn))),
(INST ResVPR:$src, ResVPR:$Rn, OpVPR:$Re, OpImm:$Index)>;
// Pattern for lane in 64-bit vector
class NI_2VEswap_lane<Instruction INST, Operand OpImm, SDPatternOperator op,
RegisterOperand ResVPR, RegisterOperand OpVPR,
ValueType ResTy, ValueType OpTy,
SDPatternOperator coreop>
: Pat<(ResTy (op (ResTy (coreop (OpTy OpVPR:$Re), (i64 OpImm:$Index))),
(ResTy ResVPR:$Rn), (ResTy ResVPR:$src))),
(INST ResVPR:$src, ResVPR:$Rn,
(SUBREG_TO_REG (i64 0), OpVPR:$Re, sub_64), OpImm:$Index)>;
// Pattern for lane in 64-bit vector
class NI_2VEswap_lane_2d2d<Instruction INST, Operand OpImm,
SDPatternOperator op,
RegisterOperand ResVPR, RegisterOperand OpVPR,
ValueType ResTy, ValueType OpTy,
SDPatternOperator coreop>
: Pat<(ResTy (op (ResTy (coreop (OpTy OpVPR:$Re), (OpTy OpVPR:$Re))),
(ResTy ResVPR:$Rn), (ResTy ResVPR:$src))),
(INST ResVPR:$src, ResVPR:$Rn,
(SUBREG_TO_REG (i64 0), OpVPR:$Re, sub_64), 0)>;
multiclass NI_2VE_fma_v2_pat<string subop, SDPatternOperator op> {
def : NI_2VEswap_laneq<!cast<Instruction>(subop # "_2s4s"),
neon_uimm2_bare, op, VPR64, VPR128, v2f32, v4f32,
BinOpFrag<(Neon_vduplane node:$LHS, node:$RHS)>>;
def : NI_2VEswap_laneq<!cast<Instruction>(subop # "_4s4s"),
neon_uimm2_bare, op, VPR128, VPR128, v4f32, v4f32,
BinOpFrag<(Neon_vduplane node:$LHS, node:$RHS)>>;
def : NI_2VEswap_laneq<!cast<Instruction>(subop # "_2d2d"),
neon_uimm1_bare, op, VPR128, VPR128, v2f64, v2f64,
BinOpFrag<(Neon_vduplane node:$LHS, node:$RHS)>>;
// Index can only be half of the max value for lane in 64-bit vector
def : NI_2VEswap_lane<!cast<Instruction>(subop # "_2s4s"),
neon_uimm1_bare, op, VPR64, VPR64, v2f32, v2f32,
BinOpFrag<(Neon_vduplane node:$LHS, node:$RHS)>>;
def : NI_2VEswap_lane_2d2d<!cast<Instruction>(subop # "_2d2d"),
neon_uimm1_bare, op, VPR128, VPR64, v2f64, v1f64,
BinOpFrag<(Neon_combine_2d node:$LHS, node:$RHS)>>;
}
defm FMLA_lane_v2_s : NI_2VE_fma_v2_pat<"FMLAvve", fma>;
multiclass NI_2VE_fms_v2_pat<string subop, SDPatternOperator op>
{
def : NI_2VEswap_laneq<!cast<Instruction>(subop # "_2s4s"),
neon_uimm2_bare, op, VPR64, VPR128, v2f32, v4f32,
BinOpFrag<(fneg (Neon_vduplane node:$LHS, node:$RHS))>>;
def : NI_2VEswap_laneq<!cast<Instruction>(subop # "_2s4s"),
neon_uimm2_bare, op, VPR64, VPR128, v2f32, v4f32,
BinOpFrag<(Neon_vduplane
(fneg node:$LHS), node:$RHS)>>;
def : NI_2VEswap_laneq<!cast<Instruction>(subop # "_4s4s"),
neon_uimm2_bare, op, VPR128, VPR128, v4f32, v4f32,
BinOpFrag<(fneg (Neon_vduplane
node:$LHS, node:$RHS))>>;
def : NI_2VEswap_laneq<!cast<Instruction>(subop # "_4s4s"),
neon_uimm2_bare, op, VPR128, VPR128, v4f32, v4f32,
BinOpFrag<(Neon_vduplane
(fneg node:$LHS), node:$RHS)>>;
def : NI_2VEswap_laneq<!cast<Instruction>(subop # "_2d2d"),
neon_uimm1_bare, op, VPR128, VPR128, v2f64, v2f64,
BinOpFrag<(fneg (Neon_vduplane
node:$LHS, node:$RHS))>>;
def : NI_2VEswap_laneq<!cast<Instruction>(subop # "_2d2d"),
neon_uimm1_bare, op, VPR128, VPR128, v2f64, v2f64,
BinOpFrag<(Neon_vduplane
(fneg node:$LHS), node:$RHS)>>;
// Index can only be half of the max value for lane in 64-bit vector
def : NI_2VEswap_lane<!cast<Instruction>(subop # "_2s4s"),
neon_uimm1_bare, op, VPR64, VPR64, v2f32, v2f32,
BinOpFrag<(fneg (Neon_vduplane
node:$LHS, node:$RHS))>>;
def : NI_2VEswap_lane<!cast<Instruction>(subop # "_2s4s"),
neon_uimm1_bare, op, VPR64, VPR64, v2f32, v2f32,
BinOpFrag<(Neon_vduplane
(fneg node:$LHS), node:$RHS)>>;
def : NI_2VEswap_lane<!cast<Instruction>(subop # "_4s4s"),
neon_uimm1_bare, op, VPR128, VPR64, v4f32, v2f32,
BinOpFrag<(fneg (Neon_vduplane node:$LHS, node:$RHS))>>;
def : NI_2VEswap_lane<!cast<Instruction>(subop # "_4s4s"),
neon_uimm1_bare, op, VPR128, VPR64, v4f32, v2f32,
BinOpFrag<(Neon_vduplane (fneg node:$LHS), node:$RHS)>>;
def : NI_2VEswap_lane_2d2d<!cast<Instruction>(subop # "_2d2d"),
neon_uimm1_bare, op, VPR128, VPR64, v2f64, v1f64,
BinOpFrag<(fneg (Neon_combine_2d
node:$LHS, node:$RHS))>>;
def : NI_2VEswap_lane_2d2d<!cast<Instruction>(subop # "_2d2d"),
neon_uimm1_bare, op, VPR128, VPR64, v2f64, v1f64,
BinOpFrag<(Neon_combine_2d
(fneg node:$LHS), (fneg node:$RHS))>>;
}
defm FMLS_lane_v2_s : NI_2VE_fms_v2_pat<"FMLSvve", fma>;
// Variant 3: Long type
// E.g. SMLAL : 4S/4H/H (v0-v15), 2D/2S/S
// SMLAL2: 4S/8H/H (v0-v15), 2D/4S/S
multiclass NI_2VE_v3<bit u, bits<4> opcode, string asmop> {
// vector register class for element is always 128-bit to cover the max index
def _2d2s : NI_2VE<0b0, u, 0b10, opcode, asmop, "2d", "2s", "s",
neon_uimm2_bare, VPR128, VPR64, VPR128> {
let Inst{11} = {Index{1}};
let Inst{21} = {Index{0}};
let Inst{20-16} = Re;
}
def _2d4s : NI_2VE<0b1, u, 0b10, opcode, asmop # "2", "2d", "4s", "s",
neon_uimm2_bare, VPR128, VPR128, VPR128> {
let Inst{11} = {Index{1}};
let Inst{21} = {Index{0}};
let Inst{20-16} = Re;
}
// Index operations on 16-bit(H) elements are restricted to using v0-v15.
def _4s8h : NI_2VE<0b1, u, 0b01, opcode, asmop # "2", "4s", "8h", "h",
neon_uimm3_bare, VPR128, VPR128, VPR128Lo> {
let Inst{11} = {Index{2}};
let Inst{21} = {Index{1}};
let Inst{20} = {Index{0}};
let Inst{19-16} = Re{3-0};
}
def _4s4h : NI_2VE<0b0, u, 0b01, opcode, asmop, "4s", "4h", "h",
neon_uimm3_bare, VPR128, VPR64, VPR128Lo> {
let Inst{11} = {Index{2}};
let Inst{21} = {Index{1}};
let Inst{20} = {Index{0}};
let Inst{19-16} = Re{3-0};
}
}
defm SMLALvve : NI_2VE_v3<0b0, 0b0010, "smlal">;
defm UMLALvve : NI_2VE_v3<0b1, 0b0010, "umlal">;
defm SMLSLvve : NI_2VE_v3<0b0, 0b0110, "smlsl">;
defm UMLSLvve : NI_2VE_v3<0b1, 0b0110, "umlsl">;
defm SQDMLALvve : NI_2VE_v3<0b0, 0b0011, "sqdmlal">;
defm SQDMLSLvve : NI_2VE_v3<0b0, 0b0111, "sqdmlsl">;
multiclass NI_2VE_v3_2op<bit u, bits<4> opcode, string asmop> {
// vector register class for element is always 128-bit to cover the max index
def _2d2s : NI_2VE_2op<0b0, u, 0b10, opcode, asmop, "2d", "2s", "s",
neon_uimm2_bare, VPR128, VPR64, VPR128> {
let Inst{11} = {Index{1}};
let Inst{21} = {Index{0}};
let Inst{20-16} = Re;
}
def _2d4s : NI_2VE_2op<0b1, u, 0b10, opcode, asmop # "2", "2d", "4s", "s",
neon_uimm2_bare, VPR128, VPR128, VPR128> {
let Inst{11} = {Index{1}};
let Inst{21} = {Index{0}};
let Inst{20-16} = Re;
}
// Index operations on 16-bit(H) elements are restricted to using v0-v15.
def _4s8h : NI_2VE_2op<0b1, u, 0b01, opcode, asmop # "2", "4s", "8h", "h",
neon_uimm3_bare, VPR128, VPR128, VPR128Lo> {
let Inst{11} = {Index{2}};
let Inst{21} = {Index{1}};
let Inst{20} = {Index{0}};
let Inst{19-16} = Re{3-0};
}
def _4s4h : NI_2VE_2op<0b0, u, 0b01, opcode, asmop, "4s", "4h", "h",
neon_uimm3_bare, VPR128, VPR64, VPR128Lo> {
let Inst{11} = {Index{2}};
let Inst{21} = {Index{1}};
let Inst{20} = {Index{0}};
let Inst{19-16} = Re{3-0};
}
}
defm SMULLve : NI_2VE_v3_2op<0b0, 0b1010, "smull">;
defm UMULLve : NI_2VE_v3_2op<0b1, 0b1010, "umull">;
defm SQDMULLve : NI_2VE_v3_2op<0b0, 0b1011, "sqdmull">;
// Pattern for lane in 128-bit vector
class NI_2VEL2_laneq<Instruction INST, Operand OpImm, SDPatternOperator op,
RegisterOperand EleOpVPR, ValueType ResTy,
ValueType OpTy, ValueType EleOpTy, ValueType HalfOpTy,
SDPatternOperator hiop>
: Pat<(ResTy (op (ResTy VPR128:$src),
(HalfOpTy (hiop (OpTy VPR128:$Rn))),
(HalfOpTy (Neon_vduplane
(EleOpTy EleOpVPR:$Re), (i64 OpImm:$Index))))),
(INST VPR128:$src, VPR128:$Rn, EleOpVPR:$Re, OpImm:$Index)>;
// Pattern for lane in 64-bit vector
class NI_2VEL2_lane<Instruction INST, Operand OpImm, SDPatternOperator op,
RegisterOperand EleOpVPR, ValueType ResTy,
ValueType OpTy, ValueType EleOpTy, ValueType HalfOpTy,
SDPatternOperator hiop>
: Pat<(ResTy (op (ResTy VPR128:$src),
(HalfOpTy (hiop (OpTy VPR128:$Rn))),
(HalfOpTy (Neon_vduplane
(EleOpTy EleOpVPR:$Re), (i64 OpImm:$Index))))),
(INST VPR128:$src, VPR128:$Rn,
(SUBREG_TO_REG (i64 0), EleOpVPR:$Re, sub_64), OpImm:$Index)>;
multiclass NI_2VEL_v3_pat<string subop, SDPatternOperator op> {
def : NI_2VE_laneq<!cast<Instruction>(subop # "_4s4h"), neon_uimm3_bare,
op, VPR128, VPR64, VPR128Lo, v4i32, v4i16, v8i16>;
def : NI_2VE_laneq<!cast<Instruction>(subop # "_2d2s"), neon_uimm2_bare,
op, VPR128, VPR64, VPR128, v2i64, v2i32, v4i32>;
def : NI_2VEL2_laneq<!cast<Instruction>(subop # "_4s8h"), neon_uimm3_bare,
op, VPR128Lo, v4i32, v8i16, v8i16, v4i16, Neon_High8H>;
def : NI_2VEL2_laneq<!cast<Instruction>(subop # "_2d4s"), neon_uimm2_bare,
op, VPR128, v2i64, v4i32, v4i32, v2i32, Neon_High4S>;
// Index can only be half of the max value for lane in 64-bit vector
def : NI_2VE_lane<!cast<Instruction>(subop # "_4s4h"), neon_uimm2_bare,
op, VPR128, VPR64, VPR64Lo, v4i32, v4i16, v4i16>;
def : NI_2VE_lane<!cast<Instruction>(subop # "_2d2s"), neon_uimm1_bare,
op, VPR128, VPR64, VPR64, v2i64, v2i32, v2i32>;
def : NI_2VEL2_lane<!cast<Instruction>(subop # "_4s8h"), neon_uimm2_bare,
op, VPR64Lo, v4i32, v8i16, v4i16, v4i16, Neon_High8H>;
def : NI_2VEL2_lane<!cast<Instruction>(subop # "_2d4s"), neon_uimm1_bare,
op, VPR64, v2i64, v4i32, v2i32, v2i32, Neon_High4S>;
}
defm SMLAL_lane_v3 : NI_2VEL_v3_pat<"SMLALvve", Neon_smlal>;
defm UMLAL_lane_v3 : NI_2VEL_v3_pat<"UMLALvve", Neon_umlal>;
defm SMLSL_lane_v3 : NI_2VEL_v3_pat<"SMLSLvve", Neon_smlsl>;
defm UMLSL_lane_v3 : NI_2VEL_v3_pat<"UMLSLvve", Neon_umlsl>;
// Pattern for lane in 128-bit vector
class NI_2VEL2_mul_laneq<Instruction INST, Operand OpImm, SDPatternOperator op,
RegisterOperand EleOpVPR, ValueType ResTy,
ValueType OpTy, ValueType EleOpTy, ValueType HalfOpTy,
SDPatternOperator hiop>
: Pat<(ResTy (op
(HalfOpTy (hiop (OpTy VPR128:$Rn))),
(HalfOpTy (Neon_vduplane
(EleOpTy EleOpVPR:$Re), (i64 OpImm:$Index))))),
(INST VPR128:$Rn, EleOpVPR:$Re, OpImm:$Index)>;
// Pattern for lane in 64-bit vector
class NI_2VEL2_mul_lane<Instruction INST, Operand OpImm, SDPatternOperator op,
RegisterOperand EleOpVPR, ValueType ResTy,
ValueType OpTy, ValueType EleOpTy, ValueType HalfOpTy,
SDPatternOperator hiop>
: Pat<(ResTy (op
(HalfOpTy (hiop (OpTy VPR128:$Rn))),
(HalfOpTy (Neon_vduplane
(EleOpTy EleOpVPR:$Re), (i64 OpImm:$Index))))),
(INST VPR128:$Rn,
(SUBREG_TO_REG (i64 0), EleOpVPR:$Re, sub_64), OpImm:$Index)>;
multiclass NI_2VEL_mul_v3_pat<string subop, SDPatternOperator op> {
def : NI_2VE_mul_laneq<!cast<Instruction>(subop # "_4s4h"), neon_uimm3_bare,
op, VPR64, VPR128Lo, v4i32, v4i16, v8i16>;
def : NI_2VE_mul_laneq<!cast<Instruction>(subop # "_2d2s"), neon_uimm2_bare,
op, VPR64, VPR128, v2i64, v2i32, v4i32>;
def : NI_2VEL2_mul_laneq<!cast<Instruction>(subop # "_4s8h"), neon_uimm3_bare,
op, VPR128Lo, v4i32, v8i16, v8i16, v4i16, Neon_High8H>;
def : NI_2VEL2_mul_laneq<!cast<Instruction>(subop # "_2d4s"), neon_uimm2_bare,
op, VPR128, v2i64, v4i32, v4i32, v2i32, Neon_High4S>;
// Index can only be half of the max value for lane in 64-bit vector
def : NI_2VE_mul_lane<!cast<Instruction>(subop # "_4s4h"), neon_uimm2_bare,
op, VPR64, VPR64Lo, v4i32, v4i16, v4i16>;
def : NI_2VE_mul_lane<!cast<Instruction>(subop # "_2d2s"), neon_uimm1_bare,
op, VPR64, VPR64, v2i64, v2i32, v2i32>;
def : NI_2VEL2_mul_lane<!cast<Instruction>(subop # "_4s8h"), neon_uimm2_bare,
op, VPR64Lo, v4i32, v8i16, v4i16, v4i16, Neon_High8H>;
def : NI_2VEL2_mul_lane<!cast<Instruction>(subop # "_2d4s"), neon_uimm1_bare,
op, VPR64, v2i64, v4i32, v2i32, v2i32, Neon_High4S>;
}
defm SMULL_lane_v3 : NI_2VEL_mul_v3_pat<"SMULLve", int_arm_neon_vmulls>;
defm UMULL_lane_v3 : NI_2VEL_mul_v3_pat<"UMULLve", int_arm_neon_vmullu>;
defm SQDMULL_lane_v3 : NI_2VEL_mul_v3_pat<"SQDMULLve", int_arm_neon_vqdmull>;
multiclass NI_qdma<SDPatternOperator op> {
def _4s : PatFrag<(ops node:$Ra, node:$Rn, node:$Rm),
(op node:$Ra,
(v4i32 (int_arm_neon_vqdmull node:$Rn, node:$Rm)))>;
def _2d : PatFrag<(ops node:$Ra, node:$Rn, node:$Rm),
(op node:$Ra,
(v2i64 (int_arm_neon_vqdmull node:$Rn, node:$Rm)))>;
}
defm Neon_qdmlal : NI_qdma<int_arm_neon_vqadds>;
defm Neon_qdmlsl : NI_qdma<int_arm_neon_vqsubs>;
multiclass NI_2VEL_v3_qdma_pat<string subop, string op> {
def : NI_2VE_laneq<!cast<Instruction>(subop # "_4s4h"), neon_uimm3_bare,
!cast<PatFrag>(op # "_4s"), VPR128, VPR64, VPR128Lo,
v4i32, v4i16, v8i16>;
def : NI_2VE_laneq<!cast<Instruction>(subop # "_2d2s"), neon_uimm2_bare,
!cast<PatFrag>(op # "_2d"), VPR128, VPR64, VPR128,
v2i64, v2i32, v4i32>;
def : NI_2VEL2_laneq<!cast<Instruction>(subop # "_4s8h"), neon_uimm3_bare,
!cast<PatFrag>(op # "_4s"), VPR128Lo,
v4i32, v8i16, v8i16, v4i16, Neon_High8H>;
def : NI_2VEL2_laneq<!cast<Instruction>(subop # "_2d4s"), neon_uimm2_bare,
!cast<PatFrag>(op # "_2d"), VPR128,
v2i64, v4i32, v4i32, v2i32, Neon_High4S>;
// Index can only be half of the max value for lane in 64-bit vector
def : NI_2VE_lane<!cast<Instruction>(subop # "_4s4h"), neon_uimm2_bare,
!cast<PatFrag>(op # "_4s"), VPR128, VPR64, VPR64Lo,
v4i32, v4i16, v4i16>;
def : NI_2VE_lane<!cast<Instruction>(subop # "_2d2s"), neon_uimm1_bare,
!cast<PatFrag>(op # "_2d"), VPR128, VPR64, VPR64,
v2i64, v2i32, v2i32>;
def : NI_2VEL2_lane<!cast<Instruction>(subop # "_4s8h"), neon_uimm2_bare,
!cast<PatFrag>(op # "_4s"), VPR64Lo,
v4i32, v8i16, v4i16, v4i16, Neon_High8H>;
def : NI_2VEL2_lane<!cast<Instruction>(subop # "_2d4s"), neon_uimm1_bare,
!cast<PatFrag>(op # "_2d"), VPR64,
v2i64, v4i32, v2i32, v2i32, Neon_High4S>;
}
defm SQDMLAL_lane_v3 : NI_2VEL_v3_qdma_pat<"SQDMLALvve", "Neon_qdmlal">;
defm SQDMLSL_lane_v3 : NI_2VEL_v3_qdma_pat<"SQDMLSLvve", "Neon_qdmlsl">;
// End of implementation for instruction class (3V Elem)
class NeonI_INS_main<string asmop, string Res, ValueType ResTy,
RegisterClass OpGPR, ValueType OpTy, Operand OpImm>
: NeonI_copy<0b1, 0b0, 0b0011,
(outs VPR128:$Rd), (ins VPR128:$src, OpGPR:$Rn, OpImm:$Imm),
asmop # "\t$Rd." # Res # "[$Imm], $Rn",
[(set (ResTy VPR128:$Rd),
(ResTy (vector_insert
(ResTy VPR128:$src),
(OpTy OpGPR:$Rn),
(OpImm:$Imm))))],
NoItinerary> {
bits<4> Imm;
let Constraints = "$src = $Rd";
}
//Insert element (vector, from main)
def INSbw : NeonI_INS_main<"ins", "b", v16i8, GPR32, i32,
neon_uimm4_bare> {
let Inst{20-16} = {Imm{3}, Imm{2}, Imm{1}, Imm{0}, 0b1};
}
def INShw : NeonI_INS_main<"ins", "h", v8i16, GPR32, i32,
neon_uimm3_bare> {
let Inst{20-16} = {Imm{2}, Imm{1}, Imm{0}, 0b1, 0b0};
}
def INSsw : NeonI_INS_main<"ins", "s", v4i32, GPR32, i32,
neon_uimm2_bare> {
let Inst{20-16} = {Imm{1}, Imm{0}, 0b1, 0b0, 0b0};
}
def INSdx : NeonI_INS_main<"ins", "d", v2i64, GPR64, i64,
neon_uimm1_bare> {
let Inst{20-16} = {Imm, 0b1, 0b0, 0b0, 0b0};
}
def : NeonInstAlias<"mov $Rd.b[$Imm], $Rn",
(INSbw VPR128:$Rd, GPR32:$Rn, neon_uimm4_bare:$Imm), 0>;
def : NeonInstAlias<"mov $Rd.h[$Imm], $Rn",
(INShw VPR128:$Rd, GPR32:$Rn, neon_uimm3_bare:$Imm), 0>;
def : NeonInstAlias<"mov $Rd.s[$Imm], $Rn",
(INSsw VPR128:$Rd, GPR32:$Rn, neon_uimm2_bare:$Imm), 0>;
def : NeonInstAlias<"mov $Rd.d[$Imm], $Rn",
(INSdx VPR128:$Rd, GPR64:$Rn, neon_uimm1_bare:$Imm), 0>;
class Neon_INS_main_pattern <ValueType ResTy,ValueType ExtResTy,
RegisterClass OpGPR, ValueType OpTy,
Operand OpImm, Instruction INS>
: Pat<(ResTy (vector_insert
(ResTy VPR64:$src),
(OpTy OpGPR:$Rn),
(OpImm:$Imm))),
(ResTy (EXTRACT_SUBREG
(ExtResTy (INS (ExtResTy (SUBREG_TO_REG (i64 0), VPR64:$src, sub_64)),
OpGPR:$Rn, OpImm:$Imm)), sub_64))>;
def INSbw_pattern : Neon_INS_main_pattern<v8i8, v16i8, GPR32, i32,
neon_uimm3_bare, INSbw>;
def INShw_pattern : Neon_INS_main_pattern<v4i16, v8i16, GPR32, i32,
neon_uimm2_bare, INShw>;
def INSsw_pattern : Neon_INS_main_pattern<v2i32, v4i32, GPR32, i32,
neon_uimm1_bare, INSsw>;
def INSdx_pattern : Neon_INS_main_pattern<v1i64, v2i64, GPR64, i64,
neon_uimm0_bare, INSdx>;
class NeonI_INS_element<string asmop, string Res, Operand ResImm>
: NeonI_insert<0b1, 0b1,
(outs VPR128:$Rd), (ins VPR128:$src, VPR128:$Rn,
ResImm:$Immd, ResImm:$Immn),
asmop # "\t$Rd." # Res # "[$Immd], $Rn." # Res # "[$Immn]",
[],
NoItinerary> {
let Constraints = "$src = $Rd";
bits<4> Immd;
bits<4> Immn;
}
//Insert element (vector, from element)
def INSELb : NeonI_INS_element<"ins", "b", neon_uimm4_bare> {
let Inst{20-16} = {Immd{3}, Immd{2}, Immd{1}, Immd{0}, 0b1};
let Inst{14-11} = {Immn{3}, Immn{2}, Immn{1}, Immn{0}};
}
def INSELh : NeonI_INS_element<"ins", "h", neon_uimm3_bare> {
let Inst{20-16} = {Immd{2}, Immd{1}, Immd{0}, 0b1, 0b0};
let Inst{14-11} = {Immn{2}, Immn{1}, Immn{0}, 0b0};
// bit 11 is unspecified, but should be set to zero.
}
def INSELs : NeonI_INS_element<"ins", "s", neon_uimm2_bare> {
let Inst{20-16} = {Immd{1}, Immd{0}, 0b1, 0b0, 0b0};
let Inst{14-11} = {Immn{1}, Immn{0}, 0b0, 0b0};
// bits 11-12 are unspecified, but should be set to zero.
}
def INSELd : NeonI_INS_element<"ins", "d", neon_uimm1_bare> {
let Inst{20-16} = {Immd, 0b1, 0b0, 0b0, 0b0};
let Inst{14-11} = {Immn{0}, 0b0, 0b0, 0b0};
// bits 11-13 are unspecified, but should be set to zero.
}
def : NeonInstAlias<"mov $Rd.b[$Immd], $Rn.b[$Immn]",
(INSELb VPR128:$Rd, VPR128:$Rn,
neon_uimm4_bare:$Immd, neon_uimm4_bare:$Immn), 0>;
def : NeonInstAlias<"mov $Rd.h[$Immd], $Rn.h[$Immn]",
(INSELh VPR128:$Rd, VPR128:$Rn,
neon_uimm3_bare:$Immd, neon_uimm3_bare:$Immn), 0>;
def : NeonInstAlias<"mov $Rd.s[$Immd], $Rn.s[$Immn]",
(INSELs VPR128:$Rd, VPR128:$Rn,
neon_uimm2_bare:$Immd, neon_uimm2_bare:$Immn), 0>;
def : NeonInstAlias<"mov $Rd.d[$Immd], $Rn.d[$Immn]",
(INSELd VPR128:$Rd, VPR128:$Rn,
neon_uimm1_bare:$Immd, neon_uimm1_bare:$Immn), 0>;
multiclass Neon_INS_elt_pattern<ValueType ResTy, ValueType NaTy,
ValueType MidTy, Operand StImm, Operand NaImm,
Instruction INS> {
def : Pat<(ResTy (vector_insert
(ResTy VPR128:$src),
(MidTy (vector_extract
(ResTy VPR128:$Rn),
(StImm:$Immn))),
(StImm:$Immd))),
(INS (ResTy VPR128:$src), (ResTy VPR128:$Rn),
StImm:$Immd, StImm:$Immn)>;
def : Pat <(ResTy (vector_insert
(ResTy VPR128:$src),
(MidTy (vector_extract
(NaTy VPR64:$Rn),
(NaImm:$Immn))),
(StImm:$Immd))),
(INS (ResTy VPR128:$src),
(ResTy (SUBREG_TO_REG (i64 0), (NaTy VPR64:$Rn), sub_64)),
StImm:$Immd, NaImm:$Immn)>;
def : Pat <(NaTy (vector_insert
(NaTy VPR64:$src),
(MidTy (vector_extract
(ResTy VPR128:$Rn),
(StImm:$Immn))),
(NaImm:$Immd))),
(NaTy (EXTRACT_SUBREG
(ResTy (INS
(ResTy (SUBREG_TO_REG (i64 0), (NaTy VPR64:$src), sub_64)),
(ResTy VPR128:$Rn),
NaImm:$Immd, StImm:$Immn)),
sub_64))>;
def : Pat <(NaTy (vector_insert
(NaTy VPR64:$src),
(MidTy (vector_extract
(NaTy VPR64:$Rn),
(NaImm:$Immn))),
(NaImm:$Immd))),
(NaTy (EXTRACT_SUBREG
(ResTy (INS
(ResTy (SUBREG_TO_REG (i64 0), (NaTy VPR64:$src), sub_64)),
(ResTy (SUBREG_TO_REG (i64 0), (NaTy VPR64:$Rn), sub_64)),
NaImm:$Immd, NaImm:$Immn)),
sub_64))>;
}
defm : Neon_INS_elt_pattern<v4f32, v2f32, f32, neon_uimm2_bare,
neon_uimm1_bare, INSELs>;
defm : Neon_INS_elt_pattern<v2f64, v1f64, f64, neon_uimm1_bare,
neon_uimm0_bare, INSELd>;
defm : Neon_INS_elt_pattern<v16i8, v8i8, i32, neon_uimm4_bare,
neon_uimm3_bare, INSELb>;
defm : Neon_INS_elt_pattern<v8i16, v4i16, i32, neon_uimm3_bare,
neon_uimm2_bare, INSELh>;
defm : Neon_INS_elt_pattern<v4i32, v2i32, i32, neon_uimm2_bare,
neon_uimm1_bare, INSELs>;
defm : Neon_INS_elt_pattern<v2i64, v1i64, i64, neon_uimm1_bare,
neon_uimm0_bare, INSELd>;
multiclass Neon_INS_elt_float_pattern<ValueType ResTy, ValueType NaTy,
ValueType MidTy,
RegisterClass OpFPR, Operand ResImm,
SubRegIndex SubIndex, Instruction INS> {
def : Pat <(ResTy (vector_insert
(ResTy VPR128:$src),
(MidTy OpFPR:$Rn),
(ResImm:$Imm))),
(INS (ResTy VPR128:$src),
(ResTy (SUBREG_TO_REG (i64 0), OpFPR:$Rn, SubIndex)),
ResImm:$Imm,
(i64 0))>;
def : Pat <(NaTy (vector_insert
(NaTy VPR64:$src),
(MidTy OpFPR:$Rn),
(ResImm:$Imm))),
(NaTy (EXTRACT_SUBREG
(ResTy (INS
(ResTy (SUBREG_TO_REG (i64 0), (NaTy VPR64:$src), sub_64)),
(ResTy (SUBREG_TO_REG (i64 0), (MidTy OpFPR:$Rn), SubIndex)),
ResImm:$Imm,
(i64 0))),
sub_64))>;
}
defm : Neon_INS_elt_float_pattern<v4f32, v2f32, f32, FPR32, neon_uimm2_bare,
sub_32, INSELs>;
defm : Neon_INS_elt_float_pattern<v2f64, v1f64, f64, FPR64, neon_uimm1_bare,
sub_64, INSELd>;
class NeonI_SMOV<string asmop, string Res, bit Q,
ValueType OpTy, ValueType eleTy,
Operand OpImm, RegisterClass ResGPR, ValueType ResTy>
: NeonI_copy<Q, 0b0, 0b0101,
(outs ResGPR:$Rd), (ins VPR128:$Rn, OpImm:$Imm),
asmop # "\t$Rd, $Rn." # Res # "[$Imm]",
[(set (ResTy ResGPR:$Rd),
(ResTy (sext_inreg
(ResTy (vector_extract
(OpTy VPR128:$Rn), (OpImm:$Imm))),
eleTy)))],
NoItinerary> {
bits<4> Imm;
}
//Signed integer move (main, from element)
def SMOVwb : NeonI_SMOV<"smov", "b", 0b0, v16i8, i8, neon_uimm4_bare,
GPR32, i32> {
let Inst{20-16} = {Imm{3}, Imm{2}, Imm{1}, Imm{0}, 0b1};
}
def SMOVwh : NeonI_SMOV<"smov", "h", 0b0, v8i16, i16, neon_uimm3_bare,
GPR32, i32> {
let Inst{20-16} = {Imm{2}, Imm{1}, Imm{0}, 0b1, 0b0};
}
def SMOVxb : NeonI_SMOV<"smov", "b", 0b1, v16i8, i8, neon_uimm4_bare,
GPR64, i64> {
let Inst{20-16} = {Imm{3}, Imm{2}, Imm{1}, Imm{0}, 0b1};
}
def SMOVxh : NeonI_SMOV<"smov", "h", 0b1, v8i16, i16, neon_uimm3_bare,
GPR64, i64> {
let Inst{20-16} = {Imm{2}, Imm{1}, Imm{0}, 0b1, 0b0};
}
def SMOVxs : NeonI_SMOV<"smov", "s", 0b1, v4i32, i32, neon_uimm2_bare,
GPR64, i64> {
let Inst{20-16} = {Imm{1}, Imm{0}, 0b1, 0b0, 0b0};
}
multiclass Neon_SMOVx_pattern <ValueType StTy, ValueType NaTy,
ValueType eleTy, Operand StImm, Operand NaImm,
Instruction SMOVI> {
def : Pat<(i64 (sext_inreg
(i64 (anyext
(i32 (vector_extract
(StTy VPR128:$Rn), (StImm:$Imm))))),
eleTy)),
(SMOVI VPR128:$Rn, StImm:$Imm)>;
def : Pat<(i64 (sext
(i32 (vector_extract
(StTy VPR128:$Rn), (StImm:$Imm))))),
(SMOVI VPR128:$Rn, StImm:$Imm)>;
def : Pat<(i64 (sext_inreg
(i64 (vector_extract
(NaTy VPR64:$Rn), (NaImm:$Imm))),
eleTy)),
(SMOVI (StTy (SUBREG_TO_REG (i64 0), VPR64:$Rn, sub_64)),
NaImm:$Imm)>;
def : Pat<(i64 (sext_inreg
(i64 (anyext
(i32 (vector_extract
(NaTy VPR64:$Rn), (NaImm:$Imm))))),
eleTy)),
(SMOVI (StTy (SUBREG_TO_REG (i64 0), VPR64:$Rn, sub_64)),
NaImm:$Imm)>;
def : Pat<(i64 (sext
(i32 (vector_extract
(NaTy VPR64:$Rn), (NaImm:$Imm))))),
(SMOVI (StTy (SUBREG_TO_REG (i64 0), VPR64:$Rn, sub_64)),
NaImm:$Imm)>;
}
defm : Neon_SMOVx_pattern<v16i8, v8i8, i8, neon_uimm4_bare,
neon_uimm3_bare, SMOVxb>;
defm : Neon_SMOVx_pattern<v8i16, v4i16, i16, neon_uimm3_bare,
neon_uimm2_bare, SMOVxh>;
defm : Neon_SMOVx_pattern<v4i32, v2i32, i32, neon_uimm2_bare,
neon_uimm1_bare, SMOVxs>;
class Neon_SMOVw_pattern <ValueType StTy, ValueType NaTy,
ValueType eleTy, Operand StImm, Operand NaImm,
Instruction SMOVI>
: Pat<(i32 (sext_inreg
(i32 (vector_extract
(NaTy VPR64:$Rn), (NaImm:$Imm))),
eleTy)),
(SMOVI (StTy (SUBREG_TO_REG (i64 0), VPR64:$Rn, sub_64)),
NaImm:$Imm)>;
def : Neon_SMOVw_pattern<v16i8, v8i8, i8, neon_uimm4_bare,
neon_uimm3_bare, SMOVwb>;
def : Neon_SMOVw_pattern<v8i16, v4i16, i16, neon_uimm3_bare,
neon_uimm2_bare, SMOVwh>;
class NeonI_UMOV<string asmop, string Res, bit Q,
ValueType OpTy, Operand OpImm,
RegisterClass ResGPR, ValueType ResTy>
: NeonI_copy<Q, 0b0, 0b0111,
(outs ResGPR:$Rd), (ins VPR128:$Rn, OpImm:$Imm),
asmop # "\t$Rd, $Rn." # Res # "[$Imm]",
[(set (ResTy ResGPR:$Rd),
(ResTy (vector_extract
(OpTy VPR128:$Rn), (OpImm:$Imm))))],
NoItinerary> {
bits<4> Imm;
}
//Unsigned integer move (main, from element)
def UMOVwb : NeonI_UMOV<"umov", "b", 0b0, v16i8, neon_uimm4_bare,
GPR32, i32> {
let Inst{20-16} = {Imm{3}, Imm{2}, Imm{1}, Imm{0}, 0b1};
}
def UMOVwh : NeonI_UMOV<"umov", "h", 0b0, v8i16, neon_uimm3_bare,
GPR32, i32> {
let Inst{20-16} = {Imm{2}, Imm{1}, Imm{0}, 0b1, 0b0};
}
def UMOVws : NeonI_UMOV<"umov", "s", 0b0, v4i32, neon_uimm2_bare,
GPR32, i32> {
let Inst{20-16} = {Imm{1}, Imm{0}, 0b1, 0b0, 0b0};
}
def UMOVxd : NeonI_UMOV<"umov", "d", 0b1, v2i64, neon_uimm1_bare,
GPR64, i64> {
let Inst{20-16} = {Imm, 0b1, 0b0, 0b0, 0b0};
}
def : NeonInstAlias<"mov $Rd, $Rn.s[$Imm]",
(UMOVws GPR32:$Rd, VPR128:$Rn, neon_uimm2_bare:$Imm), 0>;
def : NeonInstAlias<"mov $Rd, $Rn.d[$Imm]",
(UMOVxd GPR64:$Rd, VPR128:$Rn, neon_uimm1_bare:$Imm), 0>;
class Neon_UMOV_pattern <ValueType StTy, ValueType NaTy, ValueType ResTy,
Operand StImm, Operand NaImm,
Instruction SMOVI>
: Pat<(ResTy (vector_extract
(NaTy VPR64:$Rn), NaImm:$Imm)),
(SMOVI (StTy (SUBREG_TO_REG (i64 0), VPR64:$Rn, sub_64)),
NaImm:$Imm)>;
def : Neon_UMOV_pattern<v16i8, v8i8, i32, neon_uimm4_bare,
neon_uimm3_bare, UMOVwb>;
def : Neon_UMOV_pattern<v8i16, v4i16, i32, neon_uimm3_bare,
neon_uimm2_bare, UMOVwh>;
def : Neon_UMOV_pattern<v4i32, v2i32, i32, neon_uimm2_bare,
neon_uimm1_bare, UMOVws>;
def : Pat<(i32 (and
(i32 (vector_extract
(v16i8 VPR128:$Rn), (neon_uimm4_bare:$Imm))),
255)),
(UMOVwb VPR128:$Rn, neon_uimm4_bare:$Imm)>;
def : Pat<(i32 (and
(i32 (vector_extract
(v8i16 VPR128:$Rn), (neon_uimm3_bare:$Imm))),
65535)),
(UMOVwh VPR128:$Rn, neon_uimm3_bare:$Imm)>;
def : Pat<(i64 (zext
(i32 (vector_extract
(v2i64 VPR128:$Rn), (neon_uimm1_bare:$Imm))))),
(UMOVxd VPR128:$Rn, neon_uimm1_bare:$Imm)>;
def : Pat<(i32 (and
(i32 (vector_extract
(v8i8 VPR64:$Rn), (neon_uimm3_bare:$Imm))),
255)),
(UMOVwb (SUBREG_TO_REG (i64 0), VPR64:$Rn, sub_64),
neon_uimm3_bare:$Imm)>;
def : Pat<(i32 (and
(i32 (vector_extract
(v4i16 VPR64:$Rn), (neon_uimm2_bare:$Imm))),
65535)),
(UMOVwh (SUBREG_TO_REG (i64 0), VPR64:$Rn, sub_64),
neon_uimm2_bare:$Imm)>;
def : Pat<(i64 (zext
(i32 (vector_extract
(v1i64 VPR64:$Rn), (neon_uimm0_bare:$Imm))))),
(UMOVxd (SUBREG_TO_REG (i64 0), VPR64:$Rn, sub_64),
neon_uimm0_bare:$Imm)>;
// Additional copy patterns for scalar types
def : Pat<(i32 (vector_extract (v1i8 FPR8:$Rn), (i64 0))),
(UMOVwb (v16i8
(SUBREG_TO_REG (i64 0), FPR8:$Rn, sub_8)), (i64 0))>;
def : Pat<(i32 (vector_extract (v1i16 FPR16:$Rn), (i64 0))),
(UMOVwh (v8i16
(SUBREG_TO_REG (i64 0), FPR16:$Rn, sub_16)), (i64 0))>;
def : Pat<(i32 (vector_extract (v1i32 FPR32:$Rn), (i64 0))),
(FMOVws FPR32:$Rn)>;
def : Pat<(i64 (vector_extract (v1i64 FPR64:$Rn), (i64 0))),
(FMOVxd FPR64:$Rn)>;
def : Pat<(f64 (vector_extract (v1f64 FPR64:$Rn), (i64 0))),
(f64 FPR64:$Rn)>;
def : Pat<(f32 (vector_extract (v1f32 FPR32:$Rn), (i64 0))),
(f32 FPR32:$Rn)>;
def : Pat<(v1i8 (scalar_to_vector GPR32:$Rn)),
(v1i8 (EXTRACT_SUBREG (v16i8
(INSbw (v16i8 (IMPLICIT_DEF)), $Rn, (i64 0))),
sub_8))>;
def : Pat<(v1i16 (scalar_to_vector GPR32:$Rn)),
(v1i16 (EXTRACT_SUBREG (v8i16
(INShw (v8i16 (IMPLICIT_DEF)), $Rn, (i64 0))),
sub_16))>;
def : Pat<(v1i32 (scalar_to_vector GPR32:$src)),
(FMOVsw $src)>;
def : Pat<(v1i64 (scalar_to_vector GPR64:$src)),
(FMOVdx $src)>;
def : Pat<(v1f32 (scalar_to_vector (f32 FPR32:$Rn))),
(v1f32 FPR32:$Rn)>;
def : Pat<(v1f64 (scalar_to_vector (f64 FPR64:$Rn))),
(v1f64 FPR64:$Rn)>;
def : Pat<(v1f64 (scalar_to_vector (f64 FPR64:$src))),
(FMOVdd $src)>;
def : Pat<(v2f64 (scalar_to_vector (f64 FPR64:$src))),
(INSERT_SUBREG (v2f64 (IMPLICIT_DEF)),
(f64 FPR64:$src), sub_64)>;
class NeonI_DUP_Elt<bit Q, string asmop, string rdlane, string rnlane,
RegisterOperand ResVPR, Operand OpImm>
: NeonI_copy<Q, 0b0, 0b0000, (outs ResVPR:$Rd),
(ins VPR128:$Rn, OpImm:$Imm),
asmop # "\t$Rd" # rdlane # ", $Rn" # rnlane # "[$Imm]",
[],
NoItinerary> {
bits<4> Imm;
}
def DUPELT16b : NeonI_DUP_Elt<0b1, "dup", ".16b", ".b", VPR128,
neon_uimm4_bare> {
let Inst{20-16} = {Imm{3}, Imm{2}, Imm{1}, Imm{0}, 0b1};
}
def DUPELT8h : NeonI_DUP_Elt<0b1, "dup", ".8h", ".h", VPR128,
neon_uimm3_bare> {
let Inst{20-16} = {Imm{2}, Imm{1}, Imm{0}, 0b1, 0b0};
}
def DUPELT4s : NeonI_DUP_Elt<0b1, "dup", ".4s", ".s", VPR128,
neon_uimm2_bare> {
let Inst{20-16} = {Imm{1}, Imm{0}, 0b1, 0b0, 0b0};
}
def DUPELT2d : NeonI_DUP_Elt<0b1, "dup", ".2d", ".d", VPR128,
neon_uimm1_bare> {
let Inst{20-16} = {Imm, 0b1, 0b0, 0b0, 0b0};
}
def DUPELT8b : NeonI_DUP_Elt<0b0, "dup", ".8b", ".b", VPR64,
neon_uimm4_bare> {
let Inst{20-16} = {Imm{3}, Imm{2}, Imm{1}, Imm{0}, 0b1};
}
def DUPELT4h : NeonI_DUP_Elt<0b0, "dup", ".4h", ".h", VPR64,
neon_uimm3_bare> {
let Inst{20-16} = {Imm{2}, Imm{1}, Imm{0}, 0b1, 0b0};
}
def DUPELT2s : NeonI_DUP_Elt<0b0, "dup", ".2s", ".s", VPR64,
neon_uimm2_bare> {
let Inst{20-16} = {Imm{1}, Imm{0}, 0b1, 0b0, 0b0};
}
multiclass NeonI_DUP_Elt_pattern<Instruction DUPELT, ValueType ResTy,
ValueType OpTy,ValueType NaTy,
ValueType ExTy, Operand OpLImm,
Operand OpNImm> {
def : Pat<(ResTy (Neon_vduplane (OpTy VPR128:$Rn), OpLImm:$Imm)),
(ResTy (DUPELT (OpTy VPR128:$Rn), OpLImm:$Imm))>;
def : Pat<(ResTy (Neon_vduplane
(NaTy VPR64:$Rn), OpNImm:$Imm)),
(ResTy (DUPELT
(ExTy (SUBREG_TO_REG (i64 0), VPR64:$Rn, sub_64)), OpNImm:$Imm))>;
}
defm : NeonI_DUP_Elt_pattern<DUPELT16b, v16i8, v16i8, v8i8, v16i8,
neon_uimm4_bare, neon_uimm3_bare>;
defm : NeonI_DUP_Elt_pattern<DUPELT8b, v8i8, v16i8, v8i8, v16i8,
neon_uimm4_bare, neon_uimm3_bare>;
defm : NeonI_DUP_Elt_pattern<DUPELT8h, v8i16, v8i16, v4i16, v8i16,
neon_uimm3_bare, neon_uimm2_bare>;
defm : NeonI_DUP_Elt_pattern<DUPELT4h, v4i16, v8i16, v4i16, v8i16,
neon_uimm3_bare, neon_uimm2_bare>;
defm : NeonI_DUP_Elt_pattern<DUPELT4s, v4i32, v4i32, v2i32, v4i32,
neon_uimm2_bare, neon_uimm1_bare>;
defm : NeonI_DUP_Elt_pattern<DUPELT2s, v2i32, v4i32, v2i32, v4i32,
neon_uimm2_bare, neon_uimm1_bare>;
defm : NeonI_DUP_Elt_pattern<DUPELT2d, v2i64, v2i64, v1i64, v2i64,
neon_uimm1_bare, neon_uimm0_bare>;
defm : NeonI_DUP_Elt_pattern<DUPELT4s, v4f32, v4f32, v2f32, v4f32,
neon_uimm2_bare, neon_uimm1_bare>;
defm : NeonI_DUP_Elt_pattern<DUPELT2s, v2f32, v4f32, v2f32, v4f32,
neon_uimm2_bare, neon_uimm1_bare>;
defm : NeonI_DUP_Elt_pattern<DUPELT2d, v2f64, v2f64, v1f64, v2f64,
neon_uimm1_bare, neon_uimm0_bare>;
def : Pat<(v2f32 (Neon_vdup (f32 FPR32:$Rn))),
(v2f32 (DUPELT2s
(SUBREG_TO_REG (i64 0), FPR32:$Rn, sub_32),
(i64 0)))>;
def : Pat<(v4f32 (Neon_vdup (f32 FPR32:$Rn))),
(v4f32 (DUPELT4s
(SUBREG_TO_REG (i64 0), FPR32:$Rn, sub_32),
(i64 0)))>;
def : Pat<(v2f64 (Neon_vdup (f64 FPR64:$Rn))),
(v2f64 (DUPELT2d
(SUBREG_TO_REG (i64 0), FPR64:$Rn, sub_64),
(i64 0)))>;
class NeonI_DUP<bit Q, string asmop, string rdlane,
RegisterOperand ResVPR, ValueType ResTy,
RegisterClass OpGPR, ValueType OpTy>
: NeonI_copy<Q, 0b0, 0b0001, (outs ResVPR:$Rd), (ins OpGPR:$Rn),
asmop # "\t$Rd" # rdlane # ", $Rn",
[(set (ResTy ResVPR:$Rd),
(ResTy (Neon_vdup (OpTy OpGPR:$Rn))))],
NoItinerary>;
def DUP16b : NeonI_DUP<0b1, "dup", ".16b", VPR128, v16i8, GPR32, i32> {
let Inst{20-16} = 0b00001;
// bits 17-20 are unspecified, but should be set to zero.
}
def DUP8h : NeonI_DUP<0b1, "dup", ".8h", VPR128, v8i16, GPR32, i32> {
let Inst{20-16} = 0b00010;
// bits 18-20 are unspecified, but should be set to zero.
}
def DUP4s : NeonI_DUP<0b1, "dup", ".4s", VPR128, v4i32, GPR32, i32> {
let Inst{20-16} = 0b00100;
// bits 19-20 are unspecified, but should be set to zero.
}
def DUP2d : NeonI_DUP<0b1, "dup", ".2d", VPR128, v2i64, GPR64, i64> {
let Inst{20-16} = 0b01000;
// bit 20 is unspecified, but should be set to zero.
}
def DUP8b : NeonI_DUP<0b0, "dup", ".8b", VPR64, v8i8, GPR32, i32> {
let Inst{20-16} = 0b00001;
// bits 17-20 are unspecified, but should be set to zero.
}
def DUP4h : NeonI_DUP<0b0, "dup", ".4h", VPR64, v4i16, GPR32, i32> {
let Inst{20-16} = 0b00010;
// bits 18-20 are unspecified, but should be set to zero.
}
def DUP2s : NeonI_DUP<0b0, "dup", ".2s", VPR64, v2i32, GPR32, i32> {
let Inst{20-16} = 0b00100;
// bits 19-20 are unspecified, but should be set to zero.
}
// patterns for CONCAT_VECTORS
multiclass Concat_Vector_Pattern<ValueType ResTy, ValueType OpTy> {
def : Pat<(ResTy (concat_vectors (OpTy VPR64:$Rn), undef)),
(SUBREG_TO_REG (i64 0), VPR64:$Rn, sub_64)>;
def : Pat<(ResTy (concat_vectors (OpTy VPR64:$Rn), (OpTy VPR64:$Rm))),
(INSELd
(v2i64 (SUBREG_TO_REG (i64 0), VPR64:$Rn, sub_64)),
(v2i64 (SUBREG_TO_REG (i64 0), VPR64:$Rm, sub_64)),
(i64 1),
(i64 0))>;
def : Pat<(ResTy (concat_vectors (OpTy VPR64:$Rn), (OpTy VPR64:$Rn))),
(DUPELT2d
(v2i64 (SUBREG_TO_REG (i64 0), VPR64:$Rn, sub_64)),
(i64 0))> ;
}
defm : Concat_Vector_Pattern<v16i8, v8i8>;
defm : Concat_Vector_Pattern<v8i16, v4i16>;
defm : Concat_Vector_Pattern<v4i32, v2i32>;
defm : Concat_Vector_Pattern<v2i64, v1i64>;
defm : Concat_Vector_Pattern<v4f32, v2f32>;
defm : Concat_Vector_Pattern<v2f64, v1f64>;
//patterns for EXTRACT_SUBVECTOR
def : Pat<(v8i8 (extract_subvector (v16i8 VPR128:$Rn), (i64 0))),
(v8i8 (EXTRACT_SUBREG VPR128:$Rn, sub_64))>;
def : Pat<(v4i16 (extract_subvector (v8i16 VPR128:$Rn), (i64 0))),
(v4i16 (EXTRACT_SUBREG VPR128:$Rn, sub_64))>;
def : Pat<(v2i32 (extract_subvector (v4i32 VPR128:$Rn), (i64 0))),
(v2i32 (EXTRACT_SUBREG VPR128:$Rn, sub_64))>;
def : Pat<(v1i64 (extract_subvector (v2i64 VPR128:$Rn), (i64 0))),
(v1i64 (EXTRACT_SUBREG VPR128:$Rn, sub_64))>;
def : Pat<(v2f32 (extract_subvector (v4f32 VPR128:$Rn), (i64 0))),
(v2f32 (EXTRACT_SUBREG VPR128:$Rn, sub_64))>;
def : Pat<(v1f64 (extract_subvector (v2f64 VPR128:$Rn), (i64 0))),
(v1f64 (EXTRACT_SUBREG VPR128:$Rn, sub_64))>;
class NeonI_REV<string asmop, string Res, bits<2> size, bit Q, bit U,
bits<5> opcode, RegisterOperand ResVPR, ValueType ResTy,
SDPatternOperator Neon_Rev>
: NeonI_2VMisc<Q, U, size, opcode,
(outs ResVPR:$Rd), (ins ResVPR:$Rn),
asmop # "\t$Rd." # Res # ", $Rn." # Res,
[(set (ResTy ResVPR:$Rd),
(ResTy (Neon_Rev (ResTy ResVPR:$Rn))))],
NoItinerary> ;
def REV64_16b : NeonI_REV<"rev64", "16b", 0b00, 0b1, 0b0, 0b00000, VPR128,
v16i8, Neon_rev64>;
def REV64_8h : NeonI_REV<"rev64", "8h", 0b01, 0b1, 0b0, 0b00000, VPR128,
v8i16, Neon_rev64>;
def REV64_4s : NeonI_REV<"rev64", "4s", 0b10, 0b1, 0b0, 0b00000, VPR128,
v4i32, Neon_rev64>;
def REV64_8b : NeonI_REV<"rev64", "8b", 0b00, 0b0, 0b0, 0b00000, VPR64,
v8i8, Neon_rev64>;
def REV64_4h : NeonI_REV<"rev64", "4h", 0b01, 0b0, 0b0, 0b00000, VPR64,
v4i16, Neon_rev64>;
def REV64_2s : NeonI_REV<"rev64", "2s", 0b10, 0b0, 0b0, 0b00000, VPR64,
v2i32, Neon_rev64>;
def : Pat<(v4f32 (Neon_rev64 (v4f32 VPR128:$Rn))), (REV64_4s VPR128:$Rn)>;
def : Pat<(v2f32 (Neon_rev64 (v2f32 VPR64:$Rn))), (REV64_2s VPR64:$Rn)>;
def REV32_16b : NeonI_REV<"rev32", "16b", 0b00, 0b1, 0b1, 0b00000, VPR128,
v16i8, Neon_rev32>;
def REV32_8h : NeonI_REV<"rev32", "8h", 0b01, 0b1, 0b1, 0b00000, VPR128,
v8i16, Neon_rev32>;
def REV32_8b : NeonI_REV<"rev32", "8b", 0b00, 0b0, 0b1, 0b00000, VPR64,
v8i8, Neon_rev32>;
def REV32_4h : NeonI_REV<"rev32", "4h", 0b01, 0b0, 0b1, 0b00000, VPR64,
v4i16, Neon_rev32>;
def REV16_16b : NeonI_REV<"rev16", "16b", 0b00, 0b1, 0b0, 0b00001, VPR128,
v16i8, Neon_rev16>;
def REV16_8b : NeonI_REV<"rev16", "8b", 0b00, 0b0, 0b0, 0b00001, VPR64,
v8i8, Neon_rev16>;
multiclass NeonI_PairwiseAdd<string asmop, bit U, bits<5> opcode,
SDPatternOperator Neon_Padd> {
def 16b8h : NeonI_2VMisc<0b1, U, 0b00, opcode,
(outs VPR128:$Rd), (ins VPR128:$Rn),
asmop # "\t$Rd.8h, $Rn.16b",
[(set (v8i16 VPR128:$Rd),
(v8i16 (Neon_Padd (v16i8 VPR128:$Rn))))],
NoItinerary>;
def 8b4h : NeonI_2VMisc<0b0, U, 0b00, opcode,
(outs VPR64:$Rd), (ins VPR64:$Rn),
asmop # "\t$Rd.4h, $Rn.8b",
[(set (v4i16 VPR64:$Rd),
(v4i16 (Neon_Padd (v8i8 VPR64:$Rn))))],
NoItinerary>;
def 8h4s : NeonI_2VMisc<0b1, U, 0b01, opcode,
(outs VPR128:$Rd), (ins VPR128:$Rn),
asmop # "\t$Rd.4s, $Rn.8h",
[(set (v4i32 VPR128:$Rd),
(v4i32 (Neon_Padd (v8i16 VPR128:$Rn))))],
NoItinerary>;
def 4h2s : NeonI_2VMisc<0b0, U, 0b01, opcode,
(outs VPR64:$Rd), (ins VPR64:$Rn),
asmop # "\t$Rd.2s, $Rn.4h",
[(set (v2i32 VPR64:$Rd),
(v2i32 (Neon_Padd (v4i16 VPR64:$Rn))))],
NoItinerary>;
def 4s2d : NeonI_2VMisc<0b1, U, 0b10, opcode,
(outs VPR128:$Rd), (ins VPR128:$Rn),
asmop # "\t$Rd.2d, $Rn.4s",
[(set (v2i64 VPR128:$Rd),
(v2i64 (Neon_Padd (v4i32 VPR128:$Rn))))],
NoItinerary>;
def 2s1d : NeonI_2VMisc<0b0, U, 0b10, opcode,
(outs VPR64:$Rd), (ins VPR64:$Rn),
asmop # "\t$Rd.1d, $Rn.2s",
[(set (v1i64 VPR64:$Rd),
(v1i64 (Neon_Padd (v2i32 VPR64:$Rn))))],
NoItinerary>;
}
defm SADDLP : NeonI_PairwiseAdd<"saddlp", 0b0, 0b00010,
int_arm_neon_vpaddls>;
defm UADDLP : NeonI_PairwiseAdd<"uaddlp", 0b1, 0b00010,
int_arm_neon_vpaddlu>;
multiclass NeonI_PairwiseAddAcc<string asmop, bit U, bits<5> opcode,
SDPatternOperator Neon_Padd> {
let Constraints = "$src = $Rd" in {
def 16b8h : NeonI_2VMisc<0b1, U, 0b00, opcode,
(outs VPR128:$Rd), (ins VPR128:$src, VPR128:$Rn),
asmop # "\t$Rd.8h, $Rn.16b",
[(set (v8i16 VPR128:$Rd),
(v8i16 (Neon_Padd
(v8i16 VPR128:$src), (v16i8 VPR128:$Rn))))],
NoItinerary>;
def 8b4h : NeonI_2VMisc<0b0, U, 0b00, opcode,
(outs VPR64:$Rd), (ins VPR64:$src, VPR64:$Rn),
asmop # "\t$Rd.4h, $Rn.8b",
[(set (v4i16 VPR64:$Rd),
(v4i16 (Neon_Padd
(v4i16 VPR64:$src), (v8i8 VPR64:$Rn))))],
NoItinerary>;
def 8h4s : NeonI_2VMisc<0b1, U, 0b01, opcode,
(outs VPR128:$Rd), (ins VPR128:$src, VPR128:$Rn),
asmop # "\t$Rd.4s, $Rn.8h",
[(set (v4i32 VPR128:$Rd),
(v4i32 (Neon_Padd
(v4i32 VPR128:$src), (v8i16 VPR128:$Rn))))],
NoItinerary>;
def 4h2s : NeonI_2VMisc<0b0, U, 0b01, opcode,
(outs VPR64:$Rd), (ins VPR64:$src, VPR64:$Rn),
asmop # "\t$Rd.2s, $Rn.4h",
[(set (v2i32 VPR64:$Rd),
(v2i32 (Neon_Padd
(v2i32 VPR64:$src), (v4i16 VPR64:$Rn))))],
NoItinerary>;
def 4s2d : NeonI_2VMisc<0b1, U, 0b10, opcode,
(outs VPR128:$Rd), (ins VPR128:$src, VPR128:$Rn),
asmop # "\t$Rd.2d, $Rn.4s",
[(set (v2i64 VPR128:$Rd),
(v2i64 (Neon_Padd
(v2i64 VPR128:$src), (v4i32 VPR128:$Rn))))],
NoItinerary>;
def 2s1d : NeonI_2VMisc<0b0, U, 0b10, opcode,
(outs VPR64:$Rd), (ins VPR64:$src, VPR64:$Rn),
asmop # "\t$Rd.1d, $Rn.2s",
[(set (v1i64 VPR64:$Rd),
(v1i64 (Neon_Padd
(v1i64 VPR64:$src), (v2i32 VPR64:$Rn))))],
NoItinerary>;
}
}
defm SADALP : NeonI_PairwiseAddAcc<"sadalp", 0b0, 0b00110,
int_arm_neon_vpadals>;
defm UADALP : NeonI_PairwiseAddAcc<"uadalp", 0b1, 0b00110,
int_arm_neon_vpadalu>;
multiclass NeonI_2VMisc_BHSDsize_1Arg<string asmop, bit U, bits<5> opcode> {
def 16b : NeonI_2VMisc<0b1, U, 0b00, opcode,
(outs VPR128:$Rd), (ins VPR128:$Rn),
asmop # "\t$Rd.16b, $Rn.16b",
[], NoItinerary>;
def 8h : NeonI_2VMisc<0b1, U, 0b01, opcode,
(outs VPR128:$Rd), (ins VPR128:$Rn),
asmop # "\t$Rd.8h, $Rn.8h",
[], NoItinerary>;
def 4s : NeonI_2VMisc<0b1, U, 0b10, opcode,
(outs VPR128:$Rd), (ins VPR128:$Rn),
asmop # "\t$Rd.4s, $Rn.4s",
[], NoItinerary>;
def 2d : NeonI_2VMisc<0b1, U, 0b11, opcode,
(outs VPR128:$Rd), (ins VPR128:$Rn),
asmop # "\t$Rd.2d, $Rn.2d",
[], NoItinerary>;
def 8b : NeonI_2VMisc<0b0, U, 0b00, opcode,
(outs VPR64:$Rd), (ins VPR64:$Rn),
asmop # "\t$Rd.8b, $Rn.8b",
[], NoItinerary>;
def 4h : NeonI_2VMisc<0b0, U, 0b01, opcode,
(outs VPR64:$Rd), (ins VPR64:$Rn),
asmop # "\t$Rd.4h, $Rn.4h",
[], NoItinerary>;
def 2s : NeonI_2VMisc<0b0, U, 0b10, opcode,
(outs VPR64:$Rd), (ins VPR64:$Rn),
asmop # "\t$Rd.2s, $Rn.2s",
[], NoItinerary>;
}
defm SQABS : NeonI_2VMisc_BHSDsize_1Arg<"sqabs", 0b0, 0b00111>;
defm SQNEG : NeonI_2VMisc_BHSDsize_1Arg<"sqneg", 0b1, 0b00111>;
defm ABS : NeonI_2VMisc_BHSDsize_1Arg<"abs", 0b0, 0b01011>;
defm NEG : NeonI_2VMisc_BHSDsize_1Arg<"neg", 0b1, 0b01011>;
multiclass NeonI_2VMisc_BHSD_1Arg_Pattern<string Prefix,
SDPatternOperator Neon_Op> {
def : Pat<(v16i8 (Neon_Op (v16i8 VPR128:$Rn))),
(v16i8 (!cast<Instruction>(Prefix # 16b) (v16i8 VPR128:$Rn)))>;
def : Pat<(v8i16 (Neon_Op (v8i16 VPR128:$Rn))),
(v8i16 (!cast<Instruction>(Prefix # 8h) (v8i16 VPR128:$Rn)))>;
def : Pat<(v4i32 (Neon_Op (v4i32 VPR128:$Rn))),
(v4i32 (!cast<Instruction>(Prefix # 4s) (v4i32 VPR128:$Rn)))>;
def : Pat<(v2i64 (Neon_Op (v2i64 VPR128:$Rn))),
(v2i64 (!cast<Instruction>(Prefix # 2d) (v2i64 VPR128:$Rn)))>;
def : Pat<(v8i8 (Neon_Op (v8i8 VPR64:$Rn))),
(v8i8 (!cast<Instruction>(Prefix # 8b) (v8i8 VPR64:$Rn)))>;
def : Pat<(v4i16 (Neon_Op (v4i16 VPR64:$Rn))),
(v4i16 (!cast<Instruction>(Prefix # 4h) (v4i16 VPR64:$Rn)))>;
def : Pat<(v2i32 (Neon_Op (v2i32 VPR64:$Rn))),
(v2i32 (!cast<Instruction>(Prefix # 2s) (v2i32 VPR64:$Rn)))>;
}
defm : NeonI_2VMisc_BHSD_1Arg_Pattern<"SQABS", int_arm_neon_vqabs>;
defm : NeonI_2VMisc_BHSD_1Arg_Pattern<"SQNEG", int_arm_neon_vqneg>;
defm : NeonI_2VMisc_BHSD_1Arg_Pattern<"ABS", int_arm_neon_vabs>;
def : Pat<(v16i8 (sub
(v16i8 Neon_AllZero),
(v16i8 VPR128:$Rn))),
(v16i8 (NEG16b (v16i8 VPR128:$Rn)))>;
def : Pat<(v8i8 (sub
(v8i8 Neon_AllZero),
(v8i8 VPR64:$Rn))),
(v8i8 (NEG8b (v8i8 VPR64:$Rn)))>;
def : Pat<(v8i16 (sub
(v8i16 (bitconvert (v16i8 Neon_AllZero))),
(v8i16 VPR128:$Rn))),
(v8i16 (NEG8h (v8i16 VPR128:$Rn)))>;
def : Pat<(v4i16 (sub
(v4i16 (bitconvert (v8i8 Neon_AllZero))),
(v4i16 VPR64:$Rn))),
(v4i16 (NEG4h (v4i16 VPR64:$Rn)))>;
def : Pat<(v4i32 (sub
(v4i32 (bitconvert (v16i8 Neon_AllZero))),
(v4i32 VPR128:$Rn))),
(v4i32 (NEG4s (v4i32 VPR128:$Rn)))>;
def : Pat<(v2i32 (sub
(v2i32 (bitconvert (v8i8 Neon_AllZero))),
(v2i32 VPR64:$Rn))),
(v2i32 (NEG2s (v2i32 VPR64:$Rn)))>;
def : Pat<(v2i64 (sub
(v2i64 (bitconvert (v16i8 Neon_AllZero))),
(v2i64 VPR128:$Rn))),
(v2i64 (NEG2d (v2i64 VPR128:$Rn)))>;
multiclass NeonI_2VMisc_BHSDsize_2Args<string asmop, bit U, bits<5> opcode> {
let Constraints = "$src = $Rd" in {
def 16b : NeonI_2VMisc<0b1, U, 0b00, opcode,
(outs VPR128:$Rd), (ins VPR128:$src, VPR128:$Rn),
asmop # "\t$Rd.16b, $Rn.16b",
[], NoItinerary>;
def 8h : NeonI_2VMisc<0b1, U, 0b01, opcode,
(outs VPR128:$Rd), (ins VPR128:$src, VPR128:$Rn),
asmop # "\t$Rd.8h, $Rn.8h",
[], NoItinerary>;
def 4s : NeonI_2VMisc<0b1, U, 0b10, opcode,
(outs VPR128:$Rd), (ins VPR128:$src, VPR128:$Rn),
asmop # "\t$Rd.4s, $Rn.4s",
[], NoItinerary>;
def 2d : NeonI_2VMisc<0b1, U, 0b11, opcode,
(outs VPR128:$Rd), (ins VPR128:$src, VPR128:$Rn),
asmop # "\t$Rd.2d, $Rn.2d",
[], NoItinerary>;
def 8b : NeonI_2VMisc<0b0, U, 0b00, opcode,
(outs VPR64:$Rd), (ins VPR64:$src, VPR64:$Rn),
asmop # "\t$Rd.8b, $Rn.8b",
[], NoItinerary>;
def 4h : NeonI_2VMisc<0b0, U, 0b01, opcode,
(outs VPR64:$Rd), (ins VPR64:$src, VPR64:$Rn),
asmop # "\t$Rd.4h, $Rn.4h",
[], NoItinerary>;
def 2s : NeonI_2VMisc<0b0, U, 0b10, opcode,
(outs VPR64:$Rd), (ins VPR64:$src, VPR64:$Rn),
asmop # "\t$Rd.2s, $Rn.2s",
[], NoItinerary>;
}
}
defm SUQADD : NeonI_2VMisc_BHSDsize_2Args<"suqadd", 0b0, 0b00011>;
defm USQADD : NeonI_2VMisc_BHSDsize_2Args<"usqadd", 0b1, 0b00011>;
multiclass NeonI_2VMisc_BHSD_2Args_Pattern<string Prefix,
SDPatternOperator Neon_Op> {
def : Pat<(v16i8 (Neon_Op (v16i8 VPR128:$src), (v16i8 VPR128:$Rn))),
(v16i8 (!cast<Instruction>(Prefix # 16b)
(v16i8 VPR128:$src), (v16i8 VPR128:$Rn)))>;
def : Pat<(v8i16 (Neon_Op (v8i16 VPR128:$src), (v8i16 VPR128:$Rn))),
(v8i16 (!cast<Instruction>(Prefix # 8h)
(v8i16 VPR128:$src), (v8i16 VPR128:$Rn)))>;
def : Pat<(v4i32 (Neon_Op (v4i32 VPR128:$src), (v4i32 VPR128:$Rn))),
(v4i32 (!cast<Instruction>(Prefix # 4s)
(v4i32 VPR128:$src), (v4i32 VPR128:$Rn)))>;
def : Pat<(v2i64 (Neon_Op (v2i64 VPR128:$src), (v2i64 VPR128:$Rn))),
(v2i64 (!cast<Instruction>(Prefix # 2d)
(v2i64 VPR128:$src), (v2i64 VPR128:$Rn)))>;
def : Pat<(v8i8 (Neon_Op (v8i8 VPR64:$src), (v8i8 VPR64:$Rn))),
(v8i8 (!cast<Instruction>(Prefix # 8b)
(v8i8 VPR64:$src), (v8i8 VPR64:$Rn)))>;
def : Pat<(v4i16 (Neon_Op (v4i16 VPR64:$src), (v4i16 VPR64:$Rn))),
(v4i16 (!cast<Instruction>(Prefix # 4h)
(v4i16 VPR64:$src), (v4i16 VPR64:$Rn)))>;
def : Pat<(v2i32 (Neon_Op (v2i32 VPR64:$src), (v2i32 VPR64:$Rn))),
(v2i32 (!cast<Instruction>(Prefix # 2s)
(v2i32 VPR64:$src), (v2i32 VPR64:$Rn)))>;
}
defm : NeonI_2VMisc_BHSD_2Args_Pattern<"SUQADD", int_aarch64_neon_suqadd>;
defm : NeonI_2VMisc_BHSD_2Args_Pattern<"USQADD", int_aarch64_neon_usqadd>;
multiclass NeonI_2VMisc_BHSsizes<string asmop, bit U,
SDPatternOperator Neon_Op> {
def 16b : NeonI_2VMisc<0b1, U, 0b00, 0b00100,
(outs VPR128:$Rd), (ins VPR128:$Rn),
asmop # "\t$Rd.16b, $Rn.16b",
[(set (v16i8 VPR128:$Rd),
(v16i8 (Neon_Op (v16i8 VPR128:$Rn))))],
NoItinerary>;
def 8h : NeonI_2VMisc<0b1, U, 0b01, 0b00100,
(outs VPR128:$Rd), (ins VPR128:$Rn),
asmop # "\t$Rd.8h, $Rn.8h",
[(set (v8i16 VPR128:$Rd),
(v8i16 (Neon_Op (v8i16 VPR128:$Rn))))],
NoItinerary>;
def 4s : NeonI_2VMisc<0b1, U, 0b10, 0b00100,
(outs VPR128:$Rd), (ins VPR128:$Rn),
asmop # "\t$Rd.4s, $Rn.4s",
[(set (v4i32 VPR128:$Rd),
(v4i32 (Neon_Op (v4i32 VPR128:$Rn))))],
NoItinerary>;
def 8b : NeonI_2VMisc<0b0, U, 0b00, 0b00100,
(outs VPR64:$Rd), (ins VPR64:$Rn),
asmop # "\t$Rd.8b, $Rn.8b",
[(set (v8i8 VPR64:$Rd),
(v8i8 (Neon_Op (v8i8 VPR64:$Rn))))],
NoItinerary>;
def 4h : NeonI_2VMisc<0b0, U, 0b01, 0b00100,
(outs VPR64:$Rd), (ins VPR64:$Rn),
asmop # "\t$Rd.4h, $Rn.4h",
[(set (v4i16 VPR64:$Rd),
(v4i16 (Neon_Op (v4i16 VPR64:$Rn))))],
NoItinerary>;
def 2s : NeonI_2VMisc<0b0, U, 0b10, 0b00100,
(outs VPR64:$Rd), (ins VPR64:$Rn),
asmop # "\t$Rd.2s, $Rn.2s",
[(set (v2i32 VPR64:$Rd),
(v2i32 (Neon_Op (v2i32 VPR64:$Rn))))],
NoItinerary>;
}
defm CLS : NeonI_2VMisc_BHSsizes<"cls", 0b0, int_arm_neon_vcls>;
defm CLZ : NeonI_2VMisc_BHSsizes<"clz", 0b1, ctlz>;
multiclass NeonI_2VMisc_Bsize<string asmop, bit U, bits<2> size,
bits<5> Opcode> {
def 16b : NeonI_2VMisc<0b1, U, size, Opcode,
(outs VPR128:$Rd), (ins VPR128:$Rn),
asmop # "\t$Rd.16b, $Rn.16b",
[], NoItinerary>;
def 8b : NeonI_2VMisc<0b0, U, size, Opcode,
(outs VPR64:$Rd), (ins VPR64:$Rn),
asmop # "\t$Rd.8b, $Rn.8b",
[], NoItinerary>;
}
defm CNT : NeonI_2VMisc_Bsize<"cnt", 0b0, 0b00, 0b00101>;
defm NOT : NeonI_2VMisc_Bsize<"not", 0b1, 0b00, 0b00101>;
defm RBIT : NeonI_2VMisc_Bsize<"rbit", 0b1, 0b01, 0b00101>;
def : NeonInstAlias<"mvn $Rd.16b, $Rn.16b",
(NOT16b VPR128:$Rd, VPR128:$Rn), 0>;
def : NeonInstAlias<"mvn $Rd.8b, $Rn.8b",
(NOT8b VPR64:$Rd, VPR64:$Rn), 0>;
def : Pat<(v16i8 (ctpop (v16i8 VPR128:$Rn))),
(v16i8 (CNT16b (v16i8 VPR128:$Rn)))>;
def : Pat<(v8i8 (ctpop (v8i8 VPR64:$Rn))),
(v8i8 (CNT8b (v8i8 VPR64:$Rn)))>;
def : Pat<(v16i8 (xor
(v16i8 VPR128:$Rn),
(v16i8 Neon_AllOne))),
(v16i8 (NOT16b (v16i8 VPR128:$Rn)))>;
def : Pat<(v8i8 (xor
(v8i8 VPR64:$Rn),
(v8i8 Neon_AllOne))),
(v8i8 (NOT8b (v8i8 VPR64:$Rn)))>;
def : Pat<(v8i16 (xor
(v8i16 VPR128:$Rn),
(v8i16 (bitconvert (v16i8 Neon_AllOne))))),
(NOT16b VPR128:$Rn)>;
def : Pat<(v4i16 (xor
(v4i16 VPR64:$Rn),
(v4i16 (bitconvert (v8i8 Neon_AllOne))))),
(NOT8b VPR64:$Rn)>;
def : Pat<(v4i32 (xor
(v4i32 VPR128:$Rn),
(v4i32 (bitconvert (v16i8 Neon_AllOne))))),
(NOT16b VPR128:$Rn)>;
def : Pat<(v2i32 (xor
(v2i32 VPR64:$Rn),
(v2i32 (bitconvert (v8i8 Neon_AllOne))))),
(NOT8b VPR64:$Rn)>;
def : Pat<(v2i64 (xor
(v2i64 VPR128:$Rn),
(v2i64 (bitconvert (v16i8 Neon_AllOne))))),
(NOT16b VPR128:$Rn)>;
def : Pat<(v16i8 (int_aarch64_neon_rbit (v16i8 VPR128:$Rn))),
(v16i8 (RBIT16b (v16i8 VPR128:$Rn)))>;
def : Pat<(v8i8 (int_aarch64_neon_rbit (v8i8 VPR64:$Rn))),
(v8i8 (RBIT8b (v8i8 VPR64:$Rn)))>;
multiclass NeonI_2VMisc_SDsizes<string asmop, bit U, bits<5> opcode,
SDPatternOperator Neon_Op> {
def 4s : NeonI_2VMisc<0b1, U, 0b10, opcode,
(outs VPR128:$Rd), (ins VPR128:$Rn),
asmop # "\t$Rd.4s, $Rn.4s",
[(set (v4f32 VPR128:$Rd),
(v4f32 (Neon_Op (v4f32 VPR128:$Rn))))],
NoItinerary>;
def 2d : NeonI_2VMisc<0b1, U, 0b11, opcode,
(outs VPR128:$Rd), (ins VPR128:$Rn),
asmop # "\t$Rd.2d, $Rn.2d",
[(set (v2f64 VPR128:$Rd),
(v2f64 (Neon_Op (v2f64 VPR128:$Rn))))],
NoItinerary>;
def 2s : NeonI_2VMisc<0b0, U, 0b10, opcode,
(outs VPR64:$Rd), (ins VPR64:$Rn),
asmop # "\t$Rd.2s, $Rn.2s",
[(set (v2f32 VPR64:$Rd),
(v2f32 (Neon_Op (v2f32 VPR64:$Rn))))],
NoItinerary>;
}
defm FABS : NeonI_2VMisc_SDsizes<"fabs", 0b0, 0b01111, fabs>;
defm FNEG : NeonI_2VMisc_SDsizes<"fneg", 0b1, 0b01111, fneg>;
multiclass NeonI_2VMisc_HSD_Narrow<string asmop, bit U, bits<5> opcode> {
def 8h8b : NeonI_2VMisc<0b0, U, 0b00, opcode,
(outs VPR64:$Rd), (ins VPR128:$Rn),
asmop # "\t$Rd.8b, $Rn.8h",
[], NoItinerary>;
def 4s4h : NeonI_2VMisc<0b0, U, 0b01, opcode,
(outs VPR64:$Rd), (ins VPR128:$Rn),
asmop # "\t$Rd.4h, $Rn.4s",
[], NoItinerary>;
def 2d2s : NeonI_2VMisc<0b0, U, 0b10, opcode,
(outs VPR64:$Rd), (ins VPR128:$Rn),
asmop # "\t$Rd.2s, $Rn.2d",
[], NoItinerary>;
let Constraints = "$Rd = $src" in {
def 8h16b : NeonI_2VMisc<0b1, U, 0b00, opcode,
(outs VPR128:$Rd), (ins VPR128:$src, VPR128:$Rn),
asmop # "2\t$Rd.16b, $Rn.8h",
[], NoItinerary>;
def 4s8h : NeonI_2VMisc<0b1, U, 0b01, opcode,
(outs VPR128:$Rd), (ins VPR128:$src, VPR128:$Rn),
asmop # "2\t$Rd.8h, $Rn.4s",
[], NoItinerary>;
def 2d4s : NeonI_2VMisc<0b1, U, 0b10, opcode,
(outs VPR128:$Rd), (ins VPR128:$src, VPR128:$Rn),
asmop # "2\t$Rd.4s, $Rn.2d",
[], NoItinerary>;
}
}
defm XTN : NeonI_2VMisc_HSD_Narrow<"xtn", 0b0, 0b10010>;
defm SQXTUN : NeonI_2VMisc_HSD_Narrow<"sqxtun", 0b1, 0b10010>;
defm SQXTN : NeonI_2VMisc_HSD_Narrow<"sqxtn", 0b0, 0b10100>;
defm UQXTN : NeonI_2VMisc_HSD_Narrow<"uqxtn", 0b1, 0b10100>;
multiclass NeonI_2VMisc_Narrow_Patterns<string Prefix,
SDPatternOperator Neon_Op> {
def : Pat<(v8i8 (Neon_Op (v8i16 VPR128:$Rn))),
(v8i8 (!cast<Instruction>(Prefix # 8h8b) (v8i16 VPR128:$Rn)))>;
def : Pat<(v4i16 (Neon_Op (v4i32 VPR128:$Rn))),
(v4i16 (!cast<Instruction>(Prefix # 4s4h) (v4i32 VPR128:$Rn)))>;
def : Pat<(v2i32 (Neon_Op (v2i64 VPR128:$Rn))),
(v2i32 (!cast<Instruction>(Prefix # 2d2s) (v2i64 VPR128:$Rn)))>;
def : Pat<(v16i8 (concat_vectors
(v8i8 VPR64:$src),
(v8i8 (Neon_Op (v8i16 VPR128:$Rn))))),
(!cast<Instruction>(Prefix # 8h16b)
(SUBREG_TO_REG (i32 0), VPR64:$src, sub_64),
VPR128:$Rn)>;
def : Pat<(v8i16 (concat_vectors
(v4i16 VPR64:$src),
(v4i16 (Neon_Op (v4i32 VPR128:$Rn))))),
(!cast<Instruction>(Prefix # 4s8h)
(SUBREG_TO_REG (i32 0), VPR64:$src, sub_64),
VPR128:$Rn)>;
def : Pat<(v4i32 (concat_vectors
(v2i32 VPR64:$src),
(v2i32 (Neon_Op (v2i64 VPR128:$Rn))))),
(!cast<Instruction>(Prefix # 2d4s)
(SUBREG_TO_REG (i32 0), VPR64:$src, sub_64),
VPR128:$Rn)>;
}
defm : NeonI_2VMisc_Narrow_Patterns<"XTN", trunc>;
defm : NeonI_2VMisc_Narrow_Patterns<"SQXTUN", int_arm_neon_vqmovnsu>;
defm : NeonI_2VMisc_Narrow_Patterns<"SQXTN", int_arm_neon_vqmovns>;
defm : NeonI_2VMisc_Narrow_Patterns<"UQXTN", int_arm_neon_vqmovnu>;
multiclass NeonI_2VMisc_SHIFT<string asmop, bit U, bits<5> opcode> {
def 8b8h : NeonI_2VMisc<0b0, U, 0b00, opcode,
(outs VPR128:$Rd),
(ins VPR64:$Rn, uimm_exact8:$Imm),
asmop # "\t$Rd.8h, $Rn.8b, $Imm",
[], NoItinerary>;
def 4h4s : NeonI_2VMisc<0b0, U, 0b01, opcode,
(outs VPR128:$Rd),
(ins VPR64:$Rn, uimm_exact16:$Imm),
asmop # "\t$Rd.4s, $Rn.4h, $Imm",
[], NoItinerary>;
def 2s2d : NeonI_2VMisc<0b0, U, 0b10, opcode,
(outs VPR128:$Rd),
(ins VPR64:$Rn, uimm_exact32:$Imm),
asmop # "\t$Rd.2d, $Rn.2s, $Imm",
[], NoItinerary>;
def 16b8h : NeonI_2VMisc<0b1, U, 0b00, opcode,
(outs VPR128:$Rd),
(ins VPR128:$Rn, uimm_exact8:$Imm),
asmop # "2\t$Rd.8h, $Rn.16b, $Imm",
[], NoItinerary>;
def 8h4s : NeonI_2VMisc<0b1, U, 0b01, opcode,
(outs VPR128:$Rd),
(ins VPR128:$Rn, uimm_exact16:$Imm),
asmop # "2\t$Rd.4s, $Rn.8h, $Imm",
[], NoItinerary>;
def 4s2d : NeonI_2VMisc<0b1, U, 0b10, opcode,
(outs VPR128:$Rd),
(ins VPR128:$Rn, uimm_exact32:$Imm),
asmop # "2\t$Rd.2d, $Rn.4s, $Imm",
[], NoItinerary>;
}
defm SHLL : NeonI_2VMisc_SHIFT<"shll", 0b1, 0b10011>;
class NeonI_SHLL_Patterns<ValueType OpTy, ValueType DesTy,
SDPatternOperator ExtOp, Operand Neon_Imm,
string suffix>
: Pat<(DesTy (shl
(DesTy (ExtOp (OpTy VPR64:$Rn))),
(DesTy (Neon_vdup
(i32 Neon_Imm:$Imm))))),
(!cast<Instruction>("SHLL" # suffix) VPR64:$Rn, Neon_Imm:$Imm)>;
class NeonI_SHLL_High_Patterns<ValueType OpTy, ValueType DesTy,
SDPatternOperator ExtOp, Operand Neon_Imm,
string suffix, PatFrag GetHigh>
: Pat<(DesTy (shl
(DesTy (ExtOp
(OpTy (GetHigh VPR128:$Rn)))),
(DesTy (Neon_vdup
(i32 Neon_Imm:$Imm))))),
(!cast<Instruction>("SHLL" # suffix) VPR128:$Rn, Neon_Imm:$Imm)>;
def : NeonI_SHLL_Patterns<v8i8, v8i16, zext, uimm_exact8, "8b8h">;
def : NeonI_SHLL_Patterns<v8i8, v8i16, sext, uimm_exact8, "8b8h">;
def : NeonI_SHLL_Patterns<v4i16, v4i32, zext, uimm_exact16, "4h4s">;
def : NeonI_SHLL_Patterns<v4i16, v4i32, sext, uimm_exact16, "4h4s">;
def : NeonI_SHLL_Patterns<v2i32, v2i64, zext, uimm_exact32, "2s2d">;
def : NeonI_SHLL_Patterns<v2i32, v2i64, sext, uimm_exact32, "2s2d">;
def : NeonI_SHLL_High_Patterns<v8i8, v8i16, zext, uimm_exact8, "16b8h",
Neon_High16B>;
def : NeonI_SHLL_High_Patterns<v8i8, v8i16, sext, uimm_exact8, "16b8h",
Neon_High16B>;
def : NeonI_SHLL_High_Patterns<v4i16, v4i32, zext, uimm_exact16, "8h4s",
Neon_High8H>;
def : NeonI_SHLL_High_Patterns<v4i16, v4i32, sext, uimm_exact16, "8h4s",
Neon_High8H>;
def : NeonI_SHLL_High_Patterns<v2i32, v2i64, zext, uimm_exact32, "4s2d",
Neon_High4S>;
def : NeonI_SHLL_High_Patterns<v2i32, v2i64, sext, uimm_exact32, "4s2d",
Neon_High4S>;
multiclass NeonI_2VMisc_SD_Narrow<string asmop, bit U, bits<5> opcode> {
def 4s4h : NeonI_2VMisc<0b0, U, 0b00, opcode,
(outs VPR64:$Rd), (ins VPR128:$Rn),
asmop # "\t$Rd.4h, $Rn.4s",
[], NoItinerary>;
def 2d2s : NeonI_2VMisc<0b0, U, 0b01, opcode,
(outs VPR64:$Rd), (ins VPR128:$Rn),
asmop # "\t$Rd.2s, $Rn.2d",
[], NoItinerary>;
let Constraints = "$src = $Rd" in {
def 4s8h : NeonI_2VMisc<0b1, U, 0b00, opcode,
(outs VPR128:$Rd), (ins VPR128:$src, VPR128:$Rn),
asmop # "2\t$Rd.8h, $Rn.4s",
[], NoItinerary>;
def 2d4s : NeonI_2VMisc<0b1, U, 0b01, opcode,
(outs VPR128:$Rd), (ins VPR128:$src, VPR128:$Rn),
asmop # "2\t$Rd.4s, $Rn.2d",
[], NoItinerary>;
}
}
defm FCVTN : NeonI_2VMisc_SD_Narrow<"fcvtn", 0b0, 0b10110>;
multiclass NeonI_2VMisc_Narrow_Pattern<string prefix,
SDPatternOperator f32_to_f16_Op,
SDPatternOperator f64_to_f32_Op> {
def : Pat<(v4i16 (f32_to_f16_Op (v4f32 VPR128:$Rn))),
(!cast<Instruction>(prefix # "4s4h") (v4f32 VPR128:$Rn))>;
def : Pat<(v8i16 (concat_vectors
(v4i16 VPR64:$src),
(v4i16 (f32_to_f16_Op (v4f32 VPR128:$Rn))))),
(!cast<Instruction>(prefix # "4s8h")
(v4f32 (SUBREG_TO_REG (i32 0), VPR64:$src, sub_64)),
(v4f32 VPR128:$Rn))>;
def : Pat<(v2f32 (f64_to_f32_Op (v2f64 VPR128:$Rn))),
(!cast<Instruction>(prefix # "2d2s") (v2f64 VPR128:$Rn))>;
def : Pat<(v4f32 (concat_vectors
(v2f32 VPR64:$src),
(v2f32 (f64_to_f32_Op (v2f64 VPR128:$Rn))))),
(!cast<Instruction>(prefix # "2d4s")
(v4f32 (SUBREG_TO_REG (i32 0), VPR64:$src, sub_64)),
(v2f64 VPR128:$Rn))>;
}
defm : NeonI_2VMisc_Narrow_Pattern<"FCVTN", int_arm_neon_vcvtfp2hf, fround>;
multiclass NeonI_2VMisc_D_Narrow<string asmop, string prefix, bit U,
bits<5> opcode> {
def 2d2s : NeonI_2VMisc<0b0, U, 0b01, opcode,
(outs VPR64:$Rd), (ins VPR128:$Rn),
asmop # "\t$Rd.2s, $Rn.2d",
[], NoItinerary>;
def 2d4s : NeonI_2VMisc<0b1, U, 0b01, opcode,
(outs VPR128:$Rd), (ins VPR128:$src, VPR128:$Rn),
asmop # "2\t$Rd.4s, $Rn.2d",
[], NoItinerary> {
let Constraints = "$src = $Rd";
}
def : Pat<(v2f32 (int_aarch64_neon_fcvtxn (v2f64 VPR128:$Rn))),
(!cast<Instruction>(prefix # "2d2s") VPR128:$Rn)>;
def : Pat<(v4f32 (concat_vectors
(v2f32 VPR64:$src),
(v2f32 (int_aarch64_neon_fcvtxn (v2f64 VPR128:$Rn))))),
(!cast<Instruction>(prefix # "2d4s")
(v4f32 (SUBREG_TO_REG (i32 0), VPR64:$src, sub_64)),
VPR128:$Rn)>;
}
defm FCVTXN : NeonI_2VMisc_D_Narrow<"fcvtxn","FCVTXN", 0b1, 0b10110>;
def Neon_High4Float : PatFrag<(ops node:$in),
(extract_subvector (v4f32 node:$in), (iPTR 2))>;
multiclass NeonI_2VMisc_HS_Extend<string asmop, bit U, bits<5> opcode> {
def 4h4s : NeonI_2VMisc<0b0, U, 0b00, opcode,
(outs VPR128:$Rd), (ins VPR64:$Rn),
asmop # "\t$Rd.4s, $Rn.4h",
[], NoItinerary>;
def 2s2d : NeonI_2VMisc<0b0, U, 0b01, opcode,
(outs VPR128:$Rd), (ins VPR64:$Rn),
asmop # "\t$Rd.2d, $Rn.2s",
[], NoItinerary>;
def 8h4s : NeonI_2VMisc<0b1, U, 0b00, opcode,
(outs VPR128:$Rd), (ins VPR128:$Rn),
asmop # "2\t$Rd.4s, $Rn.8h",
[], NoItinerary>;
def 4s2d : NeonI_2VMisc<0b1, U, 0b01, opcode,
(outs VPR128:$Rd), (ins VPR128:$Rn),
asmop # "2\t$Rd.2d, $Rn.4s",
[], NoItinerary>;
}
defm FCVTL : NeonI_2VMisc_HS_Extend<"fcvtl", 0b0, 0b10111>;
multiclass NeonI_2VMisc_Extend_Pattern<string prefix> {
def : Pat<(v4f32 (int_arm_neon_vcvthf2fp (v4i16 VPR64:$Rn))),
(!cast<Instruction>(prefix # "4h4s") VPR64:$Rn)>;
def : Pat<(v4f32 (int_arm_neon_vcvthf2fp
(v4i16 (Neon_High8H
(v8i16 VPR128:$Rn))))),
(!cast<Instruction>(prefix # "8h4s") VPR128:$Rn)>;
def : Pat<(v2f64 (fextend (v2f32 VPR64:$Rn))),
(!cast<Instruction>(prefix # "2s2d") VPR64:$Rn)>;
def : Pat<(v2f64 (fextend
(v2f32 (Neon_High4Float
(v4f32 VPR128:$Rn))))),
(!cast<Instruction>(prefix # "4s2d") VPR128:$Rn)>;
}
defm : NeonI_2VMisc_Extend_Pattern<"FCVTL">;
multiclass NeonI_2VMisc_SD_Conv<string asmop, bit Size, bit U, bits<5> opcode,
ValueType ResTy4s, ValueType OpTy4s,
ValueType ResTy2d, ValueType OpTy2d,
ValueType ResTy2s, ValueType OpTy2s,
SDPatternOperator Neon_Op> {
def 4s : NeonI_2VMisc<0b1, U, {Size, 0b0}, opcode,
(outs VPR128:$Rd), (ins VPR128:$Rn),
asmop # "\t$Rd.4s, $Rn.4s",
[(set (ResTy4s VPR128:$Rd),
(ResTy4s (Neon_Op (OpTy4s VPR128:$Rn))))],
NoItinerary>;
def 2d : NeonI_2VMisc<0b1, U, {Size, 0b1}, opcode,
(outs VPR128:$Rd), (ins VPR128:$Rn),
asmop # "\t$Rd.2d, $Rn.2d",
[(set (ResTy2d VPR128:$Rd),
(ResTy2d (Neon_Op (OpTy2d VPR128:$Rn))))],
NoItinerary>;
def 2s : NeonI_2VMisc<0b0, U, {Size, 0b0}, opcode,
(outs VPR64:$Rd), (ins VPR64:$Rn),
asmop # "\t$Rd.2s, $Rn.2s",
[(set (ResTy2s VPR64:$Rd),
(ResTy2s (Neon_Op (OpTy2s VPR64:$Rn))))],
NoItinerary>;
}
multiclass NeonI_2VMisc_fp_to_int<string asmop, bit Size, bit U,
bits<5> opcode, SDPatternOperator Neon_Op> {
defm _ : NeonI_2VMisc_SD_Conv<asmop, Size, U, opcode, v4i32, v4f32, v2i64,
v2f64, v2i32, v2f32, Neon_Op>;
}
defm FCVTNS : NeonI_2VMisc_fp_to_int<"fcvtns", 0b0, 0b0, 0b11010,
int_aarch64_neon_fcvtns>;
defm FCVTNU : NeonI_2VMisc_fp_to_int<"fcvtnu", 0b0, 0b1, 0b11010,
int_aarch64_neon_fcvtnu>;
defm FCVTPS : NeonI_2VMisc_fp_to_int<"fcvtps", 0b1, 0b0, 0b11010,
int_aarch64_neon_fcvtps>;
defm FCVTPU : NeonI_2VMisc_fp_to_int<"fcvtpu", 0b1, 0b1, 0b11010,
int_aarch64_neon_fcvtpu>;
defm FCVTMS : NeonI_2VMisc_fp_to_int<"fcvtms", 0b0, 0b0, 0b11011,
int_aarch64_neon_fcvtms>;
defm FCVTMU : NeonI_2VMisc_fp_to_int<"fcvtmu", 0b0, 0b1, 0b11011,
int_aarch64_neon_fcvtmu>;
defm FCVTZS : NeonI_2VMisc_fp_to_int<"fcvtzs", 0b1, 0b0, 0b11011, fp_to_sint>;
defm FCVTZU : NeonI_2VMisc_fp_to_int<"fcvtzu", 0b1, 0b1, 0b11011, fp_to_uint>;
defm FCVTAS : NeonI_2VMisc_fp_to_int<"fcvtas", 0b0, 0b0, 0b11100,
int_aarch64_neon_fcvtas>;
defm FCVTAU : NeonI_2VMisc_fp_to_int<"fcvtau", 0b0, 0b1, 0b11100,
int_aarch64_neon_fcvtau>;
multiclass NeonI_2VMisc_int_to_fp<string asmop, bit Size, bit U,
bits<5> opcode, SDPatternOperator Neon_Op> {
defm _ : NeonI_2VMisc_SD_Conv<asmop, Size, U, opcode, v4f32, v4i32, v2f64,
v2i64, v2f32, v2i32, Neon_Op>;
}
defm SCVTF : NeonI_2VMisc_int_to_fp<"scvtf", 0b0, 0b0, 0b11101, sint_to_fp>;
defm UCVTF : NeonI_2VMisc_int_to_fp<"ucvtf", 0b0, 0b1, 0b11101, uint_to_fp>;
multiclass NeonI_2VMisc_fp_to_fp<string asmop, bit Size, bit U,
bits<5> opcode, SDPatternOperator Neon_Op> {
defm _ : NeonI_2VMisc_SD_Conv<asmop, Size, U, opcode, v4f32, v4f32, v2f64,
v2f64, v2f32, v2f32, Neon_Op>;
}
defm FRINTN : NeonI_2VMisc_fp_to_fp<"frintn", 0b0, 0b0, 0b11000,
int_aarch64_neon_frintn>;
defm FRINTA : NeonI_2VMisc_fp_to_fp<"frinta", 0b0, 0b1, 0b11000, frnd>;
defm FRINTP : NeonI_2VMisc_fp_to_fp<"frintp", 0b1, 0b0, 0b11000, fceil>;
defm FRINTM : NeonI_2VMisc_fp_to_fp<"frintm", 0b0, 0b0, 0b11001, ffloor>;
defm FRINTX : NeonI_2VMisc_fp_to_fp<"frintx", 0b0, 0b1, 0b11001, frint>;
defm FRINTZ : NeonI_2VMisc_fp_to_fp<"frintz", 0b1, 0b0, 0b11001, ftrunc>;
defm FRINTI : NeonI_2VMisc_fp_to_fp<"frinti", 0b1, 0b1, 0b11001, fnearbyint>;
defm FRECPE : NeonI_2VMisc_fp_to_fp<"frecpe", 0b1, 0b0, 0b11101,
int_arm_neon_vrecpe>;
defm FRSQRTE : NeonI_2VMisc_fp_to_fp<"frsqrte", 0b1, 0b1, 0b11101,
int_arm_neon_vrsqrte>;
defm FSQRT : NeonI_2VMisc_fp_to_fp<"fsqrt", 0b1, 0b1, 0b11111,
int_aarch64_neon_fsqrt>;
multiclass NeonI_2VMisc_S_Conv<string asmop, bit Size, bit U,
bits<5> opcode, SDPatternOperator Neon_Op> {
def 4s : NeonI_2VMisc<0b1, U, {Size, 0b0}, opcode,
(outs VPR128:$Rd), (ins VPR128:$Rn),
asmop # "\t$Rd.4s, $Rn.4s",
[(set (v4i32 VPR128:$Rd),
(v4i32 (Neon_Op (v4i32 VPR128:$Rn))))],
NoItinerary>;
def 2s : NeonI_2VMisc<0b0, U, {Size, 0b0}, opcode,
(outs VPR64:$Rd), (ins VPR64:$Rn),
asmop # "\t$Rd.2s, $Rn.2s",
[(set (v2i32 VPR64:$Rd),
(v2i32 (Neon_Op (v2i32 VPR64:$Rn))))],
NoItinerary>;
}
defm URECPE : NeonI_2VMisc_S_Conv<"urecpe", 0b1, 0b0, 0b11100,
int_arm_neon_vrecpe>;
defm URSQRTE : NeonI_2VMisc_S_Conv<"ursqrte", 0b1, 0b1, 0b11100,
int_arm_neon_vrsqrte>;
// Crypto Class
class NeonI_Cryptoaes_2v<bits<2> size, bits<5> opcode,
string asmop, SDPatternOperator opnode>
: NeonI_Crypto_AES<size, opcode,
(outs VPR128:$Rd), (ins VPR128:$src, VPR128:$Rn),
asmop # "\t$Rd.16b, $Rn.16b",
[(set (v16i8 VPR128:$Rd),
(v16i8 (opnode (v16i8 VPR128:$src),
(v16i8 VPR128:$Rn))))],
NoItinerary>{
let Constraints = "$src = $Rd";
let Predicates = [HasNEON, HasCrypto];
}
def AESE : NeonI_Cryptoaes_2v<0b00, 0b00100, "aese", int_arm_neon_aese>;
def AESD : NeonI_Cryptoaes_2v<0b00, 0b00101, "aesd", int_arm_neon_aesd>;
class NeonI_Cryptoaes<bits<2> size, bits<5> opcode,
string asmop, SDPatternOperator opnode>
: NeonI_Crypto_AES<size, opcode,
(outs VPR128:$Rd), (ins VPR128:$Rn),
asmop # "\t$Rd.16b, $Rn.16b",
[(set (v16i8 VPR128:$Rd),
(v16i8 (opnode (v16i8 VPR128:$Rn))))],
NoItinerary>;
def AESMC : NeonI_Cryptoaes<0b00, 0b00110, "aesmc", int_arm_neon_aesmc>;
def AESIMC : NeonI_Cryptoaes<0b00, 0b00111, "aesimc", int_arm_neon_aesimc>;
class NeonI_Cryptosha_vv<bits<2> size, bits<5> opcode,
string asmop, SDPatternOperator opnode>
: NeonI_Crypto_SHA<size, opcode,
(outs VPR128:$Rd), (ins VPR128:$src, VPR128:$Rn),
asmop # "\t$Rd.4s, $Rn.4s",
[(set (v4i32 VPR128:$Rd),
(v4i32 (opnode (v4i32 VPR128:$src),
(v4i32 VPR128:$Rn))))],
NoItinerary> {
let Constraints = "$src = $Rd";
let Predicates = [HasNEON, HasCrypto];
}
def SHA1SU1 : NeonI_Cryptosha_vv<0b00, 0b00001, "sha1su1",
int_arm_neon_sha1su1>;
def SHA256SU0 : NeonI_Cryptosha_vv<0b00, 0b00010, "sha256su0",
int_arm_neon_sha256su0>;
class NeonI_Cryptosha_ss<bits<2> size, bits<5> opcode,
string asmop, SDPatternOperator opnode>
: NeonI_Crypto_SHA<size, opcode,
(outs FPR32:$Rd), (ins FPR32:$Rn),
asmop # "\t$Rd, $Rn",
[(set (v1i32 FPR32:$Rd),
(v1i32 (opnode (v1i32 FPR32:$Rn))))],
NoItinerary> {
let Predicates = [HasNEON, HasCrypto];
}
def SHA1H : NeonI_Cryptosha_ss<0b00, 0b00000, "sha1h", int_arm_neon_sha1h>;
class NeonI_Cryptosha3_vvv<bits<2> size, bits<3> opcode, string asmop,
SDPatternOperator opnode>
: NeonI_Crypto_3VSHA<size, opcode,
(outs VPR128:$Rd),
(ins VPR128:$src, VPR128:$Rn, VPR128:$Rm),
asmop # "\t$Rd.4s, $Rn.4s, $Rm.4s",
[(set (v4i32 VPR128:$Rd),
(v4i32 (opnode (v4i32 VPR128:$src),
(v4i32 VPR128:$Rn),
(v4i32 VPR128:$Rm))))],
NoItinerary> {
let Constraints = "$src = $Rd";
let Predicates = [HasNEON, HasCrypto];
}
def SHA1SU0 : NeonI_Cryptosha3_vvv<0b00, 0b011, "sha1su0",
int_arm_neon_sha1su0>;
def SHA256SU1 : NeonI_Cryptosha3_vvv<0b00, 0b110, "sha256su1",
int_arm_neon_sha256su1>;
class NeonI_Cryptosha3_qqv<bits<2> size, bits<3> opcode, string asmop,
SDPatternOperator opnode>
: NeonI_Crypto_3VSHA<size, opcode,
(outs FPR128:$Rd),
(ins FPR128:$src, FPR128:$Rn, VPR128:$Rm),
asmop # "\t$Rd, $Rn, $Rm.4s",
[(set (v4i32 FPR128:$Rd),
(v4i32 (opnode (v4i32 FPR128:$src),
(v4i32 FPR128:$Rn),
(v4i32 VPR128:$Rm))))],
NoItinerary> {
let Constraints = "$src = $Rd";
let Predicates = [HasNEON, HasCrypto];
}
def SHA256H : NeonI_Cryptosha3_qqv<0b00, 0b100, "sha256h",
int_arm_neon_sha256h>;
def SHA256H2 : NeonI_Cryptosha3_qqv<0b00, 0b101, "sha256h2",
int_arm_neon_sha256h2>;
class NeonI_Cryptosha3_qsv<bits<2> size, bits<3> opcode, string asmop,
SDPatternOperator opnode>
: NeonI_Crypto_3VSHA<size, opcode,
(outs FPR128:$Rd),
(ins FPR128:$src, FPR32:$Rn, VPR128:$Rm),
asmop # "\t$Rd, $Rn, $Rm.4s",
[(set (v4i32 FPR128:$Rd),
(v4i32 (opnode (v4i32 FPR128:$src),
(v1i32 FPR32:$Rn),
(v4i32 VPR128:$Rm))))],
NoItinerary> {
let Constraints = "$src = $Rd";
let Predicates = [HasNEON, HasCrypto];
}
def SHA1C : NeonI_Cryptosha3_qsv<0b00, 0b000, "sha1c", int_aarch64_neon_sha1c>;
def SHA1P : NeonI_Cryptosha3_qsv<0b00, 0b001, "sha1p", int_aarch64_neon_sha1p>;
def SHA1M : NeonI_Cryptosha3_qsv<0b00, 0b010, "sha1m", int_aarch64_neon_sha1m>;