llvm-6502/lib/Target/ARM/ARMAsmPrinter.cpp
Jakob Stoklund Olesen 3e572ac2fb Align ARM constant pool islands via their basic block.
Previously, all ARM::CONSTPOOL_ENTRY instructions had a hardwired
alignment of 4 bytes emitted by ARMAsmPrinter.  Now the same alignment
is set on the basic block.

This is in preparation of supporting ARM constant pool islands with
different alignments.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145890 91177308-0d34-0410-b5e6-96231b3b80d8
2011-12-06 01:43:02 +00:00

1936 lines
70 KiB
C++

//===-- ARMAsmPrinter.cpp - Print machine code to an ARM .s file ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains a printer that converts from our internal representation
// of machine-dependent LLVM code to GAS-format ARM assembly language.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "asm-printer"
#include "ARM.h"
#include "ARMAsmPrinter.h"
#include "ARMBuildAttrs.h"
#include "ARMBaseRegisterInfo.h"
#include "ARMConstantPoolValue.h"
#include "ARMMachineFunctionInfo.h"
#include "ARMTargetMachine.h"
#include "ARMTargetObjectFile.h"
#include "InstPrinter/ARMInstPrinter.h"
#include "MCTargetDesc/ARMAddressingModes.h"
#include "MCTargetDesc/ARMMCExpr.h"
#include "llvm/Analysis/DebugInfo.h"
#include "llvm/Constants.h"
#include "llvm/Module.h"
#include "llvm/Type.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/CodeGen/MachineModuleInfoImpls.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCSectionMachO.h"
#include "llvm/MC/MCObjectStreamer.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Target/Mangler.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
#include <cctype>
using namespace llvm;
namespace {
// Per section and per symbol attributes are not supported.
// To implement them we would need the ability to delay this emission
// until the assembly file is fully parsed/generated as only then do we
// know the symbol and section numbers.
class AttributeEmitter {
public:
virtual void MaybeSwitchVendor(StringRef Vendor) = 0;
virtual void EmitAttribute(unsigned Attribute, unsigned Value) = 0;
virtual void EmitTextAttribute(unsigned Attribute, StringRef String) = 0;
virtual void Finish() = 0;
virtual ~AttributeEmitter() {}
};
class AsmAttributeEmitter : public AttributeEmitter {
MCStreamer &Streamer;
public:
AsmAttributeEmitter(MCStreamer &Streamer_) : Streamer(Streamer_) {}
void MaybeSwitchVendor(StringRef Vendor) { }
void EmitAttribute(unsigned Attribute, unsigned Value) {
Streamer.EmitRawText("\t.eabi_attribute " +
Twine(Attribute) + ", " + Twine(Value));
}
void EmitTextAttribute(unsigned Attribute, StringRef String) {
switch (Attribute) {
case ARMBuildAttrs::CPU_name:
Streamer.EmitRawText(StringRef("\t.cpu ") + String.lower());
break;
/* GAS requires .fpu to be emitted regardless of EABI attribute */
case ARMBuildAttrs::Advanced_SIMD_arch:
case ARMBuildAttrs::VFP_arch:
Streamer.EmitRawText(StringRef("\t.fpu ") + String.lower());
break;
default: assert(0 && "Unsupported Text attribute in ASM Mode"); break;
}
}
void Finish() { }
};
class ObjectAttributeEmitter : public AttributeEmitter {
// This structure holds all attributes, accounting for
// their string/numeric value, so we can later emmit them
// in declaration order, keeping all in the same vector
struct AttributeItemType {
enum {
HiddenAttribute = 0,
NumericAttribute,
TextAttribute
} Type;
unsigned Tag;
unsigned IntValue;
StringRef StringValue;
} AttributeItem;
MCObjectStreamer &Streamer;
StringRef CurrentVendor;
SmallVector<AttributeItemType, 64> Contents;
// Account for the ULEB/String size of each item,
// not just the number of items
size_t ContentsSize;
// FIXME: this should be in a more generic place, but
// getULEBSize() is in MCAsmInfo and will be moved to MCDwarf
size_t getULEBSize(int Value) {
size_t Size = 0;
do {
Value >>= 7;
Size += sizeof(int8_t); // Is this really necessary?
} while (Value);
return Size;
}
public:
ObjectAttributeEmitter(MCObjectStreamer &Streamer_) :
Streamer(Streamer_), CurrentVendor(""), ContentsSize(0) { }
void MaybeSwitchVendor(StringRef Vendor) {
assert(!Vendor.empty() && "Vendor cannot be empty.");
if (CurrentVendor.empty())
CurrentVendor = Vendor;
else if (CurrentVendor == Vendor)
return;
else
Finish();
CurrentVendor = Vendor;
assert(Contents.size() == 0);
}
void EmitAttribute(unsigned Attribute, unsigned Value) {
AttributeItemType attr = {
AttributeItemType::NumericAttribute,
Attribute,
Value,
StringRef("")
};
ContentsSize += getULEBSize(Attribute);
ContentsSize += getULEBSize(Value);
Contents.push_back(attr);
}
void EmitTextAttribute(unsigned Attribute, StringRef String) {
AttributeItemType attr = {
AttributeItemType::TextAttribute,
Attribute,
0,
String
};
ContentsSize += getULEBSize(Attribute);
// String + \0
ContentsSize += String.size()+1;
Contents.push_back(attr);
}
void Finish() {
// Vendor size + Vendor name + '\0'
const size_t VendorHeaderSize = 4 + CurrentVendor.size() + 1;
// Tag + Tag Size
const size_t TagHeaderSize = 1 + 4;
Streamer.EmitIntValue(VendorHeaderSize + TagHeaderSize + ContentsSize, 4);
Streamer.EmitBytes(CurrentVendor, 0);
Streamer.EmitIntValue(0, 1); // '\0'
Streamer.EmitIntValue(ARMBuildAttrs::File, 1);
Streamer.EmitIntValue(TagHeaderSize + ContentsSize, 4);
// Size should have been accounted for already, now
// emit each field as its type (ULEB or String)
for (unsigned int i=0; i<Contents.size(); ++i) {
AttributeItemType item = Contents[i];
Streamer.EmitULEB128IntValue(item.Tag, 0);
switch (item.Type) {
case AttributeItemType::NumericAttribute:
Streamer.EmitULEB128IntValue(item.IntValue, 0);
break;
case AttributeItemType::TextAttribute:
Streamer.EmitBytes(item.StringValue.upper(), 0);
Streamer.EmitIntValue(0, 1); // '\0'
break;
default:
assert(0 && "Invalid attribute type");
}
}
Contents.clear();
}
};
} // end of anonymous namespace
MachineLocation ARMAsmPrinter::
getDebugValueLocation(const MachineInstr *MI) const {
MachineLocation Location;
assert(MI->getNumOperands() == 4 && "Invalid no. of machine operands!");
// Frame address. Currently handles register +- offset only.
if (MI->getOperand(0).isReg() && MI->getOperand(1).isImm())
Location.set(MI->getOperand(0).getReg(), MI->getOperand(1).getImm());
else {
DEBUG(dbgs() << "DBG_VALUE instruction ignored! " << *MI << "\n");
}
return Location;
}
/// EmitDwarfRegOp - Emit dwarf register operation.
void ARMAsmPrinter::EmitDwarfRegOp(const MachineLocation &MLoc) const {
const TargetRegisterInfo *RI = TM.getRegisterInfo();
if (RI->getDwarfRegNum(MLoc.getReg(), false) != -1)
AsmPrinter::EmitDwarfRegOp(MLoc);
else {
unsigned Reg = MLoc.getReg();
if (Reg >= ARM::S0 && Reg <= ARM::S31) {
assert(ARM::S0 + 31 == ARM::S31 && "Unexpected ARM S register numbering");
// S registers are described as bit-pieces of a register
// S[2x] = DW_OP_regx(256 + (x>>1)) DW_OP_bit_piece(32, 0)
// S[2x+1] = DW_OP_regx(256 + (x>>1)) DW_OP_bit_piece(32, 32)
unsigned SReg = Reg - ARM::S0;
bool odd = SReg & 0x1;
unsigned Rx = 256 + (SReg >> 1);
OutStreamer.AddComment("DW_OP_regx for S register");
EmitInt8(dwarf::DW_OP_regx);
OutStreamer.AddComment(Twine(SReg));
EmitULEB128(Rx);
if (odd) {
OutStreamer.AddComment("DW_OP_bit_piece 32 32");
EmitInt8(dwarf::DW_OP_bit_piece);
EmitULEB128(32);
EmitULEB128(32);
} else {
OutStreamer.AddComment("DW_OP_bit_piece 32 0");
EmitInt8(dwarf::DW_OP_bit_piece);
EmitULEB128(32);
EmitULEB128(0);
}
} else if (Reg >= ARM::Q0 && Reg <= ARM::Q15) {
assert(ARM::Q0 + 15 == ARM::Q15 && "Unexpected ARM Q register numbering");
// Q registers Q0-Q15 are described by composing two D registers together.
// Qx = DW_OP_regx(256+2x) DW_OP_piece(8) DW_OP_regx(256+2x+1)
// DW_OP_piece(8)
unsigned QReg = Reg - ARM::Q0;
unsigned D1 = 256 + 2 * QReg;
unsigned D2 = D1 + 1;
OutStreamer.AddComment("DW_OP_regx for Q register: D1");
EmitInt8(dwarf::DW_OP_regx);
EmitULEB128(D1);
OutStreamer.AddComment("DW_OP_piece 8");
EmitInt8(dwarf::DW_OP_piece);
EmitULEB128(8);
OutStreamer.AddComment("DW_OP_regx for Q register: D2");
EmitInt8(dwarf::DW_OP_regx);
EmitULEB128(D2);
OutStreamer.AddComment("DW_OP_piece 8");
EmitInt8(dwarf::DW_OP_piece);
EmitULEB128(8);
}
}
}
void ARMAsmPrinter::EmitFunctionEntryLabel() {
OutStreamer.ForceCodeRegion();
if (AFI->isThumbFunction()) {
OutStreamer.EmitAssemblerFlag(MCAF_Code16);
OutStreamer.EmitThumbFunc(CurrentFnSym);
}
OutStreamer.EmitLabel(CurrentFnSym);
}
/// runOnMachineFunction - This uses the EmitInstruction()
/// method to print assembly for each instruction.
///
bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
AFI = MF.getInfo<ARMFunctionInfo>();
MCP = MF.getConstantPool();
return AsmPrinter::runOnMachineFunction(MF);
}
void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O, const char *Modifier) {
const MachineOperand &MO = MI->getOperand(OpNum);
unsigned TF = MO.getTargetFlags();
switch (MO.getType()) {
default:
assert(0 && "<unknown operand type>");
case MachineOperand::MO_Register: {
unsigned Reg = MO.getReg();
assert(TargetRegisterInfo::isPhysicalRegister(Reg));
assert(!MO.getSubReg() && "Subregs should be eliminated!");
O << ARMInstPrinter::getRegisterName(Reg);
break;
}
case MachineOperand::MO_Immediate: {
int64_t Imm = MO.getImm();
O << '#';
if ((Modifier && strcmp(Modifier, "lo16") == 0) ||
(TF == ARMII::MO_LO16))
O << ":lower16:";
else if ((Modifier && strcmp(Modifier, "hi16") == 0) ||
(TF == ARMII::MO_HI16))
O << ":upper16:";
O << Imm;
break;
}
case MachineOperand::MO_MachineBasicBlock:
O << *MO.getMBB()->getSymbol();
return;
case MachineOperand::MO_GlobalAddress: {
const GlobalValue *GV = MO.getGlobal();
if ((Modifier && strcmp(Modifier, "lo16") == 0) ||
(TF & ARMII::MO_LO16))
O << ":lower16:";
else if ((Modifier && strcmp(Modifier, "hi16") == 0) ||
(TF & ARMII::MO_HI16))
O << ":upper16:";
O << *Mang->getSymbol(GV);
printOffset(MO.getOffset(), O);
if (TF == ARMII::MO_PLT)
O << "(PLT)";
break;
}
case MachineOperand::MO_ExternalSymbol: {
O << *GetExternalSymbolSymbol(MO.getSymbolName());
if (TF == ARMII::MO_PLT)
O << "(PLT)";
break;
}
case MachineOperand::MO_ConstantPoolIndex:
O << *GetCPISymbol(MO.getIndex());
break;
case MachineOperand::MO_JumpTableIndex:
O << *GetJTISymbol(MO.getIndex());
break;
}
}
//===--------------------------------------------------------------------===//
MCSymbol *ARMAsmPrinter::
GetARMSetPICJumpTableLabel2(unsigned uid, unsigned uid2,
const MachineBasicBlock *MBB) const {
SmallString<60> Name;
raw_svector_ostream(Name) << MAI->getPrivateGlobalPrefix()
<< getFunctionNumber() << '_' << uid << '_' << uid2
<< "_set_" << MBB->getNumber();
return OutContext.GetOrCreateSymbol(Name.str());
}
MCSymbol *ARMAsmPrinter::
GetARMJTIPICJumpTableLabel2(unsigned uid, unsigned uid2) const {
SmallString<60> Name;
raw_svector_ostream(Name) << MAI->getPrivateGlobalPrefix() << "JTI"
<< getFunctionNumber() << '_' << uid << '_' << uid2;
return OutContext.GetOrCreateSymbol(Name.str());
}
MCSymbol *ARMAsmPrinter::GetARMSJLJEHLabel(void) const {
SmallString<60> Name;
raw_svector_ostream(Name) << MAI->getPrivateGlobalPrefix() << "SJLJEH"
<< getFunctionNumber();
return OutContext.GetOrCreateSymbol(Name.str());
}
bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
unsigned AsmVariant, const char *ExtraCode,
raw_ostream &O) {
// Does this asm operand have a single letter operand modifier?
if (ExtraCode && ExtraCode[0]) {
if (ExtraCode[1] != 0) return true; // Unknown modifier.
switch (ExtraCode[0]) {
default: return true; // Unknown modifier.
case 'a': // Print as a memory address.
if (MI->getOperand(OpNum).isReg()) {
O << "["
<< ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg())
<< "]";
return false;
}
// Fallthrough
case 'c': // Don't print "#" before an immediate operand.
if (!MI->getOperand(OpNum).isImm())
return true;
O << MI->getOperand(OpNum).getImm();
return false;
case 'P': // Print a VFP double precision register.
case 'q': // Print a NEON quad precision register.
printOperand(MI, OpNum, O);
return false;
case 'y': // Print a VFP single precision register as indexed double.
// This uses the ordering of the alias table to get the first 'd' register
// that overlaps the 's' register. Also, s0 is an odd register, hence the
// odd modulus check below.
if (MI->getOperand(OpNum).isReg()) {
unsigned Reg = MI->getOperand(OpNum).getReg();
const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
O << ARMInstPrinter::getRegisterName(TRI->getAliasSet(Reg)[0]) <<
(((Reg % 2) == 1) ? "[0]" : "[1]");
return false;
}
return true;
case 'B': // Bitwise inverse of integer or symbol without a preceding #.
if (!MI->getOperand(OpNum).isImm())
return true;
O << ~(MI->getOperand(OpNum).getImm());
return false;
case 'L': // The low 16 bits of an immediate constant.
if (!MI->getOperand(OpNum).isImm())
return true;
O << (MI->getOperand(OpNum).getImm() & 0xffff);
return false;
case 'M': { // A register range suitable for LDM/STM.
if (!MI->getOperand(OpNum).isReg())
return true;
const MachineOperand &MO = MI->getOperand(OpNum);
unsigned RegBegin = MO.getReg();
// This takes advantage of the 2 operand-ness of ldm/stm and that we've
// already got the operands in registers that are operands to the
// inline asm statement.
O << "{" << ARMInstPrinter::getRegisterName(RegBegin);
// FIXME: The register allocator not only may not have given us the
// registers in sequence, but may not be in ascending registers. This
// will require changes in the register allocator that'll need to be
// propagated down here if the operands change.
unsigned RegOps = OpNum + 1;
while (MI->getOperand(RegOps).isReg()) {
O << ", "
<< ARMInstPrinter::getRegisterName(MI->getOperand(RegOps).getReg());
RegOps++;
}
O << "}";
return false;
}
case 'R': // The most significant register of a pair.
case 'Q': { // The least significant register of a pair.
if (OpNum == 0)
return true;
const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1);
if (!FlagsOP.isImm())
return true;
unsigned Flags = FlagsOP.getImm();
unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
if (NumVals != 2)
return true;
unsigned RegOp = ExtraCode[0] == 'Q' ? OpNum : OpNum + 1;
if (RegOp >= MI->getNumOperands())
return true;
const MachineOperand &MO = MI->getOperand(RegOp);
if (!MO.isReg())
return true;
unsigned Reg = MO.getReg();
O << ARMInstPrinter::getRegisterName(Reg);
return false;
}
// These modifiers are not yet supported.
case 'p': // The high single-precision register of a VFP double-precision
// register.
case 'e': // The low doubleword register of a NEON quad register.
case 'f': // The high doubleword register of a NEON quad register.
case 'h': // A range of VFP/NEON registers suitable for VLD1/VST1.
case 'H': // The highest-numbered register of a pair.
return true;
}
}
printOperand(MI, OpNum, O);
return false;
}
bool ARMAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
unsigned OpNum, unsigned AsmVariant,
const char *ExtraCode,
raw_ostream &O) {
// Does this asm operand have a single letter operand modifier?
if (ExtraCode && ExtraCode[0]) {
if (ExtraCode[1] != 0) return true; // Unknown modifier.
switch (ExtraCode[0]) {
case 'A': // A memory operand for a VLD1/VST1 instruction.
default: return true; // Unknown modifier.
case 'm': // The base register of a memory operand.
if (!MI->getOperand(OpNum).isReg())
return true;
O << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg());
return false;
}
}
const MachineOperand &MO = MI->getOperand(OpNum);
assert(MO.isReg() && "unexpected inline asm memory operand");
O << "[" << ARMInstPrinter::getRegisterName(MO.getReg()) << "]";
return false;
}
void ARMAsmPrinter::EmitStartOfAsmFile(Module &M) {
if (Subtarget->isTargetDarwin()) {
Reloc::Model RelocM = TM.getRelocationModel();
if (RelocM == Reloc::PIC_ || RelocM == Reloc::DynamicNoPIC) {
// Declare all the text sections up front (before the DWARF sections
// emitted by AsmPrinter::doInitialization) so the assembler will keep
// them together at the beginning of the object file. This helps
// avoid out-of-range branches that are due a fundamental limitation of
// the way symbol offsets are encoded with the current Darwin ARM
// relocations.
const TargetLoweringObjectFileMachO &TLOFMacho =
static_cast<const TargetLoweringObjectFileMachO &>(
getObjFileLowering());
OutStreamer.SwitchSection(TLOFMacho.getTextSection());
OutStreamer.SwitchSection(TLOFMacho.getTextCoalSection());
OutStreamer.SwitchSection(TLOFMacho.getConstTextCoalSection());
if (RelocM == Reloc::DynamicNoPIC) {
const MCSection *sect =
OutContext.getMachOSection("__TEXT", "__symbol_stub4",
MCSectionMachO::S_SYMBOL_STUBS,
12, SectionKind::getText());
OutStreamer.SwitchSection(sect);
} else {
const MCSection *sect =
OutContext.getMachOSection("__TEXT", "__picsymbolstub4",
MCSectionMachO::S_SYMBOL_STUBS,
16, SectionKind::getText());
OutStreamer.SwitchSection(sect);
}
const MCSection *StaticInitSect =
OutContext.getMachOSection("__TEXT", "__StaticInit",
MCSectionMachO::S_REGULAR |
MCSectionMachO::S_ATTR_PURE_INSTRUCTIONS,
SectionKind::getText());
OutStreamer.SwitchSection(StaticInitSect);
}
}
// Use unified assembler syntax.
OutStreamer.EmitAssemblerFlag(MCAF_SyntaxUnified);
// Emit ARM Build Attributes
if (Subtarget->isTargetELF()) {
emitAttributes();
}
}
void ARMAsmPrinter::EmitEndOfAsmFile(Module &M) {
if (Subtarget->isTargetDarwin()) {
// All darwin targets use mach-o.
const TargetLoweringObjectFileMachO &TLOFMacho =
static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering());
MachineModuleInfoMachO &MMIMacho =
MMI->getObjFileInfo<MachineModuleInfoMachO>();
// Output non-lazy-pointers for external and common global variables.
MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList();
if (!Stubs.empty()) {
// Switch with ".non_lazy_symbol_pointer" directive.
OutStreamer.SwitchSection(TLOFMacho.getNonLazySymbolPointerSection());
EmitAlignment(2);
for (unsigned i = 0, e = Stubs.size(); i != e; ++i) {
// L_foo$stub:
OutStreamer.EmitLabel(Stubs[i].first);
// .indirect_symbol _foo
MachineModuleInfoImpl::StubValueTy &MCSym = Stubs[i].second;
OutStreamer.EmitSymbolAttribute(MCSym.getPointer(),MCSA_IndirectSymbol);
if (MCSym.getInt())
// External to current translation unit.
OutStreamer.EmitIntValue(0, 4/*size*/, 0/*addrspace*/);
else
// Internal to current translation unit.
//
// When we place the LSDA into the TEXT section, the type info
// pointers need to be indirect and pc-rel. We accomplish this by
// using NLPs; however, sometimes the types are local to the file.
// We need to fill in the value for the NLP in those cases.
OutStreamer.EmitValue(MCSymbolRefExpr::Create(MCSym.getPointer(),
OutContext),
4/*size*/, 0/*addrspace*/);
}
Stubs.clear();
OutStreamer.AddBlankLine();
}
Stubs = MMIMacho.GetHiddenGVStubList();
if (!Stubs.empty()) {
OutStreamer.SwitchSection(getObjFileLowering().getDataSection());
EmitAlignment(2);
for (unsigned i = 0, e = Stubs.size(); i != e; ++i) {
// L_foo$stub:
OutStreamer.EmitLabel(Stubs[i].first);
// .long _foo
OutStreamer.EmitValue(MCSymbolRefExpr::
Create(Stubs[i].second.getPointer(),
OutContext),
4/*size*/, 0/*addrspace*/);
}
Stubs.clear();
OutStreamer.AddBlankLine();
}
// Funny Darwin hack: This flag tells the linker that no global symbols
// contain code that falls through to other global symbols (e.g. the obvious
// implementation of multiple entry points). If this doesn't occur, the
// linker can safely perform dead code stripping. Since LLVM never
// generates code that does this, it is always safe to set.
OutStreamer.EmitAssemblerFlag(MCAF_SubsectionsViaSymbols);
}
}
//===----------------------------------------------------------------------===//
// Helper routines for EmitStartOfAsmFile() and EmitEndOfAsmFile()
// FIXME:
// The following seem like one-off assembler flags, but they actually need
// to appear in the .ARM.attributes section in ELF.
// Instead of subclassing the MCELFStreamer, we do the work here.
void ARMAsmPrinter::emitAttributes() {
emitARMAttributeSection();
/* GAS expect .fpu to be emitted, regardless of VFP build attribute */
bool emitFPU = false;
AttributeEmitter *AttrEmitter;
if (OutStreamer.hasRawTextSupport()) {
AttrEmitter = new AsmAttributeEmitter(OutStreamer);
emitFPU = true;
} else {
MCObjectStreamer &O = static_cast<MCObjectStreamer&>(OutStreamer);
AttrEmitter = new ObjectAttributeEmitter(O);
}
AttrEmitter->MaybeSwitchVendor("aeabi");
std::string CPUString = Subtarget->getCPUString();
if (CPUString == "cortex-a8" ||
Subtarget->isCortexA8()) {
AttrEmitter->EmitTextAttribute(ARMBuildAttrs::CPU_name, "cortex-a8");
AttrEmitter->EmitAttribute(ARMBuildAttrs::CPU_arch, ARMBuildAttrs::v7);
AttrEmitter->EmitAttribute(ARMBuildAttrs::CPU_arch_profile,
ARMBuildAttrs::ApplicationProfile);
AttrEmitter->EmitAttribute(ARMBuildAttrs::ARM_ISA_use,
ARMBuildAttrs::Allowed);
AttrEmitter->EmitAttribute(ARMBuildAttrs::THUMB_ISA_use,
ARMBuildAttrs::AllowThumb32);
// Fixme: figure out when this is emitted.
//AttrEmitter->EmitAttribute(ARMBuildAttrs::WMMX_arch,
// ARMBuildAttrs::AllowWMMXv1);
//
/// ADD additional Else-cases here!
} else if (CPUString == "xscale") {
AttrEmitter->EmitAttribute(ARMBuildAttrs::CPU_arch, ARMBuildAttrs::v5TEJ);
AttrEmitter->EmitAttribute(ARMBuildAttrs::ARM_ISA_use,
ARMBuildAttrs::Allowed);
AttrEmitter->EmitAttribute(ARMBuildAttrs::THUMB_ISA_use,
ARMBuildAttrs::Allowed);
} else if (CPUString == "generic") {
// FIXME: Why these defaults?
AttrEmitter->EmitAttribute(ARMBuildAttrs::CPU_arch, ARMBuildAttrs::v4T);
AttrEmitter->EmitAttribute(ARMBuildAttrs::ARM_ISA_use,
ARMBuildAttrs::Allowed);
AttrEmitter->EmitAttribute(ARMBuildAttrs::THUMB_ISA_use,
ARMBuildAttrs::Allowed);
}
if (Subtarget->hasNEON() && emitFPU) {
/* NEON is not exactly a VFP architecture, but GAS emit one of
* neon/vfpv3/vfpv2 for .fpu parameters */
AttrEmitter->EmitTextAttribute(ARMBuildAttrs::Advanced_SIMD_arch, "neon");
/* If emitted for NEON, omit from VFP below, since you can have both
* NEON and VFP in build attributes but only one .fpu */
emitFPU = false;
}
/* VFPv3 + .fpu */
if (Subtarget->hasVFP3()) {
AttrEmitter->EmitAttribute(ARMBuildAttrs::VFP_arch,
ARMBuildAttrs::AllowFPv3A);
if (emitFPU)
AttrEmitter->EmitTextAttribute(ARMBuildAttrs::VFP_arch, "vfpv3");
/* VFPv2 + .fpu */
} else if (Subtarget->hasVFP2()) {
AttrEmitter->EmitAttribute(ARMBuildAttrs::VFP_arch,
ARMBuildAttrs::AllowFPv2);
if (emitFPU)
AttrEmitter->EmitTextAttribute(ARMBuildAttrs::VFP_arch, "vfpv2");
}
/* TODO: ARMBuildAttrs::Allowed is not completely accurate,
* since NEON can have 1 (allowed) or 2 (MAC operations) */
if (Subtarget->hasNEON()) {
AttrEmitter->EmitAttribute(ARMBuildAttrs::Advanced_SIMD_arch,
ARMBuildAttrs::Allowed);
}
// Signal various FP modes.
if (!TM.Options.UnsafeFPMath) {
AttrEmitter->EmitAttribute(ARMBuildAttrs::ABI_FP_denormal,
ARMBuildAttrs::Allowed);
AttrEmitter->EmitAttribute(ARMBuildAttrs::ABI_FP_exceptions,
ARMBuildAttrs::Allowed);
}
if (TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath)
AttrEmitter->EmitAttribute(ARMBuildAttrs::ABI_FP_number_model,
ARMBuildAttrs::Allowed);
else
AttrEmitter->EmitAttribute(ARMBuildAttrs::ABI_FP_number_model,
ARMBuildAttrs::AllowIEE754);
// FIXME: add more flags to ARMBuildAttrs.h
// 8-bytes alignment stuff.
AttrEmitter->EmitAttribute(ARMBuildAttrs::ABI_align8_needed, 1);
AttrEmitter->EmitAttribute(ARMBuildAttrs::ABI_align8_preserved, 1);
// Hard float. Use both S and D registers and conform to AAPCS-VFP.
if (Subtarget->isAAPCS_ABI() && TM.Options.FloatABIType == FloatABI::Hard) {
AttrEmitter->EmitAttribute(ARMBuildAttrs::ABI_HardFP_use, 3);
AttrEmitter->EmitAttribute(ARMBuildAttrs::ABI_VFP_args, 1);
}
// FIXME: Should we signal R9 usage?
if (Subtarget->hasDivide())
AttrEmitter->EmitAttribute(ARMBuildAttrs::DIV_use, 1);
AttrEmitter->Finish();
delete AttrEmitter;
}
void ARMAsmPrinter::emitARMAttributeSection() {
// <format-version>
// [ <section-length> "vendor-name"
// [ <file-tag> <size> <attribute>*
// | <section-tag> <size> <section-number>* 0 <attribute>*
// | <symbol-tag> <size> <symbol-number>* 0 <attribute>*
// ]+
// ]*
if (OutStreamer.hasRawTextSupport())
return;
const ARMElfTargetObjectFile &TLOFELF =
static_cast<const ARMElfTargetObjectFile &>
(getObjFileLowering());
OutStreamer.SwitchSection(TLOFELF.getAttributesSection());
// Format version
OutStreamer.EmitIntValue(0x41, 1);
}
//===----------------------------------------------------------------------===//
static MCSymbol *getPICLabel(const char *Prefix, unsigned FunctionNumber,
unsigned LabelId, MCContext &Ctx) {
MCSymbol *Label = Ctx.GetOrCreateSymbol(Twine(Prefix)
+ "PC" + Twine(FunctionNumber) + "_" + Twine(LabelId));
return Label;
}
static MCSymbolRefExpr::VariantKind
getModifierVariantKind(ARMCP::ARMCPModifier Modifier) {
switch (Modifier) {
default: llvm_unreachable("Unknown modifier!");
case ARMCP::no_modifier: return MCSymbolRefExpr::VK_None;
case ARMCP::TLSGD: return MCSymbolRefExpr::VK_ARM_TLSGD;
case ARMCP::TPOFF: return MCSymbolRefExpr::VK_ARM_TPOFF;
case ARMCP::GOTTPOFF: return MCSymbolRefExpr::VK_ARM_GOTTPOFF;
case ARMCP::GOT: return MCSymbolRefExpr::VK_ARM_GOT;
case ARMCP::GOTOFF: return MCSymbolRefExpr::VK_ARM_GOTOFF;
}
return MCSymbolRefExpr::VK_None;
}
MCSymbol *ARMAsmPrinter::GetARMGVSymbol(const GlobalValue *GV) {
bool isIndirect = Subtarget->isTargetDarwin() &&
Subtarget->GVIsIndirectSymbol(GV, TM.getRelocationModel());
if (!isIndirect)
return Mang->getSymbol(GV);
// FIXME: Remove this when Darwin transition to @GOT like syntax.
MCSymbol *MCSym = GetSymbolWithGlobalValueBase(GV, "$non_lazy_ptr");
MachineModuleInfoMachO &MMIMachO =
MMI->getObjFileInfo<MachineModuleInfoMachO>();
MachineModuleInfoImpl::StubValueTy &StubSym =
GV->hasHiddenVisibility() ? MMIMachO.getHiddenGVStubEntry(MCSym) :
MMIMachO.getGVStubEntry(MCSym);
if (StubSym.getPointer() == 0)
StubSym = MachineModuleInfoImpl::
StubValueTy(Mang->getSymbol(GV), !GV->hasInternalLinkage());
return MCSym;
}
void ARMAsmPrinter::
EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
int Size = TM.getTargetData()->getTypeAllocSize(MCPV->getType());
ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV);
MCSymbol *MCSym;
if (ACPV->isLSDA()) {
SmallString<128> Str;
raw_svector_ostream OS(Str);
OS << MAI->getPrivateGlobalPrefix() << "_LSDA_" << getFunctionNumber();
MCSym = OutContext.GetOrCreateSymbol(OS.str());
} else if (ACPV->isBlockAddress()) {
const BlockAddress *BA =
cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress();
MCSym = GetBlockAddressSymbol(BA);
} else if (ACPV->isGlobalValue()) {
const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV();
MCSym = GetARMGVSymbol(GV);
} else if (ACPV->isMachineBasicBlock()) {
const MachineBasicBlock *MBB = cast<ARMConstantPoolMBB>(ACPV)->getMBB();
MCSym = MBB->getSymbol();
} else {
assert(ACPV->isExtSymbol() && "unrecognized constant pool value");
const char *Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol();
MCSym = GetExternalSymbolSymbol(Sym);
}
// Create an MCSymbol for the reference.
const MCExpr *Expr =
MCSymbolRefExpr::Create(MCSym, getModifierVariantKind(ACPV->getModifier()),
OutContext);
if (ACPV->getPCAdjustment()) {
MCSymbol *PCLabel = getPICLabel(MAI->getPrivateGlobalPrefix(),
getFunctionNumber(),
ACPV->getLabelId(),
OutContext);
const MCExpr *PCRelExpr = MCSymbolRefExpr::Create(PCLabel, OutContext);
PCRelExpr =
MCBinaryExpr::CreateAdd(PCRelExpr,
MCConstantExpr::Create(ACPV->getPCAdjustment(),
OutContext),
OutContext);
if (ACPV->mustAddCurrentAddress()) {
// We want "(<expr> - .)", but MC doesn't have a concept of the '.'
// label, so just emit a local label end reference that instead.
MCSymbol *DotSym = OutContext.CreateTempSymbol();
OutStreamer.EmitLabel(DotSym);
const MCExpr *DotExpr = MCSymbolRefExpr::Create(DotSym, OutContext);
PCRelExpr = MCBinaryExpr::CreateSub(PCRelExpr, DotExpr, OutContext);
}
Expr = MCBinaryExpr::CreateSub(Expr, PCRelExpr, OutContext);
}
OutStreamer.EmitValue(Expr, Size);
}
void ARMAsmPrinter::EmitJumpTable(const MachineInstr *MI) {
unsigned Opcode = MI->getOpcode();
int OpNum = 1;
if (Opcode == ARM::BR_JTadd)
OpNum = 2;
else if (Opcode == ARM::BR_JTm)
OpNum = 3;
const MachineOperand &MO1 = MI->getOperand(OpNum);
const MachineOperand &MO2 = MI->getOperand(OpNum+1); // Unique Id
unsigned JTI = MO1.getIndex();
// Tag the jump table appropriately for precise disassembly.
OutStreamer.EmitJumpTable32Region();
// Emit a label for the jump table.
MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel2(JTI, MO2.getImm());
OutStreamer.EmitLabel(JTISymbol);
// Emit each entry of the table.
const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) {
MachineBasicBlock *MBB = JTBBs[i];
// Construct an MCExpr for the entry. We want a value of the form:
// (BasicBlockAddr - TableBeginAddr)
//
// For example, a table with entries jumping to basic blocks BB0 and BB1
// would look like:
// LJTI_0_0:
// .word (LBB0 - LJTI_0_0)
// .word (LBB1 - LJTI_0_0)
const MCExpr *Expr = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
if (TM.getRelocationModel() == Reloc::PIC_)
Expr = MCBinaryExpr::CreateSub(Expr, MCSymbolRefExpr::Create(JTISymbol,
OutContext),
OutContext);
// If we're generating a table of Thumb addresses in static relocation
// model, we need to add one to keep interworking correctly.
else if (AFI->isThumbFunction())
Expr = MCBinaryExpr::CreateAdd(Expr, MCConstantExpr::Create(1,OutContext),
OutContext);
OutStreamer.EmitValue(Expr, 4);
}
}
void ARMAsmPrinter::EmitJump2Table(const MachineInstr *MI) {
unsigned Opcode = MI->getOpcode();
int OpNum = (Opcode == ARM::t2BR_JT) ? 2 : 1;
const MachineOperand &MO1 = MI->getOperand(OpNum);
const MachineOperand &MO2 = MI->getOperand(OpNum+1); // Unique Id
unsigned JTI = MO1.getIndex();
// Emit a label for the jump table.
if (MI->getOpcode() == ARM::t2TBB_JT) {
OutStreamer.EmitJumpTable8Region();
} else if (MI->getOpcode() == ARM::t2TBH_JT) {
OutStreamer.EmitJumpTable16Region();
} else {
OutStreamer.EmitJumpTable32Region();
}
MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel2(JTI, MO2.getImm());
OutStreamer.EmitLabel(JTISymbol);
// Emit each entry of the table.
const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
unsigned OffsetWidth = 4;
if (MI->getOpcode() == ARM::t2TBB_JT)
OffsetWidth = 1;
else if (MI->getOpcode() == ARM::t2TBH_JT)
OffsetWidth = 2;
for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) {
MachineBasicBlock *MBB = JTBBs[i];
const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::Create(MBB->getSymbol(),
OutContext);
// If this isn't a TBB or TBH, the entries are direct branch instructions.
if (OffsetWidth == 4) {
MCInst BrInst;
BrInst.setOpcode(ARM::t2B);
BrInst.addOperand(MCOperand::CreateExpr(MBBSymbolExpr));
BrInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
BrInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(BrInst);
continue;
}
// Otherwise it's an offset from the dispatch instruction. Construct an
// MCExpr for the entry. We want a value of the form:
// (BasicBlockAddr - TableBeginAddr) / 2
//
// For example, a TBB table with entries jumping to basic blocks BB0 and BB1
// would look like:
// LJTI_0_0:
// .byte (LBB0 - LJTI_0_0) / 2
// .byte (LBB1 - LJTI_0_0) / 2
const MCExpr *Expr =
MCBinaryExpr::CreateSub(MBBSymbolExpr,
MCSymbolRefExpr::Create(JTISymbol, OutContext),
OutContext);
Expr = MCBinaryExpr::CreateDiv(Expr, MCConstantExpr::Create(2, OutContext),
OutContext);
OutStreamer.EmitValue(Expr, OffsetWidth);
}
}
void ARMAsmPrinter::PrintDebugValueComment(const MachineInstr *MI,
raw_ostream &OS) {
unsigned NOps = MI->getNumOperands();
assert(NOps==4);
OS << '\t' << MAI->getCommentString() << "DEBUG_VALUE: ";
// cast away const; DIetc do not take const operands for some reason.
DIVariable V(const_cast<MDNode *>(MI->getOperand(NOps-1).getMetadata()));
OS << V.getName();
OS << " <- ";
// Frame address. Currently handles register +- offset only.
assert(MI->getOperand(0).isReg() && MI->getOperand(1).isImm());
OS << '['; printOperand(MI, 0, OS); OS << '+'; printOperand(MI, 1, OS);
OS << ']';
OS << "+";
printOperand(MI, NOps-2, OS);
}
static void populateADROperands(MCInst &Inst, unsigned Dest,
const MCSymbol *Label,
unsigned pred, unsigned ccreg,
MCContext &Ctx) {
const MCExpr *SymbolExpr = MCSymbolRefExpr::Create(Label, Ctx);
Inst.addOperand(MCOperand::CreateReg(Dest));
Inst.addOperand(MCOperand::CreateExpr(SymbolExpr));
// Add predicate operands.
Inst.addOperand(MCOperand::CreateImm(pred));
Inst.addOperand(MCOperand::CreateReg(ccreg));
}
void ARMAsmPrinter::EmitPatchedInstruction(const MachineInstr *MI,
unsigned Opcode) {
MCInst TmpInst;
// Emit the instruction as usual, just patch the opcode.
LowerARMMachineInstrToMCInst(MI, TmpInst, *this);
TmpInst.setOpcode(Opcode);
OutStreamer.EmitInstruction(TmpInst);
}
void ARMAsmPrinter::EmitUnwindingInstruction(const MachineInstr *MI) {
assert(MI->getFlag(MachineInstr::FrameSetup) &&
"Only instruction which are involved into frame setup code are allowed");
const MachineFunction &MF = *MI->getParent()->getParent();
const TargetRegisterInfo *RegInfo = MF.getTarget().getRegisterInfo();
const ARMFunctionInfo &AFI = *MF.getInfo<ARMFunctionInfo>();
unsigned FramePtr = RegInfo->getFrameRegister(MF);
unsigned Opc = MI->getOpcode();
unsigned SrcReg, DstReg;
if (Opc == ARM::tPUSH || Opc == ARM::tLDRpci) {
// Two special cases:
// 1) tPUSH does not have src/dst regs.
// 2) for Thumb1 code we sometimes materialize the constant via constpool
// load. Yes, this is pretty fragile, but for now I don't see better
// way... :(
SrcReg = DstReg = ARM::SP;
} else {
SrcReg = MI->getOperand(1).getReg();
DstReg = MI->getOperand(0).getReg();
}
// Try to figure out the unwinding opcode out of src / dst regs.
if (MI->getDesc().mayStore()) {
// Register saves.
assert(DstReg == ARM::SP &&
"Only stack pointer as a destination reg is supported");
SmallVector<unsigned, 4> RegList;
// Skip src & dst reg, and pred ops.
unsigned StartOp = 2 + 2;
// Use all the operands.
unsigned NumOffset = 0;
switch (Opc) {
default:
MI->dump();
assert(0 && "Unsupported opcode for unwinding information");
case ARM::tPUSH:
// Special case here: no src & dst reg, but two extra imp ops.
StartOp = 2; NumOffset = 2;
case ARM::STMDB_UPD:
case ARM::t2STMDB_UPD:
case ARM::VSTMDDB_UPD:
assert(SrcReg == ARM::SP &&
"Only stack pointer as a source reg is supported");
for (unsigned i = StartOp, NumOps = MI->getNumOperands() - NumOffset;
i != NumOps; ++i)
RegList.push_back(MI->getOperand(i).getReg());
break;
case ARM::STR_PRE_IMM:
case ARM::STR_PRE_REG:
assert(MI->getOperand(2).getReg() == ARM::SP &&
"Only stack pointer as a source reg is supported");
RegList.push_back(SrcReg);
break;
}
OutStreamer.EmitRegSave(RegList, Opc == ARM::VSTMDDB_UPD);
} else {
// Changes of stack / frame pointer.
if (SrcReg == ARM::SP) {
int64_t Offset = 0;
switch (Opc) {
default:
MI->dump();
assert(0 && "Unsupported opcode for unwinding information");
case ARM::MOVr:
Offset = 0;
break;
case ARM::ADDri:
Offset = -MI->getOperand(2).getImm();
break;
case ARM::SUBri:
Offset = MI->getOperand(2).getImm();
break;
case ARM::tSUBspi:
Offset = MI->getOperand(2).getImm()*4;
break;
case ARM::tADDspi:
case ARM::tADDrSPi:
Offset = -MI->getOperand(2).getImm()*4;
break;
case ARM::tLDRpci: {
// Grab the constpool index and check, whether it corresponds to
// original or cloned constpool entry.
unsigned CPI = MI->getOperand(1).getIndex();
const MachineConstantPool *MCP = MF.getConstantPool();
if (CPI >= MCP->getConstants().size())
CPI = AFI.getOriginalCPIdx(CPI);
assert(CPI != -1U && "Invalid constpool index");
// Derive the actual offset.
const MachineConstantPoolEntry &CPE = MCP->getConstants()[CPI];
assert(!CPE.isMachineConstantPoolEntry() && "Invalid constpool entry");
// FIXME: Check for user, it should be "add" instruction!
Offset = -cast<ConstantInt>(CPE.Val.ConstVal)->getSExtValue();
break;
}
}
if (DstReg == FramePtr && FramePtr != ARM::SP)
// Set-up of the frame pointer. Positive values correspond to "add"
// instruction.
OutStreamer.EmitSetFP(FramePtr, ARM::SP, -Offset);
else if (DstReg == ARM::SP) {
// Change of SP by an offset. Positive values correspond to "sub"
// instruction.
OutStreamer.EmitPad(Offset);
} else {
MI->dump();
assert(0 && "Unsupported opcode for unwinding information");
}
} else if (DstReg == ARM::SP) {
// FIXME: .movsp goes here
MI->dump();
assert(0 && "Unsupported opcode for unwinding information");
}
else {
MI->dump();
assert(0 && "Unsupported opcode for unwinding information");
}
}
}
extern cl::opt<bool> EnableARMEHABI;
// Simple pseudo-instructions have their lowering (with expansion to real
// instructions) auto-generated.
#include "ARMGenMCPseudoLowering.inc"
void ARMAsmPrinter::EmitInstruction(const MachineInstr *MI) {
if (MI->getOpcode() != ARM::CONSTPOOL_ENTRY)
OutStreamer.EmitCodeRegion();
// Emit unwinding stuff for frame-related instructions
if (EnableARMEHABI && MI->getFlag(MachineInstr::FrameSetup))
EmitUnwindingInstruction(MI);
// Do any auto-generated pseudo lowerings.
if (emitPseudoExpansionLowering(OutStreamer, MI))
return;
assert(!convertAddSubFlagsOpcode(MI->getOpcode()) &&
"Pseudo flag setting opcode should be expanded early");
// Check for manual lowerings.
unsigned Opc = MI->getOpcode();
switch (Opc) {
case ARM::t2MOVi32imm: assert(0 && "Should be lowered by thumb2it pass");
case ARM::DBG_VALUE: {
if (isVerbose() && OutStreamer.hasRawTextSupport()) {
SmallString<128> TmpStr;
raw_svector_ostream OS(TmpStr);
PrintDebugValueComment(MI, OS);
OutStreamer.EmitRawText(StringRef(OS.str()));
}
return;
}
case ARM::LEApcrel:
case ARM::tLEApcrel:
case ARM::t2LEApcrel: {
// FIXME: Need to also handle globals and externals
MCInst TmpInst;
TmpInst.setOpcode(MI->getOpcode() == ARM::t2LEApcrel ? ARM::t2ADR
: (MI->getOpcode() == ARM::tLEApcrel ? ARM::tADR
: ARM::ADR));
populateADROperands(TmpInst, MI->getOperand(0).getReg(),
GetCPISymbol(MI->getOperand(1).getIndex()),
MI->getOperand(2).getImm(), MI->getOperand(3).getReg(),
OutContext);
OutStreamer.EmitInstruction(TmpInst);
return;
}
case ARM::LEApcrelJT:
case ARM::tLEApcrelJT:
case ARM::t2LEApcrelJT: {
MCInst TmpInst;
TmpInst.setOpcode(MI->getOpcode() == ARM::t2LEApcrelJT ? ARM::t2ADR
: (MI->getOpcode() == ARM::tLEApcrelJT ? ARM::tADR
: ARM::ADR));
populateADROperands(TmpInst, MI->getOperand(0).getReg(),
GetARMJTIPICJumpTableLabel2(MI->getOperand(1).getIndex(),
MI->getOperand(2).getImm()),
MI->getOperand(3).getImm(), MI->getOperand(4).getReg(),
OutContext);
OutStreamer.EmitInstruction(TmpInst);
return;
}
// Darwin call instructions are just normal call instructions with different
// clobber semantics (they clobber R9).
case ARM::BXr9_CALL:
case ARM::BX_CALL: {
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::MOVr);
TmpInst.addOperand(MCOperand::CreateReg(ARM::LR));
TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
// Add predicate operands.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
// Add 's' bit operand (always reg0 for this)
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::BX);
TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
OutStreamer.EmitInstruction(TmpInst);
}
return;
}
case ARM::tBXr9_CALL:
case ARM::tBX_CALL: {
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::tMOVr);
TmpInst.addOperand(MCOperand::CreateReg(ARM::LR));
TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
// Add predicate operands.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::tBX);
TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
// Add predicate operands.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
}
return;
}
case ARM::BMOVPCRXr9_CALL:
case ARM::BMOVPCRX_CALL: {
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::MOVr);
TmpInst.addOperand(MCOperand::CreateReg(ARM::LR));
TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
// Add predicate operands.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
// Add 's' bit operand (always reg0 for this)
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::MOVr);
TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
// Add predicate operands.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
// Add 's' bit operand (always reg0 for this)
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
}
return;
}
case ARM::MOVi16_ga_pcrel:
case ARM::t2MOVi16_ga_pcrel: {
MCInst TmpInst;
TmpInst.setOpcode(Opc == ARM::MOVi16_ga_pcrel? ARM::MOVi16 : ARM::t2MOVi16);
TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
unsigned TF = MI->getOperand(1).getTargetFlags();
bool isPIC = TF == ARMII::MO_LO16_NONLAZY_PIC;
const GlobalValue *GV = MI->getOperand(1).getGlobal();
MCSymbol *GVSym = GetARMGVSymbol(GV);
const MCExpr *GVSymExpr = MCSymbolRefExpr::Create(GVSym, OutContext);
if (isPIC) {
MCSymbol *LabelSym = getPICLabel(MAI->getPrivateGlobalPrefix(),
getFunctionNumber(),
MI->getOperand(2).getImm(), OutContext);
const MCExpr *LabelSymExpr= MCSymbolRefExpr::Create(LabelSym, OutContext);
unsigned PCAdj = (Opc == ARM::MOVi16_ga_pcrel) ? 8 : 4;
const MCExpr *PCRelExpr =
ARMMCExpr::CreateLower16(MCBinaryExpr::CreateSub(GVSymExpr,
MCBinaryExpr::CreateAdd(LabelSymExpr,
MCConstantExpr::Create(PCAdj, OutContext),
OutContext), OutContext), OutContext);
TmpInst.addOperand(MCOperand::CreateExpr(PCRelExpr));
} else {
const MCExpr *RefExpr= ARMMCExpr::CreateLower16(GVSymExpr, OutContext);
TmpInst.addOperand(MCOperand::CreateExpr(RefExpr));
}
// Add predicate operands.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
// Add 's' bit operand (always reg0 for this)
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
return;
}
case ARM::MOVTi16_ga_pcrel:
case ARM::t2MOVTi16_ga_pcrel: {
MCInst TmpInst;
TmpInst.setOpcode(Opc == ARM::MOVTi16_ga_pcrel
? ARM::MOVTi16 : ARM::t2MOVTi16);
TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(1).getReg()));
unsigned TF = MI->getOperand(2).getTargetFlags();
bool isPIC = TF == ARMII::MO_HI16_NONLAZY_PIC;
const GlobalValue *GV = MI->getOperand(2).getGlobal();
MCSymbol *GVSym = GetARMGVSymbol(GV);
const MCExpr *GVSymExpr = MCSymbolRefExpr::Create(GVSym, OutContext);
if (isPIC) {
MCSymbol *LabelSym = getPICLabel(MAI->getPrivateGlobalPrefix(),
getFunctionNumber(),
MI->getOperand(3).getImm(), OutContext);
const MCExpr *LabelSymExpr= MCSymbolRefExpr::Create(LabelSym, OutContext);
unsigned PCAdj = (Opc == ARM::MOVTi16_ga_pcrel) ? 8 : 4;
const MCExpr *PCRelExpr =
ARMMCExpr::CreateUpper16(MCBinaryExpr::CreateSub(GVSymExpr,
MCBinaryExpr::CreateAdd(LabelSymExpr,
MCConstantExpr::Create(PCAdj, OutContext),
OutContext), OutContext), OutContext);
TmpInst.addOperand(MCOperand::CreateExpr(PCRelExpr));
} else {
const MCExpr *RefExpr= ARMMCExpr::CreateUpper16(GVSymExpr, OutContext);
TmpInst.addOperand(MCOperand::CreateExpr(RefExpr));
}
// Add predicate operands.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
// Add 's' bit operand (always reg0 for this)
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
return;
}
case ARM::tPICADD: {
// This is a pseudo op for a label + instruction sequence, which looks like:
// LPC0:
// add r0, pc
// This adds the address of LPC0 to r0.
// Emit the label.
OutStreamer.EmitLabel(getPICLabel(MAI->getPrivateGlobalPrefix(),
getFunctionNumber(), MI->getOperand(2).getImm(),
OutContext));
// Form and emit the add.
MCInst AddInst;
AddInst.setOpcode(ARM::tADDhirr);
AddInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
AddInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
AddInst.addOperand(MCOperand::CreateReg(ARM::PC));
// Add predicate operands.
AddInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
AddInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(AddInst);
return;
}
case ARM::PICADD: {
// This is a pseudo op for a label + instruction sequence, which looks like:
// LPC0:
// add r0, pc, r0
// This adds the address of LPC0 to r0.
// Emit the label.
OutStreamer.EmitLabel(getPICLabel(MAI->getPrivateGlobalPrefix(),
getFunctionNumber(), MI->getOperand(2).getImm(),
OutContext));
// Form and emit the add.
MCInst AddInst;
AddInst.setOpcode(ARM::ADDrr);
AddInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
AddInst.addOperand(MCOperand::CreateReg(ARM::PC));
AddInst.addOperand(MCOperand::CreateReg(MI->getOperand(1).getReg()));
// Add predicate operands.
AddInst.addOperand(MCOperand::CreateImm(MI->getOperand(3).getImm()));
AddInst.addOperand(MCOperand::CreateReg(MI->getOperand(4).getReg()));
// Add 's' bit operand (always reg0 for this)
AddInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(AddInst);
return;
}
case ARM::PICSTR:
case ARM::PICSTRB:
case ARM::PICSTRH:
case ARM::PICLDR:
case ARM::PICLDRB:
case ARM::PICLDRH:
case ARM::PICLDRSB:
case ARM::PICLDRSH: {
// This is a pseudo op for a label + instruction sequence, which looks like:
// LPC0:
// OP r0, [pc, r0]
// The LCP0 label is referenced by a constant pool entry in order to get
// a PC-relative address at the ldr instruction.
// Emit the label.
OutStreamer.EmitLabel(getPICLabel(MAI->getPrivateGlobalPrefix(),
getFunctionNumber(), MI->getOperand(2).getImm(),
OutContext));
// Form and emit the load
unsigned Opcode;
switch (MI->getOpcode()) {
default:
llvm_unreachable("Unexpected opcode!");
case ARM::PICSTR: Opcode = ARM::STRrs; break;
case ARM::PICSTRB: Opcode = ARM::STRBrs; break;
case ARM::PICSTRH: Opcode = ARM::STRH; break;
case ARM::PICLDR: Opcode = ARM::LDRrs; break;
case ARM::PICLDRB: Opcode = ARM::LDRBrs; break;
case ARM::PICLDRH: Opcode = ARM::LDRH; break;
case ARM::PICLDRSB: Opcode = ARM::LDRSB; break;
case ARM::PICLDRSH: Opcode = ARM::LDRSH; break;
}
MCInst LdStInst;
LdStInst.setOpcode(Opcode);
LdStInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
LdStInst.addOperand(MCOperand::CreateReg(ARM::PC));
LdStInst.addOperand(MCOperand::CreateReg(MI->getOperand(1).getReg()));
LdStInst.addOperand(MCOperand::CreateImm(0));
// Add predicate operands.
LdStInst.addOperand(MCOperand::CreateImm(MI->getOperand(3).getImm()));
LdStInst.addOperand(MCOperand::CreateReg(MI->getOperand(4).getReg()));
OutStreamer.EmitInstruction(LdStInst);
return;
}
case ARM::CONSTPOOL_ENTRY: {
/// CONSTPOOL_ENTRY - This instruction represents a floating constant pool
/// in the function. The first operand is the ID# for this instruction, the
/// second is the index into the MachineConstantPool that this is, the third
/// is the size in bytes of this constant pool entry.
/// The required alignment is specified on the basic block holding this MI.
unsigned LabelId = (unsigned)MI->getOperand(0).getImm();
unsigned CPIdx = (unsigned)MI->getOperand(1).getIndex();
// Mark the constant pool entry as data if we're not already in a data
// region.
OutStreamer.EmitDataRegion();
OutStreamer.EmitLabel(GetCPISymbol(LabelId));
const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx];
if (MCPE.isMachineConstantPoolEntry())
EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal);
else
EmitGlobalConstant(MCPE.Val.ConstVal);
return;
}
case ARM::t2BR_JT: {
// Lower and emit the instruction itself, then the jump table following it.
MCInst TmpInst;
TmpInst.setOpcode(ARM::tMOVr);
TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
// Add predicate operands.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
// Output the data for the jump table itself
EmitJump2Table(MI);
return;
}
case ARM::t2TBB_JT: {
// Lower and emit the instruction itself, then the jump table following it.
MCInst TmpInst;
TmpInst.setOpcode(ARM::t2TBB);
TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
// Add predicate operands.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
// Output the data for the jump table itself
EmitJump2Table(MI);
// Make sure the next instruction is 2-byte aligned.
EmitAlignment(1);
return;
}
case ARM::t2TBH_JT: {
// Lower and emit the instruction itself, then the jump table following it.
MCInst TmpInst;
TmpInst.setOpcode(ARM::t2TBH);
TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
// Add predicate operands.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
// Output the data for the jump table itself
EmitJump2Table(MI);
return;
}
case ARM::tBR_JTr:
case ARM::BR_JTr: {
// Lower and emit the instruction itself, then the jump table following it.
// mov pc, target
MCInst TmpInst;
unsigned Opc = MI->getOpcode() == ARM::BR_JTr ?
ARM::MOVr : ARM::tMOVr;
TmpInst.setOpcode(Opc);
TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
// Add predicate operands.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
// Add 's' bit operand (always reg0 for this)
if (Opc == ARM::MOVr)
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
// Make sure the Thumb jump table is 4-byte aligned.
if (Opc == ARM::tMOVr)
EmitAlignment(2);
// Output the data for the jump table itself
EmitJumpTable(MI);
return;
}
case ARM::BR_JTm: {
// Lower and emit the instruction itself, then the jump table following it.
// ldr pc, target
MCInst TmpInst;
if (MI->getOperand(1).getReg() == 0) {
// literal offset
TmpInst.setOpcode(ARM::LDRi12);
TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
TmpInst.addOperand(MCOperand::CreateImm(MI->getOperand(2).getImm()));
} else {
TmpInst.setOpcode(ARM::LDRrs);
TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(1).getReg()));
TmpInst.addOperand(MCOperand::CreateImm(0));
}
// Add predicate operands.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
// Output the data for the jump table itself
EmitJumpTable(MI);
return;
}
case ARM::BR_JTadd: {
// Lower and emit the instruction itself, then the jump table following it.
// add pc, target, idx
MCInst TmpInst;
TmpInst.setOpcode(ARM::ADDrr);
TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(1).getReg()));
// Add predicate operands.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
// Add 's' bit operand (always reg0 for this)
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
// Output the data for the jump table itself
EmitJumpTable(MI);
return;
}
case ARM::TRAP: {
// Non-Darwin binutils don't yet support the "trap" mnemonic.
// FIXME: Remove this special case when they do.
if (!Subtarget->isTargetDarwin()) {
//.long 0xe7ffdefe @ trap
uint32_t Val = 0xe7ffdefeUL;
OutStreamer.AddComment("trap");
OutStreamer.EmitIntValue(Val, 4);
return;
}
break;
}
case ARM::tTRAP: {
// Non-Darwin binutils don't yet support the "trap" mnemonic.
// FIXME: Remove this special case when they do.
if (!Subtarget->isTargetDarwin()) {
//.short 57086 @ trap
uint16_t Val = 0xdefe;
OutStreamer.AddComment("trap");
OutStreamer.EmitIntValue(Val, 2);
return;
}
break;
}
case ARM::t2Int_eh_sjlj_setjmp:
case ARM::t2Int_eh_sjlj_setjmp_nofp:
case ARM::tInt_eh_sjlj_setjmp: {
// Two incoming args: GPR:$src, GPR:$val
// mov $val, pc
// adds $val, #7
// str $val, [$src, #4]
// movs r0, #0
// b 1f
// movs r0, #1
// 1:
unsigned SrcReg = MI->getOperand(0).getReg();
unsigned ValReg = MI->getOperand(1).getReg();
MCSymbol *Label = GetARMSJLJEHLabel();
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::tMOVr);
TmpInst.addOperand(MCOperand::CreateReg(ValReg));
TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.AddComment("eh_setjmp begin");
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::tADDi3);
TmpInst.addOperand(MCOperand::CreateReg(ValReg));
// 's' bit operand
TmpInst.addOperand(MCOperand::CreateReg(ARM::CPSR));
TmpInst.addOperand(MCOperand::CreateReg(ValReg));
TmpInst.addOperand(MCOperand::CreateImm(7));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::tSTRi);
TmpInst.addOperand(MCOperand::CreateReg(ValReg));
TmpInst.addOperand(MCOperand::CreateReg(SrcReg));
// The offset immediate is #4. The operand value is scaled by 4 for the
// tSTR instruction.
TmpInst.addOperand(MCOperand::CreateImm(1));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::tMOVi8);
TmpInst.addOperand(MCOperand::CreateReg(ARM::R0));
TmpInst.addOperand(MCOperand::CreateReg(ARM::CPSR));
TmpInst.addOperand(MCOperand::CreateImm(0));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
}
{
const MCExpr *SymbolExpr = MCSymbolRefExpr::Create(Label, OutContext);
MCInst TmpInst;
TmpInst.setOpcode(ARM::tB);
TmpInst.addOperand(MCOperand::CreateExpr(SymbolExpr));
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::tMOVi8);
TmpInst.addOperand(MCOperand::CreateReg(ARM::R0));
TmpInst.addOperand(MCOperand::CreateReg(ARM::CPSR));
TmpInst.addOperand(MCOperand::CreateImm(1));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.AddComment("eh_setjmp end");
OutStreamer.EmitInstruction(TmpInst);
}
OutStreamer.EmitLabel(Label);
return;
}
case ARM::Int_eh_sjlj_setjmp_nofp:
case ARM::Int_eh_sjlj_setjmp: {
// Two incoming args: GPR:$src, GPR:$val
// add $val, pc, #8
// str $val, [$src, #+4]
// mov r0, #0
// add pc, pc, #0
// mov r0, #1
unsigned SrcReg = MI->getOperand(0).getReg();
unsigned ValReg = MI->getOperand(1).getReg();
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::ADDri);
TmpInst.addOperand(MCOperand::CreateReg(ValReg));
TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
TmpInst.addOperand(MCOperand::CreateImm(8));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
// 's' bit operand (always reg0 for this).
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.AddComment("eh_setjmp begin");
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::STRi12);
TmpInst.addOperand(MCOperand::CreateReg(ValReg));
TmpInst.addOperand(MCOperand::CreateReg(SrcReg));
TmpInst.addOperand(MCOperand::CreateImm(4));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::MOVi);
TmpInst.addOperand(MCOperand::CreateReg(ARM::R0));
TmpInst.addOperand(MCOperand::CreateImm(0));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
// 's' bit operand (always reg0 for this).
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::ADDri);
TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
TmpInst.addOperand(MCOperand::CreateImm(0));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
// 's' bit operand (always reg0 for this).
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::MOVi);
TmpInst.addOperand(MCOperand::CreateReg(ARM::R0));
TmpInst.addOperand(MCOperand::CreateImm(1));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
// 's' bit operand (always reg0 for this).
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.AddComment("eh_setjmp end");
OutStreamer.EmitInstruction(TmpInst);
}
return;
}
case ARM::Int_eh_sjlj_longjmp: {
// ldr sp, [$src, #8]
// ldr $scratch, [$src, #4]
// ldr r7, [$src]
// bx $scratch
unsigned SrcReg = MI->getOperand(0).getReg();
unsigned ScratchReg = MI->getOperand(1).getReg();
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::LDRi12);
TmpInst.addOperand(MCOperand::CreateReg(ARM::SP));
TmpInst.addOperand(MCOperand::CreateReg(SrcReg));
TmpInst.addOperand(MCOperand::CreateImm(8));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::LDRi12);
TmpInst.addOperand(MCOperand::CreateReg(ScratchReg));
TmpInst.addOperand(MCOperand::CreateReg(SrcReg));
TmpInst.addOperand(MCOperand::CreateImm(4));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::LDRi12);
TmpInst.addOperand(MCOperand::CreateReg(ARM::R7));
TmpInst.addOperand(MCOperand::CreateReg(SrcReg));
TmpInst.addOperand(MCOperand::CreateImm(0));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::BX);
TmpInst.addOperand(MCOperand::CreateReg(ScratchReg));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
}
return;
}
case ARM::tInt_eh_sjlj_longjmp: {
// ldr $scratch, [$src, #8]
// mov sp, $scratch
// ldr $scratch, [$src, #4]
// ldr r7, [$src]
// bx $scratch
unsigned SrcReg = MI->getOperand(0).getReg();
unsigned ScratchReg = MI->getOperand(1).getReg();
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::tLDRi);
TmpInst.addOperand(MCOperand::CreateReg(ScratchReg));
TmpInst.addOperand(MCOperand::CreateReg(SrcReg));
// The offset immediate is #8. The operand value is scaled by 4 for the
// tLDR instruction.
TmpInst.addOperand(MCOperand::CreateImm(2));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::tMOVr);
TmpInst.addOperand(MCOperand::CreateReg(ARM::SP));
TmpInst.addOperand(MCOperand::CreateReg(ScratchReg));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::tLDRi);
TmpInst.addOperand(MCOperand::CreateReg(ScratchReg));
TmpInst.addOperand(MCOperand::CreateReg(SrcReg));
TmpInst.addOperand(MCOperand::CreateImm(1));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::tLDRr);
TmpInst.addOperand(MCOperand::CreateReg(ARM::R7));
TmpInst.addOperand(MCOperand::CreateReg(SrcReg));
TmpInst.addOperand(MCOperand::CreateReg(0));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::tBX);
TmpInst.addOperand(MCOperand::CreateReg(ScratchReg));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
}
return;
}
}
MCInst TmpInst;
LowerARMMachineInstrToMCInst(MI, TmpInst, *this);
OutStreamer.EmitInstruction(TmpInst);
}
//===----------------------------------------------------------------------===//
// Target Registry Stuff
//===----------------------------------------------------------------------===//
// Force static initialization.
extern "C" void LLVMInitializeARMAsmPrinter() {
RegisterAsmPrinter<ARMAsmPrinter> X(TheARMTarget);
RegisterAsmPrinter<ARMAsmPrinter> Y(TheThumbTarget);
}