mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-19 17:33:29 +00:00
0a00bece0d
It used to crash on any function that took float arguments. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@22973 91177308-0d34-0410-b5e6-96231b3b80d8
2428 lines
82 KiB
C++
2428 lines
82 KiB
C++
//===-- IA64ISelPattern.cpp - A pattern matching inst selector for IA64 ---===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by Duraid Madina and is distributed under the
|
|
// University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines a pattern matching instruction selector for IA64.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "IA64.h"
|
|
#include "IA64InstrBuilder.h"
|
|
#include "IA64RegisterInfo.h"
|
|
#include "IA64MachineFunctionInfo.h"
|
|
#include "llvm/Constants.h" // FIXME: REMOVE
|
|
#include "llvm/Function.h"
|
|
#include "llvm/CodeGen/MachineConstantPool.h" // FIXME: REMOVE
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/SelectionDAG.h"
|
|
#include "llvm/CodeGen/SelectionDAGISel.h"
|
|
#include "llvm/CodeGen/SSARegMap.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include <set>
|
|
#include <map>
|
|
#include <algorithm>
|
|
using namespace llvm;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// IA64TargetLowering - IA64 Implementation of the TargetLowering interface
|
|
namespace {
|
|
class IA64TargetLowering : public TargetLowering {
|
|
int VarArgsFrameIndex; // FrameIndex for start of varargs area.
|
|
|
|
//int ReturnAddrIndex; // FrameIndex for return slot.
|
|
unsigned GP, SP, RP; // FIXME - clean this mess up
|
|
public:
|
|
|
|
unsigned VirtGPR; // this is public so it can be accessed in the selector
|
|
// for ISD::RET down below. add an accessor instead? FIXME
|
|
|
|
IA64TargetLowering(TargetMachine &TM) : TargetLowering(TM) {
|
|
|
|
// register class for general registers
|
|
addRegisterClass(MVT::i64, IA64::GRRegisterClass);
|
|
|
|
// register class for FP registers
|
|
addRegisterClass(MVT::f64, IA64::FPRegisterClass);
|
|
|
|
// register class for predicate registers
|
|
addRegisterClass(MVT::i1, IA64::PRRegisterClass);
|
|
|
|
setOperationAction(ISD::BRCONDTWOWAY , MVT::Other, Expand);
|
|
setOperationAction(ISD::BRTWOWAY_CC , MVT::Other, Expand);
|
|
setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand);
|
|
|
|
setSetCCResultType(MVT::i1);
|
|
setShiftAmountType(MVT::i64);
|
|
|
|
setOperationAction(ISD::EXTLOAD , MVT::i1 , Promote);
|
|
|
|
setOperationAction(ISD::ZEXTLOAD , MVT::i1 , Expand);
|
|
|
|
setOperationAction(ISD::SEXTLOAD , MVT::i1 , Expand);
|
|
setOperationAction(ISD::SEXTLOAD , MVT::i8 , Expand);
|
|
setOperationAction(ISD::SEXTLOAD , MVT::i16 , Expand);
|
|
setOperationAction(ISD::SEXTLOAD , MVT::i32 , Expand);
|
|
|
|
setOperationAction(ISD::SREM , MVT::f32 , Expand);
|
|
setOperationAction(ISD::SREM , MVT::f64 , Expand);
|
|
|
|
setOperationAction(ISD::UREM , MVT::f32 , Expand);
|
|
setOperationAction(ISD::UREM , MVT::f64 , Expand);
|
|
|
|
setOperationAction(ISD::MEMMOVE , MVT::Other, Expand);
|
|
setOperationAction(ISD::MEMSET , MVT::Other, Expand);
|
|
setOperationAction(ISD::MEMCPY , MVT::Other, Expand);
|
|
|
|
// We don't support sin/cos/sqrt
|
|
setOperationAction(ISD::FSIN , MVT::f64, Expand);
|
|
setOperationAction(ISD::FCOS , MVT::f64, Expand);
|
|
setOperationAction(ISD::FSQRT, MVT::f64, Expand);
|
|
setOperationAction(ISD::FSIN , MVT::f32, Expand);
|
|
setOperationAction(ISD::FCOS , MVT::f32, Expand);
|
|
setOperationAction(ISD::FSQRT, MVT::f32, Expand);
|
|
|
|
//IA64 has these, but they are not implemented
|
|
setOperationAction(ISD::CTTZ , MVT::i64 , Expand);
|
|
setOperationAction(ISD::CTLZ , MVT::i64 , Expand);
|
|
|
|
computeRegisterProperties();
|
|
|
|
addLegalFPImmediate(+0.0);
|
|
addLegalFPImmediate(+1.0);
|
|
addLegalFPImmediate(-0.0);
|
|
addLegalFPImmediate(-1.0);
|
|
}
|
|
|
|
/// LowerArguments - This hook must be implemented to indicate how we should
|
|
/// lower the arguments for the specified function, into the specified DAG.
|
|
virtual std::vector<SDOperand>
|
|
LowerArguments(Function &F, SelectionDAG &DAG);
|
|
|
|
/// LowerCallTo - This hook lowers an abstract call to a function into an
|
|
/// actual call.
|
|
virtual std::pair<SDOperand, SDOperand>
|
|
LowerCallTo(SDOperand Chain, const Type *RetTy, bool isVarArg, unsigned CC,
|
|
bool isTailCall, SDOperand Callee, ArgListTy &Args,
|
|
SelectionDAG &DAG);
|
|
|
|
virtual SDOperand LowerVAStart(SDOperand Chain, SDOperand VAListP,
|
|
Value *VAListV, SelectionDAG &DAG);
|
|
virtual std::pair<SDOperand,SDOperand>
|
|
LowerVAArg(SDOperand Chain, SDOperand VAListP, Value *VAListV,
|
|
const Type *ArgTy, SelectionDAG &DAG);
|
|
|
|
void restoreGP_SP_RP(MachineBasicBlock* BB)
|
|
{
|
|
BuildMI(BB, IA64::MOV, 1, IA64::r1).addReg(GP);
|
|
BuildMI(BB, IA64::MOV, 1, IA64::r12).addReg(SP);
|
|
BuildMI(BB, IA64::MOV, 1, IA64::rp).addReg(RP);
|
|
}
|
|
|
|
void restoreSP_RP(MachineBasicBlock* BB)
|
|
{
|
|
BuildMI(BB, IA64::MOV, 1, IA64::r12).addReg(SP);
|
|
BuildMI(BB, IA64::MOV, 1, IA64::rp).addReg(RP);
|
|
}
|
|
|
|
void restoreRP(MachineBasicBlock* BB)
|
|
{
|
|
BuildMI(BB, IA64::MOV, 1, IA64::rp).addReg(RP);
|
|
}
|
|
|
|
void restoreGP(MachineBasicBlock* BB)
|
|
{
|
|
BuildMI(BB, IA64::MOV, 1, IA64::r1).addReg(GP);
|
|
}
|
|
|
|
};
|
|
}
|
|
|
|
|
|
std::vector<SDOperand>
|
|
IA64TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
|
|
std::vector<SDOperand> ArgValues;
|
|
|
|
//
|
|
// add beautiful description of IA64 stack frame format
|
|
// here (from intel 24535803.pdf most likely)
|
|
//
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
|
|
GP = MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::i64));
|
|
SP = MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::i64));
|
|
RP = MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::i64));
|
|
|
|
MachineBasicBlock& BB = MF.front();
|
|
|
|
unsigned args_int[] = {IA64::r32, IA64::r33, IA64::r34, IA64::r35,
|
|
IA64::r36, IA64::r37, IA64::r38, IA64::r39};
|
|
|
|
unsigned args_FP[] = {IA64::F8, IA64::F9, IA64::F10, IA64::F11,
|
|
IA64::F12,IA64::F13,IA64::F14, IA64::F15};
|
|
|
|
unsigned argVreg[8];
|
|
unsigned argPreg[8];
|
|
unsigned argOpc[8];
|
|
|
|
unsigned used_FPArgs = 0; // how many FP args have been used so far?
|
|
|
|
unsigned ArgOffset = 0;
|
|
int count = 0;
|
|
|
|
for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
|
|
{
|
|
SDOperand newroot, argt;
|
|
if(count < 8) { // need to fix this logic? maybe.
|
|
|
|
switch (getValueType(I->getType())) {
|
|
default:
|
|
std::cerr << "ERROR in LowerArgs: unknown type "
|
|
<< getValueType(I->getType()) << "\n";
|
|
abort();
|
|
case MVT::f32:
|
|
// fixme? (well, will need to for weird FP structy stuff,
|
|
// see intel ABI docs)
|
|
case MVT::f64:
|
|
//XXX BuildMI(&BB, IA64::IDEF, 0, args_FP[used_FPArgs]);
|
|
MF.addLiveIn(args_FP[used_FPArgs]); // mark this reg as liveIn
|
|
// floating point args go into f8..f15 as-needed, the increment
|
|
argVreg[count] = // is below..:
|
|
MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::f64));
|
|
// FP args go into f8..f15 as needed: (hence the ++)
|
|
argPreg[count] = args_FP[used_FPArgs++];
|
|
argOpc[count] = IA64::FMOV;
|
|
argt = newroot = DAG.getCopyFromReg(DAG.getRoot(), argVreg[count],
|
|
MVT::f64);
|
|
if (I->getType() == Type::FloatTy)
|
|
argt = DAG.getNode(ISD::FP_ROUND, MVT::f32, argt);
|
|
break;
|
|
case MVT::i1: // NOTE: as far as C abi stuff goes,
|
|
// bools are just boring old ints
|
|
case MVT::i8:
|
|
case MVT::i16:
|
|
case MVT::i32:
|
|
case MVT::i64:
|
|
//XXX BuildMI(&BB, IA64::IDEF, 0, args_int[count]);
|
|
MF.addLiveIn(args_int[count]); // mark this register as liveIn
|
|
argVreg[count] =
|
|
MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::i64));
|
|
argPreg[count] = args_int[count];
|
|
argOpc[count] = IA64::MOV;
|
|
argt = newroot =
|
|
DAG.getCopyFromReg(DAG.getRoot(), argVreg[count], MVT::i64);
|
|
if ( getValueType(I->getType()) != MVT::i64)
|
|
argt = DAG.getNode(ISD::TRUNCATE, getValueType(I->getType()),
|
|
newroot);
|
|
break;
|
|
}
|
|
} else { // more than 8 args go into the frame
|
|
// Create the frame index object for this incoming parameter...
|
|
ArgOffset = 16 + 8 * (count - 8);
|
|
int FI = MFI->CreateFixedObject(8, ArgOffset);
|
|
|
|
// Create the SelectionDAG nodes corresponding to a load
|
|
//from this parameter
|
|
SDOperand FIN = DAG.getFrameIndex(FI, MVT::i64);
|
|
argt = newroot = DAG.getLoad(getValueType(I->getType()),
|
|
DAG.getEntryNode(), FIN, DAG.getSrcValue(NULL));
|
|
}
|
|
++count;
|
|
DAG.setRoot(newroot.getValue(1));
|
|
ArgValues.push_back(argt);
|
|
}
|
|
|
|
|
|
// Create a vreg to hold the output of (what will become)
|
|
// the "alloc" instruction
|
|
VirtGPR = MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::i64));
|
|
BuildMI(&BB, IA64::PSEUDO_ALLOC, 0, VirtGPR);
|
|
// we create a PSEUDO_ALLOC (pseudo)instruction for now
|
|
|
|
BuildMI(&BB, IA64::IDEF, 0, IA64::r1);
|
|
|
|
// hmm:
|
|
BuildMI(&BB, IA64::IDEF, 0, IA64::r12);
|
|
BuildMI(&BB, IA64::IDEF, 0, IA64::rp);
|
|
// ..hmm.
|
|
|
|
BuildMI(&BB, IA64::MOV, 1, GP).addReg(IA64::r1);
|
|
|
|
// hmm:
|
|
BuildMI(&BB, IA64::MOV, 1, SP).addReg(IA64::r12);
|
|
BuildMI(&BB, IA64::MOV, 1, RP).addReg(IA64::rp);
|
|
// ..hmm.
|
|
|
|
unsigned tempOffset=0;
|
|
|
|
// if this is a varargs function, we simply lower llvm.va_start by
|
|
// pointing to the first entry
|
|
if(F.isVarArg()) {
|
|
tempOffset=0;
|
|
VarArgsFrameIndex = MFI->CreateFixedObject(8, tempOffset);
|
|
}
|
|
|
|
// here we actually do the moving of args, and store them to the stack
|
|
// too if this is a varargs function:
|
|
for (int i = 0; i < count && i < 8; ++i) {
|
|
BuildMI(&BB, argOpc[i], 1, argVreg[i]).addReg(argPreg[i]);
|
|
if(F.isVarArg()) {
|
|
// if this is a varargs function, we copy the input registers to the stack
|
|
int FI = MFI->CreateFixedObject(8, tempOffset);
|
|
tempOffset+=8; //XXX: is it safe to use r22 like this?
|
|
BuildMI(&BB, IA64::MOV, 1, IA64::r22).addFrameIndex(FI);
|
|
// FIXME: we should use st8.spill here, one day
|
|
BuildMI(&BB, IA64::ST8, 1, IA64::r22).addReg(argPreg[i]);
|
|
}
|
|
}
|
|
|
|
// Finally, inform the code generator which regs we return values in.
|
|
// (see the ISD::RET: case down below)
|
|
switch (getValueType(F.getReturnType())) {
|
|
default: assert(0 && "i have no idea where to return this type!");
|
|
case MVT::isVoid: break;
|
|
case MVT::i1:
|
|
case MVT::i8:
|
|
case MVT::i16:
|
|
case MVT::i32:
|
|
case MVT::i64:
|
|
MF.addLiveOut(IA64::r8);
|
|
break;
|
|
case MVT::f32:
|
|
case MVT::f64:
|
|
MF.addLiveOut(IA64::F8);
|
|
break;
|
|
}
|
|
|
|
return ArgValues;
|
|
}
|
|
|
|
std::pair<SDOperand, SDOperand>
|
|
IA64TargetLowering::LowerCallTo(SDOperand Chain,
|
|
const Type *RetTy, bool isVarArg,
|
|
unsigned CallingConv, bool isTailCall,
|
|
SDOperand Callee, ArgListTy &Args,
|
|
SelectionDAG &DAG) {
|
|
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
|
|
unsigned NumBytes = 16;
|
|
unsigned outRegsUsed = 0;
|
|
|
|
if (Args.size() > 8) {
|
|
NumBytes += (Args.size() - 8) * 8;
|
|
outRegsUsed = 8;
|
|
} else {
|
|
outRegsUsed = Args.size();
|
|
}
|
|
|
|
// FIXME? this WILL fail if we ever try to pass around an arg that
|
|
// consumes more than a single output slot (a 'real' double, int128
|
|
// some sort of aggregate etc.), as we'll underestimate how many 'outX'
|
|
// registers we use. Hopefully, the assembler will notice.
|
|
MF.getInfo<IA64FunctionInfo>()->outRegsUsed=
|
|
std::max(outRegsUsed, MF.getInfo<IA64FunctionInfo>()->outRegsUsed);
|
|
|
|
Chain = DAG.getNode(ISD::CALLSEQ_START, MVT::Other, Chain,
|
|
DAG.getConstant(NumBytes, getPointerTy()));
|
|
|
|
std::vector<SDOperand> args_to_use;
|
|
for (unsigned i = 0, e = Args.size(); i != e; ++i)
|
|
{
|
|
switch (getValueType(Args[i].second)) {
|
|
default: assert(0 && "unexpected argument type!");
|
|
case MVT::i1:
|
|
case MVT::i8:
|
|
case MVT::i16:
|
|
case MVT::i32:
|
|
//promote to 64-bits, sign/zero extending based on type
|
|
//of the argument
|
|
if(Args[i].second->isSigned())
|
|
Args[i].first = DAG.getNode(ISD::SIGN_EXTEND, MVT::i64,
|
|
Args[i].first);
|
|
else
|
|
Args[i].first = DAG.getNode(ISD::ZERO_EXTEND, MVT::i64,
|
|
Args[i].first);
|
|
break;
|
|
case MVT::f32:
|
|
//promote to 64-bits
|
|
Args[i].first = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Args[i].first);
|
|
case MVT::f64:
|
|
case MVT::i64:
|
|
break;
|
|
}
|
|
args_to_use.push_back(Args[i].first);
|
|
}
|
|
|
|
std::vector<MVT::ValueType> RetVals;
|
|
MVT::ValueType RetTyVT = getValueType(RetTy);
|
|
if (RetTyVT != MVT::isVoid)
|
|
RetVals.push_back(RetTyVT);
|
|
RetVals.push_back(MVT::Other);
|
|
|
|
SDOperand TheCall = SDOperand(DAG.getCall(RetVals, Chain,
|
|
Callee, args_to_use), 0);
|
|
Chain = TheCall.getValue(RetTyVT != MVT::isVoid);
|
|
Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, Chain,
|
|
DAG.getConstant(NumBytes, getPointerTy()));
|
|
return std::make_pair(TheCall, Chain);
|
|
}
|
|
|
|
SDOperand
|
|
IA64TargetLowering::LowerVAStart(SDOperand Chain, SDOperand VAListP,
|
|
Value *VAListV, SelectionDAG &DAG) {
|
|
// vastart just stores the address of the VarArgsFrameIndex slot.
|
|
SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, MVT::i64);
|
|
return DAG.getNode(ISD::STORE, MVT::Other, Chain, FR,
|
|
VAListP, DAG.getSrcValue(VAListV));
|
|
}
|
|
|
|
std::pair<SDOperand,SDOperand> IA64TargetLowering::
|
|
LowerVAArg(SDOperand Chain, SDOperand VAListP, Value *VAListV,
|
|
const Type *ArgTy, SelectionDAG &DAG) {
|
|
|
|
MVT::ValueType ArgVT = getValueType(ArgTy);
|
|
SDOperand Val = DAG.getLoad(MVT::i64, Chain,
|
|
VAListP, DAG.getSrcValue(VAListV));
|
|
SDOperand Result = DAG.getLoad(ArgVT, DAG.getEntryNode(), Val,
|
|
DAG.getSrcValue(NULL));
|
|
unsigned Amt;
|
|
if (ArgVT == MVT::i32 || ArgVT == MVT::f32)
|
|
Amt = 8;
|
|
else {
|
|
assert((ArgVT == MVT::i64 || ArgVT == MVT::f64) &&
|
|
"Other types should have been promoted for varargs!");
|
|
Amt = 8;
|
|
}
|
|
Val = DAG.getNode(ISD::ADD, Val.getValueType(), Val,
|
|
DAG.getConstant(Amt, Val.getValueType()));
|
|
Chain = DAG.getNode(ISD::STORE, MVT::Other, Chain,
|
|
Val, VAListP, DAG.getSrcValue(VAListV));
|
|
return std::make_pair(Result, Chain);
|
|
}
|
|
|
|
namespace {
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
/// ISel - IA64 specific code to select IA64 machine instructions for
|
|
/// SelectionDAG operations.
|
|
///
|
|
class ISel : public SelectionDAGISel {
|
|
/// IA64Lowering - This object fully describes how to lower LLVM code to an
|
|
/// IA64-specific SelectionDAG.
|
|
IA64TargetLowering IA64Lowering;
|
|
SelectionDAG *ISelDAG; // Hack to support us having a dag->dag transform
|
|
// for sdiv and udiv until it is put into the future
|
|
// dag combiner
|
|
|
|
/// ExprMap - As shared expressions are codegen'd, we keep track of which
|
|
/// vreg the value is produced in, so we only emit one copy of each compiled
|
|
/// tree.
|
|
std::map<SDOperand, unsigned> ExprMap;
|
|
std::set<SDOperand> LoweredTokens;
|
|
|
|
public:
|
|
ISel(TargetMachine &TM) : SelectionDAGISel(IA64Lowering), IA64Lowering(TM),
|
|
ISelDAG(0) { }
|
|
|
|
/// InstructionSelectBasicBlock - This callback is invoked by
|
|
/// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
|
|
virtual void InstructionSelectBasicBlock(SelectionDAG &DAG);
|
|
|
|
unsigned SelectExpr(SDOperand N);
|
|
void Select(SDOperand N);
|
|
// a dag->dag to transform mul-by-constant-int to shifts+adds/subs
|
|
SDOperand BuildConstmulSequence(SDOperand N);
|
|
|
|
const char *getPassName() const { return "IA64 Instruction Selector"; }
|
|
};
|
|
}
|
|
|
|
/// InstructionSelectBasicBlock - This callback is invoked by SelectionDAGISel
|
|
/// when it has created a SelectionDAG for us to codegen.
|
|
void ISel::InstructionSelectBasicBlock(SelectionDAG &DAG) {
|
|
|
|
// Codegen the basic block.
|
|
ISelDAG = &DAG;
|
|
Select(DAG.getRoot());
|
|
|
|
// Clear state used for selection.
|
|
ExprMap.clear();
|
|
LoweredTokens.clear();
|
|
ISelDAG = 0;
|
|
}
|
|
|
|
// strip leading '0' characters from a string
|
|
void munchLeadingZeros(std::string& inString) {
|
|
while(inString.c_str()[0]=='0') {
|
|
inString.erase(0, 1);
|
|
}
|
|
}
|
|
|
|
// strip trailing '0' characters from a string
|
|
void munchTrailingZeros(std::string& inString) {
|
|
int curPos=inString.length()-1;
|
|
|
|
while(inString.c_str()[curPos]=='0') {
|
|
inString.erase(curPos, 1);
|
|
curPos--;
|
|
}
|
|
}
|
|
|
|
// return how many consecutive '0' characters are at the end of a string
|
|
unsigned int countTrailingZeros(std::string& inString) {
|
|
int curPos=inString.length()-1;
|
|
unsigned int zeroCount=0;
|
|
// assert goes here
|
|
while(inString.c_str()[curPos--]=='0') {
|
|
zeroCount++;
|
|
}
|
|
return zeroCount;
|
|
}
|
|
|
|
// booth encode a string of '1' and '0' characters (returns string of 'P' (+1)
|
|
// '0' and 'N' (-1) characters)
|
|
void boothEncode(std::string inString, std::string& boothEncodedString) {
|
|
|
|
int curpos=0;
|
|
int replacements=0;
|
|
int lim=inString.size();
|
|
|
|
while(curpos<lim) {
|
|
if(inString[curpos]=='1') { // if we see a '1', look for a run of them
|
|
int runlength=0;
|
|
std::string replaceString="N";
|
|
|
|
// find the run length
|
|
for(;inString[curpos+runlength]=='1';runlength++) ;
|
|
|
|
for(int i=0; i<runlength-1; i++)
|
|
replaceString+="0";
|
|
replaceString+="1";
|
|
|
|
if(runlength>1) {
|
|
inString.replace(curpos, runlength+1, replaceString);
|
|
curpos+=runlength-1;
|
|
} else
|
|
curpos++;
|
|
} else { // a zero, we just keep chugging along
|
|
curpos++;
|
|
}
|
|
}
|
|
|
|
// clean up (trim the string, reverse it and turn '1's into 'P's)
|
|
munchTrailingZeros(inString);
|
|
boothEncodedString="";
|
|
|
|
for(int i=inString.size()-1;i>=0;i--)
|
|
if(inString[i]=='1')
|
|
boothEncodedString+="P";
|
|
else
|
|
boothEncodedString+=inString[i];
|
|
|
|
}
|
|
|
|
struct shiftaddblob { // this encodes stuff like (x=) "A << B [+-] C << D"
|
|
unsigned firstVal; // A
|
|
unsigned firstShift; // B
|
|
unsigned secondVal; // C
|
|
unsigned secondShift; // D
|
|
bool isSub;
|
|
};
|
|
|
|
/* this implements Lefevre's "pattern-based" constant multiplication,
|
|
* see "Multiplication by an Integer Constant", INRIA report 1999-06
|
|
*
|
|
* TODO: implement a method to try rewriting P0N<->0PP / N0P<->0NN
|
|
* to get better booth encodings - this does help in practice
|
|
* TODO: weight shifts appropriately (most architectures can't
|
|
* fuse a shift and an add for arbitrary shift amounts) */
|
|
unsigned lefevre(const std::string inString,
|
|
std::vector<struct shiftaddblob> &ops) {
|
|
std::string retstring;
|
|
std::string s = inString;
|
|
munchTrailingZeros(s);
|
|
|
|
int length=s.length()-1;
|
|
|
|
if(length==0) {
|
|
return(0);
|
|
}
|
|
|
|
std::vector<int> p,n;
|
|
|
|
for(int i=0; i<=length; i++) {
|
|
if (s.c_str()[length-i]=='P') {
|
|
p.push_back(i);
|
|
} else if (s.c_str()[length-i]=='N') {
|
|
n.push_back(i);
|
|
}
|
|
}
|
|
|
|
std::string t, u;
|
|
int c;
|
|
bool f;
|
|
std::map<const int, int> w;
|
|
|
|
for(unsigned i=0; i<p.size(); i++) {
|
|
for(unsigned j=0; j<i; j++) {
|
|
w[p[i]-p[j]]++;
|
|
}
|
|
}
|
|
|
|
for(unsigned i=1; i<n.size(); i++) {
|
|
for(unsigned j=0; j<i; j++) {
|
|
w[n[i]-n[j]]++;
|
|
}
|
|
}
|
|
|
|
for(unsigned i=0; i<p.size(); i++) {
|
|
for(unsigned j=0; j<n.size(); j++) {
|
|
w[-abs(p[i]-n[j])]++;
|
|
}
|
|
}
|
|
|
|
std::map<const int, int>::const_iterator ii;
|
|
std::vector<int> d;
|
|
std::multimap<int, int> sorted_by_value;
|
|
|
|
for(ii = w.begin(); ii!=w.end(); ii++)
|
|
sorted_by_value.insert(std::pair<int, int>((*ii).second,(*ii).first));
|
|
|
|
for (std::multimap<int, int>::iterator it = sorted_by_value.begin();
|
|
it != sorted_by_value.end(); ++it) {
|
|
d.push_back((*it).second);
|
|
}
|
|
|
|
int int_W=0;
|
|
int int_d;
|
|
|
|
while(d.size()>0 && (w[int_d=d.back()] > int_W)) {
|
|
d.pop_back();
|
|
retstring=s; // hmmm
|
|
int x=0;
|
|
int z=abs(int_d)-1;
|
|
|
|
if(int_d>0) {
|
|
|
|
for(unsigned base=0; base<retstring.size(); base++) {
|
|
if( ((base+z+1) < retstring.size()) &&
|
|
retstring.c_str()[base]=='P' &&
|
|
retstring.c_str()[base+z+1]=='P')
|
|
{
|
|
// match
|
|
x++;
|
|
retstring.replace(base, 1, "0");
|
|
retstring.replace(base+z+1, 1, "p");
|
|
}
|
|
}
|
|
|
|
for(unsigned base=0; base<retstring.size(); base++) {
|
|
if( ((base+z+1) < retstring.size()) &&
|
|
retstring.c_str()[base]=='N' &&
|
|
retstring.c_str()[base+z+1]=='N')
|
|
{
|
|
// match
|
|
x++;
|
|
retstring.replace(base, 1, "0");
|
|
retstring.replace(base+z+1, 1, "n");
|
|
}
|
|
}
|
|
|
|
} else {
|
|
for(unsigned base=0; base<retstring.size(); base++) {
|
|
if( ((base+z+1) < retstring.size()) &&
|
|
((retstring.c_str()[base]=='P' &&
|
|
retstring.c_str()[base+z+1]=='N') ||
|
|
(retstring.c_str()[base]=='N' &&
|
|
retstring.c_str()[base+z+1]=='P')) ) {
|
|
// match
|
|
x++;
|
|
|
|
if(retstring.c_str()[base]=='P') {
|
|
retstring.replace(base, 1, "0");
|
|
retstring.replace(base+z+1, 1, "p");
|
|
} else { // retstring[base]=='N'
|
|
retstring.replace(base, 1, "0");
|
|
retstring.replace(base+z+1, 1, "n");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if(x>int_W) {
|
|
int_W = x;
|
|
t = retstring;
|
|
c = int_d; // tofix
|
|
}
|
|
|
|
} d.pop_back(); // hmm
|
|
|
|
u = t;
|
|
|
|
for(unsigned i=0; i<t.length(); i++) {
|
|
if(t.c_str()[i]=='p' || t.c_str()[i]=='n')
|
|
t.replace(i, 1, "0");
|
|
}
|
|
|
|
for(unsigned i=0; i<u.length(); i++) {
|
|
if(u[i]=='P' || u[i]=='N')
|
|
u.replace(i, 1, "0");
|
|
if(u[i]=='p')
|
|
u.replace(i, 1, "P");
|
|
if(u[i]=='n')
|
|
u.replace(i, 1, "N");
|
|
}
|
|
|
|
if( c<0 ) {
|
|
f=true;
|
|
c=-c;
|
|
} else
|
|
f=false;
|
|
|
|
int pos=0;
|
|
while(u[pos]=='0')
|
|
pos++;
|
|
|
|
bool hit=(u[pos]=='N');
|
|
|
|
int g=0;
|
|
if(hit) {
|
|
g=1;
|
|
for(unsigned p=0; p<u.length(); p++) {
|
|
bool isP=(u[p]=='P');
|
|
bool isN=(u[p]=='N');
|
|
|
|
if(isP)
|
|
u.replace(p, 1, "N");
|
|
if(isN)
|
|
u.replace(p, 1, "P");
|
|
}
|
|
}
|
|
|
|
munchLeadingZeros(u);
|
|
|
|
int i = lefevre(u, ops);
|
|
|
|
shiftaddblob blob;
|
|
|
|
blob.firstVal=i; blob.firstShift=c;
|
|
blob.isSub=f;
|
|
blob.secondVal=i; blob.secondShift=0;
|
|
|
|
ops.push_back(blob);
|
|
|
|
i = ops.size();
|
|
|
|
munchLeadingZeros(t);
|
|
|
|
if(t.length()==0)
|
|
return i;
|
|
|
|
if(t.c_str()[0]!='P') {
|
|
g=2;
|
|
for(unsigned p=0; p<t.length(); p++) {
|
|
bool isP=(t.c_str()[p]=='P');
|
|
bool isN=(t.c_str()[p]=='N');
|
|
|
|
if(isP)
|
|
t.replace(p, 1, "N");
|
|
if(isN)
|
|
t.replace(p, 1, "P");
|
|
}
|
|
}
|
|
|
|
int j = lefevre(t, ops);
|
|
|
|
int trail=countTrailingZeros(u);
|
|
blob.secondVal=i; blob.secondShift=trail;
|
|
|
|
trail=countTrailingZeros(t);
|
|
blob.firstVal=j; blob.firstShift=trail;
|
|
|
|
switch(g) {
|
|
case 0:
|
|
blob.isSub=false; // first + second
|
|
break;
|
|
case 1:
|
|
blob.isSub=true; // first - second
|
|
break;
|
|
case 2:
|
|
blob.isSub=true; // second - first
|
|
int tmpval, tmpshift;
|
|
tmpval=blob.firstVal;
|
|
tmpshift=blob.firstShift;
|
|
blob.firstVal=blob.secondVal;
|
|
blob.firstShift=blob.secondShift;
|
|
blob.secondVal=tmpval;
|
|
blob.secondShift=tmpshift;
|
|
break;
|
|
//assert
|
|
}
|
|
|
|
ops.push_back(blob);
|
|
return ops.size();
|
|
}
|
|
|
|
SDOperand ISel::BuildConstmulSequence(SDOperand N) {
|
|
//FIXME: we should shortcut this stuff for multiplies by 2^n+1
|
|
// in particular, *3 is nicer as *2+1, not *4-1
|
|
int64_t constant=cast<ConstantSDNode>(N.getOperand(1))->getValue();
|
|
|
|
bool flippedSign;
|
|
unsigned preliminaryShift=0;
|
|
|
|
assert(constant != 0 && "erk, you're trying to multiply by constant zero\n");
|
|
|
|
// first, we make the constant to multiply by positive
|
|
if(constant<0) {
|
|
constant=-constant;
|
|
flippedSign=true;
|
|
} else {
|
|
flippedSign=false;
|
|
}
|
|
|
|
// next, we make it odd.
|
|
for(; (constant%2==0); preliminaryShift++)
|
|
constant>>=1;
|
|
|
|
//OK, we have a positive, odd number of 64 bits or less. Convert it
|
|
//to a binary string, constantString[0] is the LSB
|
|
char constantString[65];
|
|
for(int i=0; i<64; i++)
|
|
constantString[i]='0'+((constant>>i)&0x1);
|
|
constantString[64]=0;
|
|
|
|
// now, Booth encode it
|
|
std::string boothEncodedString;
|
|
boothEncode(constantString, boothEncodedString);
|
|
|
|
std::vector<struct shiftaddblob> ops;
|
|
// do the transformation, filling out 'ops'
|
|
lefevre(boothEncodedString, ops);
|
|
|
|
assert(ops.size() < 80 && "constmul code has gone haywire\n");
|
|
SDOperand results[80]; // temporary results (of adds/subs of shifts)
|
|
|
|
// now turn 'ops' into DAG bits
|
|
for(unsigned i=0; i<ops.size(); i++) {
|
|
SDOperand amt = ISelDAG->getConstant(ops[i].firstShift, MVT::i64);
|
|
SDOperand val = (ops[i].firstVal == 0) ? N.getOperand(0) :
|
|
results[ops[i].firstVal-1];
|
|
SDOperand left = ISelDAG->getNode(ISD::SHL, MVT::i64, val, amt);
|
|
amt = ISelDAG->getConstant(ops[i].secondShift, MVT::i64);
|
|
val = (ops[i].secondVal == 0) ? N.getOperand(0) :
|
|
results[ops[i].secondVal-1];
|
|
SDOperand right = ISelDAG->getNode(ISD::SHL, MVT::i64, val, amt);
|
|
if(ops[i].isSub)
|
|
results[i] = ISelDAG->getNode(ISD::SUB, MVT::i64, left, right);
|
|
else
|
|
results[i] = ISelDAG->getNode(ISD::ADD, MVT::i64, left, right);
|
|
}
|
|
|
|
// don't forget flippedSign and preliminaryShift!
|
|
SDOperand shiftedresult;
|
|
if(preliminaryShift) {
|
|
SDOperand finalshift = ISelDAG->getConstant(preliminaryShift, MVT::i64);
|
|
shiftedresult = ISelDAG->getNode(ISD::SHL, MVT::i64,
|
|
results[ops.size()-1], finalshift);
|
|
} else { // there was no preliminary divide-by-power-of-2 required
|
|
shiftedresult = results[ops.size()-1];
|
|
}
|
|
|
|
SDOperand finalresult;
|
|
if(flippedSign) { // if we were multiplying by a negative constant:
|
|
SDOperand zero = ISelDAG->getConstant(0, MVT::i64);
|
|
// subtract the result from 0 to flip its sign
|
|
finalresult = ISelDAG->getNode(ISD::SUB, MVT::i64, zero, shiftedresult);
|
|
} else { // there was no preliminary multiply by -1 required
|
|
finalresult = shiftedresult;
|
|
}
|
|
|
|
return finalresult;
|
|
}
|
|
|
|
/// ponderIntegerDivisionBy - When handling integer divides, if the divide
|
|
/// is by a constant such that we can efficiently codegen it, this
|
|
/// function says what to do. Currently, it returns 0 if the division must
|
|
/// become a genuine divide, and 1 if the division can be turned into a
|
|
/// right shift.
|
|
static unsigned ponderIntegerDivisionBy(SDOperand N, bool isSigned,
|
|
unsigned& Imm) {
|
|
if (N.getOpcode() != ISD::Constant) return 0; // if not a divide by
|
|
// a constant, give up.
|
|
|
|
int64_t v = (int64_t)cast<ConstantSDNode>(N)->getSignExtended();
|
|
|
|
if (isPowerOf2_64(v)) { // if a division by a power of two, say so
|
|
Imm = Log2_64(v);
|
|
return 1;
|
|
}
|
|
|
|
return 0; // fallthrough
|
|
}
|
|
|
|
static unsigned ponderIntegerAndWith(SDOperand N, unsigned& Imm) {
|
|
if (N.getOpcode() != ISD::Constant) return 0; // if not ANDing with
|
|
// a constant, give up.
|
|
|
|
int64_t v = (int64_t)cast<ConstantSDNode>(N)->getSignExtended();
|
|
|
|
if (isMask_64(v)) { // if ANDing with ((2^n)-1) for some n
|
|
Imm = Log2_64(v) + 1;
|
|
return 1; // say so
|
|
}
|
|
|
|
return 0; // fallthrough
|
|
}
|
|
|
|
static unsigned ponderIntegerAdditionWith(SDOperand N, unsigned& Imm) {
|
|
if (N.getOpcode() != ISD::Constant) return 0; // if not adding a
|
|
// constant, give up.
|
|
int64_t v = (int64_t)cast<ConstantSDNode>(N)->getSignExtended();
|
|
|
|
if (v <= 8191 && v >= -8192) { // if this constants fits in 14 bits, say so
|
|
Imm = v & 0x3FFF; // 14 bits
|
|
return 1;
|
|
}
|
|
return 0; // fallthrough
|
|
}
|
|
|
|
static unsigned ponderIntegerSubtractionFrom(SDOperand N, unsigned& Imm) {
|
|
if (N.getOpcode() != ISD::Constant) return 0; // if not subtracting a
|
|
// constant, give up.
|
|
int64_t v = (int64_t)cast<ConstantSDNode>(N)->getSignExtended();
|
|
|
|
if (v <= 127 && v >= -128) { // if this constants fits in 8 bits, say so
|
|
Imm = v & 0xFF; // 8 bits
|
|
return 1;
|
|
}
|
|
return 0; // fallthrough
|
|
}
|
|
|
|
unsigned ISel::SelectExpr(SDOperand N) {
|
|
unsigned Result;
|
|
unsigned Tmp1, Tmp2, Tmp3;
|
|
unsigned Opc = 0;
|
|
MVT::ValueType DestType = N.getValueType();
|
|
|
|
unsigned opcode = N.getOpcode();
|
|
|
|
SDNode *Node = N.Val;
|
|
SDOperand Op0, Op1;
|
|
|
|
if (Node->getOpcode() == ISD::CopyFromReg)
|
|
// Just use the specified register as our input.
|
|
return cast<RegisterSDNode>(Node->getOperand(1))->getReg();
|
|
|
|
unsigned &Reg = ExprMap[N];
|
|
if (Reg) return Reg;
|
|
|
|
if (N.getOpcode() != ISD::CALL && N.getOpcode() != ISD::TAILCALL)
|
|
Reg = Result = (N.getValueType() != MVT::Other) ?
|
|
MakeReg(N.getValueType()) : 1;
|
|
else {
|
|
// If this is a call instruction, make sure to prepare ALL of the result
|
|
// values as well as the chain.
|
|
if (Node->getNumValues() == 1)
|
|
Reg = Result = 1; // Void call, just a chain.
|
|
else {
|
|
Result = MakeReg(Node->getValueType(0));
|
|
ExprMap[N.getValue(0)] = Result;
|
|
for (unsigned i = 1, e = N.Val->getNumValues()-1; i != e; ++i)
|
|
ExprMap[N.getValue(i)] = MakeReg(Node->getValueType(i));
|
|
ExprMap[SDOperand(Node, Node->getNumValues()-1)] = 1;
|
|
}
|
|
}
|
|
|
|
switch (N.getOpcode()) {
|
|
default:
|
|
Node->dump();
|
|
assert(0 && "Node not handled!\n");
|
|
|
|
case ISD::FrameIndex: {
|
|
Tmp1 = cast<FrameIndexSDNode>(N)->getIndex();
|
|
BuildMI(BB, IA64::MOV, 1, Result).addFrameIndex(Tmp1);
|
|
return Result;
|
|
}
|
|
|
|
case ISD::ConstantPool: {
|
|
Tmp1 = cast<ConstantPoolSDNode>(N)->getIndex();
|
|
IA64Lowering.restoreGP(BB); // FIXME: do i really need this?
|
|
BuildMI(BB, IA64::ADD, 2, Result).addConstantPoolIndex(Tmp1)
|
|
.addReg(IA64::r1);
|
|
return Result;
|
|
}
|
|
|
|
case ISD::ConstantFP: {
|
|
Tmp1 = Result; // Intermediate Register
|
|
if (cast<ConstantFPSDNode>(N)->getValue() < 0.0 ||
|
|
cast<ConstantFPSDNode>(N)->isExactlyValue(-0.0))
|
|
Tmp1 = MakeReg(MVT::f64);
|
|
|
|
if (cast<ConstantFPSDNode>(N)->isExactlyValue(+0.0) ||
|
|
cast<ConstantFPSDNode>(N)->isExactlyValue(-0.0))
|
|
BuildMI(BB, IA64::FMOV, 1, Tmp1).addReg(IA64::F0); // load 0.0
|
|
else if (cast<ConstantFPSDNode>(N)->isExactlyValue(+1.0) ||
|
|
cast<ConstantFPSDNode>(N)->isExactlyValue(-1.0))
|
|
BuildMI(BB, IA64::FMOV, 1, Tmp1).addReg(IA64::F1); // load 1.0
|
|
else
|
|
assert(0 && "Unexpected FP constant!");
|
|
if (Tmp1 != Result)
|
|
// we multiply by +1.0, negate (this is FNMA), and then add 0.0
|
|
BuildMI(BB, IA64::FNMA, 3, Result).addReg(Tmp1).addReg(IA64::F1)
|
|
.addReg(IA64::F0);
|
|
return Result;
|
|
}
|
|
|
|
case ISD::DYNAMIC_STACKALLOC: {
|
|
// Generate both result values.
|
|
if (Result != 1)
|
|
ExprMap[N.getValue(1)] = 1; // Generate the token
|
|
else
|
|
Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType());
|
|
|
|
// FIXME: We are currently ignoring the requested alignment for handling
|
|
// greater than the stack alignment. This will need to be revisited at some
|
|
// point. Align = N.getOperand(2);
|
|
|
|
if (!isa<ConstantSDNode>(N.getOperand(2)) ||
|
|
cast<ConstantSDNode>(N.getOperand(2))->getValue() != 0) {
|
|
std::cerr << "Cannot allocate stack object with greater alignment than"
|
|
<< " the stack alignment yet!";
|
|
abort();
|
|
}
|
|
|
|
/*
|
|
Select(N.getOperand(0));
|
|
if (ConstantSDNode* CN = dyn_cast<ConstantSDNode>(N.getOperand(1)))
|
|
{
|
|
if (CN->getValue() < 32000)
|
|
{
|
|
BuildMI(BB, IA64::ADDIMM22, 2, IA64::r12).addReg(IA64::r12)
|
|
.addImm(-CN->getValue());
|
|
} else {
|
|
Tmp1 = SelectExpr(N.getOperand(1));
|
|
// Subtract size from stack pointer, thereby allocating some space.
|
|
BuildMI(BB, IA64::SUB, 2, IA64::r12).addReg(IA64::r12).addReg(Tmp1);
|
|
}
|
|
} else {
|
|
Tmp1 = SelectExpr(N.getOperand(1));
|
|
// Subtract size from stack pointer, thereby allocating some space.
|
|
BuildMI(BB, IA64::SUB, 2, IA64::r12).addReg(IA64::r12).addReg(Tmp1);
|
|
}
|
|
*/
|
|
Select(N.getOperand(0));
|
|
Tmp1 = SelectExpr(N.getOperand(1));
|
|
// Subtract size from stack pointer, thereby allocating some space.
|
|
BuildMI(BB, IA64::SUB, 2, IA64::r12).addReg(IA64::r12).addReg(Tmp1);
|
|
// Put a pointer to the space into the result register, by copying the
|
|
// stack pointer.
|
|
BuildMI(BB, IA64::MOV, 1, Result).addReg(IA64::r12);
|
|
return Result;
|
|
}
|
|
|
|
case ISD::SELECT: {
|
|
Tmp1 = SelectExpr(N.getOperand(0)); //Cond
|
|
Tmp2 = SelectExpr(N.getOperand(1)); //Use if TRUE
|
|
Tmp3 = SelectExpr(N.getOperand(2)); //Use if FALSE
|
|
|
|
unsigned bogoResult;
|
|
|
|
switch (N.getOperand(1).getValueType()) {
|
|
default: assert(0 &&
|
|
"ISD::SELECT: 'select'ing something other than i1, i64 or f64!\n");
|
|
// for i1, we load the condition into an integer register, then
|
|
// conditionally copy Tmp2 and Tmp3 to Tmp1 in parallel (only one
|
|
// of them will go through, since the integer register will hold
|
|
// either 0 or 1)
|
|
case MVT::i1: {
|
|
bogoResult=MakeReg(MVT::i1);
|
|
|
|
// load the condition into an integer register
|
|
unsigned condReg=MakeReg(MVT::i64);
|
|
unsigned dummy=MakeReg(MVT::i64);
|
|
BuildMI(BB, IA64::MOV, 1, dummy).addReg(IA64::r0);
|
|
BuildMI(BB, IA64::TPCADDIMM22, 2, condReg).addReg(dummy)
|
|
.addImm(1).addReg(Tmp1);
|
|
|
|
// initialize Result (bool) to false (hence UNC) and if
|
|
// the select condition (condReg) is false (0), copy Tmp3
|
|
BuildMI(BB, IA64::PCMPEQUNC, 3, bogoResult)
|
|
.addReg(condReg).addReg(IA64::r0).addReg(Tmp3);
|
|
|
|
// now, if the selection condition is true, write 1 to the
|
|
// result if Tmp2 is 1
|
|
BuildMI(BB, IA64::TPCMPNE, 3, Result).addReg(bogoResult)
|
|
.addReg(condReg).addReg(IA64::r0).addReg(Tmp2);
|
|
break;
|
|
}
|
|
// for i64/f64, we just copy Tmp3 and then conditionally overwrite it
|
|
// with Tmp2 if Tmp1 is true
|
|
case MVT::i64:
|
|
bogoResult=MakeReg(MVT::i64);
|
|
BuildMI(BB, IA64::MOV, 1, bogoResult).addReg(Tmp3);
|
|
BuildMI(BB, IA64::CMOV, 2, Result).addReg(bogoResult).addReg(Tmp2)
|
|
.addReg(Tmp1);
|
|
break;
|
|
case MVT::f64:
|
|
bogoResult=MakeReg(MVT::f64);
|
|
BuildMI(BB, IA64::FMOV, 1, bogoResult).addReg(Tmp3);
|
|
BuildMI(BB, IA64::CFMOV, 2, Result).addReg(bogoResult).addReg(Tmp2)
|
|
.addReg(Tmp1);
|
|
break;
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
case ISD::Constant: {
|
|
unsigned depositPos=0;
|
|
unsigned depositLen=0;
|
|
switch (N.getValueType()) {
|
|
default: assert(0 && "Cannot use constants of this type!");
|
|
case MVT::i1: { // if a bool, we don't 'load' so much as generate
|
|
// the constant:
|
|
if(cast<ConstantSDNode>(N)->getValue()) // true:
|
|
BuildMI(BB, IA64::CMPEQ, 2, Result).addReg(IA64::r0).addReg(IA64::r0);
|
|
else // false:
|
|
BuildMI(BB, IA64::CMPNE, 2, Result).addReg(IA64::r0).addReg(IA64::r0);
|
|
return Result; // early exit
|
|
}
|
|
case MVT::i64: break;
|
|
}
|
|
|
|
int64_t immediate = cast<ConstantSDNode>(N)->getValue();
|
|
|
|
if(immediate==0) { // if the constant is just zero,
|
|
BuildMI(BB, IA64::MOV, 1, Result).addReg(IA64::r0); // just copy r0
|
|
return Result; // early exit
|
|
}
|
|
|
|
if (immediate <= 8191 && immediate >= -8192) {
|
|
// if this constants fits in 14 bits, we use a mov the assembler will
|
|
// turn into: "adds rDest=imm,r0" (and _not_ "andl"...)
|
|
BuildMI(BB, IA64::MOVSIMM14, 1, Result).addSImm(immediate);
|
|
return Result; // early exit
|
|
}
|
|
|
|
if (immediate <= 2097151 && immediate >= -2097152) {
|
|
// if this constants fits in 22 bits, we use a mov the assembler will
|
|
// turn into: "addl rDest=imm,r0"
|
|
BuildMI(BB, IA64::MOVSIMM22, 1, Result).addSImm(immediate);
|
|
return Result; // early exit
|
|
}
|
|
|
|
/* otherwise, our immediate is big, so we use movl */
|
|
uint64_t Imm = immediate;
|
|
BuildMI(BB, IA64::MOVLIMM64, 1, Result).addImm64(Imm);
|
|
return Result;
|
|
}
|
|
|
|
case ISD::UNDEF: {
|
|
BuildMI(BB, IA64::IDEF, 0, Result);
|
|
return Result;
|
|
}
|
|
|
|
case ISD::GlobalAddress: {
|
|
GlobalValue *GV = cast<GlobalAddressSDNode>(N)->getGlobal();
|
|
unsigned Tmp1 = MakeReg(MVT::i64);
|
|
|
|
BuildMI(BB, IA64::ADD, 2, Tmp1).addGlobalAddress(GV).addReg(IA64::r1);
|
|
BuildMI(BB, IA64::LD8, 1, Result).addReg(Tmp1);
|
|
|
|
return Result;
|
|
}
|
|
|
|
case ISD::ExternalSymbol: {
|
|
const char *Sym = cast<ExternalSymbolSDNode>(N)->getSymbol();
|
|
// assert(0 && "sorry, but what did you want an ExternalSymbol for again?");
|
|
BuildMI(BB, IA64::MOV, 1, Result).addExternalSymbol(Sym); // XXX
|
|
return Result;
|
|
}
|
|
|
|
case ISD::FP_EXTEND: {
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
BuildMI(BB, IA64::FMOV, 1, Result).addReg(Tmp1);
|
|
return Result;
|
|
}
|
|
|
|
case ISD::ZERO_EXTEND: {
|
|
Tmp1 = SelectExpr(N.getOperand(0)); // value
|
|
|
|
switch (N.getOperand(0).getValueType()) {
|
|
default: assert(0 && "Cannot zero-extend this type!");
|
|
case MVT::i8: Opc = IA64::ZXT1; break;
|
|
case MVT::i16: Opc = IA64::ZXT2; break;
|
|
case MVT::i32: Opc = IA64::ZXT4; break;
|
|
|
|
// we handle bools differently! :
|
|
case MVT::i1: { // if the predicate reg has 1, we want a '1' in our GR.
|
|
unsigned dummy = MakeReg(MVT::i64);
|
|
// first load zero:
|
|
BuildMI(BB, IA64::MOV, 1, dummy).addReg(IA64::r0);
|
|
// ...then conditionally (PR:Tmp1) add 1:
|
|
BuildMI(BB, IA64::TPCADDIMM22, 2, Result).addReg(dummy)
|
|
.addImm(1).addReg(Tmp1);
|
|
return Result; // XXX early exit!
|
|
}
|
|
}
|
|
|
|
BuildMI(BB, Opc, 1, Result).addReg(Tmp1);
|
|
return Result;
|
|
}
|
|
|
|
case ISD::SIGN_EXTEND: { // we should only have to handle i1 -> i64 here!!!
|
|
|
|
assert(0 && "hmm, ISD::SIGN_EXTEND: shouldn't ever be reached. bad luck!\n");
|
|
|
|
Tmp1 = SelectExpr(N.getOperand(0)); // value
|
|
|
|
switch (N.getOperand(0).getValueType()) {
|
|
default: assert(0 && "Cannot sign-extend this type!");
|
|
case MVT::i1: assert(0 && "trying to sign extend a bool? ow.\n");
|
|
Opc = IA64::SXT1; break;
|
|
// FIXME: for now, we treat bools the same as i8s
|
|
case MVT::i8: Opc = IA64::SXT1; break;
|
|
case MVT::i16: Opc = IA64::SXT2; break;
|
|
case MVT::i32: Opc = IA64::SXT4; break;
|
|
}
|
|
|
|
BuildMI(BB, Opc, 1, Result).addReg(Tmp1);
|
|
return Result;
|
|
}
|
|
|
|
case ISD::TRUNCATE: {
|
|
// we use the funky dep.z (deposit (zero)) instruction to deposit bits
|
|
// of R0 appropriately.
|
|
switch (N.getOperand(0).getValueType()) {
|
|
default: assert(0 && "Unknown truncate!");
|
|
case MVT::i64: break;
|
|
}
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
unsigned depositPos, depositLen;
|
|
|
|
switch (N.getValueType()) {
|
|
default: assert(0 && "Unknown truncate!");
|
|
case MVT::i1: {
|
|
// if input (normal reg) is 0, 0!=0 -> false (0), if 1, 1!=0 ->true (1):
|
|
BuildMI(BB, IA64::CMPNE, 2, Result).addReg(Tmp1)
|
|
.addReg(IA64::r0);
|
|
return Result; // XXX early exit!
|
|
}
|
|
case MVT::i8: depositPos=0; depositLen=8; break;
|
|
case MVT::i16: depositPos=0; depositLen=16; break;
|
|
case MVT::i32: depositPos=0; depositLen=32; break;
|
|
}
|
|
BuildMI(BB, IA64::DEPZ, 3, Result).addReg(Tmp1)
|
|
.addImm(depositPos).addImm(depositLen);
|
|
return Result;
|
|
}
|
|
|
|
/*
|
|
case ISD::FP_ROUND: {
|
|
assert (DestType == MVT::f32 && N.getOperand(0).getValueType() == MVT::f64 &&
|
|
"error: trying to FP_ROUND something other than f64 -> f32!\n");
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
BuildMI(BB, IA64::FADDS, 2, Result).addReg(Tmp1).addReg(IA64::F0);
|
|
// we add 0.0 using a single precision add to do rounding
|
|
return Result;
|
|
}
|
|
*/
|
|
|
|
// FIXME: the following 4 cases need cleaning
|
|
case ISD::SINT_TO_FP: {
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
Tmp2 = MakeReg(MVT::f64);
|
|
unsigned dummy = MakeReg(MVT::f64);
|
|
BuildMI(BB, IA64::SETFSIG, 1, Tmp2).addReg(Tmp1);
|
|
BuildMI(BB, IA64::FCVTXF, 1, dummy).addReg(Tmp2);
|
|
BuildMI(BB, IA64::FNORMD, 1, Result).addReg(dummy);
|
|
return Result;
|
|
}
|
|
|
|
case ISD::UINT_TO_FP: {
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
Tmp2 = MakeReg(MVT::f64);
|
|
unsigned dummy = MakeReg(MVT::f64);
|
|
BuildMI(BB, IA64::SETFSIG, 1, Tmp2).addReg(Tmp1);
|
|
BuildMI(BB, IA64::FCVTXUF, 1, dummy).addReg(Tmp2);
|
|
BuildMI(BB, IA64::FNORMD, 1, Result).addReg(dummy);
|
|
return Result;
|
|
}
|
|
|
|
case ISD::FP_TO_SINT: {
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
Tmp2 = MakeReg(MVT::f64);
|
|
BuildMI(BB, IA64::FCVTFXTRUNC, 1, Tmp2).addReg(Tmp1);
|
|
BuildMI(BB, IA64::GETFSIG, 1, Result).addReg(Tmp2);
|
|
return Result;
|
|
}
|
|
|
|
case ISD::FP_TO_UINT: {
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
Tmp2 = MakeReg(MVT::f64);
|
|
BuildMI(BB, IA64::FCVTFXUTRUNC, 1, Tmp2).addReg(Tmp1);
|
|
BuildMI(BB, IA64::GETFSIG, 1, Result).addReg(Tmp2);
|
|
return Result;
|
|
}
|
|
|
|
case ISD::ADD: {
|
|
if(DestType == MVT::f64 && N.getOperand(0).getOpcode() == ISD::MUL &&
|
|
N.getOperand(0).Val->hasOneUse()) { // if we can fold this add
|
|
// into an fma, do so:
|
|
// ++FusedFP; // Statistic
|
|
Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
|
|
Tmp2 = SelectExpr(N.getOperand(0).getOperand(1));
|
|
Tmp3 = SelectExpr(N.getOperand(1));
|
|
BuildMI(BB, IA64::FMA, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3);
|
|
return Result; // early exit
|
|
}
|
|
|
|
if(DestType != MVT::f64 && N.getOperand(0).getOpcode() == ISD::SHL &&
|
|
N.getOperand(0).Val->hasOneUse()) { // if we might be able to fold
|
|
// this add into a shladd, try:
|
|
ConstantSDNode *CSD = NULL;
|
|
if((CSD = dyn_cast<ConstantSDNode>(N.getOperand(0).getOperand(1))) &&
|
|
(CSD->getValue() >= 1) && (CSD->getValue() <= 4) ) { // we can:
|
|
|
|
// ++FusedSHLADD; // Statistic
|
|
Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
|
|
int shl_amt = CSD->getValue();
|
|
Tmp3 = SelectExpr(N.getOperand(1));
|
|
|
|
BuildMI(BB, IA64::SHLADD, 3, Result)
|
|
.addReg(Tmp1).addImm(shl_amt).addReg(Tmp3);
|
|
return Result; // early exit
|
|
}
|
|
}
|
|
|
|
//else, fallthrough:
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
if(DestType != MVT::f64) { // integer addition:
|
|
switch (ponderIntegerAdditionWith(N.getOperand(1), Tmp3)) {
|
|
case 1: // adding a constant that's 14 bits
|
|
BuildMI(BB, IA64::ADDIMM14, 2, Result).addReg(Tmp1).addSImm(Tmp3);
|
|
return Result; // early exit
|
|
} // fallthrough and emit a reg+reg ADD:
|
|
Tmp2 = SelectExpr(N.getOperand(1));
|
|
BuildMI(BB, IA64::ADD, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
} else { // this is a floating point addition
|
|
Tmp2 = SelectExpr(N.getOperand(1));
|
|
BuildMI(BB, IA64::FADD, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
case ISD::MUL: {
|
|
|
|
if(DestType != MVT::f64) { // TODO: speed!
|
|
/* FIXME if(N.getOperand(1).getOpcode() != ISD::Constant) { // if not a const mul
|
|
*/
|
|
// boring old integer multiply with xma
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
Tmp2 = SelectExpr(N.getOperand(1));
|
|
|
|
unsigned TempFR1=MakeReg(MVT::f64);
|
|
unsigned TempFR2=MakeReg(MVT::f64);
|
|
unsigned TempFR3=MakeReg(MVT::f64);
|
|
BuildMI(BB, IA64::SETFSIG, 1, TempFR1).addReg(Tmp1);
|
|
BuildMI(BB, IA64::SETFSIG, 1, TempFR2).addReg(Tmp2);
|
|
BuildMI(BB, IA64::XMAL, 1, TempFR3).addReg(TempFR1).addReg(TempFR2)
|
|
.addReg(IA64::F0);
|
|
BuildMI(BB, IA64::GETFSIG, 1, Result).addReg(TempFR3);
|
|
return Result; // early exit
|
|
/* FIXME } else { // we are multiplying by an integer constant! yay
|
|
return Reg = SelectExpr(BuildConstmulSequence(N)); // avert your eyes!
|
|
} */
|
|
}
|
|
else { // floating point multiply
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
Tmp2 = SelectExpr(N.getOperand(1));
|
|
BuildMI(BB, IA64::FMPY, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
return Result;
|
|
}
|
|
}
|
|
|
|
case ISD::SUB: {
|
|
if(DestType == MVT::f64 && N.getOperand(0).getOpcode() == ISD::MUL &&
|
|
N.getOperand(0).Val->hasOneUse()) { // if we can fold this sub
|
|
// into an fms, do so:
|
|
// ++FusedFP; // Statistic
|
|
Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
|
|
Tmp2 = SelectExpr(N.getOperand(0).getOperand(1));
|
|
Tmp3 = SelectExpr(N.getOperand(1));
|
|
BuildMI(BB, IA64::FMS, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3);
|
|
return Result; // early exit
|
|
}
|
|
Tmp2 = SelectExpr(N.getOperand(1));
|
|
if(DestType != MVT::f64) { // integer subtraction:
|
|
switch (ponderIntegerSubtractionFrom(N.getOperand(0), Tmp3)) {
|
|
case 1: // subtracting *from* an 8 bit constant:
|
|
BuildMI(BB, IA64::SUBIMM8, 2, Result).addSImm(Tmp3).addReg(Tmp2);
|
|
return Result; // early exit
|
|
} // fallthrough and emit a reg+reg SUB:
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
BuildMI(BB, IA64::SUB, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
} else { // this is a floating point subtraction
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
BuildMI(BB, IA64::FSUB, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
case ISD::FABS: {
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
assert(DestType == MVT::f64 && "trying to fabs something other than f64?");
|
|
BuildMI(BB, IA64::FABS, 1, Result).addReg(Tmp1);
|
|
return Result;
|
|
}
|
|
|
|
case ISD::FNEG: {
|
|
assert(DestType == MVT::f64 && "trying to fneg something other than f64?");
|
|
|
|
if (ISD::FABS == N.getOperand(0).getOpcode()) { // && hasOneUse()?
|
|
Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
|
|
BuildMI(BB, IA64::FNEGABS, 1, Result).addReg(Tmp1); // fold in abs
|
|
} else {
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
BuildMI(BB, IA64::FNEG, 1, Result).addReg(Tmp1); // plain old fneg
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
case ISD::AND: {
|
|
switch (N.getValueType()) {
|
|
default: assert(0 && "Cannot AND this type!");
|
|
case MVT::i1: { // if a bool, we emit a pseudocode AND
|
|
unsigned pA = SelectExpr(N.getOperand(0));
|
|
unsigned pB = SelectExpr(N.getOperand(1));
|
|
|
|
/* our pseudocode for AND is:
|
|
*
|
|
(pA) cmp.eq.unc pC,p0 = r0,r0 // pC = pA
|
|
cmp.eq pTemp,p0 = r0,r0 // pTemp = NOT pB
|
|
;;
|
|
(pB) cmp.ne pTemp,p0 = r0,r0
|
|
;;
|
|
(pTemp)cmp.ne pC,p0 = r0,r0 // if (NOT pB) pC = 0
|
|
|
|
*/
|
|
unsigned pTemp = MakeReg(MVT::i1);
|
|
|
|
unsigned bogusTemp1 = MakeReg(MVT::i1);
|
|
unsigned bogusTemp2 = MakeReg(MVT::i1);
|
|
unsigned bogusTemp3 = MakeReg(MVT::i1);
|
|
unsigned bogusTemp4 = MakeReg(MVT::i1);
|
|
|
|
BuildMI(BB, IA64::PCMPEQUNC, 3, bogusTemp1)
|
|
.addReg(IA64::r0).addReg(IA64::r0).addReg(pA);
|
|
BuildMI(BB, IA64::CMPEQ, 2, bogusTemp2)
|
|
.addReg(IA64::r0).addReg(IA64::r0);
|
|
BuildMI(BB, IA64::TPCMPNE, 3, pTemp)
|
|
.addReg(bogusTemp2).addReg(IA64::r0).addReg(IA64::r0).addReg(pB);
|
|
BuildMI(BB, IA64::TPCMPNE, 3, Result)
|
|
.addReg(bogusTemp1).addReg(IA64::r0).addReg(IA64::r0).addReg(pTemp);
|
|
break;
|
|
}
|
|
|
|
// if not a bool, we just AND away:
|
|
case MVT::i8:
|
|
case MVT::i16:
|
|
case MVT::i32:
|
|
case MVT::i64: {
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
switch (ponderIntegerAndWith(N.getOperand(1), Tmp3)) {
|
|
case 1: // ANDing a constant that is 2^n-1 for some n
|
|
switch (Tmp3) {
|
|
case 8: // if AND 0x00000000000000FF, be quaint and use zxt1
|
|
BuildMI(BB, IA64::ZXT1, 1, Result).addReg(Tmp1);
|
|
break;
|
|
case 16: // if AND 0x000000000000FFFF, be quaint and use zxt2
|
|
BuildMI(BB, IA64::ZXT2, 1, Result).addReg(Tmp1);
|
|
break;
|
|
case 32: // if AND 0x00000000FFFFFFFF, be quaint and use zxt4
|
|
BuildMI(BB, IA64::ZXT4, 1, Result).addReg(Tmp1);
|
|
break;
|
|
default: // otherwise, use dep.z to paste zeros
|
|
// FIXME: assert the dep.z is in bounds
|
|
BuildMI(BB, IA64::DEPZ, 3, Result).addReg(Tmp1)
|
|
.addImm(0).addImm(Tmp3);
|
|
break;
|
|
}
|
|
return Result; // early exit
|
|
} // fallthrough and emit a simple AND:
|
|
Tmp2 = SelectExpr(N.getOperand(1));
|
|
BuildMI(BB, IA64::AND, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
}
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
case ISD::OR: {
|
|
switch (N.getValueType()) {
|
|
default: assert(0 && "Cannot OR this type!");
|
|
case MVT::i1: { // if a bool, we emit a pseudocode OR
|
|
unsigned pA = SelectExpr(N.getOperand(0));
|
|
unsigned pB = SelectExpr(N.getOperand(1));
|
|
|
|
unsigned pTemp1 = MakeReg(MVT::i1);
|
|
|
|
/* our pseudocode for OR is:
|
|
*
|
|
|
|
pC = pA OR pB
|
|
-------------
|
|
|
|
(pA) cmp.eq.unc pC,p0 = r0,r0 // pC = pA
|
|
;;
|
|
(pB) cmp.eq pC,p0 = r0,r0 // if (pB) pC = 1
|
|
|
|
*/
|
|
BuildMI(BB, IA64::PCMPEQUNC, 3, pTemp1)
|
|
.addReg(IA64::r0).addReg(IA64::r0).addReg(pA);
|
|
BuildMI(BB, IA64::TPCMPEQ, 3, Result)
|
|
.addReg(pTemp1).addReg(IA64::r0).addReg(IA64::r0).addReg(pB);
|
|
break;
|
|
}
|
|
// if not a bool, we just OR away:
|
|
case MVT::i8:
|
|
case MVT::i16:
|
|
case MVT::i32:
|
|
case MVT::i64: {
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
Tmp2 = SelectExpr(N.getOperand(1));
|
|
BuildMI(BB, IA64::OR, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
break;
|
|
}
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
case ISD::XOR: {
|
|
switch (N.getValueType()) {
|
|
default: assert(0 && "Cannot XOR this type!");
|
|
case MVT::i1: { // if a bool, we emit a pseudocode XOR
|
|
unsigned pY = SelectExpr(N.getOperand(0));
|
|
unsigned pZ = SelectExpr(N.getOperand(1));
|
|
|
|
/* one possible routine for XOR is:
|
|
|
|
// Compute px = py ^ pz
|
|
// using sum of products: px = (py & !pz) | (pz & !py)
|
|
// Uses 5 instructions in 3 cycles.
|
|
// cycle 1
|
|
(pz) cmp.eq.unc px = r0, r0 // px = pz
|
|
(py) cmp.eq.unc pt = r0, r0 // pt = py
|
|
;;
|
|
// cycle 2
|
|
(pt) cmp.ne.and px = r0, r0 // px = px & !pt (px = pz & !pt)
|
|
(pz) cmp.ne.and pt = r0, r0 // pt = pt & !pz
|
|
;;
|
|
} { .mmi
|
|
// cycle 3
|
|
(pt) cmp.eq.or px = r0, r0 // px = px | pt
|
|
|
|
*** Another, which we use here, requires one scratch GR. it is:
|
|
|
|
mov rt = 0 // initialize rt off critical path
|
|
;;
|
|
|
|
// cycle 1
|
|
(pz) cmp.eq.unc px = r0, r0 // px = pz
|
|
(pz) mov rt = 1 // rt = pz
|
|
;;
|
|
// cycle 2
|
|
(py) cmp.ne px = 1, rt // if (py) px = !pz
|
|
|
|
.. these routines kindly provided by Jim Hull
|
|
*/
|
|
unsigned rt = MakeReg(MVT::i64);
|
|
|
|
// these two temporaries will never actually appear,
|
|
// due to the two-address form of some of the instructions below
|
|
unsigned bogoPR = MakeReg(MVT::i1); // becomes Result
|
|
unsigned bogoGR = MakeReg(MVT::i64); // becomes rt
|
|
|
|
BuildMI(BB, IA64::MOV, 1, bogoGR).addReg(IA64::r0);
|
|
BuildMI(BB, IA64::PCMPEQUNC, 3, bogoPR)
|
|
.addReg(IA64::r0).addReg(IA64::r0).addReg(pZ);
|
|
BuildMI(BB, IA64::TPCADDIMM22, 2, rt)
|
|
.addReg(bogoGR).addImm(1).addReg(pZ);
|
|
BuildMI(BB, IA64::TPCMPIMM8NE, 3, Result)
|
|
.addReg(bogoPR).addImm(1).addReg(rt).addReg(pY);
|
|
break;
|
|
}
|
|
// if not a bool, we just XOR away:
|
|
case MVT::i8:
|
|
case MVT::i16:
|
|
case MVT::i32:
|
|
case MVT::i64: {
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
Tmp2 = SelectExpr(N.getOperand(1));
|
|
BuildMI(BB, IA64::XOR, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
break;
|
|
}
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
case ISD::CTPOP: {
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
BuildMI(BB, IA64::POPCNT, 1, Result).addReg(Tmp1);
|
|
return Result;
|
|
}
|
|
|
|
case ISD::SHL: {
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
|
|
Tmp2 = CN->getValue();
|
|
BuildMI(BB, IA64::SHLI, 2, Result).addReg(Tmp1).addImm(Tmp2);
|
|
} else {
|
|
Tmp2 = SelectExpr(N.getOperand(1));
|
|
BuildMI(BB, IA64::SHL, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
case ISD::SRL: {
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
|
|
Tmp2 = CN->getValue();
|
|
BuildMI(BB, IA64::SHRUI, 2, Result).addReg(Tmp1).addImm(Tmp2);
|
|
} else {
|
|
Tmp2 = SelectExpr(N.getOperand(1));
|
|
BuildMI(BB, IA64::SHRU, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
case ISD::SRA: {
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
|
|
Tmp2 = CN->getValue();
|
|
BuildMI(BB, IA64::SHRSI, 2, Result).addReg(Tmp1).addImm(Tmp2);
|
|
} else {
|
|
Tmp2 = SelectExpr(N.getOperand(1));
|
|
BuildMI(BB, IA64::SHRS, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
case ISD::SDIV:
|
|
case ISD::UDIV:
|
|
case ISD::SREM:
|
|
case ISD::UREM: {
|
|
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
Tmp2 = SelectExpr(N.getOperand(1));
|
|
|
|
bool isFP=false;
|
|
|
|
if(DestType == MVT::f64) // XXX: we're not gonna be fed MVT::f32, are we?
|
|
isFP=true;
|
|
|
|
bool isModulus=false; // is it a division or a modulus?
|
|
bool isSigned=false;
|
|
|
|
switch(N.getOpcode()) {
|
|
case ISD::SDIV: isModulus=false; isSigned=true; break;
|
|
case ISD::UDIV: isModulus=false; isSigned=false; break;
|
|
case ISD::SREM: isModulus=true; isSigned=true; break;
|
|
case ISD::UREM: isModulus=true; isSigned=false; break;
|
|
}
|
|
|
|
if(!isModulus && !isFP) { // if this is an integer divide,
|
|
switch (ponderIntegerDivisionBy(N.getOperand(1), isSigned, Tmp3)) {
|
|
case 1: // division by a constant that's a power of 2
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
if(isSigned) { // argument could be negative, so emit some code:
|
|
unsigned divAmt=Tmp3;
|
|
unsigned tempGR1=MakeReg(MVT::i64);
|
|
unsigned tempGR2=MakeReg(MVT::i64);
|
|
unsigned tempGR3=MakeReg(MVT::i64);
|
|
BuildMI(BB, IA64::SHRS, 2, tempGR1)
|
|
.addReg(Tmp1).addImm(divAmt-1);
|
|
BuildMI(BB, IA64::EXTRU, 3, tempGR2)
|
|
.addReg(tempGR1).addImm(64-divAmt).addImm(divAmt);
|
|
BuildMI(BB, IA64::ADD, 2, tempGR3)
|
|
.addReg(Tmp1).addReg(tempGR2);
|
|
BuildMI(BB, IA64::SHRS, 2, Result)
|
|
.addReg(tempGR3).addImm(divAmt);
|
|
}
|
|
else // unsigned div-by-power-of-2 becomes a simple shift right:
|
|
BuildMI(BB, IA64::SHRU, 2, Result).addReg(Tmp1).addImm(Tmp3);
|
|
return Result; // early exit
|
|
}
|
|
}
|
|
|
|
unsigned TmpPR=MakeReg(MVT::i1); // we need two scratch
|
|
unsigned TmpPR2=MakeReg(MVT::i1); // predicate registers,
|
|
unsigned TmpF1=MakeReg(MVT::f64); // and one metric truckload of FP regs.
|
|
unsigned TmpF2=MakeReg(MVT::f64); // lucky we have IA64?
|
|
unsigned TmpF3=MakeReg(MVT::f64); // well, the real FIXME is to have
|
|
unsigned TmpF4=MakeReg(MVT::f64); // isTwoAddress forms of these
|
|
unsigned TmpF5=MakeReg(MVT::f64); // FP instructions so we can end up with
|
|
unsigned TmpF6=MakeReg(MVT::f64); // stuff like setf.sig f10=f10 etc.
|
|
unsigned TmpF7=MakeReg(MVT::f64);
|
|
unsigned TmpF8=MakeReg(MVT::f64);
|
|
unsigned TmpF9=MakeReg(MVT::f64);
|
|
unsigned TmpF10=MakeReg(MVT::f64);
|
|
unsigned TmpF11=MakeReg(MVT::f64);
|
|
unsigned TmpF12=MakeReg(MVT::f64);
|
|
unsigned TmpF13=MakeReg(MVT::f64);
|
|
unsigned TmpF14=MakeReg(MVT::f64);
|
|
unsigned TmpF15=MakeReg(MVT::f64);
|
|
|
|
// OK, emit some code:
|
|
|
|
if(!isFP) {
|
|
// first, load the inputs into FP regs.
|
|
BuildMI(BB, IA64::SETFSIG, 1, TmpF1).addReg(Tmp1);
|
|
BuildMI(BB, IA64::SETFSIG, 1, TmpF2).addReg(Tmp2);
|
|
|
|
// next, convert the inputs to FP
|
|
if(isSigned) {
|
|
BuildMI(BB, IA64::FCVTXF, 1, TmpF3).addReg(TmpF1);
|
|
BuildMI(BB, IA64::FCVTXF, 1, TmpF4).addReg(TmpF2);
|
|
} else {
|
|
BuildMI(BB, IA64::FCVTXUFS1, 1, TmpF3).addReg(TmpF1);
|
|
BuildMI(BB, IA64::FCVTXUFS1, 1, TmpF4).addReg(TmpF2);
|
|
}
|
|
|
|
} else { // this is an FP divide/remainder, so we 'leak' some temp
|
|
// regs and assign TmpF3=Tmp1, TmpF4=Tmp2
|
|
TmpF3=Tmp1;
|
|
TmpF4=Tmp2;
|
|
}
|
|
|
|
// we start by computing an approximate reciprocal (good to 9 bits?)
|
|
// note, this instruction writes _both_ TmpF5 (answer) and TmpPR (predicate)
|
|
BuildMI(BB, IA64::FRCPAS1, 4)
|
|
.addReg(TmpF5, MachineOperand::Def)
|
|
.addReg(TmpPR, MachineOperand::Def)
|
|
.addReg(TmpF3).addReg(TmpF4);
|
|
|
|
if(!isModulus) { // if this is a divide, we worry about div-by-zero
|
|
unsigned bogusPR=MakeReg(MVT::i1); // won't appear, due to twoAddress
|
|
// TPCMPNE below
|
|
BuildMI(BB, IA64::CMPEQ, 2, bogusPR).addReg(IA64::r0).addReg(IA64::r0);
|
|
BuildMI(BB, IA64::TPCMPNE, 3, TmpPR2).addReg(bogusPR)
|
|
.addReg(IA64::r0).addReg(IA64::r0).addReg(TmpPR);
|
|
}
|
|
|
|
// now we apply newton's method, thrice! (FIXME: this is ~72 bits of
|
|
// precision, don't need this much for f32/i32)
|
|
BuildMI(BB, IA64::CFNMAS1, 4, TmpF6)
|
|
.addReg(TmpF4).addReg(TmpF5).addReg(IA64::F1).addReg(TmpPR);
|
|
BuildMI(BB, IA64::CFMAS1, 4, TmpF7)
|
|
.addReg(TmpF3).addReg(TmpF5).addReg(IA64::F0).addReg(TmpPR);
|
|
BuildMI(BB, IA64::CFMAS1, 4, TmpF8)
|
|
.addReg(TmpF6).addReg(TmpF6).addReg(IA64::F0).addReg(TmpPR);
|
|
BuildMI(BB, IA64::CFMAS1, 4, TmpF9)
|
|
.addReg(TmpF6).addReg(TmpF7).addReg(TmpF7).addReg(TmpPR);
|
|
BuildMI(BB, IA64::CFMAS1, 4,TmpF10)
|
|
.addReg(TmpF6).addReg(TmpF5).addReg(TmpF5).addReg(TmpPR);
|
|
BuildMI(BB, IA64::CFMAS1, 4,TmpF11)
|
|
.addReg(TmpF8).addReg(TmpF9).addReg(TmpF9).addReg(TmpPR);
|
|
BuildMI(BB, IA64::CFMAS1, 4,TmpF12)
|
|
.addReg(TmpF8).addReg(TmpF10).addReg(TmpF10).addReg(TmpPR);
|
|
BuildMI(BB, IA64::CFNMAS1, 4,TmpF13)
|
|
.addReg(TmpF4).addReg(TmpF11).addReg(TmpF3).addReg(TmpPR);
|
|
|
|
// FIXME: this is unfortunate :(
|
|
// the story is that the dest reg of the fnma above and the fma below
|
|
// (and therefore possibly the src of the fcvt.fx[u] as well) cannot
|
|
// be the same register, or this code breaks if the first argument is
|
|
// zero. (e.g. without this hack, 0%8 yields -64, not 0.)
|
|
BuildMI(BB, IA64::CFMAS1, 4,TmpF14)
|
|
.addReg(TmpF13).addReg(TmpF12).addReg(TmpF11).addReg(TmpPR);
|
|
|
|
if(isModulus) { // XXX: fragile! fixes _only_ mod, *breaks* div! !
|
|
BuildMI(BB, IA64::IUSE, 1).addReg(TmpF13); // hack :(
|
|
}
|
|
|
|
if(!isFP) {
|
|
// round to an integer
|
|
if(isSigned)
|
|
BuildMI(BB, IA64::FCVTFXTRUNCS1, 1, TmpF15).addReg(TmpF14);
|
|
else
|
|
BuildMI(BB, IA64::FCVTFXUTRUNCS1, 1, TmpF15).addReg(TmpF14);
|
|
} else {
|
|
BuildMI(BB, IA64::FMOV, 1, TmpF15).addReg(TmpF14);
|
|
// EXERCISE: can you see why TmpF15=TmpF14 does not work here, and
|
|
// we really do need the above FMOV? ;)
|
|
}
|
|
|
|
if(!isModulus) {
|
|
if(isFP) { // extra worrying about div-by-zero
|
|
unsigned bogoResult=MakeReg(MVT::f64);
|
|
|
|
// we do a 'conditional fmov' (of the correct result, depending
|
|
// on how the frcpa predicate turned out)
|
|
BuildMI(BB, IA64::PFMOV, 2, bogoResult)
|
|
.addReg(TmpF12).addReg(TmpPR2);
|
|
BuildMI(BB, IA64::CFMOV, 2, Result)
|
|
.addReg(bogoResult).addReg(TmpF15).addReg(TmpPR);
|
|
}
|
|
else {
|
|
BuildMI(BB, IA64::GETFSIG, 1, Result).addReg(TmpF15);
|
|
}
|
|
} else { // this is a modulus
|
|
if(!isFP) {
|
|
// answer = q * (-b) + a
|
|
unsigned ModulusResult = MakeReg(MVT::f64);
|
|
unsigned TmpF = MakeReg(MVT::f64);
|
|
unsigned TmpI = MakeReg(MVT::i64);
|
|
|
|
BuildMI(BB, IA64::SUB, 2, TmpI).addReg(IA64::r0).addReg(Tmp2);
|
|
BuildMI(BB, IA64::SETFSIG, 1, TmpF).addReg(TmpI);
|
|
BuildMI(BB, IA64::XMAL, 3, ModulusResult)
|
|
.addReg(TmpF15).addReg(TmpF).addReg(TmpF1);
|
|
BuildMI(BB, IA64::GETFSIG, 1, Result).addReg(ModulusResult);
|
|
} else { // FP modulus! The horror... the horror....
|
|
assert(0 && "sorry, no FP modulus just yet!\n!\n");
|
|
}
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
case ISD::SIGN_EXTEND_INREG: {
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
switch(cast<VTSDNode>(Node->getOperand(1))->getVT()) {
|
|
default:
|
|
Node->dump();
|
|
assert(0 && "don't know how to sign extend this type");
|
|
break;
|
|
case MVT::i8: Opc = IA64::SXT1; break;
|
|
case MVT::i16: Opc = IA64::SXT2; break;
|
|
case MVT::i32: Opc = IA64::SXT4; break;
|
|
}
|
|
BuildMI(BB, Opc, 1, Result).addReg(Tmp1);
|
|
return Result;
|
|
}
|
|
|
|
case ISD::SETCC: {
|
|
Tmp1 = SelectExpr(N.getOperand(0));
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(Node->getOperand(2))->get();
|
|
if (MVT::isInteger(N.getOperand(0).getValueType())) {
|
|
|
|
if(ConstantSDNode *CSDN =
|
|
dyn_cast<ConstantSDNode>(N.getOperand(1))) {
|
|
// if we are comparing against a constant zero
|
|
if(CSDN->getValue()==0)
|
|
Tmp2 = IA64::r0; // then we can just compare against r0
|
|
else
|
|
Tmp2 = SelectExpr(N.getOperand(1));
|
|
} else // not comparing against a constant
|
|
Tmp2 = SelectExpr(N.getOperand(1));
|
|
|
|
switch (CC) {
|
|
default: assert(0 && "Unknown integer comparison!");
|
|
case ISD::SETEQ:
|
|
BuildMI(BB, IA64::CMPEQ, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
break;
|
|
case ISD::SETGT:
|
|
BuildMI(BB, IA64::CMPGT, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
break;
|
|
case ISD::SETGE:
|
|
BuildMI(BB, IA64::CMPGE, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
break;
|
|
case ISD::SETLT:
|
|
BuildMI(BB, IA64::CMPLT, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
break;
|
|
case ISD::SETLE:
|
|
BuildMI(BB, IA64::CMPLE, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
break;
|
|
case ISD::SETNE:
|
|
BuildMI(BB, IA64::CMPNE, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
break;
|
|
case ISD::SETULT:
|
|
BuildMI(BB, IA64::CMPLTU, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
break;
|
|
case ISD::SETUGT:
|
|
BuildMI(BB, IA64::CMPGTU, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
break;
|
|
case ISD::SETULE:
|
|
BuildMI(BB, IA64::CMPLEU, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
break;
|
|
case ISD::SETUGE:
|
|
BuildMI(BB, IA64::CMPGEU, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
break;
|
|
}
|
|
} else { // if not integer, should be FP.
|
|
assert(N.getOperand(0).getValueType() != MVT::f32 &&
|
|
"error: SETCC should have had incoming f32 promoted to f64!\n");
|
|
|
|
if(ConstantFPSDNode *CFPSDN =
|
|
dyn_cast<ConstantFPSDNode>(N.getOperand(1))) {
|
|
|
|
// if we are comparing against a constant +0.0 or +1.0
|
|
if(CFPSDN->isExactlyValue(+0.0))
|
|
Tmp2 = IA64::F0; // then we can just compare against f0
|
|
else if(CFPSDN->isExactlyValue(+1.0))
|
|
Tmp2 = IA64::F1; // or f1
|
|
else
|
|
Tmp2 = SelectExpr(N.getOperand(1));
|
|
} else // not comparing against a constant
|
|
Tmp2 = SelectExpr(N.getOperand(1));
|
|
|
|
switch (CC) {
|
|
default: assert(0 && "Unknown FP comparison!");
|
|
case ISD::SETEQ:
|
|
BuildMI(BB, IA64::FCMPEQ, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
break;
|
|
case ISD::SETGT:
|
|
BuildMI(BB, IA64::FCMPGT, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
break;
|
|
case ISD::SETGE:
|
|
BuildMI(BB, IA64::FCMPGE, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
break;
|
|
case ISD::SETLT:
|
|
BuildMI(BB, IA64::FCMPLT, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
break;
|
|
case ISD::SETLE:
|
|
BuildMI(BB, IA64::FCMPLE, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
break;
|
|
case ISD::SETNE:
|
|
BuildMI(BB, IA64::FCMPNE, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
break;
|
|
case ISD::SETULT:
|
|
BuildMI(BB, IA64::FCMPLTU, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
break;
|
|
case ISD::SETUGT:
|
|
BuildMI(BB, IA64::FCMPGTU, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
break;
|
|
case ISD::SETULE:
|
|
BuildMI(BB, IA64::FCMPLEU, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
break;
|
|
case ISD::SETUGE:
|
|
BuildMI(BB, IA64::FCMPGEU, 2, Result).addReg(Tmp1).addReg(Tmp2);
|
|
break;
|
|
}
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
case ISD::EXTLOAD:
|
|
case ISD::ZEXTLOAD:
|
|
case ISD::LOAD: {
|
|
// Make sure we generate both values.
|
|
if (Result != 1)
|
|
ExprMap[N.getValue(1)] = 1; // Generate the token
|
|
else
|
|
Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType());
|
|
|
|
bool isBool=false;
|
|
|
|
if(opcode == ISD::LOAD) { // this is a LOAD
|
|
switch (Node->getValueType(0)) {
|
|
default: assert(0 && "Cannot load this type!");
|
|
case MVT::i1: Opc = IA64::LD1; isBool=true; break;
|
|
// FIXME: for now, we treat bool loads the same as i8 loads */
|
|
case MVT::i8: Opc = IA64::LD1; break;
|
|
case MVT::i16: Opc = IA64::LD2; break;
|
|
case MVT::i32: Opc = IA64::LD4; break;
|
|
case MVT::i64: Opc = IA64::LD8; break;
|
|
|
|
case MVT::f32: Opc = IA64::LDF4; break;
|
|
case MVT::f64: Opc = IA64::LDF8; break;
|
|
}
|
|
} else { // this is an EXTLOAD or ZEXTLOAD
|
|
MVT::ValueType TypeBeingLoaded =
|
|
cast<VTSDNode>(Node->getOperand(3))->getVT();
|
|
switch (TypeBeingLoaded) {
|
|
default: assert(0 && "Cannot extload/zextload this type!");
|
|
// FIXME: bools?
|
|
case MVT::i8: Opc = IA64::LD1; break;
|
|
case MVT::i16: Opc = IA64::LD2; break;
|
|
case MVT::i32: Opc = IA64::LD4; break;
|
|
case MVT::f32: Opc = IA64::LDF4; break;
|
|
}
|
|
}
|
|
|
|
SDOperand Chain = N.getOperand(0);
|
|
SDOperand Address = N.getOperand(1);
|
|
|
|
if(Address.getOpcode() == ISD::GlobalAddress) {
|
|
Select(Chain);
|
|
unsigned dummy = MakeReg(MVT::i64);
|
|
unsigned dummy2 = MakeReg(MVT::i64);
|
|
BuildMI(BB, IA64::ADD, 2, dummy)
|
|
.addGlobalAddress(cast<GlobalAddressSDNode>(Address)->getGlobal())
|
|
.addReg(IA64::r1);
|
|
BuildMI(BB, IA64::LD8, 1, dummy2).addReg(dummy);
|
|
if(!isBool)
|
|
BuildMI(BB, Opc, 1, Result).addReg(dummy2);
|
|
else { // emit a little pseudocode to load a bool (stored in one byte)
|
|
// into a predicate register
|
|
assert(Opc==IA64::LD1 && "problem loading a bool");
|
|
unsigned dummy3 = MakeReg(MVT::i64);
|
|
BuildMI(BB, Opc, 1, dummy3).addReg(dummy2);
|
|
// we compare to 0. true? 0. false? 1.
|
|
BuildMI(BB, IA64::CMPNE, 2, Result).addReg(dummy3).addReg(IA64::r0);
|
|
}
|
|
} else if(ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Address)) {
|
|
Select(Chain);
|
|
IA64Lowering.restoreGP(BB);
|
|
unsigned dummy = MakeReg(MVT::i64);
|
|
BuildMI(BB, IA64::ADD, 2, dummy).addConstantPoolIndex(CP->getIndex())
|
|
.addReg(IA64::r1); // CPI+GP
|
|
if(!isBool)
|
|
BuildMI(BB, Opc, 1, Result).addReg(dummy);
|
|
else { // emit a little pseudocode to load a bool (stored in one byte)
|
|
// into a predicate register
|
|
assert(Opc==IA64::LD1 && "problem loading a bool");
|
|
unsigned dummy3 = MakeReg(MVT::i64);
|
|
BuildMI(BB, Opc, 1, dummy3).addReg(dummy);
|
|
// we compare to 0. true? 0. false? 1.
|
|
BuildMI(BB, IA64::CMPNE, 2, Result).addReg(dummy3).addReg(IA64::r0);
|
|
}
|
|
} else if(Address.getOpcode() == ISD::FrameIndex) {
|
|
Select(Chain); // FIXME ? what about bools?
|
|
unsigned dummy = MakeReg(MVT::i64);
|
|
BuildMI(BB, IA64::MOV, 1, dummy)
|
|
.addFrameIndex(cast<FrameIndexSDNode>(Address)->getIndex());
|
|
if(!isBool)
|
|
BuildMI(BB, Opc, 1, Result).addReg(dummy);
|
|
else { // emit a little pseudocode to load a bool (stored in one byte)
|
|
// into a predicate register
|
|
assert(Opc==IA64::LD1 && "problem loading a bool");
|
|
unsigned dummy3 = MakeReg(MVT::i64);
|
|
BuildMI(BB, Opc, 1, dummy3).addReg(dummy);
|
|
// we compare to 0. true? 0. false? 1.
|
|
BuildMI(BB, IA64::CMPNE, 2, Result).addReg(dummy3).addReg(IA64::r0);
|
|
}
|
|
} else { // none of the above...
|
|
Select(Chain);
|
|
Tmp2 = SelectExpr(Address);
|
|
if(!isBool)
|
|
BuildMI(BB, Opc, 1, Result).addReg(Tmp2);
|
|
else { // emit a little pseudocode to load a bool (stored in one byte)
|
|
// into a predicate register
|
|
assert(Opc==IA64::LD1 && "problem loading a bool");
|
|
unsigned dummy = MakeReg(MVT::i64);
|
|
BuildMI(BB, Opc, 1, dummy).addReg(Tmp2);
|
|
// we compare to 0. true? 0. false? 1.
|
|
BuildMI(BB, IA64::CMPNE, 2, Result).addReg(dummy).addReg(IA64::r0);
|
|
}
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
case ISD::CopyFromReg: {
|
|
if (Result == 1)
|
|
Result = ExprMap[N.getValue(0)] =
|
|
MakeReg(N.getValue(0).getValueType());
|
|
|
|
SDOperand Chain = N.getOperand(0);
|
|
|
|
Select(Chain);
|
|
unsigned r = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
|
|
|
|
if(N.getValueType() == MVT::i1) // if a bool, we use pseudocode
|
|
BuildMI(BB, IA64::PCMPEQUNC, 3, Result)
|
|
.addReg(IA64::r0).addReg(IA64::r0).addReg(r);
|
|
// (r) Result =cmp.eq.unc(r0,r0)
|
|
else
|
|
BuildMI(BB, IA64::MOV, 1, Result).addReg(r); // otherwise MOV
|
|
return Result;
|
|
}
|
|
|
|
case ISD::TAILCALL:
|
|
case ISD::CALL: {
|
|
Select(N.getOperand(0));
|
|
|
|
// The chain for this call is now lowered.
|
|
ExprMap.insert(std::make_pair(N.getValue(Node->getNumValues()-1), 1));
|
|
|
|
//grab the arguments
|
|
std::vector<unsigned> argvregs;
|
|
|
|
for(int i = 2, e = Node->getNumOperands(); i < e; ++i)
|
|
argvregs.push_back(SelectExpr(N.getOperand(i)));
|
|
|
|
// see section 8.5.8 of "Itanium Software Conventions and
|
|
// Runtime Architecture Guide to see some examples of what's going
|
|
// on here. (in short: int args get mapped 1:1 'slot-wise' to out0->out7,
|
|
// while FP args get mapped to F8->F15 as needed)
|
|
|
|
unsigned used_FPArgs=0; // how many FP Args have been used so far?
|
|
|
|
// in reg args
|
|
for(int i = 0, e = std::min(8, (int)argvregs.size()); i < e; ++i)
|
|
{
|
|
unsigned intArgs[] = {IA64::out0, IA64::out1, IA64::out2, IA64::out3,
|
|
IA64::out4, IA64::out5, IA64::out6, IA64::out7 };
|
|
unsigned FPArgs[] = {IA64::F8, IA64::F9, IA64::F10, IA64::F11,
|
|
IA64::F12, IA64::F13, IA64::F14, IA64::F15 };
|
|
|
|
switch(N.getOperand(i+2).getValueType())
|
|
{
|
|
default: // XXX do we need to support MVT::i1 here?
|
|
Node->dump();
|
|
N.getOperand(i).Val->dump();
|
|
std::cerr << "Type for " << i << " is: " <<
|
|
N.getOperand(i+2).getValueType() << std::endl;
|
|
assert(0 && "Unknown value type for call");
|
|
case MVT::i64:
|
|
BuildMI(BB, IA64::MOV, 1, intArgs[i]).addReg(argvregs[i]);
|
|
break;
|
|
case MVT::f64:
|
|
BuildMI(BB, IA64::FMOV, 1, FPArgs[used_FPArgs++])
|
|
.addReg(argvregs[i]);
|
|
// FIXME: we don't need to do this _all_ the time:
|
|
BuildMI(BB, IA64::GETFD, 1, intArgs[i]).addReg(argvregs[i]);
|
|
break;
|
|
}
|
|
}
|
|
|
|
//in mem args
|
|
for (int i = 8, e = argvregs.size(); i < e; ++i)
|
|
{
|
|
unsigned tempAddr = MakeReg(MVT::i64);
|
|
|
|
switch(N.getOperand(i+2).getValueType()) {
|
|
default:
|
|
Node->dump();
|
|
N.getOperand(i).Val->dump();
|
|
std::cerr << "Type for " << i << " is: " <<
|
|
N.getOperand(i+2).getValueType() << "\n";
|
|
assert(0 && "Unknown value type for call");
|
|
case MVT::i1: // FIXME?
|
|
case MVT::i8:
|
|
case MVT::i16:
|
|
case MVT::i32:
|
|
case MVT::i64:
|
|
BuildMI(BB, IA64::ADDIMM22, 2, tempAddr)
|
|
.addReg(IA64::r12).addImm(16 + (i - 8) * 8); // r12 is SP
|
|
BuildMI(BB, IA64::ST8, 2).addReg(tempAddr).addReg(argvregs[i]);
|
|
break;
|
|
case MVT::f32:
|
|
case MVT::f64:
|
|
BuildMI(BB, IA64::ADDIMM22, 2, tempAddr)
|
|
.addReg(IA64::r12).addImm(16 + (i - 8) * 8); // r12 is SP
|
|
BuildMI(BB, IA64::STF8, 2).addReg(tempAddr).addReg(argvregs[i]);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// build the right kind of call. if we can branch directly, do so:
|
|
if (GlobalAddressSDNode *GASD =
|
|
dyn_cast<GlobalAddressSDNode>(N.getOperand(1)))
|
|
{
|
|
BuildMI(BB, IA64::BRCALL, 1).addGlobalAddress(GASD->getGlobal(),true);
|
|
IA64Lowering.restoreGP_SP_RP(BB);
|
|
} else
|
|
if (ExternalSymbolSDNode *ESSDN =
|
|
dyn_cast<ExternalSymbolSDNode>(N.getOperand(1)))
|
|
{ // FIXME : currently need this case for correctness, to avoid
|
|
// "non-pic code with imm relocation against dynamic symbol" errors
|
|
BuildMI(BB, IA64::BRCALL, 1)
|
|
.addExternalSymbol(ESSDN->getSymbol(), true);
|
|
IA64Lowering.restoreGP_SP_RP(BB);
|
|
}
|
|
else { // otherwise we need to get the function descriptor
|
|
// load the branch target (function)'s entry point and
|
|
// GP, then branch
|
|
Tmp1 = SelectExpr(N.getOperand(1));
|
|
|
|
unsigned targetEntryPoint=MakeReg(MVT::i64);
|
|
unsigned targetGPAddr=MakeReg(MVT::i64);
|
|
unsigned currentGP=MakeReg(MVT::i64);
|
|
|
|
// b6 is a scratch branch register, we load the target entry point
|
|
// from the base of the function descriptor
|
|
BuildMI(BB, IA64::LD8, 1, targetEntryPoint).addReg(Tmp1);
|
|
BuildMI(BB, IA64::MOV, 1, IA64::B6).addReg(targetEntryPoint);
|
|
|
|
// save the current GP:
|
|
BuildMI(BB, IA64::MOV, 1, currentGP).addReg(IA64::r1);
|
|
|
|
/* TODO: we need to make sure doing this never, ever loads a
|
|
* bogus value into r1 (GP). */
|
|
// load the target GP (which is at mem[functiondescriptor+8])
|
|
BuildMI(BB, IA64::ADDIMM22, 2, targetGPAddr)
|
|
.addReg(Tmp1).addImm(8); // FIXME: addimm22? why not postincrement ld
|
|
BuildMI(BB, IA64::LD8, 1, IA64::r1).addReg(targetGPAddr);
|
|
|
|
// and then jump: (well, call)
|
|
BuildMI(BB, IA64::BRCALL, 1).addReg(IA64::B6);
|
|
// and finally restore the old GP
|
|
BuildMI(BB, IA64::MOV, 1, IA64::r1).addReg(currentGP);
|
|
IA64Lowering.restoreSP_RP(BB);
|
|
}
|
|
|
|
switch (Node->getValueType(0)) {
|
|
default: assert(0 && "Unknown value type for call result!");
|
|
case MVT::Other: return 1;
|
|
case MVT::i1:
|
|
BuildMI(BB, IA64::CMPNE, 2, Result)
|
|
.addReg(IA64::r8).addReg(IA64::r0);
|
|
break;
|
|
case MVT::i8:
|
|
case MVT::i16:
|
|
case MVT::i32:
|
|
case MVT::i64:
|
|
BuildMI(BB, IA64::MOV, 1, Result).addReg(IA64::r8);
|
|
break;
|
|
case MVT::f64:
|
|
BuildMI(BB, IA64::FMOV, 1, Result).addReg(IA64::F8);
|
|
break;
|
|
}
|
|
return Result+N.ResNo;
|
|
}
|
|
|
|
} // <- uhhh XXX
|
|
return 0;
|
|
}
|
|
|
|
void ISel::Select(SDOperand N) {
|
|
unsigned Tmp1, Tmp2, Opc;
|
|
unsigned opcode = N.getOpcode();
|
|
|
|
if (!LoweredTokens.insert(N).second)
|
|
return; // Already selected.
|
|
|
|
SDNode *Node = N.Val;
|
|
|
|
switch (Node->getOpcode()) {
|
|
default:
|
|
Node->dump(); std::cerr << "\n";
|
|
assert(0 && "Node not handled yet!");
|
|
|
|
case ISD::EntryToken: return; // Noop
|
|
|
|
case ISD::TokenFactor: {
|
|
for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
|
|
Select(Node->getOperand(i));
|
|
return;
|
|
}
|
|
|
|
case ISD::CopyToReg: {
|
|
Select(N.getOperand(0));
|
|
Tmp1 = SelectExpr(N.getOperand(2));
|
|
Tmp2 = cast<RegisterSDNode>(N.getOperand(1))->getReg();
|
|
|
|
if (Tmp1 != Tmp2) {
|
|
// if a bool, we use pseudocode
|
|
if (N.getOperand(2).getValueType() == MVT::i1)
|
|
BuildMI(BB, IA64::PCMPEQUNC, 3, Tmp2)
|
|
.addReg(IA64::r0).addReg(IA64::r0).addReg(Tmp1);
|
|
// (Tmp1) Tmp2 = cmp.eq.unc(r0,r0)
|
|
else
|
|
BuildMI(BB, IA64::MOV, 1, Tmp2).addReg(Tmp1);
|
|
// XXX is this the right way 'round? ;)
|
|
// FIXME: WHAT ABOUT FLOATING POINT?
|
|
}
|
|
return;
|
|
}
|
|
|
|
case ISD::RET: {
|
|
|
|
/* what the heck is going on here:
|
|
|
|
<_sabre_> ret with two operands is obvious: chain and value
|
|
<camel_> yep
|
|
<_sabre_> ret with 3 values happens when 'expansion' occurs
|
|
<_sabre_> e.g. i64 gets split into 2x i32
|
|
<camel_> oh right
|
|
<_sabre_> you don't have this case on ia64
|
|
<camel_> yep
|
|
<_sabre_> so the two returned values go into EAX/EDX on ia32
|
|
<camel_> ahhh *memories*
|
|
<_sabre_> :)
|
|
<camel_> ok, thanks :)
|
|
<_sabre_> so yeah, everything that has a side effect takes a 'token chain'
|
|
<_sabre_> this is the first operand always
|
|
<_sabre_> these operand often define chains, they are the last operand
|
|
<_sabre_> they are printed as 'ch' if you do DAG.dump()
|
|
*/
|
|
|
|
switch (N.getNumOperands()) {
|
|
default:
|
|
assert(0 && "Unknown return instruction!");
|
|
case 2:
|
|
Select(N.getOperand(0));
|
|
Tmp1 = SelectExpr(N.getOperand(1));
|
|
switch (N.getOperand(1).getValueType()) {
|
|
default: assert(0 && "All other types should have been promoted!!");
|
|
// FIXME: do I need to add support for bools here?
|
|
// (return '0' or '1' r8, basically...)
|
|
//
|
|
// FIXME: need to round floats - 80 bits is bad, the tester
|
|
// told me so
|
|
case MVT::i64:
|
|
// we mark r8 as live on exit up above in LowerArguments()
|
|
BuildMI(BB, IA64::MOV, 1, IA64::r8).addReg(Tmp1);
|
|
break;
|
|
case MVT::f64:
|
|
// we mark F8 as live on exit up above in LowerArguments()
|
|
BuildMI(BB, IA64::FMOV, 1, IA64::F8).addReg(Tmp1);
|
|
}
|
|
break;
|
|
case 1:
|
|
Select(N.getOperand(0));
|
|
break;
|
|
}
|
|
// before returning, restore the ar.pfs register (set by the 'alloc' up top)
|
|
BuildMI(BB, IA64::MOV, 1).addReg(IA64::AR_PFS).addReg(IA64Lowering.VirtGPR);
|
|
BuildMI(BB, IA64::RET, 0); // and then just emit a 'ret' instruction
|
|
return;
|
|
}
|
|
|
|
case ISD::BR: {
|
|
Select(N.getOperand(0));
|
|
MachineBasicBlock *Dest =
|
|
cast<BasicBlockSDNode>(N.getOperand(1))->getBasicBlock();
|
|
BuildMI(BB, IA64::BRLCOND_NOTCALL, 1).addReg(IA64::p0).addMBB(Dest);
|
|
// XXX HACK! we do _not_ need long branches all the time
|
|
return;
|
|
}
|
|
|
|
case ISD::ImplicitDef: {
|
|
Select(N.getOperand(0));
|
|
BuildMI(BB, IA64::IDEF, 0,
|
|
cast<RegisterSDNode>(N.getOperand(1))->getReg());
|
|
return;
|
|
}
|
|
|
|
case ISD::BRCOND: {
|
|
MachineBasicBlock *Dest =
|
|
cast<BasicBlockSDNode>(N.getOperand(2))->getBasicBlock();
|
|
|
|
Select(N.getOperand(0));
|
|
Tmp1 = SelectExpr(N.getOperand(1));
|
|
BuildMI(BB, IA64::BRLCOND_NOTCALL, 1).addReg(Tmp1).addMBB(Dest);
|
|
// XXX HACK! we do _not_ need long branches all the time
|
|
return;
|
|
}
|
|
|
|
case ISD::EXTLOAD:
|
|
case ISD::ZEXTLOAD:
|
|
case ISD::SEXTLOAD:
|
|
case ISD::LOAD:
|
|
case ISD::TAILCALL:
|
|
case ISD::CALL:
|
|
case ISD::CopyFromReg:
|
|
case ISD::DYNAMIC_STACKALLOC:
|
|
SelectExpr(N);
|
|
return;
|
|
|
|
case ISD::TRUNCSTORE:
|
|
case ISD::STORE: {
|
|
Select(N.getOperand(0));
|
|
Tmp1 = SelectExpr(N.getOperand(1)); // value
|
|
|
|
bool isBool=false;
|
|
|
|
if(opcode == ISD::STORE) {
|
|
switch (N.getOperand(1).getValueType()) {
|
|
default: assert(0 && "Cannot store this type!");
|
|
case MVT::i1: Opc = IA64::ST1; isBool=true; break;
|
|
// FIXME?: for now, we treat bool loads the same as i8 stores */
|
|
case MVT::i8: Opc = IA64::ST1; break;
|
|
case MVT::i16: Opc = IA64::ST2; break;
|
|
case MVT::i32: Opc = IA64::ST4; break;
|
|
case MVT::i64: Opc = IA64::ST8; break;
|
|
|
|
case MVT::f32: Opc = IA64::STF4; break;
|
|
case MVT::f64: Opc = IA64::STF8; break;
|
|
}
|
|
} else { // truncstore
|
|
switch(cast<VTSDNode>(Node->getOperand(4))->getVT()) {
|
|
default: assert(0 && "unknown type in truncstore");
|
|
case MVT::i1: Opc = IA64::ST1; isBool=true; break;
|
|
//FIXME: DAG does not promote this load?
|
|
case MVT::i8: Opc = IA64::ST1; break;
|
|
case MVT::i16: Opc = IA64::ST2; break;
|
|
case MVT::i32: Opc = IA64::ST4; break;
|
|
case MVT::f32: Opc = IA64::STF4; break;
|
|
}
|
|
}
|
|
|
|
if(N.getOperand(2).getOpcode() == ISD::GlobalAddress) {
|
|
unsigned dummy = MakeReg(MVT::i64);
|
|
unsigned dummy2 = MakeReg(MVT::i64);
|
|
BuildMI(BB, IA64::ADD, 2, dummy)
|
|
.addGlobalAddress(cast<GlobalAddressSDNode>
|
|
(N.getOperand(2))->getGlobal()).addReg(IA64::r1);
|
|
BuildMI(BB, IA64::LD8, 1, dummy2).addReg(dummy);
|
|
|
|
if(!isBool)
|
|
BuildMI(BB, Opc, 2).addReg(dummy2).addReg(Tmp1);
|
|
else { // we are storing a bool, so emit a little pseudocode
|
|
// to store a predicate register as one byte
|
|
assert(Opc==IA64::ST1);
|
|
unsigned dummy3 = MakeReg(MVT::i64);
|
|
unsigned dummy4 = MakeReg(MVT::i64);
|
|
BuildMI(BB, IA64::MOV, 1, dummy3).addReg(IA64::r0);
|
|
BuildMI(BB, IA64::TPCADDIMM22, 2, dummy4)
|
|
.addReg(dummy3).addImm(1).addReg(Tmp1); // if(Tmp1) dummy=0+1;
|
|
BuildMI(BB, Opc, 2).addReg(dummy2).addReg(dummy4);
|
|
}
|
|
} else if(N.getOperand(2).getOpcode() == ISD::FrameIndex) {
|
|
|
|
// FIXME? (what about bools?)
|
|
|
|
unsigned dummy = MakeReg(MVT::i64);
|
|
BuildMI(BB, IA64::MOV, 1, dummy)
|
|
.addFrameIndex(cast<FrameIndexSDNode>(N.getOperand(2))->getIndex());
|
|
BuildMI(BB, Opc, 2).addReg(dummy).addReg(Tmp1);
|
|
} else { // otherwise
|
|
Tmp2 = SelectExpr(N.getOperand(2)); //address
|
|
if(!isBool)
|
|
BuildMI(BB, Opc, 2).addReg(Tmp2).addReg(Tmp1);
|
|
else { // we are storing a bool, so emit a little pseudocode
|
|
// to store a predicate register as one byte
|
|
assert(Opc==IA64::ST1);
|
|
unsigned dummy3 = MakeReg(MVT::i64);
|
|
unsigned dummy4 = MakeReg(MVT::i64);
|
|
BuildMI(BB, IA64::MOV, 1, dummy3).addReg(IA64::r0);
|
|
BuildMI(BB, IA64::TPCADDIMM22, 2, dummy4)
|
|
.addReg(dummy3).addImm(1).addReg(Tmp1); // if(Tmp1) dummy=0+1;
|
|
BuildMI(BB, Opc, 2).addReg(Tmp2).addReg(dummy4);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
case ISD::CALLSEQ_START:
|
|
case ISD::CALLSEQ_END: {
|
|
Select(N.getOperand(0));
|
|
Tmp1 = cast<ConstantSDNode>(N.getOperand(1))->getValue();
|
|
|
|
Opc = N.getOpcode() == ISD::CALLSEQ_START ? IA64::ADJUSTCALLSTACKDOWN :
|
|
IA64::ADJUSTCALLSTACKUP;
|
|
BuildMI(BB, Opc, 1).addImm(Tmp1);
|
|
return;
|
|
}
|
|
|
|
return;
|
|
}
|
|
assert(0 && "GAME OVER. INSERT COIN?");
|
|
}
|
|
|
|
|
|
/// createIA64PatternInstructionSelector - This pass converts an LLVM function
|
|
/// into a machine code representation using pattern matching and a machine
|
|
/// description file.
|
|
///
|
|
FunctionPass *llvm::createIA64PatternInstructionSelector(TargetMachine &TM) {
|
|
return new ISel(TM);
|
|
}
|
|
|
|
|