llvm-6502/lib/Transforms/InstCombine/InstCombineCasts.cpp
2011-03-08 22:12:11 +00:00

1703 lines
70 KiB
C++

//===- InstCombineCasts.cpp -----------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the visit functions for cast operations.
//
//===----------------------------------------------------------------------===//
#include "InstCombine.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Support/PatternMatch.h"
using namespace llvm;
using namespace PatternMatch;
/// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
/// expression. If so, decompose it, returning some value X, such that Val is
/// X*Scale+Offset.
///
static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
uint64_t &Offset) {
if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
Offset = CI->getZExtValue();
Scale = 0;
return ConstantInt::get(Val->getType(), 0);
}
if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
if (I->getOpcode() == Instruction::Shl) {
// This is a value scaled by '1 << the shift amt'.
Scale = UINT64_C(1) << RHS->getZExtValue();
Offset = 0;
return I->getOperand(0);
}
if (I->getOpcode() == Instruction::Mul) {
// This value is scaled by 'RHS'.
Scale = RHS->getZExtValue();
Offset = 0;
return I->getOperand(0);
}
if (I->getOpcode() == Instruction::Add) {
// We have X+C. Check to see if we really have (X*C2)+C1,
// where C1 is divisible by C2.
unsigned SubScale;
Value *SubVal =
DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
Offset += RHS->getZExtValue();
Scale = SubScale;
return SubVal;
}
}
}
// Otherwise, we can't look past this.
Scale = 1;
Offset = 0;
return Val;
}
/// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
/// try to eliminate the cast by moving the type information into the alloc.
Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
AllocaInst &AI) {
// This requires TargetData to get the alloca alignment and size information.
if (!TD) return 0;
const PointerType *PTy = cast<PointerType>(CI.getType());
BuilderTy AllocaBuilder(*Builder);
AllocaBuilder.SetInsertPoint(AI.getParent(), &AI);
// Get the type really allocated and the type casted to.
const Type *AllocElTy = AI.getAllocatedType();
const Type *CastElTy = PTy->getElementType();
if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0;
unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy);
unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy);
if (CastElTyAlign < AllocElTyAlign) return 0;
// If the allocation has multiple uses, only promote it if we are strictly
// increasing the alignment of the resultant allocation. If we keep it the
// same, we open the door to infinite loops of various kinds.
if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return 0;
uint64_t AllocElTySize = TD->getTypeAllocSize(AllocElTy);
uint64_t CastElTySize = TD->getTypeAllocSize(CastElTy);
if (CastElTySize == 0 || AllocElTySize == 0) return 0;
// See if we can satisfy the modulus by pulling a scale out of the array
// size argument.
unsigned ArraySizeScale;
uint64_t ArrayOffset;
Value *NumElements = // See if the array size is a decomposable linear expr.
DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
// If we can now satisfy the modulus, by using a non-1 scale, we really can
// do the xform.
if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
(AllocElTySize*ArrayOffset ) % CastElTySize != 0) return 0;
unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
Value *Amt = 0;
if (Scale == 1) {
Amt = NumElements;
} else {
Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
// Insert before the alloca, not before the cast.
Amt = AllocaBuilder.CreateMul(Amt, NumElements, "tmp");
}
if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
Offset, true);
Amt = AllocaBuilder.CreateAdd(Amt, Off, "tmp");
}
AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
New->setAlignment(AI.getAlignment());
New->takeName(&AI);
// If the allocation has multiple real uses, insert a cast and change all
// things that used it to use the new cast. This will also hack on CI, but it
// will die soon.
if (!AI.hasOneUse()) {
// New is the allocation instruction, pointer typed. AI is the original
// allocation instruction, also pointer typed. Thus, cast to use is BitCast.
Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast");
AI.replaceAllUsesWith(NewCast);
}
return ReplaceInstUsesWith(CI, New);
}
/// EvaluateInDifferentType - Given an expression that
/// CanEvaluateTruncated or CanEvaluateSExtd returns true for, actually
/// insert the code to evaluate the expression.
Value *InstCombiner::EvaluateInDifferentType(Value *V, const Type *Ty,
bool isSigned) {
if (Constant *C = dyn_cast<Constant>(V)) {
C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
// If we got a constantexpr back, try to simplify it with TD info.
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
C = ConstantFoldConstantExpression(CE, TD);
return C;
}
// Otherwise, it must be an instruction.
Instruction *I = cast<Instruction>(V);
Instruction *Res = 0;
unsigned Opc = I->getOpcode();
switch (Opc) {
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
case Instruction::AShr:
case Instruction::LShr:
case Instruction::Shl:
case Instruction::UDiv:
case Instruction::URem: {
Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
break;
}
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
// If the source type of the cast is the type we're trying for then we can
// just return the source. There's no need to insert it because it is not
// new.
if (I->getOperand(0)->getType() == Ty)
return I->getOperand(0);
// Otherwise, must be the same type of cast, so just reinsert a new one.
// This also handles the case of zext(trunc(x)) -> zext(x).
Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
Opc == Instruction::SExt);
break;
case Instruction::Select: {
Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
Res = SelectInst::Create(I->getOperand(0), True, False);
break;
}
case Instruction::PHI: {
PHINode *OPN = cast<PHINode>(I);
PHINode *NPN = PHINode::Create(Ty);
for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
Value *V =EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
NPN->addIncoming(V, OPN->getIncomingBlock(i));
}
Res = NPN;
break;
}
default:
// TODO: Can handle more cases here.
llvm_unreachable("Unreachable!");
break;
}
Res->takeName(I);
return InsertNewInstBefore(Res, *I);
}
/// This function is a wrapper around CastInst::isEliminableCastPair. It
/// simply extracts arguments and returns what that function returns.
static Instruction::CastOps
isEliminableCastPair(
const CastInst *CI, ///< The first cast instruction
unsigned opcode, ///< The opcode of the second cast instruction
const Type *DstTy, ///< The target type for the second cast instruction
TargetData *TD ///< The target data for pointer size
) {
const Type *SrcTy = CI->getOperand(0)->getType(); // A from above
const Type *MidTy = CI->getType(); // B from above
// Get the opcodes of the two Cast instructions
Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
Instruction::CastOps secondOp = Instruction::CastOps(opcode);
unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
DstTy,
TD ? TD->getIntPtrType(CI->getContext()) : 0);
// We don't want to form an inttoptr or ptrtoint that converts to an integer
// type that differs from the pointer size.
if ((Res == Instruction::IntToPtr &&
(!TD || SrcTy != TD->getIntPtrType(CI->getContext()))) ||
(Res == Instruction::PtrToInt &&
(!TD || DstTy != TD->getIntPtrType(CI->getContext()))))
Res = 0;
return Instruction::CastOps(Res);
}
/// ShouldOptimizeCast - Return true if the cast from "V to Ty" actually
/// results in any code being generated and is interesting to optimize out. If
/// the cast can be eliminated by some other simple transformation, we prefer
/// to do the simplification first.
bool InstCombiner::ShouldOptimizeCast(Instruction::CastOps opc, const Value *V,
const Type *Ty) {
// Noop casts and casts of constants should be eliminated trivially.
if (V->getType() == Ty || isa<Constant>(V)) return false;
// If this is another cast that can be eliminated, we prefer to have it
// eliminated.
if (const CastInst *CI = dyn_cast<CastInst>(V))
if (isEliminableCastPair(CI, opc, Ty, TD))
return false;
// If this is a vector sext from a compare, then we don't want to break the
// idiom where each element of the extended vector is either zero or all ones.
if (opc == Instruction::SExt && isa<CmpInst>(V) && Ty->isVectorTy())
return false;
return true;
}
/// @brief Implement the transforms common to all CastInst visitors.
Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
Value *Src = CI.getOperand(0);
// Many cases of "cast of a cast" are eliminable. If it's eliminable we just
// eliminate it now.
if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
if (Instruction::CastOps opc =
isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) {
// The first cast (CSrc) is eliminable so we need to fix up or replace
// the second cast (CI). CSrc will then have a good chance of being dead.
return CastInst::Create(opc, CSrc->getOperand(0), CI.getType());
}
}
// If we are casting a select then fold the cast into the select
if (SelectInst *SI = dyn_cast<SelectInst>(Src))
if (Instruction *NV = FoldOpIntoSelect(CI, SI))
return NV;
// If we are casting a PHI then fold the cast into the PHI
if (isa<PHINode>(Src)) {
// We don't do this if this would create a PHI node with an illegal type if
// it is currently legal.
if (!Src->getType()->isIntegerTy() ||
!CI.getType()->isIntegerTy() ||
ShouldChangeType(CI.getType(), Src->getType()))
if (Instruction *NV = FoldOpIntoPhi(CI))
return NV;
}
return 0;
}
/// CanEvaluateTruncated - Return true if we can evaluate the specified
/// expression tree as type Ty instead of its larger type, and arrive with the
/// same value. This is used by code that tries to eliminate truncates.
///
/// Ty will always be a type smaller than V. We should return true if trunc(V)
/// can be computed by computing V in the smaller type. If V is an instruction,
/// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
/// makes sense if x and y can be efficiently truncated.
///
/// This function works on both vectors and scalars.
///
static bool CanEvaluateTruncated(Value *V, const Type *Ty) {
// We can always evaluate constants in another type.
if (isa<Constant>(V))
return true;
Instruction *I = dyn_cast<Instruction>(V);
if (!I) return false;
const Type *OrigTy = V->getType();
// If this is an extension from the dest type, we can eliminate it, even if it
// has multiple uses.
if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
I->getOperand(0)->getType() == Ty)
return true;
// We can't extend or shrink something that has multiple uses: doing so would
// require duplicating the instruction in general, which isn't profitable.
if (!I->hasOneUse()) return false;
unsigned Opc = I->getOpcode();
switch (Opc) {
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
// These operators can all arbitrarily be extended or truncated.
return CanEvaluateTruncated(I->getOperand(0), Ty) &&
CanEvaluateTruncated(I->getOperand(1), Ty);
case Instruction::UDiv:
case Instruction::URem: {
// UDiv and URem can be truncated if all the truncated bits are zero.
uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
uint32_t BitWidth = Ty->getScalarSizeInBits();
if (BitWidth < OrigBitWidth) {
APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth);
if (MaskedValueIsZero(I->getOperand(0), Mask) &&
MaskedValueIsZero(I->getOperand(1), Mask)) {
return CanEvaluateTruncated(I->getOperand(0), Ty) &&
CanEvaluateTruncated(I->getOperand(1), Ty);
}
}
break;
}
case Instruction::Shl:
// If we are truncating the result of this SHL, and if it's a shift of a
// constant amount, we can always perform a SHL in a smaller type.
if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
uint32_t BitWidth = Ty->getScalarSizeInBits();
if (CI->getLimitedValue(BitWidth) < BitWidth)
return CanEvaluateTruncated(I->getOperand(0), Ty);
}
break;
case Instruction::LShr:
// If this is a truncate of a logical shr, we can truncate it to a smaller
// lshr iff we know that the bits we would otherwise be shifting in are
// already zeros.
if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
uint32_t BitWidth = Ty->getScalarSizeInBits();
if (MaskedValueIsZero(I->getOperand(0),
APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
CI->getLimitedValue(BitWidth) < BitWidth) {
return CanEvaluateTruncated(I->getOperand(0), Ty);
}
}
break;
case Instruction::Trunc:
// trunc(trunc(x)) -> trunc(x)
return true;
case Instruction::ZExt:
case Instruction::SExt:
// trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
// trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
return true;
case Instruction::Select: {
SelectInst *SI = cast<SelectInst>(I);
return CanEvaluateTruncated(SI->getTrueValue(), Ty) &&
CanEvaluateTruncated(SI->getFalseValue(), Ty);
}
case Instruction::PHI: {
// We can change a phi if we can change all operands. Note that we never
// get into trouble with cyclic PHIs here because we only consider
// instructions with a single use.
PHINode *PN = cast<PHINode>(I);
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
if (!CanEvaluateTruncated(PN->getIncomingValue(i), Ty))
return false;
return true;
}
default:
// TODO: Can handle more cases here.
break;
}
return false;
}
Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
if (Instruction *Result = commonCastTransforms(CI))
return Result;
// See if we can simplify any instructions used by the input whose sole
// purpose is to compute bits we don't care about.
if (SimplifyDemandedInstructionBits(CI))
return &CI;
Value *Src = CI.getOperand(0);
const Type *DestTy = CI.getType(), *SrcTy = Src->getType();
// Attempt to truncate the entire input expression tree to the destination
// type. Only do this if the dest type is a simple type, don't convert the
// expression tree to something weird like i93 unless the source is also
// strange.
if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
CanEvaluateTruncated(Src, DestTy)) {
// If this cast is a truncate, evaluting in a different type always
// eliminates the cast, so it is always a win.
DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
" to avoid cast: " << CI << '\n');
Value *Res = EvaluateInDifferentType(Src, DestTy, false);
assert(Res->getType() == DestTy);
return ReplaceInstUsesWith(CI, Res);
}
// Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector.
if (DestTy->getScalarSizeInBits() == 1) {
Constant *One = ConstantInt::get(Src->getType(), 1);
Src = Builder->CreateAnd(Src, One, "tmp");
Value *Zero = Constant::getNullValue(Src->getType());
return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero);
}
// Transform trunc(lshr (zext A), Cst) to eliminate one type conversion.
Value *A = 0; ConstantInt *Cst = 0;
if (Src->hasOneUse() &&
match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) {
// We have three types to worry about here, the type of A, the source of
// the truncate (MidSize), and the destination of the truncate. We know that
// ASize < MidSize and MidSize > ResultSize, but don't know the relation
// between ASize and ResultSize.
unsigned ASize = A->getType()->getPrimitiveSizeInBits();
// If the shift amount is larger than the size of A, then the result is
// known to be zero because all the input bits got shifted out.
if (Cst->getZExtValue() >= ASize)
return ReplaceInstUsesWith(CI, Constant::getNullValue(CI.getType()));
// Since we're doing an lshr and a zero extend, and know that the shift
// amount is smaller than ASize, it is always safe to do the shift in A's
// type, then zero extend or truncate to the result.
Value *Shift = Builder->CreateLShr(A, Cst->getZExtValue());
Shift->takeName(Src);
return CastInst::CreateIntegerCast(Shift, CI.getType(), false);
}
// Transform "trunc (and X, cst)" -> "and (trunc X), cst" so long as the dest
// type isn't non-native.
if (Src->hasOneUse() && isa<IntegerType>(Src->getType()) &&
ShouldChangeType(Src->getType(), CI.getType()) &&
match(Src, m_And(m_Value(A), m_ConstantInt(Cst)))) {
Value *NewTrunc = Builder->CreateTrunc(A, CI.getType(), A->getName()+".tr");
return BinaryOperator::CreateAnd(NewTrunc,
ConstantExpr::getTrunc(Cst, CI.getType()));
}
return 0;
}
/// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations
/// in order to eliminate the icmp.
Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
bool DoXform) {
// If we are just checking for a icmp eq of a single bit and zext'ing it
// to an integer, then shift the bit to the appropriate place and then
// cast to integer to avoid the comparison.
if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
const APInt &Op1CV = Op1C->getValue();
// zext (x <s 0) to i32 --> x>>u31 true if signbit set.
// zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear.
if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
(ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) {
if (!DoXform) return ICI;
Value *In = ICI->getOperand(0);
Value *Sh = ConstantInt::get(In->getType(),
In->getType()->getScalarSizeInBits()-1);
In = Builder->CreateLShr(In, Sh, In->getName()+".lobit");
if (In->getType() != CI.getType())
In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/, "tmp");
if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
Constant *One = ConstantInt::get(In->getType(), 1);
In = Builder->CreateXor(In, One, In->getName()+".not");
}
return ReplaceInstUsesWith(CI, In);
}
// zext (X == 0) to i32 --> X^1 iff X has only the low bit set.
// zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
// zext (X == 1) to i32 --> X iff X has only the low bit set.
// zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set.
// zext (X != 0) to i32 --> X iff X has only the low bit set.
// zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set.
// zext (X != 1) to i32 --> X^1 iff X has only the low bit set.
// zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
// This only works for EQ and NE
ICI->isEquality()) {
// If Op1C some other power of two, convert:
uint32_t BitWidth = Op1C->getType()->getBitWidth();
APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
APInt TypeMask(APInt::getAllOnesValue(BitWidth));
ComputeMaskedBits(ICI->getOperand(0), TypeMask, KnownZero, KnownOne);
APInt KnownZeroMask(~KnownZero);
if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
if (!DoXform) return ICI;
bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
// (X&4) == 2 --> false
// (X&4) != 2 --> true
Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()),
isNE);
Res = ConstantExpr::getZExt(Res, CI.getType());
return ReplaceInstUsesWith(CI, Res);
}
uint32_t ShiftAmt = KnownZeroMask.logBase2();
Value *In = ICI->getOperand(0);
if (ShiftAmt) {
// Perform a logical shr by shiftamt.
// Insert the shift to put the result in the low bit.
In = Builder->CreateLShr(In, ConstantInt::get(In->getType(),ShiftAmt),
In->getName()+".lobit");
}
if ((Op1CV != 0) == isNE) { // Toggle the low bit.
Constant *One = ConstantInt::get(In->getType(), 1);
In = Builder->CreateXor(In, One, "tmp");
}
if (CI.getType() == In->getType())
return ReplaceInstUsesWith(CI, In);
return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/);
}
}
}
// icmp ne A, B is equal to xor A, B when A and B only really have one bit.
// It is also profitable to transform icmp eq into not(xor(A, B)) because that
// may lead to additional simplifications.
if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) {
if (const IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) {
uint32_t BitWidth = ITy->getBitWidth();
Value *LHS = ICI->getOperand(0);
Value *RHS = ICI->getOperand(1);
APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0);
APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0);
APInt TypeMask(APInt::getAllOnesValue(BitWidth));
ComputeMaskedBits(LHS, TypeMask, KnownZeroLHS, KnownOneLHS);
ComputeMaskedBits(RHS, TypeMask, KnownZeroRHS, KnownOneRHS);
if (KnownZeroLHS == KnownZeroRHS && KnownOneLHS == KnownOneRHS) {
APInt KnownBits = KnownZeroLHS | KnownOneLHS;
APInt UnknownBit = ~KnownBits;
if (UnknownBit.countPopulation() == 1) {
if (!DoXform) return ICI;
Value *Result = Builder->CreateXor(LHS, RHS);
// Mask off any bits that are set and won't be shifted away.
if (KnownOneLHS.uge(UnknownBit))
Result = Builder->CreateAnd(Result,
ConstantInt::get(ITy, UnknownBit));
// Shift the bit we're testing down to the lsb.
Result = Builder->CreateLShr(
Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
Result = Builder->CreateXor(Result, ConstantInt::get(ITy, 1));
Result->takeName(ICI);
return ReplaceInstUsesWith(CI, Result);
}
}
}
}
return 0;
}
/// CanEvaluateZExtd - Determine if the specified value can be computed in the
/// specified wider type and produce the same low bits. If not, return false.
///
/// If this function returns true, it can also return a non-zero number of bits
/// (in BitsToClear) which indicates that the value it computes is correct for
/// the zero extend, but that the additional BitsToClear bits need to be zero'd
/// out. For example, to promote something like:
///
/// %B = trunc i64 %A to i32
/// %C = lshr i32 %B, 8
/// %E = zext i32 %C to i64
///
/// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
/// set to 8 to indicate that the promoted value needs to have bits 24-31
/// cleared in addition to bits 32-63. Since an 'and' will be generated to
/// clear the top bits anyway, doing this has no extra cost.
///
/// This function works on both vectors and scalars.
static bool CanEvaluateZExtd(Value *V, const Type *Ty, unsigned &BitsToClear) {
BitsToClear = 0;
if (isa<Constant>(V))
return true;
Instruction *I = dyn_cast<Instruction>(V);
if (!I) return false;
// If the input is a truncate from the destination type, we can trivially
// eliminate it, even if it has multiple uses.
// FIXME: This is currently disabled until codegen can handle this without
// pessimizing code, PR5997.
if (0 && isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
return true;
// We can't extend or shrink something that has multiple uses: doing so would
// require duplicating the instruction in general, which isn't profitable.
if (!I->hasOneUse()) return false;
unsigned Opc = I->getOpcode(), Tmp;
switch (Opc) {
case Instruction::ZExt: // zext(zext(x)) -> zext(x).
case Instruction::SExt: // zext(sext(x)) -> sext(x).
case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
return true;
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
case Instruction::Shl:
if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear) ||
!CanEvaluateZExtd(I->getOperand(1), Ty, Tmp))
return false;
// These can all be promoted if neither operand has 'bits to clear'.
if (BitsToClear == 0 && Tmp == 0)
return true;
// If the operation is an AND/OR/XOR and the bits to clear are zero in the
// other side, BitsToClear is ok.
if (Tmp == 0 &&
(Opc == Instruction::And || Opc == Instruction::Or ||
Opc == Instruction::Xor)) {
// We use MaskedValueIsZero here for generality, but the case we care
// about the most is constant RHS.
unsigned VSize = V->getType()->getScalarSizeInBits();
if (MaskedValueIsZero(I->getOperand(1),
APInt::getHighBitsSet(VSize, BitsToClear)))
return true;
}
// Otherwise, we don't know how to analyze this BitsToClear case yet.
return false;
case Instruction::LShr:
// We can promote lshr(x, cst) if we can promote x. This requires the
// ultimate 'and' to clear out the high zero bits we're clearing out though.
if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear))
return false;
BitsToClear += Amt->getZExtValue();
if (BitsToClear > V->getType()->getScalarSizeInBits())
BitsToClear = V->getType()->getScalarSizeInBits();
return true;
}
// Cannot promote variable LSHR.
return false;
case Instruction::Select:
if (!CanEvaluateZExtd(I->getOperand(1), Ty, Tmp) ||
!CanEvaluateZExtd(I->getOperand(2), Ty, BitsToClear) ||
// TODO: If important, we could handle the case when the BitsToClear are
// known zero in the disagreeing side.
Tmp != BitsToClear)
return false;
return true;
case Instruction::PHI: {
// We can change a phi if we can change all operands. Note that we never
// get into trouble with cyclic PHIs here because we only consider
// instructions with a single use.
PHINode *PN = cast<PHINode>(I);
if (!CanEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear))
return false;
for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
if (!CanEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp) ||
// TODO: If important, we could handle the case when the BitsToClear
// are known zero in the disagreeing input.
Tmp != BitsToClear)
return false;
return true;
}
default:
// TODO: Can handle more cases here.
return false;
}
}
Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
// If this zero extend is only used by a truncate, let the truncate by
// eliminated before we try to optimize this zext.
if (CI.hasOneUse() && isa<TruncInst>(CI.use_back()))
return 0;
// If one of the common conversion will work, do it.
if (Instruction *Result = commonCastTransforms(CI))
return Result;
// See if we can simplify any instructions used by the input whose sole
// purpose is to compute bits we don't care about.
if (SimplifyDemandedInstructionBits(CI))
return &CI;
Value *Src = CI.getOperand(0);
const Type *SrcTy = Src->getType(), *DestTy = CI.getType();
// Attempt to extend the entire input expression tree to the destination
// type. Only do this if the dest type is a simple type, don't convert the
// expression tree to something weird like i93 unless the source is also
// strange.
unsigned BitsToClear;
if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
CanEvaluateZExtd(Src, DestTy, BitsToClear)) {
assert(BitsToClear < SrcTy->getScalarSizeInBits() &&
"Unreasonable BitsToClear");
// Okay, we can transform this! Insert the new expression now.
DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
" to avoid zero extend: " << CI);
Value *Res = EvaluateInDifferentType(Src, DestTy, false);
assert(Res->getType() == DestTy);
uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
uint32_t DestBitSize = DestTy->getScalarSizeInBits();
// If the high bits are already filled with zeros, just replace this
// cast with the result.
if (MaskedValueIsZero(Res, APInt::getHighBitsSet(DestBitSize,
DestBitSize-SrcBitsKept)))
return ReplaceInstUsesWith(CI, Res);
// We need to emit an AND to clear the high bits.
Constant *C = ConstantInt::get(Res->getType(),
APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
return BinaryOperator::CreateAnd(Res, C);
}
// If this is a TRUNC followed by a ZEXT then we are dealing with integral
// types and if the sizes are just right we can convert this into a logical
// 'and' which will be much cheaper than the pair of casts.
if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast
// TODO: Subsume this into EvaluateInDifferentType.
// Get the sizes of the types involved. We know that the intermediate type
// will be smaller than A or C, but don't know the relation between A and C.
Value *A = CSrc->getOperand(0);
unsigned SrcSize = A->getType()->getScalarSizeInBits();
unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
unsigned DstSize = CI.getType()->getScalarSizeInBits();
// If we're actually extending zero bits, then if
// SrcSize < DstSize: zext(a & mask)
// SrcSize == DstSize: a & mask
// SrcSize > DstSize: trunc(a) & mask
if (SrcSize < DstSize) {
APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask");
return new ZExtInst(And, CI.getType());
}
if (SrcSize == DstSize) {
APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
AndValue));
}
if (SrcSize > DstSize) {
Value *Trunc = Builder->CreateTrunc(A, CI.getType(), "tmp");
APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
return BinaryOperator::CreateAnd(Trunc,
ConstantInt::get(Trunc->getType(),
AndValue));
}
}
if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
return transformZExtICmp(ICI, CI);
BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
if (SrcI && SrcI->getOpcode() == Instruction::Or) {
// zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one
// of the (zext icmp) will be transformed.
ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
(transformZExtICmp(LHS, CI, false) ||
transformZExtICmp(RHS, CI, false))) {
Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName());
Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName());
return BinaryOperator::Create(Instruction::Or, LCast, RCast);
}
}
// zext(trunc(t) & C) -> (t & zext(C)).
if (SrcI && SrcI->getOpcode() == Instruction::And && SrcI->hasOneUse())
if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1)))
if (TruncInst *TI = dyn_cast<TruncInst>(SrcI->getOperand(0))) {
Value *TI0 = TI->getOperand(0);
if (TI0->getType() == CI.getType())
return
BinaryOperator::CreateAnd(TI0,
ConstantExpr::getZExt(C, CI.getType()));
}
// zext((trunc(t) & C) ^ C) -> ((t & zext(C)) ^ zext(C)).
if (SrcI && SrcI->getOpcode() == Instruction::Xor && SrcI->hasOneUse())
if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1)))
if (BinaryOperator *And = dyn_cast<BinaryOperator>(SrcI->getOperand(0)))
if (And->getOpcode() == Instruction::And && And->hasOneUse() &&
And->getOperand(1) == C)
if (TruncInst *TI = dyn_cast<TruncInst>(And->getOperand(0))) {
Value *TI0 = TI->getOperand(0);
if (TI0->getType() == CI.getType()) {
Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
Value *NewAnd = Builder->CreateAnd(TI0, ZC, "tmp");
return BinaryOperator::CreateXor(NewAnd, ZC);
}
}
// zext (xor i1 X, true) to i32 --> xor (zext i1 X to i32), 1
Value *X;
if (SrcI && SrcI->hasOneUse() && SrcI->getType()->isIntegerTy(1) &&
match(SrcI, m_Not(m_Value(X))) &&
(!X->hasOneUse() || !isa<CmpInst>(X))) {
Value *New = Builder->CreateZExt(X, CI.getType());
return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1));
}
return 0;
}
/// CanEvaluateSExtd - Return true if we can take the specified value
/// and return it as type Ty without inserting any new casts and without
/// changing the value of the common low bits. This is used by code that tries
/// to promote integer operations to a wider types will allow us to eliminate
/// the extension.
///
/// This function works on both vectors and scalars.
///
static bool CanEvaluateSExtd(Value *V, const Type *Ty) {
assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
"Can't sign extend type to a smaller type");
// If this is a constant, it can be trivially promoted.
if (isa<Constant>(V))
return true;
Instruction *I = dyn_cast<Instruction>(V);
if (!I) return false;
// If this is a truncate from the dest type, we can trivially eliminate it,
// even if it has multiple uses.
// FIXME: This is currently disabled until codegen can handle this without
// pessimizing code, PR5997.
if (0 && isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
return true;
// We can't extend or shrink something that has multiple uses: doing so would
// require duplicating the instruction in general, which isn't profitable.
if (!I->hasOneUse()) return false;
switch (I->getOpcode()) {
case Instruction::SExt: // sext(sext(x)) -> sext(x)
case Instruction::ZExt: // sext(zext(x)) -> zext(x)
case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
return true;
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
// These operators can all arbitrarily be extended if their inputs can.
return CanEvaluateSExtd(I->getOperand(0), Ty) &&
CanEvaluateSExtd(I->getOperand(1), Ty);
//case Instruction::Shl: TODO
//case Instruction::LShr: TODO
case Instruction::Select:
return CanEvaluateSExtd(I->getOperand(1), Ty) &&
CanEvaluateSExtd(I->getOperand(2), Ty);
case Instruction::PHI: {
// We can change a phi if we can change all operands. Note that we never
// get into trouble with cyclic PHIs here because we only consider
// instructions with a single use.
PHINode *PN = cast<PHINode>(I);
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
if (!CanEvaluateSExtd(PN->getIncomingValue(i), Ty)) return false;
return true;
}
default:
// TODO: Can handle more cases here.
break;
}
return false;
}
Instruction *InstCombiner::visitSExt(SExtInst &CI) {
// If this sign extend is only used by a truncate, let the truncate by
// eliminated before we try to optimize this zext.
if (CI.hasOneUse() && isa<TruncInst>(CI.use_back()))
return 0;
if (Instruction *I = commonCastTransforms(CI))
return I;
// See if we can simplify any instructions used by the input whose sole
// purpose is to compute bits we don't care about.
if (SimplifyDemandedInstructionBits(CI))
return &CI;
Value *Src = CI.getOperand(0);
const Type *SrcTy = Src->getType(), *DestTy = CI.getType();
// Attempt to extend the entire input expression tree to the destination
// type. Only do this if the dest type is a simple type, don't convert the
// expression tree to something weird like i93 unless the source is also
// strange.
if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
CanEvaluateSExtd(Src, DestTy)) {
// Okay, we can transform this! Insert the new expression now.
DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
" to avoid sign extend: " << CI);
Value *Res = EvaluateInDifferentType(Src, DestTy, true);
assert(Res->getType() == DestTy);
uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
uint32_t DestBitSize = DestTy->getScalarSizeInBits();
// If the high bits are already filled with sign bit, just replace this
// cast with the result.
if (ComputeNumSignBits(Res) > DestBitSize - SrcBitSize)
return ReplaceInstUsesWith(CI, Res);
// We need to emit a shl + ashr to do the sign extend.
Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
return BinaryOperator::CreateAShr(Builder->CreateShl(Res, ShAmt, "sext"),
ShAmt);
}
// If this input is a trunc from our destination, then turn sext(trunc(x))
// into shifts.
if (TruncInst *TI = dyn_cast<TruncInst>(Src))
if (TI->hasOneUse() && TI->getOperand(0)->getType() == DestTy) {
uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
uint32_t DestBitSize = DestTy->getScalarSizeInBits();
// We need to emit a shl + ashr to do the sign extend.
Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
Value *Res = Builder->CreateShl(TI->getOperand(0), ShAmt, "sext");
return BinaryOperator::CreateAShr(Res, ShAmt);
}
// (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if signed
// (x >s -1) ? -1 : 0 -> ashr x, 31 -> all ones if not signed
{
ICmpInst::Predicate Pred; Value *CmpLHS; ConstantInt *CmpRHS;
if (match(Src, m_ICmp(Pred, m_Value(CmpLHS), m_ConstantInt(CmpRHS)))) {
// sext (x <s 0) to i32 --> x>>s31 true if signbit set.
// sext (x >s -1) to i32 --> (x>>s31)^-1 true if signbit clear.
if ((Pred == ICmpInst::ICMP_SLT && CmpRHS->isZero()) ||
(Pred == ICmpInst::ICMP_SGT && CmpRHS->isAllOnesValue())) {
Value *Sh = ConstantInt::get(CmpLHS->getType(),
CmpLHS->getType()->getScalarSizeInBits()-1);
Value *In = Builder->CreateAShr(CmpLHS, Sh, CmpLHS->getName()+".lobit");
if (In->getType() != CI.getType())
In = Builder->CreateIntCast(In, CI.getType(), true/*SExt*/, "tmp");
if (Pred == ICmpInst::ICMP_SGT)
In = Builder->CreateNot(In, In->getName()+".not");
return ReplaceInstUsesWith(CI, In);
}
}
}
// vector (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if signed.
if (const VectorType *VTy = dyn_cast<VectorType>(DestTy)) {
ICmpInst::Predicate Pred; Value *CmpLHS;
if (match(Src, m_ICmp(Pred, m_Value(CmpLHS), m_Zero()))) {
if (Pred == ICmpInst::ICMP_SLT && CmpLHS->getType() == DestTy) {
const Type *EltTy = VTy->getElementType();
// splat the shift constant to a constant vector.
Constant *VSh = ConstantInt::get(VTy, EltTy->getScalarSizeInBits()-1);
Value *In = Builder->CreateAShr(CmpLHS, VSh,CmpLHS->getName()+".lobit");
return ReplaceInstUsesWith(CI, In);
}
}
}
// If the input is a shl/ashr pair of a same constant, then this is a sign
// extension from a smaller value. If we could trust arbitrary bitwidth
// integers, we could turn this into a truncate to the smaller bit and then
// use a sext for the whole extension. Since we don't, look deeper and check
// for a truncate. If the source and dest are the same type, eliminate the
// trunc and extend and just do shifts. For example, turn:
// %a = trunc i32 %i to i8
// %b = shl i8 %a, 6
// %c = ashr i8 %b, 6
// %d = sext i8 %c to i32
// into:
// %a = shl i32 %i, 30
// %d = ashr i32 %a, 30
Value *A = 0;
// TODO: Eventually this could be subsumed by EvaluateInDifferentType.
ConstantInt *BA = 0, *CA = 0;
if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)),
m_ConstantInt(CA))) &&
BA == CA && A->getType() == CI.getType()) {
unsigned MidSize = Src->getType()->getScalarSizeInBits();
unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
A = Builder->CreateShl(A, ShAmtV, CI.getName());
return BinaryOperator::CreateAShr(A, ShAmtV);
}
return 0;
}
/// FitsInFPType - Return a Constant* for the specified FP constant if it fits
/// in the specified FP type without changing its value.
static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
bool losesInfo;
APFloat F = CFP->getValueAPF();
(void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
if (!losesInfo)
return ConstantFP::get(CFP->getContext(), F);
return 0;
}
/// LookThroughFPExtensions - If this is an fp extension instruction, look
/// through it until we get the source value.
static Value *LookThroughFPExtensions(Value *V) {
if (Instruction *I = dyn_cast<Instruction>(V))
if (I->getOpcode() == Instruction::FPExt)
return LookThroughFPExtensions(I->getOperand(0));
// If this value is a constant, return the constant in the smallest FP type
// that can accurately represent it. This allows us to turn
// (float)((double)X+2.0) into x+2.0f.
if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext()))
return V; // No constant folding of this.
// See if the value can be truncated to float and then reextended.
if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle))
return V;
if (CFP->getType()->isDoubleTy())
return V; // Won't shrink.
if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble))
return V;
// Don't try to shrink to various long double types.
}
return V;
}
Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
if (Instruction *I = commonCastTransforms(CI))
return I;
// If we have fptrunc(fadd (fpextend x), (fpextend y)), where x and y are
// smaller than the destination type, we can eliminate the truncate by doing
// the add as the smaller type. This applies to fadd/fsub/fmul/fdiv as well
// as many builtins (sqrt, etc).
BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
if (OpI && OpI->hasOneUse()) {
switch (OpI->getOpcode()) {
default: break;
case Instruction::FAdd:
case Instruction::FSub:
case Instruction::FMul:
case Instruction::FDiv:
case Instruction::FRem:
const Type *SrcTy = OpI->getType();
Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0));
Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1));
if (LHSTrunc->getType() != SrcTy &&
RHSTrunc->getType() != SrcTy) {
unsigned DstSize = CI.getType()->getScalarSizeInBits();
// If the source types were both smaller than the destination type of
// the cast, do this xform.
if (LHSTrunc->getType()->getScalarSizeInBits() <= DstSize &&
RHSTrunc->getType()->getScalarSizeInBits() <= DstSize) {
LHSTrunc = Builder->CreateFPExt(LHSTrunc, CI.getType());
RHSTrunc = Builder->CreateFPExt(RHSTrunc, CI.getType());
return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc);
}
}
break;
}
}
// Fold (fptrunc (sqrt (fpext x))) -> (sqrtf x)
// NOTE: This should be disabled by -fno-builtin-sqrt if we ever support it.
CallInst *Call = dyn_cast<CallInst>(CI.getOperand(0));
if (Call && Call->getCalledFunction() &&
Call->getCalledFunction()->getName() == "sqrt" &&
Call->getNumArgOperands() == 1) {
CastInst *Arg = dyn_cast<CastInst>(Call->getArgOperand(0));
if (Arg && Arg->getOpcode() == Instruction::FPExt &&
CI.getType()->isFloatTy() &&
Call->getType()->isDoubleTy() &&
Arg->getType()->isDoubleTy() &&
Arg->getOperand(0)->getType()->isFloatTy()) {
Function *Callee = Call->getCalledFunction();
Module *M = CI.getParent()->getParent()->getParent();
Constant *SqrtfFunc = M->getOrInsertFunction("sqrtf",
Callee->getAttributes(),
Builder->getFloatTy(),
Builder->getFloatTy(),
NULL);
CallInst *ret = CallInst::Create(SqrtfFunc, Arg->getOperand(0),
"sqrtfcall");
ret->setAttributes(Callee->getAttributes());
// Remove the old Call. With -fmath-errno, it won't get marked readnone.
Call->replaceAllUsesWith(UndefValue::get(Call->getType()));
EraseInstFromFunction(*Call);
return ret;
}
}
return 0;
}
Instruction *InstCombiner::visitFPExt(CastInst &CI) {
return commonCastTransforms(CI);
}
Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
if (OpI == 0)
return commonCastTransforms(FI);
// fptoui(uitofp(X)) --> X
// fptoui(sitofp(X)) --> X
// This is safe if the intermediate type has enough bits in its mantissa to
// accurately represent all values of X. For example, do not do this with
// i64->float->i64. This is also safe for sitofp case, because any negative
// 'X' value would cause an undefined result for the fptoui.
if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
OpI->getOperand(0)->getType() == FI.getType() &&
(int)FI.getType()->getScalarSizeInBits() < /*extra bit for sign */
OpI->getType()->getFPMantissaWidth())
return ReplaceInstUsesWith(FI, OpI->getOperand(0));
return commonCastTransforms(FI);
}
Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
if (OpI == 0)
return commonCastTransforms(FI);
// fptosi(sitofp(X)) --> X
// fptosi(uitofp(X)) --> X
// This is safe if the intermediate type has enough bits in its mantissa to
// accurately represent all values of X. For example, do not do this with
// i64->float->i64. This is also safe for sitofp case, because any negative
// 'X' value would cause an undefined result for the fptoui.
if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
OpI->getOperand(0)->getType() == FI.getType() &&
(int)FI.getType()->getScalarSizeInBits() <=
OpI->getType()->getFPMantissaWidth())
return ReplaceInstUsesWith(FI, OpI->getOperand(0));
return commonCastTransforms(FI);
}
Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
return commonCastTransforms(CI);
}
Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
return commonCastTransforms(CI);
}
Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
// If the source integer type is not the intptr_t type for this target, do a
// trunc or zext to the intptr_t type, then inttoptr of it. This allows the
// cast to be exposed to other transforms.
if (TD) {
if (CI.getOperand(0)->getType()->getScalarSizeInBits() >
TD->getPointerSizeInBits()) {
Value *P = Builder->CreateTrunc(CI.getOperand(0),
TD->getIntPtrType(CI.getContext()), "tmp");
return new IntToPtrInst(P, CI.getType());
}
if (CI.getOperand(0)->getType()->getScalarSizeInBits() <
TD->getPointerSizeInBits()) {
Value *P = Builder->CreateZExt(CI.getOperand(0),
TD->getIntPtrType(CI.getContext()), "tmp");
return new IntToPtrInst(P, CI.getType());
}
}
if (Instruction *I = commonCastTransforms(CI))
return I;
return 0;
}
/// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
Value *Src = CI.getOperand(0);
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
// If casting the result of a getelementptr instruction with no offset, turn
// this into a cast of the original pointer!
if (GEP->hasAllZeroIndices()) {
// Changing the cast operand is usually not a good idea but it is safe
// here because the pointer operand is being replaced with another
// pointer operand so the opcode doesn't need to change.
Worklist.Add(GEP);
CI.setOperand(0, GEP->getOperand(0));
return &CI;
}
// If the GEP has a single use, and the base pointer is a bitcast, and the
// GEP computes a constant offset, see if we can convert these three
// instructions into fewer. This typically happens with unions and other
// non-type-safe code.
if (TD && GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0)) &&
GEP->hasAllConstantIndices()) {
// We are guaranteed to get a constant from EmitGEPOffset.
ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(GEP));
int64_t Offset = OffsetV->getSExtValue();
// Get the base pointer input of the bitcast, and the type it points to.
Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0);
const Type *GEPIdxTy =
cast<PointerType>(OrigBase->getType())->getElementType();
SmallVector<Value*, 8> NewIndices;
if (FindElementAtOffset(GEPIdxTy, Offset, NewIndices)) {
// If we were able to index down into an element, create the GEP
// and bitcast the result. This eliminates one bitcast, potentially
// two.
Value *NGEP = cast<GEPOperator>(GEP)->isInBounds() ?
Builder->CreateInBoundsGEP(OrigBase,
NewIndices.begin(), NewIndices.end()) :
Builder->CreateGEP(OrigBase, NewIndices.begin(), NewIndices.end());
NGEP->takeName(GEP);
if (isa<BitCastInst>(CI))
return new BitCastInst(NGEP, CI.getType());
assert(isa<PtrToIntInst>(CI));
return new PtrToIntInst(NGEP, CI.getType());
}
}
}
return commonCastTransforms(CI);
}
Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
// If the destination integer type is not the intptr_t type for this target,
// do a ptrtoint to intptr_t then do a trunc or zext. This allows the cast
// to be exposed to other transforms.
if (TD) {
if (CI.getType()->getScalarSizeInBits() < TD->getPointerSizeInBits()) {
Value *P = Builder->CreatePtrToInt(CI.getOperand(0),
TD->getIntPtrType(CI.getContext()),
"tmp");
return new TruncInst(P, CI.getType());
}
if (CI.getType()->getScalarSizeInBits() > TD->getPointerSizeInBits()) {
Value *P = Builder->CreatePtrToInt(CI.getOperand(0),
TD->getIntPtrType(CI.getContext()),
"tmp");
return new ZExtInst(P, CI.getType());
}
}
return commonPointerCastTransforms(CI);
}
/// OptimizeVectorResize - This input value (which is known to have vector type)
/// is being zero extended or truncated to the specified vector type. Try to
/// replace it with a shuffle (and vector/vector bitcast) if possible.
///
/// The source and destination vector types may have different element types.
static Instruction *OptimizeVectorResize(Value *InVal, const VectorType *DestTy,
InstCombiner &IC) {
// We can only do this optimization if the output is a multiple of the input
// element size, or the input is a multiple of the output element size.
// Convert the input type to have the same element type as the output.
const VectorType *SrcTy = cast<VectorType>(InVal->getType());
if (SrcTy->getElementType() != DestTy->getElementType()) {
// The input types don't need to be identical, but for now they must be the
// same size. There is no specific reason we couldn't handle things like
// <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
// there yet.
if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
DestTy->getElementType()->getPrimitiveSizeInBits())
return 0;
SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements());
InVal = IC.Builder->CreateBitCast(InVal, SrcTy);
}
// Now that the element types match, get the shuffle mask and RHS of the
// shuffle to use, which depends on whether we're increasing or decreasing the
// size of the input.
SmallVector<Constant*, 16> ShuffleMask;
Value *V2;
const IntegerType *Int32Ty = Type::getInt32Ty(SrcTy->getContext());
if (SrcTy->getNumElements() > DestTy->getNumElements()) {
// If we're shrinking the number of elements, just shuffle in the low
// elements from the input and use undef as the second shuffle input.
V2 = UndefValue::get(SrcTy);
for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i)
ShuffleMask.push_back(ConstantInt::get(Int32Ty, i));
} else {
// If we're increasing the number of elements, shuffle in all of the
// elements from InVal and fill the rest of the result elements with zeros
// from a constant zero.
V2 = Constant::getNullValue(SrcTy);
unsigned SrcElts = SrcTy->getNumElements();
for (unsigned i = 0, e = SrcElts; i != e; ++i)
ShuffleMask.push_back(ConstantInt::get(Int32Ty, i));
// The excess elements reference the first element of the zero input.
ShuffleMask.append(DestTy->getNumElements()-SrcElts,
ConstantInt::get(Int32Ty, SrcElts));
}
return new ShuffleVectorInst(InVal, V2, ConstantVector::get(ShuffleMask));
}
static bool isMultipleOfTypeSize(unsigned Value, const Type *Ty) {
return Value % Ty->getPrimitiveSizeInBits() == 0;
}
static unsigned getTypeSizeIndex(unsigned Value, const Type *Ty) {
return Value / Ty->getPrimitiveSizeInBits();
}
/// CollectInsertionElements - V is a value which is inserted into a vector of
/// VecEltTy. Look through the value to see if we can decompose it into
/// insertions into the vector. See the example in the comment for
/// OptimizeIntegerToVectorInsertions for the pattern this handles.
/// The type of V is always a non-zero multiple of VecEltTy's size.
///
/// This returns false if the pattern can't be matched or true if it can,
/// filling in Elements with the elements found here.
static bool CollectInsertionElements(Value *V, unsigned ElementIndex,
SmallVectorImpl<Value*> &Elements,
const Type *VecEltTy) {
// Undef values never contribute useful bits to the result.
if (isa<UndefValue>(V)) return true;
// If we got down to a value of the right type, we win, try inserting into the
// right element.
if (V->getType() == VecEltTy) {
// Inserting null doesn't actually insert any elements.
if (Constant *C = dyn_cast<Constant>(V))
if (C->isNullValue())
return true;
// Fail if multiple elements are inserted into this slot.
if (ElementIndex >= Elements.size() || Elements[ElementIndex] != 0)
return false;
Elements[ElementIndex] = V;
return true;
}
if (Constant *C = dyn_cast<Constant>(V)) {
// Figure out the # elements this provides, and bitcast it or slice it up
// as required.
unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
VecEltTy);
// If the constant is the size of a vector element, we just need to bitcast
// it to the right type so it gets properly inserted.
if (NumElts == 1)
return CollectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
ElementIndex, Elements, VecEltTy);
// Okay, this is a constant that covers multiple elements. Slice it up into
// pieces and insert each element-sized piece into the vector.
if (!isa<IntegerType>(C->getType()))
C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
C->getType()->getPrimitiveSizeInBits()));
unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
const Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
for (unsigned i = 0; i != NumElts; ++i) {
Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
i*ElementSize));
Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
if (!CollectInsertionElements(Piece, ElementIndex+i, Elements, VecEltTy))
return false;
}
return true;
}
if (!V->hasOneUse()) return false;
Instruction *I = dyn_cast<Instruction>(V);
if (I == 0) return false;
switch (I->getOpcode()) {
default: return false; // Unhandled case.
case Instruction::BitCast:
return CollectInsertionElements(I->getOperand(0), ElementIndex,
Elements, VecEltTy);
case Instruction::ZExt:
if (!isMultipleOfTypeSize(
I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
VecEltTy))
return false;
return CollectInsertionElements(I->getOperand(0), ElementIndex,
Elements, VecEltTy);
case Instruction::Or:
return CollectInsertionElements(I->getOperand(0), ElementIndex,
Elements, VecEltTy) &&
CollectInsertionElements(I->getOperand(1), ElementIndex,
Elements, VecEltTy);
case Instruction::Shl: {
// Must be shifting by a constant that is a multiple of the element size.
ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
if (CI == 0) return false;
if (!isMultipleOfTypeSize(CI->getZExtValue(), VecEltTy)) return false;
unsigned IndexShift = getTypeSizeIndex(CI->getZExtValue(), VecEltTy);
return CollectInsertionElements(I->getOperand(0), ElementIndex+IndexShift,
Elements, VecEltTy);
}
}
}
/// OptimizeIntegerToVectorInsertions - If the input is an 'or' instruction, we
/// may be doing shifts and ors to assemble the elements of the vector manually.
/// Try to rip the code out and replace it with insertelements. This is to
/// optimize code like this:
///
/// %tmp37 = bitcast float %inc to i32
/// %tmp38 = zext i32 %tmp37 to i64
/// %tmp31 = bitcast float %inc5 to i32
/// %tmp32 = zext i32 %tmp31 to i64
/// %tmp33 = shl i64 %tmp32, 32
/// %ins35 = or i64 %tmp33, %tmp38
/// %tmp43 = bitcast i64 %ins35 to <2 x float>
///
/// Into two insertelements that do "buildvector{%inc, %inc5}".
static Value *OptimizeIntegerToVectorInsertions(BitCastInst &CI,
InstCombiner &IC) {
const VectorType *DestVecTy = cast<VectorType>(CI.getType());
Value *IntInput = CI.getOperand(0);
SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
if (!CollectInsertionElements(IntInput, 0, Elements,
DestVecTy->getElementType()))
return 0;
// If we succeeded, we know that all of the element are specified by Elements
// or are zero if Elements has a null entry. Recast this as a set of
// insertions.
Value *Result = Constant::getNullValue(CI.getType());
for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
if (Elements[i] == 0) continue; // Unset element.
Result = IC.Builder->CreateInsertElement(Result, Elements[i],
IC.Builder->getInt32(i));
}
return Result;
}
/// OptimizeIntToFloatBitCast - See if we can optimize an integer->float/double
/// bitcast. The various long double bitcasts can't get in here.
static Instruction *OptimizeIntToFloatBitCast(BitCastInst &CI,InstCombiner &IC){
Value *Src = CI.getOperand(0);
const Type *DestTy = CI.getType();
// If this is a bitcast from int to float, check to see if the int is an
// extraction from a vector.
Value *VecInput = 0;
// bitcast(trunc(bitcast(somevector)))
if (match(Src, m_Trunc(m_BitCast(m_Value(VecInput)))) &&
isa<VectorType>(VecInput->getType())) {
const VectorType *VecTy = cast<VectorType>(VecInput->getType());
unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0) {
// If the element type of the vector doesn't match the result type,
// bitcast it to be a vector type we can extract from.
if (VecTy->getElementType() != DestTy) {
VecTy = VectorType::get(DestTy,
VecTy->getPrimitiveSizeInBits() / DestWidth);
VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
}
return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(0));
}
}
// bitcast(trunc(lshr(bitcast(somevector), cst))
ConstantInt *ShAmt = 0;
if (match(Src, m_Trunc(m_LShr(m_BitCast(m_Value(VecInput)),
m_ConstantInt(ShAmt)))) &&
isa<VectorType>(VecInput->getType())) {
const VectorType *VecTy = cast<VectorType>(VecInput->getType());
unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0 &&
ShAmt->getZExtValue() % DestWidth == 0) {
// If the element type of the vector doesn't match the result type,
// bitcast it to be a vector type we can extract from.
if (VecTy->getElementType() != DestTy) {
VecTy = VectorType::get(DestTy,
VecTy->getPrimitiveSizeInBits() / DestWidth);
VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
}
unsigned Elt = ShAmt->getZExtValue() / DestWidth;
return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt));
}
}
return 0;
}
Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
// If the operands are integer typed then apply the integer transforms,
// otherwise just apply the common ones.
Value *Src = CI.getOperand(0);
const Type *SrcTy = Src->getType();
const Type *DestTy = CI.getType();
// Get rid of casts from one type to the same type. These are useless and can
// be replaced by the operand.
if (DestTy == Src->getType())
return ReplaceInstUsesWith(CI, Src);
if (const PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
const PointerType *SrcPTy = cast<PointerType>(SrcTy);
const Type *DstElTy = DstPTy->getElementType();
const Type *SrcElTy = SrcPTy->getElementType();
// If the address spaces don't match, don't eliminate the bitcast, which is
// required for changing types.
if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace())
return 0;
// If we are casting a alloca to a pointer to a type of the same
// size, rewrite the allocation instruction to allocate the "right" type.
// There is no need to modify malloc calls because it is their bitcast that
// needs to be cleaned up.
if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
return V;
// If the source and destination are pointers, and this cast is equivalent
// to a getelementptr X, 0, 0, 0... turn it into the appropriate gep.
// This can enhance SROA and other transforms that want type-safe pointers.
Constant *ZeroUInt =
Constant::getNullValue(Type::getInt32Ty(CI.getContext()));
unsigned NumZeros = 0;
while (SrcElTy != DstElTy &&
isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() &&
SrcElTy->getNumContainedTypes() /* not "{}" */) {
SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
++NumZeros;
}
// If we found a path from the src to dest, create the getelementptr now.
if (SrcElTy == DstElTy) {
SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
return GetElementPtrInst::CreateInBounds(Src, Idxs.begin(), Idxs.end(),"",
((Instruction*)NULL));
}
}
// Try to optimize int -> float bitcasts.
if ((DestTy->isFloatTy() || DestTy->isDoubleTy()) && isa<IntegerType>(SrcTy))
if (Instruction *I = OptimizeIntToFloatBitCast(CI, *this))
return I;
if (const VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) {
Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType());
return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
// FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
}
if (isa<IntegerType>(SrcTy)) {
// If this is a cast from an integer to vector, check to see if the input
// is a trunc or zext of a bitcast from vector. If so, we can replace all
// the casts with a shuffle and (potentially) a bitcast.
if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
CastInst *SrcCast = cast<CastInst>(Src);
if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
if (isa<VectorType>(BCIn->getOperand(0)->getType()))
if (Instruction *I = OptimizeVectorResize(BCIn->getOperand(0),
cast<VectorType>(DestTy), *this))
return I;
}
// If the input is an 'or' instruction, we may be doing shifts and ors to
// assemble the elements of the vector manually. Try to rip the code out
// and replace it with insertelements.
if (Value *V = OptimizeIntegerToVectorInsertions(CI, *this))
return ReplaceInstUsesWith(CI, V);
}
}
if (const VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
if (SrcVTy->getNumElements() == 1 && !DestTy->isVectorTy()) {
Value *Elem =
Builder->CreateExtractElement(Src,
Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
return CastInst::Create(Instruction::BitCast, Elem, DestTy);
}
}
if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
// Okay, we have (bitcast (shuffle ..)). Check to see if this is
// a bitcast to a vector with the same # elts.
if (SVI->hasOneUse() && DestTy->isVectorTy() &&
cast<VectorType>(DestTy)->getNumElements() ==
SVI->getType()->getNumElements() &&
SVI->getType()->getNumElements() ==
cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements()) {
BitCastInst *Tmp;
// If either of the operands is a cast from CI.getType(), then
// evaluating the shuffle in the casted destination's type will allow
// us to eliminate at least one cast.
if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) &&
Tmp->getOperand(0)->getType() == DestTy) ||
((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) &&
Tmp->getOperand(0)->getType() == DestTy)) {
Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy);
Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy);
// Return a new shuffle vector. Use the same element ID's, as we
// know the vector types match #elts.
return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
}
}
}
if (SrcTy->isPointerTy())
return commonPointerCastTransforms(CI);
return commonCastTransforms(CI);
}